

SALT

Speech Application Language Tags (SALT)
1.0 Specification

Document SALT.1.0.doc

 15 July 2002

 © Cisco Systems Inc., Comverse Inc., Intel Corporation, Microsoft

Corporation, Philips Electronics N.V., SpeechWorks International
Inc., 2002. All rights reserved.

The information contained herein is not a license, either expressly or impliedly, to any intellectual property
owned or controlled by any of the authors or developers of this specification. The information contained
herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this
information is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this
specification hereby disclaim all other warranties and conditions, either express, implied or statutory,
including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of
fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike
effort, of lack of viruses, and of lack of negligence, all with regard to the information and their contribution
thereto. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD
TO THE INFORMATION.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS SPECIFICATION BE LIABLE TO ANY
OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT,
INDIRECT, PUNITIVE OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY,
OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO
THE SPECIFICATION INFORMATION, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE
OF THE POSSIBILITY OF SUCH DAMAGES.

For more information, please contact the SALT Forum at mailto:info@saltforum.org or visit
http://www.saltforum.org.

p a g e 2

mailto:info@saltforum.org
http://www.saltforum.org/

Table of Contents

1 Introduction ...5
1.1 Overview.. 5
1.2 Scenarios... 5
1.3 Design principles ... 7

1.3.2 Dynamic manipulation of SALT elements .. 7
1.3.3 Events and error handling .. 7
1.3.4 Management of external resources.. 8

1.4 Document structure ... 8
1.5 Terms and definitions .. 9

2 SALT speech interface..11
2.1 Speech output: <prompt> .. 11

2.1.1 prompt content ... 12
2.1.2 prompt attributes and properties .. 14
2.1.3 prompt methods ... 14
2.1.4 prompt events... 15
2.1.5 PromptQueue object .. 17

2.2 Speech input: <listen> ... 26
2.2.1 listen content .. 26
2.2.2 listen attributes and properties ... 30
2.2.3 listen methods .. 31
2.2.4 listen events.. 33
2.2.5 Interaction with DTMF .. 36
2.2.6 Recognition mode .. 36
2.2.7 Events which stop listen execution .. 42
2.2.8 Recording with listen .. 42
2.2.9 Advanced speech recognition technology ... 48

2.3 DTMF input : <dtmf>.. 48
2.3.1 dtmf content.. 48
2.3.2 dtmf attributes and properties .. 49
2.3.3 dtmf methods.. 50
2.3.4 dtmf events ... 51
2.3.5 DTMF event timeline .. 53
2.3.6 Using listen and dtmf simultaneously... 54
2.3.7 Events which stop dtmf execution.. 56

2.4 Platform messaging: <smex>.. 57
2.4.1 smex content .. 57
2.4.2 smex attributes and properties... 58
2.4.3 smex events ... 58
2.4.4 Using smex for telephony call control .. 59

2.5 Logging .. 59
2.5.1 Overview... 59
2.5.2 Format .. 59
2.5.3 Requirements ... 59

2.6 SALT illustrative examples .. 60
2.6.1 Controlling dialog flow .. 60
2.6.2 Prompt examples ... 64
2.6.3 Using SMIL... 66
2.6.4 Wireless Phone (WML) example.. 67

p a g e 3

2.6.5 A 'safe' voice-only dialog .. 68
2.6.6 smex examples .. 69
2.6.7 Compatibility with visual browsers ... 73
2.6.8 Audio recording example.. 74
2.6.9 Using XPath for DOM queries.. 75

2.7 Appendix A: SALT DTD... 76
2.8 Appendix B: SALT modularization and profiles ... 78

2.8.1 Modularization of SALT.. 78
2.8.2 SALT/HTML profiles ... 81
2.8.3 SALT and SMIL 2.0 .. 89

3 SALT CallControl object ...92
3.1 CallControl object definition... 92

3.1.1 Requirements ... 92
3.1.2 Solution Overview .. 92
3.1.3 Call Control Object Dictionary .. 95

3.2 SALT CallControl illustrative examples ... 103
3.2.1 Cooperative call control libraries .. 103
3.2.2 Call Control use case examples... 105

4 SALT conformance ...111
4.1 Portable extensibility.. 111
4.2 Browser types.. 111
4.3 Call control support.. 112

p a g e 4

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

1 Introduction
Speech Application Language Tags (SALT) 1.0 is an extension of HTML and other markup languages (cHTML, XHTML,
WML, etc.) which adds a speech and telephony interface to web applications and services, for both voice only (e.g.
telephone) and multimodal browsers.

This section introduces SALT and outlines the typical application scenarios in which it will be used, the principles which
underlie its design, and resources related to the specification.

1.1 Overview
SALT is a small set of XML elements, with associated attributes and DOM object properties, events and methods, which
may be used in conjunction with a source markup document to apply a speech interface to the source page. The SALT
formalism and semantics are independent of the nature of the source document, so SALT can be used equally effectively
within HTML and all its flavors, or with WML, or with any other SGML-derived markup.

The main top-level elements of SALT are:

<prompt …> for speech synthesis configuration and prompt playing
<listen …> for speech recognizer configuration, recognition execution and post-processing, and recording
<dtmf …> for configuration and control of DTMF collection
<smex …> for general purpose communication with platform components.

The input elements listen and dtmf also contain grammars and binding controls:

<grammar …> for specifying input grammar resources
<bind …> for processing recognition results.

listen also contains the facility to record audio input:

<record …> for recording audio input

 smex also contains the binding mechanism bind to process messages.

All four top-level elements contain the platform configuration element <param …>.

A PromptQueue object and LogMessage function are also available. For control of telephony functionality, an optional
call control object is defined (Part 3) and a set of predefined messages for linking SALT with other call control models is
also possible (see section 2.4.4).

There are several advantages to using SALT with a mature display language such as HTML. Most notably (i) the event
and scripting models supported by visual browsers can be used by SALT applications to implement dialog flow and other
forms of interaction processing without the need for extra markup, and (ii) the addition of speech capabilities to the visual
page provides a simple and intuitive means of creating multimodal applications. In this way, SALT is a lightweight
specification which adds a powerful speech interface to web pages, while maintaining and leveraging all the advantages
of the web application model.

1.2 Scenarios
Two major scenarios for the use of SALT are outlined below, with simple code samples. For a fuller description of the
elements used in these examples, please see the detailed definitions later in the document.

Multimodal
For multimodal applications, SALT can be added to a visual page to support speech input and/or output. This is a way to
speech-enable individual HTML controls for ‘push-to-talk’ form-filling scenarios, or to add more complex mixed initiative
capabilities if necessary.

A SALT recognition may be started by a browser event such as clicking on a button, for example, which activates a
grammar relevant to an adjacent input field, and binds the recognition result into that field:
 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

<!-- HTML -->
<html xmlns:salt="http://www.saltforum.org/2002/SALT">

...
<input name="txtBoxCity" type="text" />
<input name="buttonCityListen" type="button" onClick="listenCity.Start();" />
...

<!-- SALT -->
<salt:listen id="listenCity">
 <salt:grammar name="g_city" src="./city.grxml" />
 <salt:bind targetelement="txtBoxCity"
 value="//city" />
</salt:listen>

</html>

Voice-only and telephony
For applications without a visual display, SALT manages the interactional flow of the dialog and the extent of user
initiative by using the HTML eventing and scripting model. In this way, the full programmatic control of client-side (or
server-side) code is available to application authors for the management of prompt playing and grammar activation.
(Implementations of SALT are expected to provide scriptlets which will make easier many common dialog processing
tasks, e.g. generic forms of the RunAsk script below or the RunSpeech script illustrated in section 2.6.1.2).

A simple system-initiative dialog might be authored in the following way, for example, where the RunAsk() function
activates prompts and recognitions until the values of the input fields are filled:

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
 <body onload="RunAsk()">
 <form id="travelForm">
 <input name="txtBoxOriginCity" type="text" />
 <input name="txtBoxDestCity" type="text" />
 </form>

 <!-- Speech Application Language Tags -->
 <salt:prompt id="askOriginCity"> Where would you like to leave from? </salt:prompt>
 <salt:prompt id="askDestCity"> Where would you like to go to? </salt:prompt>

 <salt:listen id="recoOriginCity" onreco="procOriginCity()">
 <salt:grammar src="city.xml" />
 </salt:listen>

 <salt:listen id="recoDestCity" onreco="procDestCity()">
 <salt:grammar src="city.xml" />
 </salt:listen>

 <!—- scripted dialog flow -->
 <script>
 function RunAsk() {
 if (travelForm.txtBoxOriginCity.value=="") {
 askOriginCity.Start();
 recoOriginCity.Start();
 } else if (travelForm.txtBoxDestCity.value=="") {
 askDestCity.Start();
 recoDestCity.Start();
 }
 }
 function procOriginCity() {
 travelForm.txtBoxOriginCity.value = recoOriginCity.text;
 RunAsk();
 }
 function procDestCity() {
 travelForm.txtBoxDestCity.value = recoDestCity.text;
 travelForm.submit();

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6
 }

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 </script>
 </body>
</html>

1.3 Design principles
SALT is designed to be a lightweight markup layer which adds the power of a speech interface to existing markup
languages. As such it can remain independent (i) of the high-level page in which it is contained (e.g. HTML); (ii) of the
low-level formats which it uses to refer to linguistic resources, e.g. the text-to-speech and grammar formats; and (iii) of the
individual properties of the recognition and speech synthesis platforms used by a SALT interpreter. In order to promote
interoperability of SALT applications, the use of standard formats for external resources is encouraged wherever possible.

SALT elements are not intended to have a default visual representation on the browser, since for multimodal applications
it is assumed that SALT authors will signal the speech enablement of the various components of the page by using
application-specific graphical mechanisms in the source page.

1.3.1.1 Modes of execution
Since SALT uses the browser environment of the page in which it is hosted to implement its execution model, the level of
programmatic access afforded to the DOM interfaces of SALT elements will differ according to the capabilities of those
environments. This notion comes most clearly into perspective when browsers with and without event and scripting
capabilities are considered. These classes of browser are broadly labeled 'uplevel' and 'downlevel' respectively, and one
can think of SALT as running in a different 'mode' in each class of browser: object mode and declarative mode.

Object mode, where the full interface of each SALT element is exposed in the host environment to programmatic access
by application code, is available for uplevel browsers such as those supporting HTML events and scripting modules.
Object mode offers SALT authors a finer control over element manipulation, since the capabilities of the browser are
greater. (For the most part this specification provides illustrations of the SALT objects in object mode. These illustrations
typically assume support of the XHTML Scripting and Intrinsic Event Modules, as defined in the W3C XHTML
Recommendation at http://www.w3.org/TR/xhtml1.)

Declarative mode, where a more limited interface of each SALT element is directly exposed, but for which the key
functionality is still accessible declaratively, is available in downlevel browsers, such as those not supporting event and
scripting modules. Such browsers are likely to be smaller devices, without sufficient processing power to support a
scripting host, or more powerful classes of device for which full scripting support is not required or desired. In declarative
mode, manipulation of the DOM object of SALT elements is typically limited to attribute specification and simple method
calling from other elements. As will be seen, such manipulation can be performed through bind statements in the SALT
messaging or input modules, for example, or by other browser means if supported (e.g. the declarative multimedia
synchronization and coordination mechanisms in SMIL 2.0, as described in 2.8.3).

1.3.2 Dynamic manipulation of SALT elements
In object mode, client-side scripts are able to access the elements of the SALT DOM. For this reason, it is important that
SALT implementations address the dynamic manipulation of SALT elements. For example, client-side script may be used
to change the value of an event handler:

<salt:listen id="listen1" onreco="regularListenFunction">
 ...
</salt:listen>

<script><![CDATA[

 listen1.onreco="specialListenFunction";
]]></script>

This is a well-known execution model with HTML and many other markup/script models. SALT implementations must
address the probability that advanced dialog authors may dynamically reconfigure the objects of SALT just before a call to
execute them.

1.3.3 Events and error handling
Each of the SALT elements and objects specified in this document defines a set of events associated with the
functionality of the element. For example, the onreco event is fired on a listen element when the speech recognition

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7

http://www.w3.org/TR/xhtml1

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

engine successfully completes the recognition process. The asynchronous nature of eventing in this environment means
that applications will typically follow an event-driven programming model. A single textbox, for example, could be updated
by values at any time from speech or GUI events. Dialog flow can be authored by triggering selection scripts for dialog
turns on the basis of such events.

It should be noted that those properties of SALT objects which are updated by events (for example, the status property
on many objects) are considered meaningful for evaluation only in the handler of the relevant event which sets them. For
instance, an application should examine the recoresult property of a listen object in the onreco or onnoreco
event handlers, and of the bookmark property of a prompt object in the onbookmark event handler.

Each SALT object specifies an onerror event, which when fired signifies a serious or fatal platform exception. The
exception updates the element with an associated code in the status property that allows the application developer to
decide what the best course of action is for the platform error that is thrown.

1.3.3.1 Event models and notation
Much work has been done and is ongoing in the web community on event models across web environments (e.g. HTML
intrinsic events (http://www.w3.org/TR/html4/) and browser derivatives thereof; DOM Level 2 and 3 events
(http://www.w3.org/DOM/); XML Events (http://www.w3.org/TR/xml-events/); etc.). Current web pages therefore reflect a
diversity of event models. (For an illustration of the HTML event model implemented in Microsoft Internet Explorer and
comparison with the W3C DOM Level 2 event model, see section 2.8.2.2.1.3.) Given that SALT does not define an event
model itself and there is not yet a single event model which is standard across browsers and profiles, a number of
syntaxes are possible for the events which SALT defines. Whichever is used will depend on the event model supported
by the profile in which SALT is used.

In the sections that define SALT events, therefore, only the event name is provided. The syntax of using the event is
exemplified for a number of common models in the table below, and this may be used as a reference for the use of any
SALT event in that environment.

This table applies the syntax of these models to an example event, the onbookmark event of the prompt object, where
handler is the name of the function called when the event is thrown, and promptId is the identifier of the prompt object
which holds the event:

Syntax:
Inline HTML <prompt onbookmark="handler" …>
XML Events <ev:listener ev:name="promptId"

 ev:event="onbookmark"
 ev:handler="handler" … />

Programmatic assignment ECMAScript: Object.onbookmark = handler;

VBScript: Object.onbookmark = GetRef("handler");

1.3.4 Management of external resources
SALT applications may require resources held in external documents such as audio files, grammars, script libraries, etc.
These resources can be large and/or time-consuming to access and load, and applications often need fine level control
over downloading and caching policies. Mechanisms for such management are typically available within the host
environments in which SALT is expected to be used, for example the HTTP 1.1 mechanisms in HTML. Hence SALT does
not itself include any resource management capabilities (with the exception of the prefetch attribute on the prompt
element).

1.4 Document structure
The rest of this specification is structured as follows.

Part 2 describes the SALT speech interface. Sections 2.1 to 2.4 describe the core elements of the SALT markup:
prompt, listen, dtmf and smex. Each section details the syntax and semantics of the SALT element, including default
behavior, and outlines the element and its associated attributes, properties, methods and events. Chapter 2.5 describes
the logging function for the recording of platform events and data. Chapter 2.6 contains a number of examples illustrating

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8

http://www.w3.org/TR/html4/
http://www.w3.org/DOM/
http://www.w3.org/TR/xml-events/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

the use of SALT to accomplish a variety of tasks. Chapter 2.7 holds the SALT DTD. Chapter 2.8 introduces
modularization and profiling issues and outlines SALT/HTML profiles for multimodal and voice-only scenarios.

Part 3 describes the optional CallControl object that may be available in telephony profiles for the control of telephony
functionality, and shows some illustrative examples of how it may be used.

Part 4 specifies conformance criteria for different classes of SALT browser.

1.5 Terms and definitions
Throughout this document, the uses of the words 'must', 'should' and 'may' with respect to requirements on SALT browser
behavior are to be interpreted as "MUST" (REQUIRED), "SHOULD" (RECOMMENDED) and "MAY" (OPTIONAL),
respectively, as defined in IETF RFC 2119 (http://www.ietf.org/rfc/rfc2119.txt). The conformance section in part 4 defines
overall conformance requirements for SALT browsers.

Here are the definitions of some terms used within the specification.

Term Definition
CCXML Call Control eXtensible Markup Language. A markup language for specifying telephony call

control applications. Developed by the Voice Browser Working Group at W3C, the initial Working
Draft is at http://www.w3.org/TR/ccxml/.

CFG Context-free grammar, such as W3C SRGS (see below).
cHTML Compact HTML for Small Information Appliances, a W3C Note at

http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/.
DOM Document Object Model, a standard interface to the contents of a web page, as described at

http://www.w3.org/DOM/.
DTMF Dual Tone Multi-Frequency. Telephone touch-tone or push-button dialing.
Downlevel browser A browser which does not support full eventing and scripting capabilities. This kind of SALT

browser will support the declarative aspects of a given element (i.e. rendering of the core
element and attributes), but will not expose all the DOM object properties, methods and events
for direct manipulation by the application. Downlevel browsers will typically be found on clients
with limited processing capabilities.

ECMA-323 XML Protocol for Computer Supported Telecommunications Applications (CSTA) Phase III, as
specified at http://www.ecma.ch/ecma1/STAND/ecma-323.htm by ECMA, the European
Computer Manufacturers Association. This specifies an XML protocol for the CSTA services
described in ECMA 269.

Event bubbling /
Event propagation

This is the idea that an event can affect one object and a set of related objects. Any of the
potentially affected objects can block the event or substitute a different one (upward event
propagation). The event is broadcast from the node at which it originates to every parent node.

JCP Java Call Processing API. See http://java.sun.com
JTAPI Java Telephony API. See http://java.sun.com
Mixed Initiative A form of dialog interaction model, whereby the user is permitted to share the dialog initiative with

the system, e.g. by providing more answers than requested by a prompt, or by switching task
when not prompted to do so (see also System Initiative.)

Multimodal Describing applications or interactions where more than a single mode of input or output is
available to the end-user. For SALT this is used in the case where a speech interface is available
in addition to a visual interface.

N-Gram A stochastic language model, such as W3C Stochastic Language Models (N-Gram) Specification
(http://www.w3.org/TR/ngram-spec/).

NLSML Natural Language Semantic Markup Language. W3C specification for representing the meaning
of a natural language utterance and associated information. At the time of writing, this
specification is at early Working Draft status. The latest version may be found at
http://www.w3.org/TR/nl-spec/.

SGML Standard Generalized Markup Language, a formalism for languages which structure document
content. SGML resources may be found at http://www.w3.org/MarkUp/SGML/.

SRGS Speech Recognition Grammar Specification. W3C specification for representing speech
recognition grammars. The latest version may be found at http://www.w3.org/TR/speech-
grammar/

SMIL Synchronized Multimedia Integration Language. A W3C Recommendation, SMIL 2.0
 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/ccxml/
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/
http://www.w3.org/DOM/
http://www.ecma.ch/ecma1/STAND/ecma-323.htm
http://java.sun.com/
http://java.sun.com/
http://www.w3.org/TR/ngram-spec/
http://www.w3.org/TR/nl-spec/
http://www.w3.org/MarkUp/SGML/
http://www.w3.org/TR/speech-grammar/
http://www.w3.org/TR/speech-grammar/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Term Definition

(pronounced "smile") enables simple authoring of interactive audiovisual applications. See
http://www.w3.org/TR/smil20.

SSML Speech Synthesis Markup Language. W3C specification for controlling the output of a prompt
engine. The latest version may be found at http://www.w3.org/TR/speech-synthesis.

System Initiative A form of dialog interaction model, whereby the system holds the initiative, and typically drives
the dialog with simple questions to which only a single answer is possible. (see also Mixed
Initiative.)

TTS Text-To-Speech: the synthesis of speech output on the basis of textual input.
Uplevel browser A browser which supports full event and scripting capabilities. This kind of SALT browser will

support programmatic manipulation of the attributes, properties, methods and events of every
given SALT element. Uplevel browsers will typically be found on ‘rich’ clients with full processing
capabilities.

Voice-only Describing applications or interactions where the speech modality is the only interface available
to the end-user, such as typical telephony scenarios.

WML Wireless Markup Language, a language developed by the Wireless Application Protocol Forum
(http://www.wapforum.org) for applications on wireless devices. Some WML browsers also
support WMLScript, a compact scripting language. Specifications may be found at:
http://www.wapforum.org/what/technical.htm

XHTML eXtensible HyperText Markup Language. W3C Recommendation which reformulates HTML as
an XML application, defined at http://www.w3.org/TR/xhtml1

XML Name Syntactic construct for tokens in XML documents, essentially "a token beginning with a letter or
one of a few punctuation characters, and continuing with letters, digits, hyphens, underscores,
colons, or full stops" (from http://www.w3.org/TR/REC-xml#NT-Name).

XPath XML Path language, a W3C Recommendation for addressing parts of an XML document. See
http://www.w3.org/TR/xpath.

XSLT Extensible Stylesheet Language Transformations, a W3C Recommendation for transforming
XML documents. See http://www.w3.org/TR/xslt.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0

http://www.w3.org/TR/smil20
http://www.w3.org/TR/speech-synthesis
http://www.wapforum.org/
http://www.wapforum.org/what/technical.htm
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2 SALT speech interface

2.1 Speech output: <prompt>
The prompt element is used to specify the content of audio output. The content of prompts may be one or more of the
following:

• inline or referenced text, which may be marked up with prosodic or other speech output information;
• variable values retrieved at render time from the containing document;
• links to audio files.

Prompts can be specified and played individually, and, in more complex applications, they may be managed through a
model of prompt queuing. In this model, prompts are queued and played in conceptual subqueues and, in those browsers
which support the PromptQueue module, subqueue manipulation is available through the PromptQueue object (see
section 2.1.5). This model is outlined below.

Prompt queuing model
Before defining prompts and the PromptQueue in detail, it may be useful to explain the conceptual model behind
prompt queuing and playback. There are effectively three units of prompt management:

• prompt object (or element)
• prompt subqueue
• PromptQueue object

The prompt object is the smallest unit of manipulation. As defined in 2.1.1, it holds content for playback.

The prompt subqueue is a conceptual sequence of one or more prompt objects. A prompt is added to a subqueue when
the prompt is queued. The subqueue is "closed" (that is, it becomes a fixed unit to which no more prompts may be added)
by a call to start audio playback. In downlevel browsers, queuing and starting playback typically happen sequentially
(activation is mapped to prompt Start behavior, as in 2.1.3.2), so the prompt subqueue in a downlevel browser will
consist of only a single prompt. In uplevel browsers, individual Queue and Start methods are available to a prompt, so a
prompt subqueue may consist of multiple prompts. For example, an application can call the following sequence of
methods:

prompt1.Queue();
prompt2.Queue();
prompt3.Start();
prompt4.Queue();
prompt5.Start();

which builds two subqueues. The first subqueue holds prompt1, prompt2 and prompt3; the second subqueue holds
prompt4 and prompt5. Similarly, the following example:

prompt1.Start();
prompt2.Start();
prompt3.Start();

builds 3 subqueues, holding prompt1, prompt2, and prompt3, respectively. The 3 subqueues will be played
sequentially, each subqueue starting immediately after the previous one completes (without the need for subsequent calls
to begin playback).

The PromptQueue object is supported in uplevel browsers which implement the PromptQueue module. As defined in
section 2.1.5, the PromptQueue object may be thought of as the container of the prompt subqueues. The PromptQueue
object provides a means of controlling the subqueue of prompts currently under playback. In relevant HTML profiles the
PromptQueue is a child of the window object.

The behavior of prompts, subqueues and the PromptQueue object is explained in greater detail below.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 1

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.1.1 prompt content
The prompt element contains the resources for system output. The content of prompts may be one or more of the
following:

• inline or referenced text, which may be marked up with prosodic or other speech output information;
• variable values retrieved at render time from the containing document;
• links to audio files.

It also permits platform-specific configuration using the param element.

2.1.1.1 Text and inline TTS markup
Simple prompts need specify only the text required for output, e.g.:

<prompt id="Welcome">
 Thank you for calling the weather report.
</prompt>

SALT also allows any format of speech synthesis markup language to be used inside the prompt element.

To enable interoperability of SALT applications, SALT browsers must support the W3C Recommendation for Speech
Synthesis Markup Language (SSML), http://www.w3.org/TR/speech-synthesis. A SALT browser may support any other
speech synthesis formats. (Note: at the time of writing, the W3C SSML specification is currently a Working Draft and not
yet a W3C Recommendation.)

The following example shows text with an instruction to emphasize certain key phrases:

<prompt id="giveBalance" xmlns:ssml="http://www.w3.org/2001/10/synthesis">
 You have <ssml:emphasis> five dollars </ssml:emphasis> left in your account.
</prompt>

2.1.1.2 value
The value element can be used to refer to text or markup held in elements of the document.

value element
value: Optional. Retrieves the values of an element in the document.

Attributes:

• targetelement: Required. The id of the element containing the value to be retrieved.
• targetattribute: Optional. The attribute of the element from which the value will be retrieved. If unspecified, no

attribute is used, and the value defaults to the content (text or XML) of the element.

The targetelement attribute is used to reference an element within the containing document. The content of the
element whose id is specified by targetelement is inserted into the text to be synthesized. If the desired content is
held in an attribute of the element, the targetattribute attribute may be used to specify the necessary attribute on the
targetelement. This is useful for referencing the values in HTML form controls, for example. In the following illustration,
the value attributes of the txtBoxOrigin and txtBoxDest elements are inserted into the text before the prompt is
output:

<prompt id="Confirm">
 Do you want to travel from
 <value targetelement="txtBoxOrigin" targetattribute="value" />
 to
 <value targetelement="txtBoxDest" targetattribute="value" />
 ?
</prompt>

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 2

http://www.w3.org/TR/speech-synthesis

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.1.1.3 content
The content element can be used to reference external content such as dynamically generated speech markup or
remote audio files. It also holds optional inline content which will be rendered in the event of a problem with the externally
referenced material. This can take the form of any of the inline content possible for prompt.

content element
content: Optional. The content element specifies a link to an external output resource and identifies its type. SALT
platforms should attempt to render if possible the content of the resource, but if this is impossible, any content specified
inline will instead be output.

Attributes:

• href: Required. A URI referencing prompt output markup or audio.
• type: Optional. The media-type corresponding to the speech output format used. For XML content, typical types

may be the W3C Speech Synthesis Markup Language format, specified as application/ssml+xml, or
proprietary formats such as application/x-sapitts+xml. This attribute permits the SALT author to signal
the format of a prompt resource and determine compatibility before a potentially lengthy download. Note,
however, that it does not guarantee the format of the target (or inline resource), and platforms are free to treat the
attribute (or its absence) in their own way. Formats required by SALT clients which support the basic media
playback module (see section 2.8.1.5) are G.711 wav (audio/wav: 8kHz 8-bit mono [PCM] single channel) and
headerless (audio/basic: 8kHz 8-bit mono [PCM] single channel)1. (Compression type is expected according to
the telephony standard in the country of deployment, e.g. Mu-law in North American deployments, A-law in
European deployments, etc.)

The following example holds one content element to reference XML content in SSML, and another to point to an audio
file.

<prompt>

<content href="/VoiceMailWelcome.ssml" type="application/ssml+xml" />
 After the beep, please record your message:
 <content href="/wav/beep.wav" />.
</prompt>

2.1.1.4 Speech output configuration: <param>
Additional, non-standard configuration of the prompt engine is accomplished with the use of the param element, which
passes parameters and their values to the platform. param is a child element of prompt.

The exact nature of the configurative parameters will differ according to the proprietary platform used. Values of
parameters may be specified in an XML namespace, in order to allow complex or structured values.

param element
param: Optional. Used to pass parameter settings to the speech platform.

param content

Attributes:

• name: required. The name of the parameter to be configured.
• xmlns: optional. Specifies a namespace and potentially a schema for XML content of the parameter.

So, for example, the following syntax:

<salt:param name="promptServer">//myplatform/promptServer</salt:param>

could be used to specify the location of a remote prompt engine for distributed architectures.

Note that page-level parameter settings in HTML profiles may also be defined using the meta element (see 2.8.2.2.1.5).

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 3

1 audio/wav is widely used as a media type, although it is not formally registered as an rfc. The audio/basic media type is
described in http://www.ietf.org/rfc/rfc1521.txt.

http://www.ietf.org/rfc/rfc1521.txt

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.1.2 prompt attributes and properties
The prompt element holds the following attributes and properties. Attributes are supported by all browsers. Properties by
uplevel browsers.

2.1.2.1 Attributes
• id: optional. The identifier of the prompt element. Must be a valid XML Name and unique within the

document (i.e. of XML type ID).
• bargein: Optional. This Boolean flag indicates whether the platform is responsible for stopping prompt

playback when speech or DTMF input is detected (this is sometimes also known as delegated bargein or cut-
through)2. If true, the platform will stop prompt playback in response to input and flush the current subqueue.
If false, the platform will take no default action in response to input. If unspecified, it defaults to true. In both
cases the onbargein handler is called when input is detected (see section 2.1.4.2)3.

• prefetch: Optional. A Boolean flag which, if true, indicates to the platform that the external content of a
prompt is likely to require a lengthy download, and may be prefetched sooner than playback time if possible.
Defaults to false.

• xmlns Optional. This is the standard XML namespacing mechanism and is used with inline XML prompts to
declare a namespace and identify the schema of the format. See http://www.w3.org/TR/REC-xml-names/ for
usage.

• xml:lang: Optional. String indicating the language of the prompt content. The value of this attribute follows
the xml:lang definition in XML 1.0 (http://www.w3.org/TR/REC-xml#sec-lang-tag). For example,
xml:lang="en-US" denotes US English. The attribute is scoped, so if unspecified, a higher level element in the
page may propagate the xml:lang value down to prompt (see equivalent in grammar element, section
2.2.1.1). If xml:lang is not specified at any level, the platform is free to determine the language of choice.

2.1.2.2 Properties
Uplevel browsers support the following properties in the prompt’s DOM object.

• bookmark: Read-only. A string object recording the text of the last synthesis bookmark encountered (see
2.1.4.1). For each playback, the property is set to null string until an onbookmark event is encountered.

• status: Read-only. Integer holding the status code returned by the speech platform on an event. The status
property is only meaningful after status-setting events are thrown by the prompt object, and applications should
examine it in the handler of the relevant event. A status code of zero is set by the oncomplete event (see
2.1.4.3). Other status values are set when the onerror event is thrown (see 2.1.4.4).

2.1.3 prompt methods
The queuing and playback of prompts may be controlled using the following methods on the prompt object. These
methods will be supported by uplevel browsers. (Further manipulation of prompt subqueues is exposed through the
PromptQueue object in uplevel browsers which support the PromptQueue module (see section 2.1.5)).

2.1.3.1 Queue
Queue the prompt onto the prompt subqueue. Takes an optional argument of type string (which may be markup,
as for inline content). If no argument is provided, the method queues the inline content of the object. If an
argument is provided, the value of the argument is treated as the string to be output instead of inline content, and
is subject to any relevant features specified in the prompt's attributes in section 2.1.2.1 (i.e. bargein, xmlns and
xml:lang). After an individual prompt has finished normal playback, the oncomplete event is thrown, and its
status code is set to zero.

Syntax:

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 4

2 This applies to whichever kind of input detection (or 'bargein type') is supported by platform. The type of detection could
be set by using a platform-specific setting using the param element. It is not fired by keypress input on a visual display.
3 It is important to notice that even if bargein is false, the starting of a listen or dtmf object before the end of a prompt
will still collect input immediately. If it is desired to begin collecting input only on completion of prompt playback, this
sequence should be explicitly programmed (for example, in an uplevel HTML profile by wiring the prompt's oncomplete
event to the starting of listen/dtmf, or in a SMIL profile by declarative sequencing, and so on).

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml#sec-lang-tag

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 Object.Queue([strText]);
Parameters:

o strText: optional. String holding the text or markup to be sent to the speech output engine. If present, this
value is used instead of the contents of the object. The content specified in the argument is treated
exactly as if it were inline content in terms of resolving external references, etc.

Return value:
 None.
Exception:

In the event of a problem with queuing the prompt, e.g. that external content cannot be retrieved and no
alternate inline text is provided (see 2.1.1.3), the onerror event is thrown, and the prompt's status code
is set to one of the relevant values described in 2.1.4.4.

Browsers should check prompts for freshness of content and validity of reference on the Queue() call. In
general, error events should be raised as soon as possible after this call is made.

As noted in section 2.1.1.3, inline text can be specified as an alternative to external content, and this text is
queued if external content is invalid or unretrievable. If no inline text is specified, and content is unable to be
resolved, the onerror event is thrown as described above.

If Queue() is called in succession on multiple prompt objects, playbacks are queued in sequence onto a
subqueue. Playback of the resulting subqueue does not begin until Start() is called (on a prompt or the
PromptQueue object). If Queue() is called during playback (i.e. after PromptQueue.Start() but before the
onempty event is thrown), the prompt is added to a new subqueue, which will only be played back after another
explicit Start() call.

2.1.3.2 Start
Queue the prompt onto the prompt subqueue and schedule that subqueue for playback (i.e. begin playback
immediately if no other prompts are currently in play, or begin playback of the subqueue directly after the last
subqueue has ceased playback). Takes an optional argument of type string. If no argument is provided, the
method queues the inline content of the object. If an argument is provided, the value of the argument is treated as
the string to be output. This argument overrides any inline content, and is subject to any relevant features
specified in the prompt's attributes in section 2.1.2.1 (i.e. bargein, xmlns and xml:lang). This method can be
thought of a shorthand for prompt.Queue([arg]) followed by a call to begin audio playback
(PromptQueue.Start()in relevant profiles) and its content, arguments and the possible resulting events are
just as if these two functions had been called sequentially.

Syntax:
 Object.Start([strText]);
Parameters:

o strText: optional. String holding the text or markup to be sent to the speech output engine. If present, this
value is used instead of the contents of the object.

Return value:
 None.
Exception:

In the event of a problem with queuing or playing back the prompt, e.g. that external content cannot be
retrieved and no alternate inline text is provided (see 2.1.1.3), the onerror event is thrown, and the
prompt's status code is set to one of the relevant values described in 2.1.4.4.

2.1.4 prompt events
The prompt object supports the following events, whose handlers may be specified as attributes of the prompt element.

2.1.4.1 onbookmark
Fires when a synthesis bookmark is encountered. Bookmarks are specified by application authors in the input to
the speech output engine, and are used to notify an application that a particular point has been reached during
playback. When the engine encounters a bookmark, the event is thrown to the platform. The example in section
2.6.2.2 shows how bookmarks in a prompt can be used to help determine the meaning of a user utterance.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

On reception of this event, the bookmark property of the prompt object is set to the name of the bookmark
thrown. The event does not pause or stop the playback.

Event Object Information:
Bubbles No
To invoke A bookmark in the rendered string is encountered
Default action Returns the bookmark string

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.1.4.2 onbargein
optional. Fires when an input event is detected from the user. This event corresponds to the detection of input
from either speech or DTMF, and will be triggered by the onspeechdetected event on a started listen object
(see section 2.2.4.3), or by the onkeypress event or onnoreco event on a started dtmf object for in-grammar
and out-of-grammar keypresses respectively (sections 2.3.4.1, 2.3.4.3)4.

This handler is used to specify processing either (i) instead of, or (ii) in addition to the cessation of prompt
playback on reception of an input event. (See section 3.2.1 for use of the bargein attribute to automatically stop
prompt playback on detection of such an event.)
 (i) If the bargein attribute is false and user input is detected, the prompt will keep playing when the
onbargein event fires and while its associated processing is executed (unless of course it is explicitly stopped
elsewhere in the application). This may be used in an email reader application, for example, where commands
are enabled which do not require the prompt to stop (e.g. 'speak louder' or 'read faster') or for bookmarking (such
as the example in 2.6.2.2).
 (ii) If the bargein attribute is true, and user input is detected, the onbargein handler will fire after
prompt playback has been halted by the platform and the prompt subqueue flushed. This may be used to specify
any additional processing of a bargein event (e.g. to log the timing of the bargein).
 It should not need restating that whether or not this event is specified, prompt playback is stopped and
the subqueue flushed automatically by user input when the bargein attribute is set to true (section 3.2.1). (The
automatic method generally results in less latency than using the onbargein handler to script an explicit
PromptQueue.Stop())5.

Event Object Information:
Bubbles No
To invoke A speech/dtmf input event is encountered
Default action None

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.1.4.3 oncomplete
This event fires when the prompt playback completes normally. It has no effect on the rest of the prompt
subqueue. (In relevant profiles, after the oncomplete event of the last prompt in the subqueue, the onempty
event is thrown by the PromptQueue object (section 2.1.5.3.1)).

Event Object Information:
Bubbles No
To invoke prompt playback completes
Default action Set status = 0.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 6

4 Note that in multimodal profiles where a visual display is used, the keypress event from a GUI element will not trigger
the onbargein event.
5 As noted previously, it is important to remember that the starting of a listen or dtmf object before the end of a prompt
will still collect input immediately. If it is desired to begin collecting input only on completion of prompt playback (i.e. that
the onbargein event never fires on the prompt), this sequence should be explicitly programmed (for example, in an
uplevel HTML profile by wiring the prompt's oncomplete event to the starting of listen/dtmf, or in a SMIL profile by
declarative sequencing, and so on).

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.1.4.4 onerror
The onerror event is fired if a serious or fatal error occurs with a prompt such that it is unable to be queued or played.
The onerror event will typically be thrown after the Queue() command, and before playback of the current subqueue
begins. Different types of errors are distinguished by status code and are shown in the event object information table
below. The throwing of this event by a single prompt will flush the subqueue in which it is contained.

Event Object Information:
Bubbles No
To invoke The synthesis process experiences a serious or fatal problem.
Default action On encountering an error, status codes are set as follows:

status -1: Generic failure to queue the prompt onto the
PromptQueue object.
status -2: Failure to find a speech output resource (for distributed
architectures)
status -3: An illegal property/attribute setting that causes a
problem with the synthesis request.
status -4: Failure to resolve content – this is likely to be an
unreachable URI, or malformed markup content.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.1.4.5 Telephony hang-up
In telephony profiles where the PromptQueue object is not supported, a disconnect event will have the effect of stopping
playback of all prompts and flushing all subqueues.

2.1.5 PromptQueue object
The PromptQueue object is a browser object used to control prompt playback. It is accessible from script and has no
markup element on the SALT page. Not all browsers need to support the PromptQueue module. In an HTML profile
where the PromptQueue module is supported, the PromptQueue object will be a child of the window object.

The PromptQueue is maintained as a browser object rather than a markup element for two reasons:

1. It maintains a central object for playback control. The asynchronous nature of the call to prompt.Queue()
means that with multiple queued prompts, the application cannot know (without explicit maintenance scripts)
which prompt is currently being played back, and therefore which to pause/stop/resume, etc. when necessary.
The PromptQueue object provides a single object for doing this.

2. This permits prompt playback to be uninterrupted across page transitions, since the PromptQueue object

persists across the loading and unloading of individual pages. That is, unlike the markup elements in the DOM, it
is not destroyed when its containing page is unloaded (although events which would otherwise be thrown to the
prompt elements, are lost if the containing page has been unloaded). An example of this is shown in section
2.6.2.3.

The PromptQueue object operates in the following manner:

The PromptQueue is a singleton object which conceptually holds one or more prompt subqueues. As outlined in 2.1,
these subqueues are delimited by Start() calls (either on individual prompts or on the PromptQueue itself). A new
subqueue is initiated by calling Queue() on a prompt either when the PromptQueue is empty, or after a Start() call
when it is playing back. That is, each set of prompts queued and followed by Start() is considered a single subqueue.
A subqueue will not be played back until a Start() call is made.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 7

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

It will be seen below that actions of the PromptQueue are local to a subqueue rather than the entire PromptQueue
object, with the exception of the Flush() and Change() methods. The events supported by PromptQueue have scope
at the level of subqueue. For example, the completion of playback of each subqueue is signaled by the onempty event
(see 2.1.5.3.1). An onerror event on a single prompt will flush the subqueue in which that prompt was held, but will not
affect any other subqueues in the PromptQueue (and therefore does not necessarily halt playback, see 2.1.5.3.2).
Bargein behavior is also local to a subqueue: recall from section 2.1.2.1 that where bargein is set true, an onbargein
event on a single prompt will stop playback and flush the current subqueue. Similarly, all PromptQueue methods take
effect in the scope of the subqueue rather than that of the PromptQueue object, except PromptQueue.Flush(), which
is a global action to flush all the subqueues from the PromptQueue object, and PromptQueue.Change(), which applies
adjustments of speed and volume to all subqueues on the PromptQueue.

For a detailed illustration of queuing and the PromptQueue, see 2.1.5.4.

The properties and methods of the PromptQueue object are described in detail below.

2.1.5.1 PromptQueue properties
Uplevel browsers support the following properties in the PromptQueue object.

• status: Read-only. Status code returned by the speech platform. The status code of zero indicates a successful
completed subqueue operation by the speech platform, a negative status code indicates an error on the speech
output platform.

2.1.5.2 PromptQueue methods

2.1.5.2.1 Start
Schedule an open subqueue of prompts for playback, that is, begin playback of the subqueue immediately if no

other prompts are currently in play, or begin playback of the subqueue directly after the last subqueue on the
PromptQueue has ceased playback. When the final prompt in a subqueue finishes playback (and after the throwing of
that prompt's oncomplete event), an onempty event is thrown to the PromptQueue object (see 2.1.5.3.1) and its
status property is set to zero. If no prompts are in the subqueue (including the case where all subqueues are already
scheduled for playback), or a problem arises with the speech output resource, this call throws an onerror event with the
error codes listed in 2.1.5.3.2.

Syntax:
 PromptQueue.Start();
Parameters:

None.
Return value:
 None.
Exception:

In the event of a problem the onerror event is fired, and the status code is set to a negative value, as
listed in 2.1.5.3.2.

2.1.5.2.2 Pause
 This method pauses playback of the current subqueue without flushing the audio buffer or otherwise affecting the
subqueue. This method has no effect if playback is paused or stopped. Notice that Pause() is a synchronous method
with a return value. While playback is paused, Start calls to playback (on a prompt or the PromptQueue) have the
usual effects of subqueue delimitation and scheduling, but playback remains in a paused state (until Resume is called).

Syntax:
 PromptQueue.Pause();
Parameters:

None.
Return value:
 0 for successful pause, -1 for failure.
Exception:

None.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 8

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.1.5.2.3 Resume
 This method resumes playback after a pause. This method has no effect if playback has not been paused. Notice
that Resume() is a synchronous method with a return value.

Syntax:
 PromptQueue.Resume();
Parameters:

None.
Return value:
 0 for successful resumption, -1 for failure.
Exception:
 None.

2.1.5.2.4 Change
 Change speed and/or volume of playback of prompts in all subqueues. Change() may be called before playback
begins, or during playback. It takes effect beginning with the first or current prompt (as appropriate), and applies to
prompts in all subqueues on the PromptQueue object. The adjustment factors to speed and volume are relative to
current speed and volume, e.g. the consecutive commands:

PromptQueue.Change(2.0, 2.0);
PromptQueue.Change(2.0, 2.0);

will twice double the rates of speed and volume relative to those which were in effect before the first command was made.

Syntax:
 PromptQueue.Change(speed, volume);
Parameters:

o speed: Required. The factor to change. speed=2.0 means double the current rate; speed=0.5 means
halve the current rate; speed=1.0 means keep the current rate; speed=0 means to restore the default
value.

o volume: Required. The factor to change. volume=2.0 means double the current volume, volume=0.5
means halve the current volume, volume=1.0 means keep the current volume; volume=0 means to
restore the default value.

Return value:
 None.
Exception:
 If the Change() method is not supported, the onerror event is fired, and the status code is set to -3.

2.1.5.2.5 Stop
 Stop playback and flush the subqueue. If playback has been paused, the method simply flushes the current
subqueue. If playback is not underway at all, the method has no effect.

Syntax:
 PromptQueue.Stop();
Parameters:

None.
Return value:
 None.
Exception:
 There are no explicit exceptions associated with this method.

2.1.5.2.6 Flush
 Stop playback and flush the audio buffer. All subqueues are removed from the PromptQueue. If playback is not
underway (i.e. it has not been started or has already been stopped or paused) the method flushes all prompt subqueues.
In telephony profiles, the Flush() method is executed automatically by the detection of a disconnect (the order of firing
is as follows: listen, dtmf, PromptQueue), and the onerror event is thrown, with status code -30.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 9
Syntax:

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 PromptQueue.Flush();
Parameters:

None.
Return value:
 None.
Exception:
 There are no explicit exceptions associated with this method. However, onerror is thrown and status
code -30 set in telephony profiles when a disconnect event automatically invokes Flush().

2.1.5.3 PromptQueue event handlers

2.1.5.3.1 onempty
This event fires when the last of the prompts in a subqueue have finished playback. It fires after the oncomplete
is fired on the last prompt of the subqueue (and therefore only fires when the playback of the prompt subqueue
completes naturally without explicit stop calls). For prompt queues which are not stopped by other means, there
will be one onempty event for every subqueue, i.e. for every Start() call made.

Event Object Information:
Bubbles No
To invoke Final prompt in prompt subqueue has completed playback.
Default action Set status = 0 if playback completes normally.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.1.5.3.2 onerror
The onerror event is fired if a serious or fatal error occurs with the synthesis (voice output) process. Since onerror on
the PromptQueue object will fire on generic platform errors, playback is stopped on reception of this event and the
subqueue is flushed. (Other queues held in the PromptQueue object are not affected.) For platform errors, a status code
of -1 is set; for errors fired due to Start() being called on an empty subqueue, a status code of -2 is set, and for
Change() when unsupported, a status code of -3 is set. onerror is also fired in telephony profiles as a result of the
automatic call to Flush() on detection of a disconnect (status -30), or if playback is attempted after a disconnect event.

Event Object Information:
Bubbles No
To invoke The synthesis process experiences a serious or fatal problem.
Default action On encountering an error, status codes are set as follows:

status -1: A generic speech output resource error occurred
during playback.
status -2: the Start() call was made on an empty prompt
subqueue.
status -3: the Change() call was made, but the platform does
not support it.
status -30: (telephony profiles only) a disconnect invoked the
Flush() method, or prompt playback was attempted after
disconnect.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.1.5.4 PromptQueue illustrations
This section contains diagrams illustrating the mechanisms of the PromptQueue in action.

2.1.5.4.1 Initializing a subqueue

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 0

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Figure 1: single prompt queued

Figure 1 shows the results of queuing a single prompt, prompt1, using its Queue method. This initializes a new
subqueue, and places prompt1 at its head.

2.1.5.4.2 Adding a second prompt to the subqueue

Figure 2: two prompts queued

Figure 2 shows the queuing of a second prompt, prompt2, again with the Queue method. It is added to the tail of the
same subqueue, after prompt1.

2.1.5.4.3 Adding a third prompt to the subqueue

Figure 3: three prompts queued

Figure 3 shows the queuing of a third prompt, prompt3, using its Queue method. As with prompt2, it is added to the tail
of the same subqueue.

2.1.5.4.4 Call to begin playback

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 1

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Figure 4: Starting playback

Figure 4 shows the call to start playback, PromptQueue.Start(), on the prompts currently queued. The call has the
effect of (i) closing the subqueue after prompt3, and (ii) scheduling the subqueue for playback, beginning with the first
prompt, prompt1. Since no other subqueues are being output, playback begins immediately. When prompt1 has
finished, its oncomplete event will be fired, and the next prompt in the subqueue will begin (prompt2).

2.1.5.4.5 Prompt queuing during playback

Figure 5: prompt queuing during playback

Figure 5 shows a prompt being queued while playback is underway. Since the last subqueue was closed, the new
prompt, prompt4 initializes a new subqueue and places itself at the head. This happens while the current subqueue is
being played back. (As above, when prompt2 has finished, its oncomplete event will be fired, and the next prompt in
the subqueue will begin (prompt3).

2.1.5.4.6 Playback using Start on the prompt

Figure 6: new subqueue playback

Figure 6 shows the queuing of another prompt and a call to playback on the new subqueue. Two things are important to
note here.

Firstly, the Start method on the prompt is used, rather than the Start method on the PromptQueue object. The
calling of Start on the new prompt, prompt5, is equivalent in this profile to the two consecutive commands
prompt5.Queue followed by PromptQueue.Start (as described in section 2.1.3.2). The effect of the call is as follows:

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 2

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

(i) prompt5 is queued onto the tail of the new subqueue; (ii) the new subqueue is closed after prompt5; and (iii) the
new subqueue is scheduled for playback on completion of the current subqueue.

Secondly, the call to playback happens before the first subqueue has finished playback. So the second subqueue is
scheduled for output as soon as the first is finished, that is, prompt4 will begin playback immediately after prompt3 has
completed.

2.1.5.4.7 A third subqueue

Figure 7: another new subqueue

Figure 7 shows the creation of another new subqueue. The very first subqueue (consisting of prompt1, prompt2 and
prompt3) has now been played out and has disappeared from the PromptQueue. The current subqueue is now the
second subqueue, of which prompt4 is currently in playback. The queuing of another prompt, prompt6, initializes the
third subqueue and places prompt6 at its head.

2.1.5.4.8 End of the second subqueue

Figure 8: completion of current subqueue

Figure 8 shows the final prompt of the current subqueue, prompt5, being played out. When it has finished, its
oncomplete event will be fired, and since it ends a subqueue, the onempty event will then be fired on the
PromptQueue object. prompt6 awaits in the next subqueue.

2.1.5.4.9 Subqueue awaiting call to playback

Figure 9: subqueue awaiting Start call

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 3

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Figure 9 shows the PromptQueue after the completion of prompt5. The second subqueue, made up of prompt4 and
prompt5, has played out and is no longer on the PromptQueue. The current subqueue is now made up of prompt6,
which is still open and has not begun playback (since no Start call, either on a prompt or on the PromptQueue, has
yet been made).

2.1.5.4.10 Two subqueues before a Stop call

Figure 10: two subqueues before Stop()

Figure 10 shows a different scenario: two subqueues on the PromptQueue, right before a Stop() call. promptA and
promptB are in the current subqueue, and promptA is in playback. promptY and promptZ are in the second subqueue,
which has not yet been scheduled for playback.

2.1.5.4.11 Result of Stop, next subqueue not yet scheduled

Figure 11: result of Stop, next subqueue not yet scheduled

Figure 11 shows the results of a Stop() call on the situation in Figure 10. The prompt that was in playback, promptA,
was stopped and its subqueue flushed (including promptB). (Recall that a user input event during a prompt whose
bargein attribute is true will trigger the same behavior.) The next subqueue, consisting of promptY and promptZ,
remains on the PromptQueue, awaiting a call to begin playback.

This situation is effectively a return to the situation in , where two prompts are on a subqueue that has not yet
been scheduled for playback. Should PromptQueue.Start() be called, playback will begin on the existing promptY
and promptZ subqueue. Should PromptQueue.Stop() be called again, it will have no effect, since the subqueue is not
in playback. Should another prompt be queued, it will be added to the tail of the existing promptY and promptZ
subqueue.

Figure 2

2.1.5.4.12 Two subqueues before a Stop call, both scheduled

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 4

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Figure 12: Two subqueues before Stop, both scheduled

Figure 12 shows a different scenario: two subqueues on the PromptQueue, right before a Stop() call. promptA and
promptB are in the current subqueue, and promptA is in playback. promptY and promptZ are in the second subqueue,
and have been scheduled for playback (e.g. PromptQueue.Start was called after they were queued).

2.1.5.4.13 Result of Stop, next subqueue already scheduled

Figure 13: Result of Stop, next subqueue already scheduled

Figure 13 shows the results of a Stop() call on the situation in Figure 12. Again, the prompt that was in playback,
promptA, was stopped and its subqueue flushed (including promptB). The next subqueue, consisting of promptY and
promptZ, this time begins playback immediately, since it was already scheduled for playback.

2.1.5.4.14 Result of Flush

Figure 14: result of Flush()

Figure 14 shows the results of the Flush() method on the situation in Figure 10, and, in fact, on any situation. The Flush()
method stops playback and flushes all prompts in all subqueues out of the PromptQueue, leaving it empty. (Recall also
that in telephony profiles this method is called automatically when a disconnect event occurs.)

2.1.5.4.15 Pause() and the queuing model
As described in 2.1.5.2.2, the PromptQueue.Pause() command can be used to stop playback without flushing the
audio buffer, ready to resume playback at the point at which it was halted. Since the semantics of this command is to
temporarily cease playback without otherwise affecting the subqueues on the PromptQueue, this allows multiple queuing
operations to be performed while playback is paused. So a Start call, either on a prompt or the PromptQueue, made
while playback is paused will still have the usual semantics of delimiting a subqueue, and scheduling a subqueue for

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

playback, even though playback is not underway. (This permits the scheduling of multiple subqueues 'under the covers',
i.e. without corresponding immediate execution of playback, if this is desired.)

2.2 Speech input: <listen>
The listen element is used for speech recognition, for audio recording, or for both.

A listen element which is used for speech recognition contains one or more grammar elements, which are used to
specify possible user inputs. A listen element which is used for audio recording contains a record element which is
used to configure the recording process. A listen element used for simultaneous recognition and recording holds one
or more grammar elements and a record element. In all cases, bind can be used to process the results obtained from
recognition and/or recording.

Many of the features of the listen object are used in both the recognition and the recording scenarios, and the
attributes, properties, methods and event handlers of listen have similar behavior whether it is used for speech
recognition or for recording. In those browsers which support the Concurrent Recognition and Recording module (see
2.8.1.4), simultaneous speech recognition and audio recording is enabled with the specification of both grammar and
record in a single listen object, and the behavior of the object is driven by speech recognition events.

listen elements used for speech recognition may also take a particular mode - ‘automatic’, ‘single’ or ‘multiple’ – to
distinguish the kind of recognition scenarios which they enable and the behavior of the recognition platform, as described
in 2.2.6.

The use of the listen element for speech recognition is defined in sections 2.2.1 to 2.2.7. The use of the listen
element for recording is described in detail in section 2.2.8.

2.2.1 listen content
As noted above, the listen element contains one or more grammars (and/or a record element), and (optionally) a set
of bind elements which inspect the results of the speech input and copy the relevant portions to values in the containing
page. It also permits further configuration using the param mechanism.

In uplevel browsers, listen also supports the programmatic activation and deactivation of individual grammar rules.

2.2.1.1 <grammar> element
The grammar element is used to specify grammars, either inline or referenced using the src attribute. grammar is a child
element of listen. At least one grammar (either inline or referenced) must be specified for speech recognition. Inline
grammars must be text-based grammar formats, while referenced grammars can be text-based or binary type. Multiple
grammar elements may be specified, in which case each grammar element is considered in a separate namespace for
the purpose of grammar compilation. All the grammars of a listen element are treated as active unless (i) explicitly
deactivated, or (ii) inactive by virtue of internal content.

To enable interoperability of SALT applications, SALT browsers must support the XML form of the W3C Recommendation
for Speech Recognition Grammar Specification (SRGS), http://www.w3.org/TR/speech-grammar/. A SALT browser may
support any other grammar formats. (Note: at the time of writing, the W3C SRGS specification is not yet a W3C
Recommendation.) In order to guarantee complete interoperability of grammars, it is expected that W3C will eventually
require the use of the W3C Semantic Interpretation (SI) specification with W3C grammars
(http://www.w3.org/TR/semantic-interpretation/). Until this is the case, SALT platforms which implement semantic
interpretation using W3C grammar formats should also support W3C SI.

Attributes:

• name Optional. This value identifies the grammar for the purposes of activation and deactivation (see 2.2.3.4 and
2.2.3.5). Grammars within the same listen element must not be identically named. Note that the use of name
does not enable the referencing of the rules of one inline grammar from another.

• src Optional. URI of the grammar to be included. The reference of the URI must be a valid grammar reference or
grammar rule reference according to the semantics of the grammar format used. Specification of the src attribute
in addition to an inline grammar is illegal and will result in an invalid document.

• type Optional. For externally referenced grammars, the media-type corresponding to the grammar format used.
This may refer to text or binary formats. Typical types may be the W3C XML grammar format, specified as

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 6

http://www.w3.org/tr/speech-grammar/
http://www.w3.org/TR/semantic-interpretation/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

application/srgs+xml, or proprietary formats such as application/x-sapibinary. The type attribute
permits the SALT author to signal the format of a grammar resource and determine compatibility before a
potentially lengthy download. However, note that it does not guarantee the format of the target (or inline
resource), and platforms are free to treat the attribute (or its absence) in their own way. If unspecified, the type
will default to the common format required for interoperability.

• xmlns Optional. This is the standard XML namespacing mechanism and is used with inline XML grammars to
declare a namespace and identify the schema of the format. See http://www.w3.org/TR/REC-xml-names/ for
usage.

• xml:lang Optional. String indicating which language the grammar refers to. The value of this attribute follows the
xml:lang definition in XML 1.0 (http://www.w3.org/TR/REC-xml#sec-lang-tag). For example, xml:lang="en-US"
denotes US English. The attribute is scoped, so if unspecified, a higher level element in the page may propagate
the xml:lang value down to grammar (e.g. listen)6. If xml:lang is specified in multiple places then xml:lang
follows a precedence order from the lowest scope – remote grammar file (i.e xml:lang may be specified within
the grammar file) followed by grammar element followed by listen element, so for external grammars, it may
even be overridden by xml:lang specified within the target grammar. If xml:lang is completely unspecified, the
platform is free to determine the language of choice.

Whether inline or referenced, SALT grammars are expected to respect the declaration and referencing semantics of the
format used.

Notes for use of W3C SRGS grammars
For applications using W3C SRGS grammars the following should be noted.

A W3C grammar used inline should declare a root. For a W3C grammar used by reference, the src attribute may
include the rulename fragment. If the src does not reference a public rule of the grammar then the reference is in error. If
the rulename fragment is omitted then the reference is an implied reference to the root rule of the referenced grammar. If
the referenced grammar has no root then the src reference is in error. It is legal to have more than one reference to the
same external grammar where each grammar element references a different public rulename of that grammar (by the
rulename fragment).

Example referenced and inline grammars

<salt:grammar src="cities.grxml" type="application/srgs+xml" />

or

<salt:grammar xmlns="http://www.w3.org/2001/06/grammar">
 <grammar root="root">

 <rule id="root">
 <item repeat="0-1">from </item>
 <ruleref name="#cities" />
 </rule>
 <rule id="cities">
 <one-of>

 <item> Cambridge </item>
 <item> Seattle </item>
 <item> London </item>

 </one-of>
 </rule>

 </grammar>
</salt:grammar>

The specification of both the src attribute and inline content in the same grammar element will result in an invalid
document.

Grammar types

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 7

6 xml:lang is a 'global' XML attribute which when placed on an element, says that any human language used in that
element and all elements beneath it, is in the language referred to by xml:lang.

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml#sec-lang-tag/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

SALT grammars are expected to be either context-free grammars (CFGs), as illustrated above and commonly used today
in command driven telephony voice applications, or N-Gram grammars, as used in larger vocabulary dictation and "How
can I help you?"-style applications. Whereas listens of automatic and single mode can be used with CFG or N-Gram
grammars (or both), listens of 'multiple' mode will typically use N-Grams to accomplish dictation. (For the mode attribute
on listen, see section 2.2.6).

To enable interoperability of SALT applications, SALT browsers which support N-Gram recognition must support the W3C
Recommendation for Stochastic Language Models (N-Gram) (http://www.w3.org/TR/ngram-spec). A SALT browser may
support any other stochastic grammar formats. (Note: at the time of writing, the W3C N-Gram specification is currently a
Working Draft and not yet a W3C Recommendation.)

In terms of the recognition result, a listen using N-Grams will hold the recognized text or the N-Best variants in its XML
result structure, which may take the form of a word graph.

2.2.1.2 <bind> element
The bind element is used to bind values from spoken input into the page, and/or to call methods on page elements.
bind is a child element of listen.

The input result processed by the bind element is an XML document containing a semantic markup language (e.g. W3C
Natural Language Semantic Markup Language) for specifying recognition results. Its contents typically include semantic
values, actual words spoken, and confidence scores. The return format could also include alternate recognition choices
(as in an N-best recognition result).

To enable interoperability of SALT applications, SALT browsers must support the W3C Recommendation for Natural
Language Semantic Markup Language (NLSML) format (http://www.w3.org/TR/nl-spec/). A SALT browser may support
any other semantic markup language. (Note: at the time of writing, the W3C NLSML specification is currently a Working
Draft and not yet a W3C Recommendation.)

A sample W3C NLSML return for the utterance "I’d like to travel from Seattle to Boston" is illustrated below:

<result grammar="http://flight" xmlns:xf="http://www.w3.org/2000/xforms">
 <interpretation confidence="0.4">
 <input mode="speech">
 I'd like to travel from Seattle to Boston
 </input>
 <xf:instance>
 <airline>
 <origin_city confidence="0.45">Seattle</origin_city>
 <dest_city confidence="0.35">Boston</dest_city>
 </airline>
 </xf:instance>
 </interpretation>
</result>

Since a recognition result produces an XML document, the values to be bound from that document are referenced using
an XPath query. And since the elements in the page into which the values will be bound should be uniquely identified
(they are likely to be form controls), these target elements are referenced directly with the targetelement attribute.

The binding operation is executed whenever a recognition result is returned and before the relevant recognition event is
thrown. When bind is used for assignment, the result of the XPATH query is copied from the result DOM into the page
DOM. If the target of assignment targetattribute is of type string, the result will be converted into a well-formed XML
string without loss of information. This feature can be used with a complete recognition result, for instance, to submit the
entire result to a web server. Otherwise, if the targetattribute is of type XML DOM Node, the assignment follows the
copy-of semantics of XSLT 1.0 (defined at http://www.w3.org/TR/xslt#copy-of), namely, the DOM node tree returned by
the XPATH will be copied to the targetattribute as a DOM node tree. It raises no events itself. If it fails to execute or
contains errors in content, no operation is performed.

Attributes:

• targetelement: Required. The name of the element to which the value content from the recognition XML will be
assigned (as in W3C SMIL 2.0).

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 8

http://www.w3.org/TR/ngram-spec/
http://www.w3.org/TR/nl-spec/
http://www.w3.org/TR/xslt#copy-of/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

• targetattribute: Optional. The attribute of the target element to which the value content from the recognition
XML will be assigned (as with the attributeName attribute in SMIL 2.0). If unspecified, defaults to "value".

• targetmethod: Optional. The method of the target element which will be called if the bind is executed. Such
methods are presently limited to functions that assume "void" for both the argument list and the return type.
Examples include the submit method of the HTML form object, the click method of the button and the
hyperlink objects, and the Start and Stop methods of a listen object.

• test: Optional. String holding an XML pattern (as for the test attribute of conditional expressions in XSLT,
http://www.w3.org/TR/xslt#section-Conditional-Processing), indicating the condition under which the bind will be
executed. If unspecified, no condition is applied and the bind element will always be executed on the return of
recognition results.

• value: Optional. An XPath (as in http://www.w3.org/TR/xpath) string that specifies the value from the recognition
result document7 to be assigned to the target element. Ignored when used with method execution
(targetmethod). If unspecified and used with assignment, defaults to the entire recognition result document.

Each bind directive can have at most one targetmethod or targetattribute attribute. Specification of more than
one, or of both targetattribute and targetmethod will result in an invalid document.

When multiple bind directives return a Boolean value "true" on their respective test conditions, they are executed in
document order.

Example:
So given the recognition result of the examples above, the following listen element uses bind to transfer the values in
origin_city and dest_city into the target page elements txtBoxOrigin and txtBoxDest:

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
 ...

 <form id="formTravel">
 <input name="txtBoxOrigin" type="text"/>
 <input name="txtBoxDest" type="text" />

 </form>
 ...

 <salt:listen id="listenTravel">
 <salt:grammar src="./city.grxml" />

 <salt:bind targetelement="txtBoxOrigin"
 value="//origin_city" />
 <salt:bind targetelement="txtBoxDest"
 value="//dest_city" />

 </salt:listen>
 ...

 </html>

This binding may be conditional, as in the following example, where a test is made on the confidence attribute of the
dest_city result as a pre-condition to the bind operation:

<salt:bind targetelement="txtBoxDest"
 value="//dest_city"

test="//dest_city[@confidence > 0.4]" />

The bind element is also able to call methods on the specified element, so the following example would submit the
HTML travel form without needing any script code:

<salt:bind test="//dest_city[@confidence > 0.4]"
targetelement="formTravel"

 targetmethod="submit" />

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 2 9

7 It is important to remember that many speech recognizers return results as a set of N-Best alternatives within the
recognition XML. In these cases, since a typical XPath query may return more than one node, the extraction of a single
result may require an array index to identify the most likely node (e.g. "(//dest_city)[1]" for the query in the example
on this page). For the purpose of illustrative simplicity, the examples in the rest of this document assume a single relevant
node in the recognition result.

http://www.w3.org/TR/xslt#section-Conditional-Processing/
http://www.w3.org/TR/xpath

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

The bind element is a simple declarative means of processing recognition results on downlevel or uplevel browsers. For
more complex processing, the listen DOM object supported by uplevel browsers implements the onreco (or
onnoreco) event handler to permit programmatic script analysis and post-processing of the recognition return (see
2.2.4.1) or recording results (see 2.2.8.4.2).

Further illustrations of the use of bind may be found in the sample markup examples in 2.6.

2.2.1.3 Recording: <record>
The recording of audio is described in section 2.2.8.

2.2.1.4 Speech recognition configuration: <param>
Additional, non-standard configuration of the speech recognition engine is accomplished with the use of the param
element which passes parameters and their values to the platform. param is a child element of listen.

The exact nature of the configurative parameters will differ according to the proprietary platform used. Values of
parameters may be specified in an XML namespace, in order to allow complex or structured values.

param element
param: Optional. Used to pass parameter settings to the speech platform.

param content

Attributes:

• name: required. The name of the parameter to be configured.
• xmlns: optional. Specifies a namespace and potentially a schema for XML content of the parameter.

So, for example, the following syntax:

<salt:param name="recoServer">//myplatform/recoServer</salt:param>

could be used to specify the location of a remote speech recognition server for distributed architectures.

Note that in HTML profiles, page-level parameter settings may also be defined using the meta element (see 2.8.2.2.1.5).

2.2.2 listen attributes and properties
The following attributes are supported by all browsers and the following properties are supported by uplevel browsers.

2.2.2.1 Attributes
The following attributes of listen are used to configure the speech recognizer for a dialog turn.

• id: optional. The identifier of the listen element. Must be a valid XML Name and unique within the

document (i.e. of XML type ID).
• initialtimeout: Optional. The time in milliseconds between the start of recognition (if no prompt is in playback)

or the end of prompt (if a prompt is in playback) and the detection of speech. This value is passed to the
recognition platform, and if exceeded, an onsilence event will be thrown from the recognition platform (see
2.2.4.2). A value of 0 effectively disables the timeout. If the attribute is not specified, the speech platform will
use a default value.

• babbletimeout: Optional. The maximum period of time in milliseconds for an utterance. For listens in
automatic and single mode (see 2.2.6), this applies to the period between speech detection and the speech
endpoint or Stop() call. For listens in ‘multiple’ mode, this timeout applies to the period between each
speech detection and subsequent phrase recognition– i.e. the period is restarted after each return of results
or other event. If exceeded, the onnoreco event is thrown with status code -15. This can be used to control
when the recognizer should stop processing excessive audio. For automatic mode listens, this will happen
for exceptionally long utterances, for example, or when background noise is mistakenly interpreted as
continuous speech. For single mode listens, this may happen if the user keeps the audio stream open for
an excessive amount of time (e.g. by holding down the stylus in tap-and-talk). For a summary of onnoreco

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 0

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

status codes, see section 2.2.4.4. A value of 0 effectively disables the timeout8. If the attribute is not specified,
the speech platform will use a default value.

• maxtimeout: Optional. The period of time in milliseconds between the call to start recognition if no prompt is
in playback) or the end of prompt (if a prompt is in playback) and the returning of results to the browser. If
exceeded, an onerror event is thrown – this caters for network or recognizer failure in distributed
environments. For listens in ‘multiple’ mode, as with babbletimeout, the period is restarted after the
return of each recognition or other event. Note that the maxtimeout attribute should be greater than or equal
to the sum of initialtimeout and babbletimeout (and endsilence for automatic mode). A value of 0
effectively disables the timeout. If the attribute is not specified, the speech platform will use a default value.

• endsilence: Optional. For listens in automatic mode (see 2.2.6), the period of silence in milliseconds after
the end of an utterance which must be free of speech after which the recognition results are returned. The
speech recognizer may ignore this attribute for listens of modes other than automatic. If unspecified,
defaults to platform internal value.

• reject: Optional. The confidence threshold for recognition rejection, below which the platform will throw the
onnoreco event. If not specified, the speech platform will use a default value. Confidence scores are
floating point values between 0 and 1. reject values lie in between.

• xml:lang: Optional. String indicating which language the speech recognizer should attempt to recognize. The
string format follows the xml:lang definition in XML 1.0 (http://www.w3.org/TR/REC-xml#sec-lang-tag). For
example, xml:lang="en-US" denotes US English. This attribute is only meaningful when xml:lang is not
specified in the grammar element (see 2.2.1.1), or in its content.

• mode: Optional. String specifying the recognition mode to be followed (see 2.2.6 below). If unspecified,
defaults to "automatic" mode.

Many of these attributes are used in the same way to configure the audio recording process, as detailed in section
2.2.8.2.1.

In certain HTML profiles, the HTML attributes accesskey and style may also be used as attributes of listen, as
described in 2.8.2.1.1.

2.2.2.2 Properties
The following properties contain the results returned by the recognition process (these are supported by uplevel
browsers).

• recoresult Read-only. The results of recognition, held in an XML DOM node object containing the recognition
return, as described in 2.2.1.2, In case of no recognition, the return may be empty.

• text Read-only. A string holding the text of the words recognized. A SALT browser must attempt to extract such a
string from the return result. Where the result format is known to the browser, this is found in a standard query
related to that format, e.g. for NLSML, /result/interpretation[1]/input. For N-Best results, the string
holds the text of the first (typically the most likely) utterance in the N-Best list. If the browser is unable to
determine the text of the utterance (even after applying the standard query for the default format) the value will be
null string.

• status: Read-only. Integer holding a status code returned by the recognition platform. The status property is
only meaningful after status-setting events are thrown by the listen object, and applications should examine it in
the handler of the relevant event. Possible values are 0 for successful recognition, or the failure values -1 to -9
(as defined in the exceptions possible on the Start method (section 2.2.3.1) and Activate method (section
2.2.3.4)) and statuses -11 to -15 set on the reception of recognizer error events (see 2.2.4.5), statuses -20 to -24
in the case of recording (see 2.2.8.4.5), and status -30 for telephony hang-ups (see 2.2.4.5).

2.2.3 listen methods
The execution of listen elements may be controlled using the following methods in the listen’s DOM object. With
these methods, browsers can start and stop listen objects, cancel recognitions in progress, and uplevel browsers can also
activate and deactivate individual grammar top-level rules.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 1

8 This may be interpreted by the platform as an instruction to allow maximum rather than infinite length input.

http://www.w3.org/TR/REC-xml#sec-lang-tag/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.2.3.1 Start
The Start method starts the recognition process, using as active grammars all those which have not been explicitly
deactivated (or are inactive by declaration). As a result of the Start method, a speech recognition event such as
onreco, onnoreco, or onsilence will typically be fired, or an onerror event will be thrown in the case of an
application or platform error. See section 2.2.4 for a description of these events. (Note that for telephony profiles,
associated dtmf recognition events can also end the execution of listen, as described in 2.3.6.)

Syntax:
 Object.Start()
Parameters:
 None.
Return value:
 None.
Exception:

The method sets a non-zero status code and fires an onerror event if it fails. The onerror event
description in section 2.2.4.5 lists possible non-zero status codes.

On the calling of the Start() method the speech recognition platform must ensure that the active grammars of a
listen are complete and up-to-date. Only one listen object may be started at a given time. If Start() is called on a
listen object which is already in execution, the call has no effect. If Start() is called on a listen object while
another is in execution, the onerror event is thrown on the object on which the second Start() was attempted.
onerror events resulting from the Start() method are thrown according to the status codes in section 2.2.4.5.

2.2.3.2 Stop
The Stop method is a call to end the recognition process. The listen object stops processing audio, and the recognizer
returns recognition results on the audio received up to the point where recording was stopped. Once the recognition
process completes, all the recognition resources used by listen are released. The result of calling Stop() will be an
onreco or onnoreco event and the return of a recognition result, or an onerror event. (Note that this method need not
be used explicitly for typical recognitions in automatic mode (see 2.2.6), since the recognizer itself will stop the listen
object on endpoint detection after recognizing a complete grammar match.) If the listen has not been started, the call
has no effect. In telephony profiles, the Stop() method is executed automatically by the detection of a disconnect (the
order of firing is as follows: listen, dtmf, PromptQueue), and as a result onreco or onnoreco is thrown.

Syntax:
 Object.Stop()
Parameters:
 None.
Return value:
 None.
Exception:
 There are no explicit exceptions associated with this method. However, if Stop() is called before speech

is detected, the onnoreco event is fired and status code is set to -11 (as in 2.2.4.4), and if there is any
problem an onerror event is fired with and the status codes as outlined in section 2.2.3.1 are set.

2.2.3.3 Cancel
The Cancel method stops the audio feed to the recognizer and releases recognizer resources. The platform may return
a recognition result for a cancelled recognition (although this may be empty). If the recognizer has not been started, the
call has no effect. No event is thrown when the Cancel method is called.

Syntax:
 Object.Cancel()
Parameters:
 None.
Return value:
 None.
Exception:
 None.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 2

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.2.3.4 Activate
The Activate method activates the grammars of a listen. The first argument identifies the grammar for activation, the
optional second argument identifies a top-level rulename within that grammar. If called during a ‘started’ listen, the
change will not take effect until the listen is restarted. (Recall also that Activate() is not necessary in the default case:
the grammars of a listen object are treated as active unless explicitly deactivated.)

Syntax:
 Object.Activate(grammarName, [ruleName]);
Parameters:

o grammarName: Required. Name of the grammar (i.e. the name attribute of the relevant grammar).
o ruleName: Optional. Rule name within the grammar.

Return value:
 None.
Exception:
 There are no explicit exceptions associated with this method. However, if the grammar identified with the

grammarName argument does not exist, an onerror event is fired and a value of -6 set in the status
property of the listen object. (Note also that onerror would be fired as a result of the
listen.Start() method if the rule identified by the ruleName argument does not exist.)

Note that for W3C SRGS grammars the rule name is not necessary (since only a single rule can be root).

2.2.3.5 Deactivate
The Deactivate method deactivates the grammars of a listen. The first argument identifies the grammar for
deactivation, the optional second argument identifies a top-level rulename within that grammar. If called during a ‘started’
listen, the change will not take effect until the listen is restarted. If the grammar or rule is already deactivated, the
call has no effect.

Syntax:
 Object.Deactivate(grammarName, [ruleName]);
Parameters:

o grammarName: Name of the grammar (i.e. the name attribute of the relevant grammar).
o ruleName: Optional. Rule name within the grammar.

Return value:
 None.
Exception
 There are no explicit exceptions associated with this method. However, if the grammar identified with the

grammarName argument does not exist, an onerror event is fired and a value of -6 is set in the status
property of the listen object. (Note also that onerror would be fired as a result of the
listen.Start() method if the rule identified by the ruleName argument does not exist.)

Note that for W3C SRGS grammars the rule name is not necessary (since only a single rule can be root).

2.2.4 listen events
The listen object supports the following events, whose handlers may be specified as attributes of the listen
element. For a graphical summary of events along the timeline in different modes of recognition see section 2.2.6.

It is important to notice that the recoresult property is updated for both successful and unsuccessful events from the
speech recognizer. So applications should assume that the property holds a valid result from the user only in the case of
successful recognitions. In the case of unsuccessful or aborted recognitions, the result may be an empty document, or it
may hold extra information which applications are free to use or ignore. In either case, applications examining the
recoresult property should do so in the relevant speech event handler, i.e. onreco or onnoreco, since the property
may not be valid for examination at other times.

2.2.4.1 onreco
This event is fired when the recognizer has a successful recognition result available for the browser. This
corresponds to a valid match in the grammar and a confidence value above the reject threshold. For listens in
automatic mode, this event stops the recognition process automatically and clears resources. The onreco

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 3

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

handler is typically used for programmatic analysis of the recognition result and processing of the result into the
page.

Event Object Information:
Bubbles No
To invoke User says something
Default action Return recognition result object. In telephony profiles, status

codes are set as follows:

status -30: (telephony profiles only): Stop() invoked by
disconnect.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data
(see the use of the event object in the example below).

Example
The following XHTML fragment uses onreco to call a script to parse the recognition outcome and assign the
values to the proper fields.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
 ...
 <input type="button" value="Talk to me" onClick="listenCity.Start()" />

<input name="txtBoxOrigin" type="text" />
<input name="txtBoxDest" type="text" />
...
<salt:listen id="listenCity" onreco="processCityRecognition()">

<salt:grammar src="/grammars/cities.grxml" />
</salt:listen>

<script><![CDATA[
 function processCityRecognition () {
 smlResult = event.srcElement.recoresult;

 origNode = smlResult.selectSingleNode("//origin_city/text()");
 if (origNode != null) txtBoxOrigin.value = origNode.value;

 destNode = smlResult.selectSingleNode("//dest_city/text()");
 if (destNode != null) txtBoxDest.value = destNode.value;
 }
]]></script>

</html>

2.2.4.2 onsilence
onsilence handles the event of no speech detected by the recognition platform before the duration of time specified in
the initialtimeout attribute on the listen (see 2.2.2.1). This event cancels the recognition process automatically for
the automatic recognition mode – see Figure 15.

Event Object Information:
Bubbles No
To invoke Recognizer did not detect speech within the period specified in

the initialtimeout attribute.
Default action Set status = -11

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.2.4.3 onspeechdetected
onspeechdetected is fired by the speech recognition platform on the detection of speech. Determining the actual time
of firing is left to the platform (which may be configured on certain platforms using the param element, as in 2.2.1.4), so
this may be anywhere between simple energy detection (early) or complete phrase or semantic value recognition (late).
 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 4

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

This event also triggers onbargein on a prompt which is in play (see 2.1.4.2), and may disable the initialtimeout
of a started dtmf object, as described in 2.3.6. This handler can be used in multimodal scenarios, for example, to
generate a graphical indication that recognition is occurring, or in voice-only scenarios to enable fine control over other
processes underway during recognition.

Event Object Information:
Bubbles No
To invoke Recognizer detects speech.
Default action Trigger onbargein if prompt is in playback, disable dtmf

initialtimeout if started.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.2.4.4 onnoreco
onnoreco is a handler for the event thrown by the speech recognition platform when it is unable to return a complete
recognition result. The different cases in which this may happen are distinguished by status code. For listens in
automatic mode, this event stops the recognition process automatically.

Event Object Information:
Bubbles No
To invoke Recognizer detects speech but is unable to fully interpret the

utterance.
Default action Update recoresult and status properties. recoresult may be an

empty document or it may hold information provided by the
speech recognizer. Status codes are set as follows:

status -11: execution was stopped before speech was detected.
status -13: sound was detected but no speech was able to be
interpreted;
status -14: some speech was detected and interpreted but
rejected with insufficient confidence (for threshold setting, see the
reject attribute in 2.2.2.1);
status -15: speech was detected and interpreted, but a complete
recognition was unable to be returned between the detection of
speech and the duration specified in the babbletimeout attribute
(see 2.2.2.1).
status -30: (telephony profiles only): Stop() invoked by
disconnect, input not recognized.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.2.4.5 onerror
The onerror event is fired if a serious or fatal error occurs with the recognition process (i.e. once the recognition
process has been started with a call to the Start method). Different types of error are distinguished by status code and
are shown in the event object table below.

Event Object Information:
Bubbles No
To invoke The grammar activation or recognition process experiences a

serious or fatal problem.
Default action Set status property and return null recognition result. The

listen’s recoresult and text properties are set to empty.
Status codes are set as follows:

status -1: A generic (speech) platform error occurred during

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

recognition.
status -2: Failure to find a speech platform (for distributed
architectures)
status -3: An illegal property/attribute setting that causes a
problem with the recognition request.
status -4: Failure to find resource – in the case of recognition this
is a grammar resource.
status -5: Failure to load or compile a grammar resource
status -6: Failure to activate or deactivate rules/grammars (this is
thrown as a result of the Activate/Deactivate methods as in
2.2.3.4, 2.2.3.5).
status -7: The period specified in the maxtimeout attribute (see
2.2.2.1) expired before recognition was completed
status -8: recognition was attempted without active grammars
status -9: recognition was attempted while another listen object
was in execution.
status -30: (Telephony profiles only) recognition was attempted
after a disconnect.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.2.5 Interaction with DTMF
In telephony profiles which support DTMF input, platforms will implement certain links between listen objects and dtmf
objects which simplify the authoring of joint behavior on a single dialog turn. This relationship is discussed in section 2.3.6
of the DTMF input chapter.

2.2.6 Recognition mode
Different scenarios of speech recognition can require subtle differences in behavior from a speech recognizer. Although
the starting of the recognition process is standard in all cases – an explicit Start() call from uplevel browsers, or a
declarative listen element in downlevel browsers – the means of stopping the process and the return of results may
differ.

For example, an end-user using tap-and-talk in a multimodal application may control the period of spoken input to the
device by tapping and holding a form field, so the application uses a GUI event (e.g. pen up) to control when recognition
will stop and return results. However, in voice-only scenarios such as telephony or hands-free, the user has no direct
control over the browser, and the recognition platform must take the responsibility of deciding when to stop recognition
and return results (typically once a complete path through the grammar has been recognized). Further, dictation and other
scenarios where intermediate results may need to be returned before recognition is stopped not only require an explicit
stop but also need to return multiple recognition results to the application before the recognition process is stopped.

Hence the mode attribute on the listen element is used to distinguish the following three modes of recognition: automatic,
single and multiple. These are distinguished by how and when the speech recognizer returns results. The return of results
is accompanied by the throwing of the onreco event.

SALT defines profiles for the support expected of different modes according to the class of client device in 2.8.1.
Generally, automatic mode will be more useful in telephony profiles, single mode in multimodal profiles, and multiple
mode in all kinds of dictation scenarios. (It is expected that applications will reflect such profiles in server-side page
generation, that is, individual pages will be tailored on a web server to specific classes of client device according to the
modality capabilities of that client.)

As noted above, if mode is unspecified, the default recognition mode is ‘automatic’.

Note
Applications may make the assumption that communications between the browser and the recognition platform are
ordered correctly in time. This assumption may not always hold true in distributed architectures where heavy loads on the
recognition platform cannot guarantee the chronological sequencing of communications across components. For example

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 6

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

a Stop() call may transmitted from browser to platform after the user has stopped speaking, but while the platform is still
processing the input. Browser implementations with distributed architectures will clearly need to take this into account.

2.2.6.1 Automatic mode
<listen mode="automatic" … >

Figure 15: Automatic mode listen timeline

Automatic mode is used for recognitions in telephony or hands-free scenarios. The general principle with automatic
listens is that the speech platform itself (rather than the application) is in control of when to stop the recognition process.
So no explicit Stop() call is necessary from the application, because the utterance end will be automatically determined,
typically using the endsilence value.

Speech detection is signaled by the onspeechdetected event. As described in 2.2.4.3, the timing of this event is
determined completely by the platform. (If a prompt is in playback when onspeechdetected is thrown, the onbargein

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 7

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

event will be thrown on the prompt (see 2.1.4.2), and if the prompt's bargein attribute is true, playback will first be
stopped.)

As soon as a recognition result is available (the endsilence time period is used to determine the phrase-end silence
which implies recognition is complete), the speech platform automatically stops the recognizer and returns its results. The
onreco event is thrown for a successful recognition (i.e. confidence higher than the threshold specified in the reject
attribute), and onnoreco for an unsuccessful recognition (i.e. confidence lower than the threshold specified in the
reject attribute). This is shown in diagrammatic form in case (1) of Figure 15. Case (2) shows the firing of onnoreco
after the babbletimeout period is exceeded, which ends execution of the listen. Case (3) displays an unsuccessful
recognition attempt where the recognizer throws onnoreco before the utterance endsilence. Case (4) shows no input
from the user, and the resulting throwing of the onsilence event. As noted above, all events except
onspeechdetected end the execution of a listen in automatic mode.

2.2.6.2 Single mode
<listen mode="single" … >

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 8

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Figure 16: Single mode listen timeline

Figure 16

Single mode recognitions are typically used for push-to-talk scenarios. In this mode, the return of a recognition result is
under the control of an explicit Stop call from the application.

shows the common speech recognition events and their behavior for a single mode listen.

Speech detection is signaled by the onspeechdetected event. As described in 2.2.4.3, the timing of this event is
determined completely by the platform. (If a prompt is in playback when onspeechdetected is thrown, the onbargein
event will be thrown on the prompt (see 2.1.4.2), and if the prompt's bargein attribute is true, playback will first be
stopped.)

Case (1) shows the Stop() call in action and the possible resulting events of onreco or onnoreco, according to
whether recognition was successful or not. Case (2) illustrates the firing of onnoreco in response to the
babbletimeout, and this event automatically ends the execution of the listen. Case (3) shows how onnoreco may

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 3 9

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

be fired in the case of an unrecognizable utterance, but this does not automatically cease execution of the listen. And
case (4) shows how, as with all modes, the onsilence event is thrown if speech is not detected within the timeout period
(but for a single mode listen this does not stop recognition). So for single mode listens, the only speech event which
automatically halts execution before a stop call is onnoreco as a result of babbletimeout (along with the non-speech
event onerror).

2.2.6.3 Multiple mode
<listen mode="multiple" … >

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 0

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Figure 17: Multiple mode listen timeline

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 1

Multiple mode recognition is useful for "open-microphone" or dictation scenarios. In this mode, recognition results are
returned at intervals until the application makes an explicit Stop() call (or the babbletimeout or maxtimeout periods
are exceeded). It is important to note that after any onsilence, onreco, or onnoreco event which does not stop

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

recognition, the maxtimeout and babbletimeout periods are restarted. recoresult is updated by these events as
for the other modes of recognition.

For each phrase recognized, an onspeechdetected event is thrown, followed by an onreco event and the return of the
phrase result. As with the other modes, onspeechdetected has the effects on prompt playback described in section
2.1.4.2. The decision of what constitutes a valid recognized phrase for the return result is left entirely to the platform.
Phrase recognition is shown in case (1) of Figure 17. On the return of the result, the babbletimeout and maxtimeout
periods are restarted. Case (2) shows how the exceeding of the babbletimeout results in the onnoreco and the
halting of listen. Case (3) displays the throwing of onnoreco in response to unrecognizable input, with the listen
object continuing execution and the restarting of the babbletimeout and maxtimeout periods. Case (4) shows the
throwing of onsilence in response to no input during the initialtimeout period, and again the execution of the
listen object continues.

2.2.7 Events which stop listen execution
The following is a summary of the commands and events that will stop a listen while in execution:

methods

• listen.Stop()
• listen.Cancel()

listen events

• listen.onreco (automatic mode only)
• listen.onnoreco (babbletimeout: all modes)
• listen.onnoreco (unsuccessful recognition: automatic mode only)
• listen.onsilence (automatic mode only)
• listen.onerror

DTMF events (telephony profiles only)

• dtmf.onreco
• dtmf.onnoreco
• dtmf.onsilence
• dtmf.onerror

Recall also that in telephony profiles a hang-up event automatically calls Stop() on an active listen.

2.2.8 Recording with listen
The listen element is also used for recording audio input from the user. Recording may be used in addition to
recognition or in place of it, according to the abilities of the platform and its profile. The attributes, properties and methods
of listen are used in the recording case with equivalent or appropriate semantics. This section explains these features
for recording scenarios, and a full example can be found in section 2.6.8.

For concurrent recognition and recording in a single listen (e.g. using 'hotword' recognition to end a recording), both
grammar and record may be used. The attributes of record configure the recording process, and the attributes,
properties, methods and event handlers of listen should be considered to apply to the speech recognition process. The
mode of recognition used will typically determine the overall behavior of such a listen object. The results of both
recognition and recording will be contained in the recoresult returned to the browser (whether recognition is a success
or a failure) and all the relevant properties of the listen object will be updated.

2.2.8.1 <listen> content for recording

2.2.8.1.1 <record> element
Recording is enabled on a listen element by the use of the record element. Only one record element is permitted in a
single listen. The following optional attributes of record are used to configure the recording process:

• type: Optional. If unspecified, defaults to G.711 wav file. Formats required by SALT clients which support the

basic recording module (see section 2.8.1.3) are G.711 wav (audio/wav: 8kHz 8-bit mono [PCM] single
 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 2

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

channel) and headerless (audio/basic: 8kHz 8-bit mono [PCM] single channel)9. (Compression type is
expected according to the telephony standard in the country of deployment, e.g. Mu-law in North American
deployments, A-law in European deployments, etc.).

• beep optional. Boolean value, if true, the platform will play a beep before recording begins. Defaults to false.

2.2.8.1.2 <grammar> element
If specified in addition to a record element, the grammar element enables speech recognition during the recording
process as described in 2.2.1.1. (not all platforms will support this profile). This is useful in certain scenarios, including
'hotword' detection to end recording, or where the audio of recognized input needs to be made available to the
application.

2.2.8.1.3 <bind> element
The semantic markup document returned after a recording holds in its root element the following extra attributes relevant
to the recording result:

 recordlocation: uri of the location of the recorded audio;
 recordtype: media-type of the recorded audio.
 recordduration: value (in ms) corresponding to the approximate length of the recording;
 recordsize: value (in bytes) holding the size of the recorded audio file;

The values of these attributes are copied to the relevant properties of a recording listen object (see 2.2.8.2.2). In the
case of a totally unsuccessful recording, recordlocation and recordtype will hold empty strings, and
recordduration and recordsize will hold values of zero.

2.2.8.1.4 <param> element
As with typical listens, the param element can be used to specify the platform-specific features of recording, e.g. sampling
rate, mu-law/A-law compression, etc.

2.2.8.2 Attributes and properties

2.2.8.2.1 Attributes
The following attributes of listen are used to configure the speech recognizer for recording. For all attributes, where
concurrent recognition and recording are performed, the attributes are used as for the speech recognition case in 2.2.2.1.

• initialtimeout: Optional. For recording only, the time in milliseconds between start of recording (if no prompt
is in playback) or the end of prompt (if a prompt is in playback) and the detection of speech. This value is
passed to the recording platform, and if exceeded, an onsilence event will be thrown from the recognition
platform (see 2.2.4.2)10. If not specified, the speech platform will use a default value.

• babbletimeout: Optional. For recording only, this sets the time limit on the amount of audio that can be
recorded once speech has been detected11. If babbletimeout is exceeded, the onnoreco event is thrown
with status code -15 (see section 2.2.4.4). If babbletimeout is not specified, the speech platform will
default to an internal value. A value of 0 effectively disables the timeout12.

• maxtimeout: Optional. For recording only, this sets the maximum timeout period in which a recording must
be returned, and is used as defined for a typical listen (see 2.2.2.1).

• endsilence: Optional. For recording only, the period of silence in milliseconds after the end of an utterance
which must be free of speech after which audio recording is automatically stopped. If unspecified, defaults to
a platform internal value.

• reject: Optional. For listens used only for recording, this is ignored.
• xml:lang: Optional. For listens used only for recording, this is ignored.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 3

9 audio/wav is widely used as a media type, although it is not formally registered as an rfc. The audio/basic media type is
described in http://www.ietf.org/rfc/rfc1521.txt.
10 For recording on a telephony platform this functionality could also be accomplished by most telephony cards. Hence,
for recording, the implementation of this feature is left in the hands of platform implementation.
11 Recording platforms may begin writing to file at any time during the initialtimeout period, so the entire length of a
recorded file may be anywhere up to the sum of initialtimeout and babbletimeout.
12 This may be interpreted by the platform as an instruction to allow maximum rather than infinite length input.

http://www.ietf.org/rfc/rfc1521.txt

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

• mode: Optional. For listens used only for recording, this is ignored.

2.2.8.2.2 Properties
The following properties contain the results returned by the recording process. Those properties which hold values
specific to recording obtain the corresponding values from the return document described in 2.2.8.1.3.

• recoresult Read-only. As for recognition, the results of recording in an XML DOM node holding the return
document described in 2.2.8.1.3. For listens used for simultaneous recording and recognition, the return
document will hold information for both results.

• text Read-only string. (Only used when recognition is enabled along with recording).
• status Read-only. Integer holding status code returned by the recognition platform. Status codes from -20 to -24

are relevant for errors specific to the audio recording process (see 2.2.8.4.5). Status code -30 indicates a
disconnect in telephony profiles.

• recordlocation Read-only. String holding the location of the recorded audio in a URI.
• recordtype Read-only. String holding the media type of the recorded audio.
• recordduration: Read-only. Integer holding the approximate length of the recording in milliseconds.
• recordsize: Read-only. Integer holding the size of the recorded audio file in bytes.

2.2.8.3 Object methods
Recording activation can be controlled using the following methods of listen. With these methods, uplevel browsers can
start and stop recording, and cancel recordings in progress.

2.2.8.3.1 Start
This method is used to start audio recording.

Syntax:
 Object.Start()
Parameters:
 None.
Return value:
 None.
Exception:

The method sets a non-zero status code and fires an onerror event if it fails. See the onerror event
description in section 2.2.4.5 for the non-zero status codes.

2.2.8.3.2 Stop
This method is used to stop audio recording. For recording-only listens, unless there is a recording error, the onreco
event will fire as a result, once the platform completes the audio recording. In telephony profiles, the Stop() method is
executed automatically by the detection of a disconnect (the order of firing is as follows: listen, dtmf, PromptQueue),
which results in onreco and a status code of -30.

Syntax:
 Object.Stop()
Parameters:
 None.
Return value:
 None.
Exception:
 There are no explicit exceptions associated with this method. However, an onerror event may be fired

in the case of failure and the status codes as outlined in section 2.2.8.4.5 are set.

2.2.8.3.3 Cancel
This method is used to cancel audio recording in a recording only listen. Any written audio data may be removed by the
platform. No events are fired when this method is called.

Syntax:
 Object.Cancel()

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 4

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Parameters:
 None.
Return value:
 None.
Exception:
 None.

2.2.8.3.4 Activate
This method is used only when recognition is enabled, and is as described in section 2.2.3.4.

2.2.8.3.5 Deactivate
This method is used only when recognition is enabled, and is as described in section 2.2.3.5.

2.2.8.4 Recording events
A recording listen supports the following events, whose handlers may be specified as attributes of the listen element.

For listens which execute recording only (without recognition), the event behavior is as for a listen of automatic
mode (see section 2.2.6.1.). For listens which accomplish recognition along with recording, the mode of recognition
used will determine which events are thrown and their behavior (see section 2.2.6 for different modes of recognition).

2.2.8.4.1 onspeechdetected
onspeechdetected is fired by the speech recognition platform on the detection of speech. Determining the actual time
of firing is left to the platform (which may be configured on certain platforms using the param element, as in 2.2.1.4), so
this may be anywhere between simple energy detection (early) or more sophisticated speech detection (late). This event
also triggers onbargein on a prompt which is in play (see 2.1.4.2), and may disable the initialtimeout of a started
dtmf object, as described in 2.3.6.

Event Object Information:
Bubbles No
To invoke Speech is detected.
Default action Trigger onbargein if prompt is in playback, disable dtmf

initialtimeout if started.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.2.8.4.2 onreco
For recording-only listens, this event is fired when audio recording has completed. The recoresult property is
returned with the recording result and properties are updated according to the previous sections.

Event Object Information:
Bubbles No
To invoke Recording is accomplished
Default action Return recording result object. In telephony profiles only, the

following status codes are set:

status -30: Stop() was invoked by a disconnect.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data
(see the use of the event object in the example below).

2.2.8.4.3 onsilence
For recording-only listens, this event is fired when no speech is detected by the platform before the duration of
time specified in the initialtimeout attribute on the listen (see 2.2.8.2.1). This event cancels the audio
recording process automatically.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Event Object Information:
Bubbles No
To invoke Recognizer did not detect speech within the period specified in

the initialtimeout attribute.
Default action Set status = -11

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.2.8.4.4 onnoreco
For recording-only listens, this event is thrown when the babbletimeout period on the recording has been
exceeded. This is a common occurrence in voice mail scenarios when the time allotted for leaving a message is
exceeded by the user. The platform also returns the recording results via the recoresult property, and
applications will typically apply the same handler as for onreco.

Event Object Information:
Bubbles No
To invoke babbletimeout expires during audio recording.
Default action Set status property and return recording result in recoresult.

Status codes are set as follows:

status -15: speech was detected and recording made but
babbletimeout was exceeded (see 2.2.2.1).

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.2.8.4.5 onerror
The onerror event is fired if a serious or fatal error occurs with the recording process. Different types of error
are distinguished by status code and are shown in the event object information table below.

Event Object Information:
Bubbles No
To invoke The recording process (once the Start method has been

invoked) experiences a serious or fatal problem.
Default action Set status property and return empty recording result.

Recording status codes are set as follows:

status -20: Failure to record file locally on the platform
status -21: Unsupported codec
status -22: Unsupported format (if neither format nor codec are
unsupported, only one of the values need be set)
status -23: Error occurred during streaming to a remote server.
status -24: An illegal property/attribute setting that causes a
problem with the recording request.
status -30: Recording was attempted after a disconnect
(telephony profiles).

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.2.8.5 Timeline for recording listen
The following figure, Figure 18, shows the typical events of a listen which is executing audio recording (without
concurrent recognition).

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 6

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Figure 18: Recording listen timeline

Speech detection is signaled by the onspeechdetected event. As described in 2.2.4.3, the timing of this event is
determined by the platform. (If a prompt is in playback when onspeechdetected is thrown, the onbargein event will
be thrown on the prompt (see 2.1.4.2), and if the prompt's bargein attribute is true, playback will first be stopped.)

As soon as a recording is available (the endsilence time period can be used to determine the silence which implies that
the recording is over), the speech platform automatically stops the recording and returns results. The onreco event is
thrown, as shown in diagrammatic form in case (1). Case (2) shows the firing of onnoreco after the babbletimeout
period is exceeded, which ends execution of the listen and returns the recording. Case (3) shows an explicit Stop()
call which returns the recording result and throws the onreco event (recall that a disconnect in telephony profiles
automatically calls the Stop() method). Case (4) shows no input from the user, and the consequent throwing of the
onsilence event.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 7

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.2.8.6 Stopping audio recording
Audio recording is stopped by any of the means of stopping a listen object in automatic mode (see section 2.2.7).
Since a result is always returned to the listen object, a recording listen which is stopped by DTMF input or a hang-up
(as in many voice mail applications, for instance) will always contain a recording result if available.

The following is a summary of the commands and events that will stop a record-only listen while in execution:

methods

• listen.Stop()
• listen.Cancel()

listen events

• listen.onreco
• listen.onnoreco
• listen.onsilence
• listen.onerror

DTMF events (telephony profiles only)

• dtmf.onreco
• dtmf.onnoreco
• dtmf.onsilence
• dtmf.onerror

Recall also that in telephony profiles a hang-up event automatically calls Stop() on an active listen.

2.2.9 Advanced speech recognition technology
It should be clear that advanced speech recognition technologies such as speaker verification or enrollment are enabled
by the listen element as it is currently defined in SALT, although optimal methods for accomplishing such mechanisms
may not be portable across platforms.

2.3 DTMF input : <dtmf>
The dtmf element is used in telephony applications to specify possible DTMF inputs and a means of dealing with the
collected results and other DTMF events. Like listen, its main elements are grammar and bind, and it holds resources
for configuring the DTMF collection process and handling DTMF platform and collection events.

2.3.1 dtmf content
Mirroring the listen recognition element, the dtmf element holds as content the grammar and bind elements, and
may also be configured in extensible ways with the param element.

2.3.1.1 <grammar>
This is a grammar, as defined in section 2.2.1.1. The only difference between a speech grammar and a DTMF grammar is
that the DTMF grammar will hold DTMF keys as tokens, rather than words of a particular language. So for a DTMF
grammar, the xml:lang attribute is not meaningful, and within the grammar itself, terminal rules will contain as possible
tokens only the digits 0-9, *, # and A, B, C and D. In all other respects, the grammar element is identical to the speech
recognition grammar element in section 2.2.1.1.

2.3.1.2 <bind>
The bind element is a declarative way to assign the DTMF result to a field in the host page, and is defined in section
2.2.1.2. bind acts on the XML in the result returned by DTMF collection in exactly the same way as it does for listen.

The following example demonstrates how to allow consecutive DTMF input into multiple fields, using DTMF grammars
and bind to update the fields.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
 ...
 <input type="text" name="iptAreaCode" onFocus="dtmfAreaCode.start()" />

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 8

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 <input type="text" name="iptPhoneNumber" />
 ...

 <salt:dtmf id="dtmfAreaCode" onreco="dtmfPhoneNumber.Start()">
 <!-- grammar result will contain "smlAreaCode" node -->
 <salt:grammar src="3digits.grxml" />
 <salt:bind value="//smlAreaCode" targetelement="iptAreaCode" />
 </salt:dtmf>

 <salt:dtmf id="dtmfPhoneNumber">
 <!-- grammar result will contain "smlPhoneNumber" node -->
 <salt:grammar src="7digits.grxml" />
 <salt:bind value="//smlPhoneNumber" targetelement="iptPhoneNumber" />
 </salt:dtmf>
</html>

2.3.1.3 DTMF configuration: <param>
Additional, non-standard configuration of the DTMF engine is accomplished with the use of the param element which
passes parameters and their values to the platform. param is a child element of dtmf.

The exact nature of the configurative parameters will differ according to the proprietary platform used. Values of
parameters may be specified in an XML namespace, in order to allow complex or structured values.

param element
param: Optional. Used to pass parameter settings to the speech platform.

param content

Attributes:

• name: required. The name of the parameter to be configured.
• xmlns: optional. Specifies a namespace and potentially a schema for XML content of the parameter.

So, for example, the following syntax:

<salt:param name="myDTMFParam"> myDTMFValue </salt:param>

could be used to specify a parameterization on particular DTMF platform.

Note that in HTML profiles, page-level parameter settings may also be defined using the meta element (see 2.8.2.2.1.5).

2.3.2 dtmf attributes and properties

2.3.2.1 Attributes

• id: optional. The identifier of the dtmf element. Must be a valid XML Name and unique within the document (i.e.
of XML type ID).

• initialtimeout: Optional. The time in milliseconds between start of collection and the first key pressed. If
exceeded, the onsilence event is thrown and status property set to -11. A value of 0 effectively disables the
timeout. If the attribute is not specified, the speech platform will use a default value.

• interdigittimeout: Optional. Timeout period for adjacent DTMF keystrokes, in milliseconds. A value of 0
effectively disables the timeout. If unspecified, defaults to the telephony platform’s internal setting. When
exceeded, the platform throws an onnoreco event and sets the status property to -16.

• endsilence: optional. The timeout period when input matches a complete path through the grammar but further
input is still possible. This timeout specifies the period of time in which further input is permitted after the complete
match. Once exceeded, onreco is thrown. (For a complete grammar match where further input is not possible,
the endsilence period is not required, and onreco is thrown immediately.) If this attribute is not supported
directly by a platform, or unspecified in the application, the value of endsilence defaults to that used for
interdigittimeout.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 4 9

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

• preflush: Optional. Boolean flag indicating whether to automatically flush the DTMF buffer on the underlying
telephony interface card before activation. If unspecified, defaults to false (in order to facilitate type-ahead
applications).

2.3.2.2 Properties
• dtmfresult: Read only. XML node holding the DTMF result. This is updated at the end of DTMF collection, and

holds an XML document containing semantic markup language. Semantic markup language is discussed in
section 2.2.1.2.

• text: Read-only string containing tokens of the actual keys pressed during recognition. This string is appended
with every key press event (in-grammar or out-of-grammar) received by the dtmf object, so it is updated on every
onkeypress, onreco and onnoreco event. The string does not hold white space between tokens.

• status: Read-only. Integer holding the status code returned by DTMF collection. The status property is only
meaningful after status-setting events are thrown by the dtmf object, and applications should examine it in the
handler of the relevant event. Possible values are 0 for successful collection, the failure values -1 to -9 (as
defined in the exceptions possible on the Start method (section 2.3.3.1)), status -11 on the reception of
onsilence (see 2.3.4.4), and status -13 or -16 on an onnoreco (see 2.3.4.3). (These values reflect
corresponding status codes in the listen object of section 2.2.2.2.) Status -30 indicates a telephony disconnect
event.

2.3.3 dtmf methods
DTMF collection may be controlled using the following methods on the dtmf object. With these methods, browsers can
start, stop and flush dtmf objects.

2.3.3.1 Start
The Start method starts the DTMF collection process, using the grammars defined within the object.

Syntax:
 Object.Start();
Parameters:
 None.
Return value:
 None
Exception:

The method sets a non-zero status code and fires an onerror event if it fails. See the onerror event
description in section 2.3.4.5 for the non-zero status codes.

Only one dtmf object may be started at a given time. If Start() is called on a dtmf object which is already in
execution, the call has no effect. If Start() is called on a dtmf object while another is in execution, the onerror event
is thrown on the object on which the second Start() was attempted.

2.3.3.2 Stop
Stop dtmf collection and return results received up to the point when collection was stopped. (Any subsequent keystrokes
entered by the user, however, will remain in the platform buffer unless explicitly flushed.) The result of calling Stop() will
be an onreco or onnoreco event and the return of a result, or an onerror event. If the dtmf object has not been
started, this call has no effect. In telephony profiles, the Stop() method is executed automatically by the detection of a
disconnect (the order of firing is as follows: listen, dtmf, PromptQueue), and the relevant event thrown with status
code -30.

Syntax:
 Object.Stop();
Parameters:
 None.
Return value:
 None
Exception:
 There are no explicit exceptions associated with this method. However, if there is any problem an
onerror event is fired and the status codes as outlined in section 2.3.4.5 are set.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 0

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.3.3.3 Flush
Flush the DTMF buffer. Flush has no effect if called while the dtmf object is started.

Syntax:
 Object.Flush();
Parameters:
 None.
Return value:
 None
Exception:

There are no explicit exceptions associated with this method. However, if there is any problem an
onerror event is fired and the status codes as outlined in section 2.3.4.5 are set.

2.3.4 dtmf events
When returning a result from DTMF collection, browsers will update the recoresult property for both successful and
unsuccessful DTMF recognitions. However, applications should assume this property holds a valid result only in the case
of successful recognitions. In the case of unsuccessful or aborted recognitions, the result may be an empty document (or
it may hold extra information which applications are free to use or ignore).

2.3.4.1 onkeypress13
Fires on every pressing of a DTMF key which is legal according to the input grammar (a key which is out-of-grammar
triggers an onnoreco event). Immediately prior to the event firing, the token corresponding to the key pressed is
appended to the value of the text property of the dtmf element. If a prompt is in playback, the onkeypress event will
trigger the onbargein event on the prompt (and cease its playback if the prompt's bargein attribute is set to true). If a
listen element is active, the first onkeypress event has the effect described in section 2.3.6.

Event Object Information:
Bubbles No
To invoke Key press on the DTMF key pad.
Default action Appends text property with key pressed

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.3.4.2 onreco
Fires when a DTMF recognition is complete. This event stops the current dtmf object automatically and updates
dtmfresult with the results of recognition. If a listen is also active, this event stops the listen object, as described
in section 2.3.6. The onreco handler is typically used for programmatic analysis of the recognition result and processing
of the result into fields on the page.

DTMF recognition is considered complete and onreco fired in the following circumstances:

1. Immediately after the input sequence matches a complete path through the grammar and further input is not
possible according to that grammar.

2. After the period specified in the endsilence attribute in the case where the input sequence matches a
complete path through the grammar but further input is still possible according to that grammar. (So setting
an endsilence period of zero would fire onreco immediately a complete path through the grammar is
matched, and have the same behavior as 1.)

Event Object Information:
Bubbles No
To invoke DTMF recognition is complete.
Default action Returns result in dtmfresult. Set status codes as follows:

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 1

13 For HTML and XHTML, this overrides the default onkeypress event inherited from the HTML control. Only DTMF
keypresses fire this event.

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

status -30: a disconnect invoked the Stop() method14.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.3.4.3 onnoreco
Fires when a key is pressed which is not legal according to the DTMF grammar, or when interdigittimeout is
exceeded (or on the Stop() call when input is not a complete grammar match). This event stops the DTMF object
automatically, appends the text property with key pressed (if an illegal key was pressed) and updates dtmfresult
with a result (this may be an empty document or it may hold the out-of-grammar input). If a listen is also active, this event
stops the listen object, as described in section 2.3.6.

Event Object Information:
Bubbles No
To invoke Illegal key press, or exceeding of interdigittimeout period

when input is incomplete.
Default action Stops dtmf collection. Appends text property with key pressed

(if applicable), updates dtmfresult and sets status property.
Status codes are set as follows:

status -13: out-of-grammar DTMF keypress.
status -16: interdigittimeout was exceeded.
status -30: a disconnect invoked the Stop() method.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.3.4.4 onsilence
onsilence handles the event of no DTMF collected by the platform before the duration of time specified in the
initialtimeout attribute (see 2.3.2.1). This event stops the dtmf object automatically.

Event Object Information:
Bubbles No
To invoke No DTMF input detected within the period specified in the

initialtimeout attribute.
Default action Set status = -11

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.3.4.5 onerror
The onerror event is fired if a serious or fatal error occurs with the DTMF collection process. Different types of error are
distinguished by status code and are shown in the event object information table below.

Event Object Information:
Bubbles No
To invoke The DTMF collection process experiences a serious or fatal

problem.
Default action On encountering an error, the dtmf object is stopped and status

codes are set as follows:

status -1: A generic platform error occurred during DTMF
collection.
status -3: An illegal property/attribute setting that causes a

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 2

14 A status code of -30 for the dtmf object’s onreco event is only possible if the disconnect event occurred after the
input sequence matched a valid path through the grammar, but before the endsilence period expires.

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

problem with the DTMF collection request.
status -4: Failure to find resource – in the case of DTMF this is
likely to be a the URI of a DTMF grammar.
status -5: Failure to load or compile a grammar resource
status -8: collection was attempted without active grammars
status -9: collection was attempted while another dtmf object
was in execution.

status -30: DTMF collection attempted after a disconnect.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.3.5 DTMF event timeline

The following diagram illustrates typical event possibilities for the dtmf element.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 3

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Figure 19: DTMF event timeline

Case (1) shows a successful DTMF recognition. onkeypress events are fired for every in-grammar keypress, and
onreco is thrown either when a complete grammar match has been made or after the endsilence period if further
input was permitted in the grammar. Case (2) shows the onnoreco event being thrown by the exceeding of the
interdigittimeout period. Case (3) shows that an out-of-grammar keypress fires onnoreco. Case (4) shows
onsilence being thrown if no input is entered before the initialtimeout period elapses. As noted, all events except
onkeypress end DTMF collection.

2.3.6 Using listen and dtmf simultaneously

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 4

Many telephony applications typically permit speech and/or DTMF to be used at the same time. To simplify the authoring
of such scenarios, SALT platforms implement a model of default behavior whereby detection and successful recognition
of one mode of input need not interfere with the other. In general, this means that the application only has to worry about
receiving a single recognition result, or other event, even when both objects are started. For finer level behavior, listen
or dtmf events can be handled individually without affecting the other mode.

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

SALT enables this in two ways: (i) the disabling of initial timeouts on the other mode on detection of input, and (ii) the
automatic cancellation of one mode when the other mode comes to an end. This behavior is discussed in the following
two subsections, and the section completes with a diagram illustrating the interplay of the objects.

2.3.6.1 Disabling timeouts
Once the platform has detected input in one mode, it disables the initialtimeout of the other mode. That is, when the
initialtimeout period is exceeded, the object is stopped automatically but its event is not thrown to the handler. This
is effectively an acknowledgement that user input is occurring, and therefore the calling of an onsilence handler on the
other, unused mode is irrelevant. This prevents, for example, a listen's onsilence from calling its handler while the user
is entering DTMF. The manifestation of detection is a keypress (onkeypress event) for dtmf, and the
onspeechdetected event for listen15.

dtmf.onkeypress --> disable listen timeouts
listen.onspeechdetected --> disable dtmf timeouts

With initialtimeout disabled, such 'unused' objects do not throw an onsilence event. If the timeout of the unused
mode does not expire, both objects remain active until otherwise stopped. This may be useful, for example, in scenarios
such as where DTMF keypresses are used to control playback of the prompt, while voice commands effect dialog
navigation (e.g. in an e-mail reader application). If the application author wishes to stop the unused object on detection of
the other input mode, this is possible by adding such a Stop command to the relevant event handler of the 'used' mode.

Once disabled, the initialtimeout is not re-enabled or re-started. That is, once the platform detects one mode of
input, onsilence will never be thrown on either mode. This should never be a problem, since other timeouts are still
active on any 'used' modes (endsilence, babbletimeout and interdigittimeout), so they will always eventually
stop.

2.3.6.2 Automatic stop
When one mode stops and throws an event of onsilence, onnoreco, onreco or onerror, the other mode is
automatically stopped16. (Stopping actually occurs before the object receives the event, in order for the event handler
functions to operate under a predictable situation.) A result will be returned in the relevant property of the automatically
stopped object (recoresult for listen, dtmfresult for dtmf) and the status property may be given a particular
code.

dtmf.onsilence --> stop listen
dtmf.onnoreco --> stop listen
dtmf.onreco --> stop listen
dtmf.onerror --> stop listen

listen.onsilence --> stop dtmf
listen.onnoreco --> stop dtmf
listen.onreco --> stop dtmf
listen.onerror --> stop dtmf

This means that such events from either mode which signal the end of a dialog turn do not need to be caught twice. So
the firing of onsilence will be thrown only to the started listen or to the started dtmf object, but not to both. Similarly,
the other mode is stopped automatically on (i) a misrecognition or out-of-grammar DTMF sequence (listen.onnoreco
or dtmf.onnoreco); or (ii) a successful recognition (listen.onreco, dtmf.onreco).

This allows the application author to write modular code for these handlers which does not need to take explicit account of
which objects have been started. And since a result is returned for the automatically stopped object, it allows scenarios
where one mode is actually used to force a result return of the other, for example using dtmf to stop audio recording.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 5

15 Recall from section 2.2.4.3 that the decision when to throw onspeechdetected is left to the platform - this permits
platforms to operate robust mechanisms whereby throwing the event later - i.e. at a safer time - will not unnecessarily
disable the dtmf timeout.
16 Of course this does not apply to a mode which is stopped explicitly by the stopping of the other mode (as described in
this paragraph).

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.3.6.3 listen and dtmf interaction event timeline
The model described above is illustrated in the following event diagram, which shows possible interactions between the
two started modes of input.

Figure 20: listen and dtmf event interaction

2.3.7 Events which stop dtmf execution
The following is a summary of the commands and events that will stop dtmf while in execution:

methods

• dtmf.Stop()

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 6

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

dtmf events

• dtmf.onreco
• dtmf.onnoreco
• dtmf.onsilence
• dtmf.onerror

listen events

• listen.onreco
• listen.onnoreco
• listen.onsilence

Recall also that a telephony hang-up event automatically calls Stop() on an active dtmf object.

2.4 Platform messaging: <smex>
smex, short for Simple Messaging EXtension, is a SALT element that communicates with the external component of the
SALT platform. It can be used to implement any application control of platform functionality such as logging and telephony
control. As such, smex represents a useful mechanism for extensibility in SALT, since it allows any new functionality to be
added through this messaging layer.

On its instantiation, the object is directed to establish an asynchronous message exchange channel with a platform
component through its configuration parameters (specified in param elements) or attributes. The smex object can send or
receive messages through this channel. The content of a message to be sent is defined in the sent property. Whenever
the value of this property is updated (either on page load or by dynamic assignment through script or binding), the
message is sent to the platform. The smex element can also receive XML messages from the platform component in its
received property. The onreceive event is fired whenever a platform message is received. Since the smex object's
basic operations are asynchronous, it also maintains a built-in timer for the manipulation of timeout settings. ontimeout
and onerror events may also be thrown.

The smex object makes no requirement on the means of communication with platform components. It should also be
noted that the smex object has the same life span as other XML elements, that is, it will be destroyed when its hosting
document is unloaded. While in many cases, the smex object can perform automatic clean-up and release
communication resources when it is unloaded, there might be use cases (e.g. call control) in which a persistent
communication link is desirable across pages. For those cases, SALT places the responsibility of relinquishing the
allocated resources (e.g. closing the socket) on the application.

The smex object also is neutral on the format (schema) of messages. In order to encourage interoperability, however, the
conformance criteria in Part 4 recommend that implementations support a known schema for common functionality, with a
strong preference for existing standard message formats. Such a schema for telephony call control is suggested in
section 2.4.4, and 4.3. In essence, SALT allows both platform and application developers to take the full advantage of the
standardized extensibility of XML to introduce innovative and perhaps proprietary features without necessarily losing
interoperability.

2.4.1 smex content
smex may have the following child elements:

2.4.1.1 bind
This is the same element as described in section 2.2.1.2. It operates on the XML document contained in the message
received by the browser, so the XPath query held in the value attribute will match an XML pattern in this document.

2.4.1.2 param
param is used to provide platform-specific parameters for the smex object. Each param element may be named using a
name attribute, with the contents of the param element being the value of the parameter.

The exact nature of the configurative parameters will differ according to the proprietary platform used. Values of
parameters may be specified in an XML namespace, in order to allow complex or structured values.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 7

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

param element
param: Optional. Used to pass parameter settings to the speech platform.

param content

Attributes:

• name: required. The name of the parameter to be configured.
• xmlns: optional. Specifies a namespace and potentially a schema for XML content of the parameter.

So, for example, the following syntax:

<param name="myPlatformParam">myParamValue</param>

could be used to specify a parameterization of the message interface to the platform.

Note that in HTML profiles, page-level parameter settings may also be defined using the meta element (see 2.8.2.2.1.5).

2.4.2 smex attributes and properties

2.4.2.1 smex attributes
The smex object has the following attributes:

• id: optional. The identifier of the smex element. Must be a valid XML Name and unique within the document (i.e.
of XML type ID).

• sent: Optional. String corresponding to the message to be sent to the platform component. Whenever a non-null
value is assigned to this attribute, its contents are dispatched.

• timer: Optional. Number in milliseconds indicating the time span before a timeout event will be triggered. The
clock starts ticking when the property is assigned a positive value (this may be on document load, if the attribute
is specified declaratively). The value can be changed when a countdown is in progress. A zero or negative value
stops the clock without triggering the timeout event. The default is 0, meaning no timeout.

2.4.2.2 smex properties
In addition to the attributes, the smex element holds the following properties:

• received: Read-only. XML DOM Node data indicating the received message. The message is held as the value
of this property until the next onreceive event is ready to fire.

• status: Read-only. Integer indicating the recent status of the object. The possible values are 0, -1, and -2, which
indicate, respectively, normal, timeout expired, and communication with the platform cannot be established or has
been interrupted. Platform-specific error messages are conveyed through the received property. For the cases
that the error message is successfully delivered, the status code is 0.

2.4.3 smex events
The smex object has the following events:

2.4.3.1 onreceive
The onreceive event is fired when the browser receives a platform message. If there are any directives declared by the
bind elements, those directives will first be evaluated before the event is fired. Prior to the firing, the received property
is updated with the message content.

Event Object Information:
Bubbles No
To invoke Platform message received by the browser.
Default action bind directives are evaluated, the received property is

updated, and status code set to zero.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 8

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.4.3.2 ontimeout
The ontimeout event is fired when the timeout expires.

Event Object Information:
Bubbles No
To invoke Time out.
Default action Set status code set to -1: timeout.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.4.3.3 onerror
The onerror event is fired when a communication error is encountered. When the event fires, the status property is
updated with a corresponding error code as described above.

Event Object Information:
Bubbles No
To invoke Communication error
Default action Set status code to -2: communication error

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.4.4 Using smex for telephony call control
Browsers which support the use of smex messages for implementing call control functionality on a telephony platform are
recommended to support the ECMA 323 standard XML Protocol for Computer Supported Telecommunications
Applications (CSTA) Phase III, as specified at http://www.ecma.ch/ecma1/STAND/ecma-323.htm, which specifies an XML
protocol for the CSTA services described in ECMA 269. (Note also the alternative CallControl object specified in Part 3).

2.5 Logging
This chapter specifies the basic requirements for diagnostic logging, and how uplevel SALT browsers implement these
requirements.

2.5.1 Overview
Uplevel browsers which support logging provide basic diagnostic logging functionality through a global script method
called LogMessage(). This is used to write output to a location of the platform’s choosing.

This function allows the application to log to the same location as other component objects. For example, the listen,
dtmf, and prompt elements, and CallControl and other objects may all send log messages to an Operation,
Administration and Maintenance (OA & M) server – in concurrence or separately. In order to enable operations
administrators to monitor a system through a single, centralized point, applications should be able to send messages to
the same location at any time.

2.5.2 Format
The format of the script function is:

LogMessage(id, message); where id and message are both strings.

• id will typically be used to specify the "class" of the message for filtration purposes; for example, an application
may define SYSTEM_CRITICAL and use this string to filter all fatal errors to a specific location. This is also useful
in off-line analysis and reporting.

• message is the content of the diagnostic message itself.

2.5.3 Requirements
• The platform is responsible for providing the global script method. To ensure portability among all SALT

platforms, no additional (mandatory) parameters must be added to the logging function. The platform must be

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 5 9

http://www.ecma.ch/ecma1/STAND/ecma-323.htm

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

able to handle the LogMessage() function under any circumstance. With respect to observing the semantics of
the function, platforms are free to treat the function in the manner of their own choosing. Possible actions may be:

o write it to a timestamped log file
o write it to standard out (a console, for example)
o ignore it (for example, send it to /dev/null or equivalent).

Section 9.5.1 illustrates how a platform implementing smex can use the smex element to implement the requirements
specified above for the logging function.

2.6 SALT illustrative examples

2.6.1 Controlling dialog flow

2.6.1.1 Click to talk
This simple example shows how, in a multimodal application, GUI events can be wired to SALT commands such as
beginning a recognition turn. In this example, pressing the button named buttonCityListen starts the listen named
listenCity, which holds a grammar of city names, and a bind command to transfer the value into the input control
named txtBoxCity.

<!-- HTML -->
<html xmlns:salt="http://www.saltforum.org/2002/SALT">
 <form id="travelForm">

<input name="txtBoxCity" type="text" />
<input name="buttonCityListen" type="button" onClick="listenCity.Start();" />

 </form>

 <!-- SALT -->
 <salt:listen id="listenCity">

<salt:grammar name="g_city" src="./city.grxml" />
<salt:bind targetelement="txtBoxCity"
 value="//city[1]" />

 </salt:listen>
</html>

2.6.1.2 Dialog flow with HTML and scripting
The following examples show how scripting may be used in HTML environments to control dialog flow. The two examples
show how the developer can precisely script this flow, since full control of activation of the speech interface is available
through algorithms in the script (the RunAsk and RunSpeech functions respectively).

2.6.1.2.1 Form-filling
This example is a fuller version of the dialog shown in the Scenarios section of the Introduction (1.2), which introduces
handlers for the case of misrecognitions.

<!-- HTML -->
<html xmlns:salt="http://www.saltforum.org/2002/SALT">
 <body onload="RunAsk()">
 <form id="travelForm">
 <input name="txtBoxOriginCity" type="text" />
 <input name="txtBoxDestCity" type="text" />
 </form>

 <!-- Speech Application Language Tags -->
 <salt:prompt id="askOriginCity"> Where would you like to leave from? </salt:prompt>
 <salt:prompt id="askDestCity"> Where would you like to go to? </salt:prompt>
 <salt:prompt id="sayDidntUnderstand" oncomplete="runAsk()">

Sorry, I didn't understand.
 </salt:prompt>

 <salt:listen id="recoOriginCity"

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 0
 onreco="procOriginCity()" onnoreco="sayDidntUnderstand.Start()">

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 <salt:grammar src="city.xml" />
 </salt:listen>

 <salt:listen id="recoDestCity"

 onreco="procDestCity()" onnoreco="sayDidntUnderstand.Start()">
 <salt:grammar src="city.xml" />
 </salt:listen>

 <!-- scripted dialog flow -->
 <script>
 function RunAsk() {
 if (travelForm.txtBoxOriginCity.value=="") {
 askOriginCity.Start();
 recoOriginCity.Start();
 } else if (travelForm.txtBoxDestCity.value=="") {
 askDestCity.Start();
 recoDestCity.Start();
 }
 }
 function procOriginCity() {
 travelForm.txtBoxOriginCity.value = recoOriginCity.text;
 RunAsk();
 }
 function procDestCity() {
 travelForm.txtBoxDestCity.value = recoDestCity.text;
 travelForm.submit();
 }
 </script>

 </body>
</html>

2.6.1.2.2 Form-filling and giving help
This example shows how to implement a simple dialog flow which seeks values for input boxes and offers context-
sensitive help for the input. It uses the title attribute on the HTML input mechanisms (used in a visual browser as a
"tooltip" mechanism) to help form the content of the help prompt.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">

 <title>Context Sensitive Help</title>
<head>

 <script>
<![CDATA[
var focus;
function RunSpeech() {

if (trade.stock.value == "") {
focus="trade.stock";
p_stock.Start();
return;

}
if (trade.op.value == "") {

focus="trade.op";
p_op.Start();
return;

}
//.. repeat above for all fields
trade.submit();

}
function handle() {

res = event.srcElement.recoresult;
if (res.value == "help") {

text = "Please just say ";
text += document.all[focus].title;

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 1
p_help.Start(text);

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

} else {
// proceed with value assignments

}
}
]]>
</script>

 </head>
<body onload="RunSpeech()">

<salt:prompt id="p_help" oncomplete=" RunSpeech()" />
 <salt:prompt id="p_stock" oncomplete="g_stock.Start()">

Please say the stock name
</salt:prompt>

 <salt:prompt id="p_op" oncomplete="g_op.Start()">
Do you want to buy or sell

</salt:prompt>
 <salt:prompt id="p_quantity" oncomplete="g_quantity.Start()">

How many shares?
</salt:prompt>

 <salt:prompt id="p_price" oncomplete="g_price.Start()">
What's the price

</salt:prompt>

<salt:listen id="g_stock" onreco="handle(); RunSpeech()">
<salt:grammar src="./g_stock.grxml" />

</salt:listen >

 <salt:listen id="g_op" onreco="handle(); RunSpeech()">
<salt:grammar src="./g_op.grxml" />

</salt:listen >

<salt:listen id="g_quantity" onreco="handle(); RunSpeech()">
<salt:grammar src="./g_quant.grxml" />

</salt:listen >

 <salt:listen id="g_price" onreco="handle();RunSpeech()">
<salt:grammar src="./g_quant.grxml" />

</salt:listen >

<form id="trade">
 <input name="stock" title="stock name" />
 <select name="op" title="buy or sell">
 <option value="buy" />
 <option value="sell" />
 </select>

 <input name="quantity" title="number of shares" />
 <input name="price" title="price" />
 </form>

 </body>
 </html>

2.6.1.3 Downlevel dialog flow
This example asks and confirms with the caller for a London football team without using script. It demonstrates a system
initiative dialog. However, since the data and the user interface markup are separate, application developers only need to
change the speech section when changing interaction style to mixed initiative. The data section remains the same.

The example works in the following way: when an incoming call comes in, the bind in smex starts the welcoming prompt
and the corresponding listen object. Depending on the recognition results, the bind directives in the listen object guide
the execution using declarative logic. Finally, when the value is confirmed, the form is submitted. All of this is achieved
without a single line of script.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">

<body>

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 2

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

<!-- the data section -->
 <form id="get_team">
 <input name="team" />
 <input name="uid" type="hidden"/>
 </form>
<!-- The speech section -->
 <salt:prompt id="welcome">

Welcome, caller!
 </salt:prompt>

 <salt:prompt id="ask">
Which team would you like the latest results for: Arsenal, Chelsea,

Spurs or West Ham?
 </salt:prompt>
 <salt:prompt id="confirm">

I heard <value targetelement="team" />. Is this correct?
 </salt:prompt>
 <salt:prompt id="thanks">

Thank you. Please wait while I get the latest results.
 </salt:prompt>
 <salt:prompt id="retry">

Okay, let's do this again
 </salt:prompt>

 <salt:prompt id="reprompt">
Sorry, I missed that.

 </salt:prompt>

 <salt:listen id ="listen_team">

<salt:grammar src="./teamtypes.grxml" />

<salt:bind test="/[@confidence gt 10]"

targetelement="team" value="//team" />
<salt:bind test="/[@confidence gt 10]"

targetelement="confirm" targetmethod="start" />
<salt:bind test="/[@confidence gt 10]"

targetelement="listen_yesno" targetmethod="start" />

<salt:bind test="/[@confidence le 10]"

targetelement="reprompt" targetmethod="start" />
<salt:bind test="/[@confidence le 10]"

targetelement="ask" targetmethod="start" />
<salt:bind test="/[@confidence le 10]"

targetelement="listen_team" targetmethod="start" />
 </salt:listen>

 <salt:listen id="listen_yesno">

<salt:grammar src="./yesno.grxml" />

 <salt:bind test="/yes[@confidence gt 10]"
 targetelement="thanks" targetmethod="start" />
 <salt:bind test="/yes[@confidence gt 10]"
 targetelement="get_team" targetmethod="submit" />

 <salt:bind test="/no or ./[@confidence le 10]" />
 targetelement="retry" targetmethod="start"
 <salt:bind test="/no or ./[@confidence le 10]"
 targetelement="ask" targetmethod="start" />
 <salt:bind test="/no or ./[@confidence le 10]"
 targetelement="listen_team" targetmethod="start" />
 </salt:listen>

<!-- call control section -->
<salt:smex id="telephone" sent="start_listening">

<salt:param name="server" value="ccxmlproc" />

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 3
 <salt:bind targetelement="uid" value="/@uid" />

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 <salt:bind test="/Call_connected"
 targetelement="welcome" targetmethod="queue" />
 <salt:bind test="/Call_connected"
 targetelement="ask" targetmethod="start" />
 <salt:bind test="/Call_connected"
 targetelement="listen_team" targetmethod="start" />
</salt:smex>

</body>
</html>

2.6.2 Prompt examples

2.6.2.1 Prompt control example
The following example shows how control of the prompt using the methods above might be authored for a platform which
does not support a keyword bargein mechanism. On detection of a speech input event, the application reduces the
volume of the prompt being played while the input speech is being recognized. The prompt is stopped if recognition
succeeds, or is restored to full value if it fails.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
 <title>Prompt control</title>
<head>
<script>

 function checkKWBargein() {
 if (keyword.value == "") { // result is below threshold
 news.change(1.0, 2.0); // restore the volume
 keyword.Start(); // restart the recognition
 } else {
 PromptQueue.Stop(); // keyword detected! Stop the prompt
 // Do whatever that is necessary
 }
 }

 </script>
<script for="window" event="onload">
 news.Start(); keyword.Start();

 </script>
</head>

<body>
<salt:prompt id="news" bargein="false" onbargein=" news.change(1.0, 0.5);" >
 <!-- onbargein... turns down the volume while verifying -->
 Stocks turned in another lackluster performance Wednesday as investors received
little incentive to make any big moves ahead of next week's Federal Reserve
meeting. The tech-heavy Nasdaq Composite Index dropped 42.51 points to close at
2156.26. The Dow Jones Industrial Average fell 17.05 points to 10866.46 after an
early-afternoon rally failed.

 <!--
 More to follow
 -->

 </salt:prompt>
 <salt:listen id="keyword"

reject="70"
onreco="checkKWBargein()"
onnoreco="checkKWBargein()" >

<salt:grammar src="grams/news_bargein_grammar.grxml" />
 </salt:listen>
</body>

</html>

2.6.2.2 Using bookmarks and events
The following example shows how bookmark events can be used to determine the semantics of a user response – either
a correction to a departure city or the provision of a destination city – in terms of the timing of the bargein during the
prompt output. The onbargein handler calls a script which sets a global mark variable to the last bookmark encountered

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 4

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

in the prompt, and the value of this mark is used in the listen’s postprocessing function (ProcessCityConfirm) to
set the correct value.

<script><![CDATA[
 var mark;
 function interrupt() {
 mark = event.srcElement.bookmark;
 }
 function ProcessCityConfirm() {
 PromptQueue.stop(); // flush the audio buffer
 if (mark == "mark_origin_city")
 txtBoxOrigin.value = event.srcElement.value;
 else
 txtBoxDest.value = event.srcElement.value;
 }
]]></script>

<body xmlns:salt="http://www.saltforum.org/2002/SALT"
 onload="pConfirm.Start();lConfirm.Start();">
...
<input name="txtBoxOrigin" value="Seattle" type="text" />
<input name="txtBoxDest" type="text" />
...
<salt:prompt id="pConfirm" onbargein="interrupt()" bargein="true">
 From <bookmark mark="mark_origin_city" />
 <value targetelement="txtBoxOrigin" targetattribute="value" />,
 please say <bookmark mark="mark_dest_city" /> the
 destination city you want to travel to.
</salt:prompt>
<salt:listen id="lConfirm" onreco="ProcessCityConfirm()" >

<salt:grammar src="/grm/1033/cities.grxml" />
 </salt:listen>

...
</body>

2.6.2.3 Prompt playback during page transitions
This example shows how the PromptQueue is used to ensure seamless prompt playback across page transitions in an
HTML profile:

<html xmlns:salt="http://www.saltforum.org/2002/SALT">

<body>

<form id="form1" action="nextpage.html">
<input type="button" onclick="transition();" value="go to next page" />

</form>

<salt:prompt id="transitionPrompt">
 Let's go to the next page!
</salt:prompt>

<script>
 function transition() {

 transitionPrompt.Queue();
 PromptQueue.Start();
 form1.submit();
 }

</script>
</body>

</html>

The prompt will play back during the transition to the next page, because although the transitionPrompt element
itself is destroyed when the DOM is torn down for the next page, it has been queued onto the PromptQueue object which

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

is persistent across pages. Subsequent prompts from the next page will be played once the transitionPrompt prompt
has been played out.

Notice that the transition() function could be replaced by the simple shorthand transitionPrompt.Start() in
the onclick event handler.

2.6.2.4 Queuing prompt subqueues in advance
Certain applications may require not only the content of prompts to be prefetched, but also the earliest possible queuing
of prompts in advance of playback, in the interests of efficient operation. The following example shows how individual
prompts (or subqueues) which are known to follow the current prompt can be queued while the current prompt is being
played back.

This example shows two prompts which are marked with the prefetch attribute (to indicate to the browser that their
content should be retrieved at an early opportunity). The first is queued for playback on page load. The second is queued
as soon as the first is scheduled for playback by a click on the play button, and is itself played back by a click on the
next button.

 <prompt id="p1" prefetch="true">
 <content href="http://mybank/getStockName.asp?id=1" />
 <content href="http://mybank/getStockValue.asp?id=1" />
 </prompt>
 <prompt id="p2" prefetch="true">
 <content href="http://mybank/getStockName.asp?id=2" />
 <content href="http://mybank/getStockValue.asp?id=2" />
 </prompt>

<body onload="p1.Queue();">
 ...
 <input type="button" value="play" onclick="PromptQueue.Start(); p2.Queue();" />
 <input type="button" value="next" onclick="PromptQueue.Stop(); PromptQueue.Start;"/>
 ...
</body>

This model can be scaled up to N prompts by ensuring that the next button always queues the following prompt, by
calling the relevant function after the PromptQueue.Start() call, e.g.:

<input type="button" value="next"
 onclick="PromptQueue.Stop(); PromptQueue.Start; QueueNextPrompt();" />

where QueueNextPrompt() is a function that decides which prompt needs to be queued next.

A simpler solution for the case where the ordering of the prompts is known in advance would be to call Start on each
subqueue in sequential order. That is, not only queue each subqueue but also schedule it for playback in advance17. This
permits the queuing of multiple subqueues in advance, and, in this case, the 'next' functionality would be a simple call to
PromptQueue.Stop(), which has the effect of ceasing playback, flushing the current subqueue, and allowing the next
to begin playback. (This also allows each subqueue to begin playback immediately after the previous subqueue has
finished, without needing to wire the next Start call to the onempty event handler.)

2.6.3 Using SMIL
The following example is taken from section 2.8.3.1.3:

Multimedia prompting followed by recognition:

<t:seq>
 <t:par t:endsync="all">

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 6

17 If periods of silence are required either before or during playback, the PromptQueue can be paused while the Start
calls are made.

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 <t:img id="xxx" src="talkinghead.gif"/>
 <salt:prompt t:begin="xxx.begin-1s">

Please say the name
</salt:prompt>

 </t:par>
 <salt:listen> ... </salt:listen>
</t:seq>

The multimedia prompting is provided by an animated GIF and a SALT prompt object. The synthesis is estimated to
take one second, therefore the SMIL begin attribute is set to start the synthesis 1 second before the animation. The
prompting is contained in a SMIL <par> block, with the endsync attribute set to all. As a result, the following
recognition object will not be activated until both the animation and prompt finish playing.

Multimodal activation of recognition or recording:

<input id="clickToTalk" type="button" />
<salt:listen t:begin="clickToTalk.onclick" >
 ...
</salt>

In this example, an HTML button is used to start the listen object.

2.6.4 Wireless Phone (WML) example
The following example demonstrates how SALT speech capabilities might be integrated with WML 1.1 markup for
wireless telephones. The example shows the use of voice and/or the keypad to lookup a telephone number (via a server-
side script /cgi-bin/lookup.cgi) from a dialing directory by a name (names are assumed to be stored in
namelist.grxml).

Notice that this example uses SALT in "declarative mode" because browsers prior to WML 3.0 (the bulk of today’s
deployed telephones) do not include WMLScript. The assumption is that SALT elements would be activated by the
browser on loading of the relevant card.

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">
<wml xmlns:salt="http://www.saltforum.org/2002/SALT">
 <head>
 <meta http-equiv="Cache-Control" content="max-age=0"/>
 </head>
 <card id="Splash">
 <do type="accept" label="Lookup">
 <go href="/cgi-bin/lookup.cgi" method="post">
 <postfield name="name" value="$friend"/>
 </go>
 </do>
 <p>
 This is the SALT WAP Phone Book.

 <salt:prompt>
 Please speak the name of the person
 whose number you'd like to find,
 </salt:prompt>
 or enter from the keypad here:
 <input name="friend" title="Name"/>
 <salt:listen>
 <salt:grammar src="namelist.grxml"/>
 <salt:bind targetelement="friend" value="//name[1]"/>
 <salt:bind targetelement="Lookup" targetmethod="Click"/>
 </salt:listen>
 </p>
 </card>
</wml>

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 7

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Such an application would be even more useful if the results of submitting this document would allow a telephone call to
be placed using the retrieved number and SALT Call Control. Most of today’s wireless telephones lack the ability to run
WML scripts and perform telephony functions concurrently, although this is planned for future generations of equipment.

2.6.5 A 'safe' voice-only dialog
This example shows prompt and listen elements used with script in a simple voice-only dialog. Its point is to show that all
possible user input and error events are caught and safely handled, so that the dialog is never left in a 'hanging' state.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">

<head>

<title>origin and destination</title>
</head>

<body>

<form id="travelForm" action="http://mysite.com/travel/inquire.php"
method="post">

<input name="txtBoxOriginCity" type="text" />
<input name="txtBoxDestCity" type="text" />

</form>

<!-- SALT -->
<salt:prompt id="askOriginCity" onerror="procError()">

Where from?
</salt:prompt>
<salt:prompt id="askDestCity" onerror="procError()">

Where to?
</salt:prompt>
<salt:prompt id="notUnderstood" onerror="procError()">

Sorry, I could not understand your input.
</salt:prompt>
<salt:prompt id="operator"

oncomplete="transferToOperator()"
onerror="transferToOperator()">
 <!-- external function -->

I am transferring you to an operator.
</salt:prompt>

<salt:listen id="recoOriginCity"

onreco="procOriginCity()"
onnoreco="procNothingUnderstood()"
onsilence="procNothingUnderstood()"
onerror="procError()">

<salt:grammar src="./city.grxml" />
</salt:listen>

<salt:listen id="recoDestCity"

onreco="procDestCity()"
onnoreco="procNothingUnderstood()"
onsilence="procNothingUnderstood()"
onerror="procError()">

<salt:grammar src="./city.grxml" />
</salt:listen>

<!-- scripts -->
<script>

function RunAsk() {
 if (txtboxOriginCity.value=="") {
 askOriginCity.Start();

recoOriginCity.Start();
} else if (txtboxDestCity.value=="") {

 askDestCity.Start();
recoDestCity.Start();

} else {
 <!-- all slots filled -->
 travelForm.submit();

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 8

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

}
}
function procOriginCity () {

txtBoxOriginCity.value = recoOriginCity.value;
 RunAsk();
}
function procDestCity () {
 txtBoxDestCity.value = recoDestCity.value;
 RunAsk();
}
function procNothingUnderstood(){
 notUnderstood.Start();
 RunAsk();
}
function procError() {
 operator.Start();
}
function terminate() {
 <!-- caller hung up -->
 window.close();
}

</script>

<!-- on page load -->
<script>
 <!-- detect disconnect at a central place instead of
 placing disconnect detect handlers in the listen objects -->

callControl.attachEvent("call.disconnected",terminate());
<!-- start dialog execution -->
RunAsk();

</script>

</body>
</html>

2.6.6 smex examples

2.6.6.1 Logging

<salt:smex id="logServer">
 <salt:param name="d:server" xmlns:d="urn:Microsoft.com/COM">
 <d:protocol>DCOM</d:protocol>
 <d:clsid>2093093029302029320942098432098</d:clsid>
 <d:iid>0903859304903498530985309094803</d:iid>
 </salt:param>
</salt:smex>

<salt:listen>
 // other directives binding listen results to input fields
 <salt:bind targetelement="logServer" targetattribute="sent"

value="*[@log ge 3]"/>
</salt:listen>

This example demonstrates how a logging mechanism can be written using a COM object with its class id and interface
id. The speech developers attach an attribute log indicating the level of interests for logging to the relevant SML nodes.
In the example above, the developer chooses to log all nodes with log value greater or equal to 3 by using a single bind
directive. The example works in both downlevel and uplevel browsers.

The example also intends to demonstrate it is possible for a page to contain multiple smex objects which communicate
with the same platform component as long as there will not be confusion on which smex object is responsible for
delivering the platform messages back to the SALT document. The above example implies a component can implement
multiple interfaces, each of which has its own smex conduit. The same argument could apply to TCP servers listening to
multiple ports.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 6 9

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.6.6.2 Call control with ECMA 323
The following example demonstrates the use of ECMA 323 in SALT. The main purpose of the example is simply to ask
the caller to say a phone number and transfer the call. (References inline to parts of the ECMA-323 specification refer to
sections in the documents to be found at http://www.ecma.ch/ecma1/STAND/ecma-323.htm).

The SALT application can be logically composed of the following sections.

Data for the application:

<input name="transferTarget" />
<input name="callerID" />
<input name="callID" />
<input name="deviceID" />
<input name="monitorObject" type="hidden" value="2234" />
<input name ="monitorCrossRefID" />

Speech objects in English (only section affected by natural language):

<listen id="recNumber" onreco ="procRecNumber()" onnoreco="procNoReco()
 onsilence="procNoReco()">
 <grammar src="..."/>

</listen>

<listen id="recYesNo" onreco="procYesNo()" onnoreco="procNoReco()"
 onsilence="procNoReco()">

 <grammar src="..."/>
</listen>

<prompt id="sayWelcome">Hello! Please say the phone number to transfer to. </prompt>
<prompt id="askAgain"> Sorry, I missed that. Please say the number again. </prompt>
<prompt id="confirm"> Did you say <value href="transferTarget"/>? </prompt>
<prompt id="sayBye"> Thank you. Your call is being transferred. </prompt>
<prompt id="tryAgain">

The number, <value href="transferTarget"/>, cannot be
 reached for transfer. Please try again later.

</prompt>

Speech event handlers (dialog logic) in ECMAScript:

<script><!--
function procRecNumber() {
 var msg = event.srcElement.recoresult;
 transferTarget.value = msg.SelectSingleNode("*/phoneNumber").value;
 // read recognized phone number
 var confidence = msg.selectSingleNode("/@confidence").value;
 if (confidence < 0.5) {
 confirm.Start(); recYesNo.Start();
 } else {
 sayBye.Start(); ccTransfer();
 }
}

function procYesNo() {
 var answer = event.srcElement.recoresult.SelectSingleNode(

"*/yes[@confidence>0.5]");
 // accept only yes with confidence

 if (answer == null) {
 procNoReco();
 } else {
 sayBye.Start(); ccTransfer();
 }
}

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 0

http://www.ecma.ch/ecma1/STAND/ecma-323.htm

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

function procNoReco() {
 transferTarget.value = "";
 askAgain.Start(); recNumber.Start();
}
--></script>

The call control section (unaffected by locale, dialog logic):

<smex id="callControl" onreceive="ccHandler()">...</smex>
<script><!--

// The cchandler handles the ECMA-323 events.
//
// Once the connection is answered, a welcome prompt
// is played and the transfer target telephone number is solicited.
//
// When the speech event handler detects and confirms the correct
// speech input, an ECMA-323 SingleStepTransfer service is used to
// transfer the caller to the new transfer target.
//

function ccHandler() {
 var msg = event.srcElement.received;
 if (msg.nodeName == "DeliveredEvent") { // incoming call notification

//
// If the connection is alerting (DeliveredEvent, ECMA-323, 15.2.5) the
// connection information from the Delivered event is saved
// called.value and deviceID.value) and the call is answered by using the
// ECMA-323 AnswerCall service with the saved connection information.
// If the application needed the ANI and DNIS, it could also obtain
// this information from this event.
//

 callID.value = msg.selectSingleNode("./connection/callID").value;
 deviceID.value = msg.selectSingleNode(

"./connection/deviceID").value;
 ccAnswer();
 } else if (msg.nodeName == "EstablishedEvent") { // call answered

//
// Once the connection is answered (EstablishedEvent, ECMA-323, 15.2.8)
// a welcome prompt is played and the transfer target telephone number
// is solicited.
//

 callerID.value = msg.selectSingleNode(
 "./callingDevice/DeviceIdentifier").value;
 sayWelcome.Start(); recNumber.Start();
 } else if (msg.nodeName == "TransferredEvent") { // call transferred

//
// The TransferredEvent (ECMA-323, 15.2.18) is received when
// the transfer has been completed. ccCleanup is called to clean up
// the application data.
//

 ccCleanUp();
 } else if (msg.nodeName == "ConnectionClearedEvent") { // user hang up

//
// A user hang up is indicated by a ConnectionClearedEvent (ECMA-323,
// 15.2.4) which flushes the prompt queue and cleans the application
// data. This could happen at any time during the call.
//

 promptQueue.Flush();
 ccCleanUp();
 } else if (msg.nodeName == "CSTAErrorCode") { // service failure event

//
// The ccError function handles any failure responses from any of the
// ECMA-323 services that may have failed.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 1

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

//
ccError();

} // feel free to handle other events here
}

function ccTransfer() { // transferring a call
 //
 // The SingleStepTransferCall service (ECMA-323, 15.1.24) is used to
 // invoke the transfer. There are two elements provided. The first
 // element is the connection information that was obtained from
 // the DeliveredEvent. The second element is the transfer target that
 // was solicited from the caller.

//
 callControl.sent = "<SingleStepTransferCall" +

" xmlns='http://www.ecma.ch/standards/ecma-323/csta'>" +
"<activeCall><callID>" +

 callID.value + "</callID><deviceID>" +
 deviceID.value + "</deviceID></activeCall><transferredTo>" +
 transferTarget.value+"</transferredTo></SingleStepTransferCall>";
}

function ccStartListening() { // listening for call events
 //
 // The MonitorStart service (ECMA-323, 13.1.2) is used to place a
 // monitor on a device so that events can be generated when activity
 // happens at that device. The single element provided indicates the
 // identifier of the device that is to be monitored. In this example
 // it was part of the application data.
 //
 callControl.sent = "<MonitorStart" +

" xmlns='http://www.ecma.ch/standards/ecma-323/csta'>" +
 "<monitorObject><deviceObject>" +

monitorObject.value + "</deviceObject></monitorObject></MonitorStart>";
}

function ccAnswer() { // answering a call
 //
 // The AnswerCall service (ECMA-323, 15.1.3) is used to answer the
 // alerting connection. The single element provided is the connection
 // information that was obtained in the Delivered event.
 //
 callControl.sent = "<AnswerCall" +

" xmlns='http://www.ecma.ch/standards/ecma-323/csta'>" +
 "<callToBeAnswered><callID>" +

callID.value + "</callID><deviceID>"
deviceID.value + "</deviceID></callToBeAnswered></AnswerCall>";

}

function ccCleanUp() {
 callerID.value = ""; transferTarget.value = ""; callID.value = "";
 recNumber.Stop(); recYesNo.Stop(); ...
}

function ccHangup() { // clearing a connection
 //
 // The ClearConnection service (ECMA-323, 15.1.8) is used to clear
 // a connection. In this example, this is used when the transfer is
 // unable to be completed.
 //
 callControl.sent = "<ClearConnection " +

"xmlns='http://www.ecma.ch/standards/ecma-323/csta'>" +
"<connectionToBeCleared> <callID>" +
callID.value + "</callID><deviceID>" +

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 2
deviceID.value + "</deviceID></connectionToBeCleared>" +

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

"</ClearConnection>";
}

function ccError() {
 //

// The ccError function is called to handle any failure responses to
 // ECMA-323 service requests. If there was an error starting a
 // monitor, the application logs an error. If there was an error
 // response to the SingleStepTransfer service, a message is played
 // for the caller and the connection is cleared.
 //
 var request = callControl.sent.substr(1, 7);
 // read the first 7 characters of service requested
 if (request == "Monitor") { // error starting a monitor
 logMessage("ccError", callControl.sent);
 } else if (request == "SingleS") { // error in transfer
 tryAgain.Start();
 ccHangup();
 } // feel free to handle other errors here
}
--> </script>

Putting it all together:

<html>
...
<body>
// data section here
<div xmlns="http://www.saltforum.org/2002/SALT" style="visibility:hidden">

// put the speech objects here
</div>
// speech event handlers here
// call control section here
// finally, when the page is loaded...
<script>
 ccStartListening();
</script>
</body>
</html>

2.6.7 Compatibility with visual browsers
SALT documents can be designed to be compatible with both multimodal browsers and legacy (visual-only) browsers.
Because SALT extends and enhances markup languages, rather than altering the behavior of the base markup language,
SALT documents can be used by legacy browsers by simply omitting or ignoring the SALT tags.

Dynamically generated web pages can examine the browser’s HTTP_USER_AGENT to determine whether to include or
omit the SALT tags and any associated scripts. This is discussed in section 2.8.1.12.

It is also possible to create static web pages that work equally well with both legacy browsers and multimodal browsers.
Because legacy browsers may not recognize the SALT tags, legacy browsers will ignore them. However, SALT-specific
text that is not within a tag (not within angle-brackets), will be displayed by legacy browsers. This includes text that is part
of an inline grammar, or part of a prompt, for example. The recommended way to exclude the display of such text in
legacy browsers is by encompassing it with the span tag as follows:

 <salt:prompt id="giveBalance" xmlns:ssml="http://www.w3.org/2001/10/synthesis">
 Which city do you want to <emphasis> depart </emphasis> from?
 </salt:prompt>

 <salt:grammar xmlns="urn:microsoft.com/speech/schemas/STGF">

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 3
 <grammar>

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 <rule toplevel="active">
 <p>from </p>
 <ruleref name="cities" />
 </rule>
 <rule name="cities">
 <list>
 <p> Chicago </p>
 <p> Milwaukee </p>
 <p> Kalamazoo </p>
 </list>
 </rule>
 </grammar>
 </salt:grammar>

To prevent SALT scripts in static web pages from interfering with legacy browsers, the scripts should be designed such
that they do not fail because the legacy browser does not find an object. Therefore, for static pages, it is recommended
that scripts test for the existence of SALT objects before referencing them. For example:

 function procOriginCity () {
 if (txtBoxOriginCity && recoOriginCity) {
 txtBoxOriginCity.value = recoOriginCity.value;
 RunAsk();
 }
 }

2.6.8 Audio recording example
The following example demonstrates recording audio for a voice mail system.

<!-- HTML -->
<!-- on page load -->
<body xmlns:salt="http://www.saltforum.org/2002/SALT" onload="RunAsk()">

<form id="f1" action="http://www.example.com/savewaveform.aspx" method="get">
<input name="vmail" type="hidden" />

</form>

<!-- Prompts -->
<salt:prompt id="p_record" oncomplete="l_recordvm.Start()">

Please speak after the tone. You may press any key to end your recording.
</salt:prompt>
<salt:prompt id="p_save">

Do you want to save this voicemail?
</salt:prompt>

<!-- listens -->
<!-- Recording session - max 60 seconds recording -->
<salt:listen id="l_recordvm"

initialtimeout="3000" endsilence="1500" babbletimeout="60000"
onreco="saveAudio()" onnoreco="saveAudio()" onsilence="RunAsk()" >
<salt:record />

</salt:listen>

<!-- listen for capturing whether user wants to save voice mail -->
<salt:listen id="l_save" onreco="processSave()">
 <salt:grammar src="./yesno.grxml" />
</salt:listen>

<salt:dtmf id="d_stop_rec" onreco="saveAudio()">
 <grammar src="alldigits.grxml" />
</salt:dtmf>

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 4
<!-- HTML + script controlling dialog flow -->

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

<script>
function RunAsk() {
 if (voicemail.value=="") {

 p_record.Start();
}

}

// Ask user if they are satisfied with their recording
function saveAudio () {

 p_save.Start();
l_save.Start();

}

// If user is satisfied post file name back to web server
// otherwise start again
function processSave () {
 smlResult = event.srcElement.recoresult;

 origNode = smlResult.selectSingleNode("//answer/text()");
 if (origNode.value == "Yes") {

vmail.value = l_recordvm.recordlocation;
 f1.submit();

} else {
 RunAsk();
}

}
</script>

</body>

2.6.9 Using XPath for DOM queries
The following example demonstrates XPath queries used on the DOM of the example page itself.

<html>
 <head>
 <title>
 SALT XPath example
 </title>
 </head>
 <script language="JavaScript">
 <!-- hide from browsers
 var xmlDoc;
 function doOnLoad() {
 // load MS XML parser
 xmlDoc = new ActiveXObject("MSXML2.DOMDocument");
 xmlDoc.async = false;
 // load my own HTML document as an XML DOM tree
 if (!xmlDoc.load(location.href)) {
 alert("Error loading myself from: " + location.href);
 return false;
 }
 // fill in "first" query ("*" == entire document)
 queryFromTextBox();
 return true;
 }
 function queryFromTextBox() {
 document.entry_form.txtResults.value
 = doXPathQuery(document.entry_form.queryBox.value);
 return true;
 }
 function doXPathQuery(szQuery) {
 // find nodes that match the query
 xmlDoc.setProperty("SelectionLanguage", "XPath");
 var arrayMatches = xmlDoc.selectNodes(szQuery);
 // display results
 var szResults = "[" + arrayMatches.length + " matches]"

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 for (i = 0; i < arrayMatches.length; i++) {
 szResults += "\n\n[match " + (i + 1) + "]\n" +
arrayMatches[i].xml;
 }
 return szResults;
 }
 // -->
 </script>
 <body bgcolor="white" onLoad="javascript:doOnLoad();">
 <form name="entry_form">
 Enter XPath query:
 <input type="text" name="queryBox" value="*" />
 <input type="button" name="queryButton" value="Query Now"
onClick="javascript:queryFromTextBox();" />

 XPath query results (XML format):

 <textarea name="txtResults" cols="100" rows="20"></textarea>

 </form>
 </body>
</html>

The following queries are instructive:

 //form
 //input
 //input[@type="text"]

The way in which an XPath query would be made on the callControl object's capabilities property to determine
whether the implementation supported the transfer method would be something like this:

 var xmlDoc = new ActiveXObject("MSXML2.DOMDocument");
 xmlDoc.async = false;
 if (!xmlDoc.loadXML(callControl.capabilities)) {
 // capabilities don't parse as valid XML: abort
 }
 xmlDoc.setProperty("SelectionLanguage", "XPath");
 var arrayMatches = xmlDoc.selectNodes("//transfer");
 if (arrayMatches.length > 0) // transfer is supported

This would typically be written as a JavaScript function and reused as needed.

2.7 Appendix A: SALT DTD

<!-- DTD for SALT 1.0 (2002) -->

<!ENTITY % boolean "(true | false)">
<!ENTITY % confidence.value "CDATA"> <!-- should be a float between 0.0 and 1.0 -->
<!ENTITY % content.type "CDATA">
<!ENTITY % expression "CDATA">
<!ENTITY % milliseconds "CDATA">
<!ENTITY % object.method "CDATA">
<!ENTITY % listen.mode "(automatic | multiple | single)">
<!ENTITY % script.statement "CDATA">
<!ENTITY % script.variable "CDATA">
<!ENTITY % uri "CDATA">
<!ENTITY % xpath.query "CDATA">
<!ENTITY % xpattern.string "CDATA">

<!ELEMENT bind EMPTY>
<!ATTLIST bind
 targetattribute %script.variable; "value"
 targetelement %script.variable; #REQUIRED

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 6

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 targetmethod %object.method; #IMPLIED
 test %xpattern.string; #IMPLIED
 value %xpath.query; #IMPLIED
>

<!ELEMENT content (#PCDATA)>
<!ATTLIST content
 href %uri; #REQUIRED
 type %content.type; #IMPLIED
>

<!ELEMENT dtmf (grammar | bind | param)* >
<!ATTLIST dtmf
 id ID #IMPLIED
 endsilence %milliseconds; #IMPLIED
 preflush %boolean; "false"
 initialtimeout %milliseconds; #IMPLIED
 interdigittimeout %milliseconds; #IMPLIED
 onerror %script.statement; #IMPLIED
 onkeypress %script.statement; #IMPLIED
 onnoreco %script.statement; #IMPLIED
 onreco %script.statement; #IMPLIED
 onsilence %script.statement; #IMPLIED
>

<!ELEMENT grammar ANY>
<!ATTLIST grammar
 name NMTOKEN #IMPLIED
 src %uri; #IMPLIED
 type %content.type; "application/srgs+xml"
 xmlns %uri; #IMPLIED
 xml:lang CDATA #IMPLIED
>

<!ELEMENT listen (record | grammar | bind | param)* >
<!ATTLIST listen
 id ID #IMPLIED
 initialtimeout %milliseconds; #IMPLIED
 babbletimeout %milliseconds; #IMPLIED
 maxtimeout %milliseconds; #IMPLIED
 endsilence %milliseconds; #IMPLIED
 reject %confidence.value; #IMPLIED
 xml:lang CDATA #IMPLIED
 mode %listen.mode; "automatic"
 accesskey CDATA #IMPLIED
 style CDATA "visibility: hidden"
 onerror %script.statement; #IMPLIED
 onnoreco %script.statement; #IMPLIED
 onreco %script.statement; #IMPLIED
 onsilence %script.statement; #IMPLIED
 onspeechdetected %script.statement; #IMPLIED
>
<!-- NOTE: accesskey and style attributes are used only in HTML profiles -->

<!ELEMENT param ANY>
<!ATTLIST param
 xmlns %uri; #IMPLIED
 name CDATA #REQUIRED
>

<!ELEMENT prompt (#PCDATA | content | value | param)* >
<!ATTLIST prompt
 id ID #IMPLIED

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 7
 bargein %boolean; "true"

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 prefetch %boolean; "false"
 xmlns %uri; #IMPLIED
 xml:lang CDATA #IMPLIED

accesskey CDATA #IMPLIED
 style CDATA "visibility: hidden"
 onbargein %script.statement; #IMPLIED
 onbookmark %script.statement; #IMPLIED
 oncomplete %script.statement; #IMPLIED
 onerror %script.statement; #IMPLIED
>
<!-- NOTE: accesskey and style attributes are used only in HTML profiles -->

<!-- default audio MEDIA type conforms to RFC 2361 -->
<!ELEMENT record EMPTY>
<!ATTLIST record
 type %content.type; "audio/wav;codec=g711"
 beep %boolean; "false"
>

<!ELEMENT smex (bind | param)* >
<!ATTLIST smex
 id ID #IMPLIED
 sent CDATA #IMPLIED
 timer %milliseconds; #IMPLIED
 onerror %script.statement; #IMPLIED
 onreceive %script.statement; #IMPLIED
 ontimeout %script.statement; #IMPLIED
>

<!ELEMENT value EMPTY>
<!ATTLIST value
 targetattribute %script.variable; #IMPLIED
 targetelement %script.variable; #IMPLIED
>

2.8 Appendix B: SALT modularization and profiles

2.8.1 Modularization of SALT
This section defines a number of SALT modules for use in different profiles according to device capability and application
functionality.

SALT browsers fall into the following main classes of device:

• Smart Clients: simple or mobile devices with modest computation power and resources. In this case, the speech
capabilities may be achieved using a distributed computing architecture, the devices may have only rudimentary
displays, and the browsers may not support scripting. A possible scenario for such devices is an eyes-free/hands-
free application where only speech input and output modes are available. Examples include PDA, smart phones,
set top boxes, and some automobile navigation systems, etc.

• Rich Clients: computing devices of similar capabilities to PCs. Usually, the devices have suitable displays, and
UI may be more biased towards a visual design (other than for hands-free, eyes-free applications). Speech-
related processing may still be distributed, but a network connection is not mandatory. Examples include desktop,
wall, and pocket PCs and some automobile PCs. Rich Clients should have no problem supporting scripting.

• Telephony Servers: SALT browsers are running on server-grade computers that process multiple phone calls.
The user interface includes speech and/or DTMF. Scripting support is considered a reasonable requirement for
this class.

Many functional features in SALT do not make sense in all environments. The purpose of SALT modularization is to
classify them into proper categories so that browser implementers have the greatest flexibility and the application
developer can enjoy maximum interoperability.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 8

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.8.1.1 Declarative Programming Module
The module contains the bind subelement and all its attributes, as defined in 2.2.1.2.

Note that application developers can still enjoy the full SALT functionality on a browser that does not implement this
module but supports scripting or SMIL. It is reasonable to allow browsers to claim certain level of compliance without
declarative module.

2.8.1.2 Basic Recognition Module
The module contains the listen object, all the recognition related properties (e.g., text, recoresult), the grammar
and param subelements and all their attributes, and all the events and methods, as defined in section 2.2.

Support of this module requires implementing ‘automatic’ mode recognition. Additional support of ‘single’ and ‘multiple’
mode is optional. As noted in 2.2.1, support of this module also requires support for the W3C SRGS, W3C NLSML and, if
applicable, W3C SLM (N-Gram) Recommendations.

The module is particularly sensible for smart clients, where basic recognition but not recording is needed.

2.8.1.3 Basic Recording Module
The module contains the listen object, all the recording related properties (e.g., recordlocation, recordtype,
recordduration, recordsize), the record and param subelements and all their attributes, and all the events and
methods defined in section 2.2.8.

This module makes sense for browsers that use only input methods that do not generate uncertainties (e.g. DTMF,
keyboards, pointing devices). For this case, the browsers should be able to claim certain level of conformance without
implementing any speech recognition features.

2.8.1.4 Concurrent Recording and Recognition Module
When a browser claims to support both the Basic Recognition and the Basic Recording modules independently, this does
not guarantee that recording and recognition can be performed simultaneously. Note that for distributed recognition, the
browser can perform front-end signal processing locally and only send the acoustic features to the recognition servers.
Doing so usually lowers the bandwidth requirements considerably. Therefore, there might be cases where recording and
recognition are performed by two different remote servers, and the browser only implements single channel streaming but
not two-channel multicasting.

Applications can only enjoy simultaneous recording and recognition on a browser supporting this module. This module
contains the union of the basic recognition and recording modules. Supporting this module implies the support of both the
basic recognition and recording modules.

2.8.1.5 Basic Media Playback Module
The module contains the prompt element and all its properties, methods, events, but the prompt element can only
contain content nodes for referring to pre-recorded media files, and not text nodes in speech synthesis markup
languages.

2.8.1.6 Speech Synthesis Module
The module contains the prompt element and all its properties, methods, events, and subelements18, including text
nodes for speech synthesis content.

As noted in 2.1.1.1, support of this module also requires support for the W3C SSML Recommendation.

2.8.1.7 Messaging Module
This module contains the smex element and all its properties, methods, events, and the param subelement, as defined in
2.4.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 7 9

18 The PromptQueue object is not included here. It is a separate module because a multimedia enabled browser (e.g. a
SMIL implementation) often has sophisticated mechanisms in place already to synchronize different media types. For that
case, synthesized speech should behave more like other media streams that do not define their own media buffer.

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

2.8.1.8 Call Control Module
This module enables telephony call control. This may be accomplished through the use of smex with ECMA-323
messages (section 2.4.4), or by support of the CallControl object (section 3).

2.8.1.9 DTMF Module
This module contains the dtmf element and all its properties, methods, and events, as defined in 2.3. When this module
is supported in addition to the listen element (i.e. the Basic Recognition, Basic Recording and/or Concurrent
Recognition and Recording modules), the behavior described in section 2.3.6 is required to be supported.

2.8.1.10 PromptQueue Module
The module supports the PromptQueue object and all its properties, events, and methods, as defined in 2.1.5 (with the
exception of the Change() method in 2.1.5.2.4, which is optional).

2.8.1.11 Logging Module
The module contains the global logging function, as defined in 2.5.

2.8.1.12 Run-time determination of supported modules
Given that clients will support differing collections of SALT modules, it is useful for server-side scripts to have a
mechanism to determine client capabilities and dynamically generate the appropriate markup.

Traditionally, web servers have been able to examine an environment variable HTTP_USER_AGENT to obtain client
capability information. Here are some representative examples of HTTP_USER_AGENT strings from a cross-section of
clients19:

Microsoft Internet Explorer 6.0 on a Windows 2000 desktop PC manufactured by IBM:
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; T312461; Q312461;
.NET CLR 1.0.3328)

Netscape Navigator 4.72 on a Windows 95 laptop PC manufactured by Sony:
Mozilla/4.7 [en]C-CCK-MCD {Sony} (Win95; U)

Planetweb browser on a Sega Dreamcast game console:
Mozilla/3.0 (compatible; Planetweb/1.123 JS SSL US Gold; Dreamcast US)

Openwave WML browser on a Mitsubishi T-250 wireless telephone:
UP.Browser/3.1.03-T250 UP.Link/4.3.3.4

Palm Web Clipping Application browser on a Palm Pilot VIIx:
Mozilla/2.0 (compatible; Elaine/3.0)

Following this model, a SALT browser will include an identifying substring of the form SALT X.Y.Z NNNNN where:

• X.Y.Z is the version number X.Y of the SALT specification implemented by the browser and the .Z portion is a
"build number" of that implementation. Example: 1.0.1023 is the 1023rd build of a SALT browser that
implements version 1.0 of the SALT specification.

• NNNNN is a "bitmap" of the SALT modules supported. This bitmap is the sum (logical OR) of the "bitmap values"
for each of the modules as listed in the table below.

SALT Module Name Bitmap Value
Scripting (e.g., ECMAScript or WMLScript) 1
Declarative Programming 2
Basic Recognition 4
Basic Recording 8
Concurrent Recognition & Recording 16
Basic Media Playback 32
Speech Synthesis 64
Messaging 128
Call Control 256
DTMF 512
Prompt Queue 1024

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 0

19 Trade names and brands are the property of their respective holders.

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Logging 2048

If the first example HTTP_USER_AGENT string were re-written to include the SALT substring, it would look something like:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; T312461; Q312461; .NET CLR
1.0.3328; SALT 1.0.1023 3583)

This client supports all the SALT Modules except "DTMF" (3583 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 1024 +
2048).

2.8.2 SALT/HTML profiles
This section defines the support of HTML and associated environmental features in terms of multimodal and voice-only
profiles.

2.8.2.1 HTML multimodal
SALT can be used in HTML multimodal profiles which support a display. In these cases the extent to which HTML is
supported depends on the capabilities of the device. The extent of SALT module support is also dependent on the device
capability, and this will be reflected in individual profiles. For example, if a scripting module is not supported, then full
object mode of SALT is unlikely to be incorporated in the profile.

All the HTML examples in this document can also be used in compact HTML (cHTML) browsers, as described at
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/, since the subset of HTML used in the examples falls under
the cHTML definition.

2.8.2.1.1 accesskey and style
When SALT is used in HTML profiles which support the two general HTML attributes accesskey and style, SALT
adopts these attributes and their capabilities into the listen and prompt elements. As described below, this enables
simple declarative authoring of the typical functionality required in multimodal applications.

accesskey
When the hosting environment supports accesskey, the attribute has the following semantics:

o listen: for 'automatic' mode, the onkeypress event for the accesskey invokes the Start() method.
o listen: for 'single' mode, the onkeydown and onkeyup events invoke the Start() and Stop()

methods, respectively. In other words, the accesskey enables "push-hold-and-talk".
o listen: for 'multiple' mode and recording, the onkeypress event toggles the Start() and Stop()

methods. In other words, the accesskey enables "click to talk".
o prompt: the onkeypress event invokes the Start() method.

This permits simple declarative statements such as:

 <listen accesskey="*" ... />
 <prompt accesskey="*" ... />

where the onkeypress event from the "*" will have the behavior described above without the need for programmatic
script activation.

style
When the hosting HTML environment supports the style module, the listen object shall at minimum implement that portion
of the object model conforming to W3C CSS level 1 specification. The onclick, onmousedown, onmouseup events
assume the same behaviors as the onkeypress, onkeydown and onkeyup events as those defined for the accesskey
above. In addition, when the hosting environment supports tabindex, a listen object shall have the same behavior as
other visual HTML objects.

2.8.2.2 HTML voice-only

2.8.2.2.1 HTML module support

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 1

http://www.w3.org/TR/1998/NOTE-CompactHTML-19980209/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

This section describes the subset of HTML elements to be supported by a SALT voice-only browser. The subset is
defined on the basis of useful functionality in structuring and executing a web application with a SALT speech interface
but without a visual display20.

2.8.2.2.1.1 XHTML Modules
The following XHTML modules as defined at http://www.w3.org/TR/xhtml-modularization/abstract_modules.html should
be supported by voice-only XHTML browsers according to the table below. Required elements are in bold typeface, with
hyperlinks to the relevant W3C module definition recommendation. (see the following subsection 2.8.2.2.1.1.1 for finer
detail on the required level of support for each element).

Required Module Name Supported elements
Part Attribute Collections* This defines the following common attributes: class, id,

title, xmlns, xml:lang, style, and common events
collection (i.e. onclick, onkeypress, etc)

All Structure Module* body, head, html, title
Part Text Module* abbr, acronym, address, blockquote, br, cite, code, dfn,

div, em, h1, h2, h3, h4, h5, h6, kbd, p, pre, q, samp,
span, strong, var

All Hypertext Module* a
No List Module dl, dt, dd, ol, ul, li
No Applet
No Text Extension
No Presentation
No Edit
No Bi-directional
No (see
below)

Basic forms

Part Forms Module button, fieldset, form, input, label, legend, select,
optgroup, option, textarea

No Basic Tables
No Table Module caption, col, colgroup, table, tbody, td, tfoot, th, thead, tr
No Image
No Client-side Image Map
No Server-side Image Map
No Object
No Frames
No Target
No Iframe
Part Intrinsic Events Module Events attributes (onreset, onsubmit for form, and

onload, onunload for body).
All Metainformation Module meta
Part Scripting Module noscript, script
No Style Sheet
No Style Attribute
All Link Module link
All Base Module base
No Name Identification

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 2

20 The subset of elements listed here does not correspond strictly to W3C's existing XHTML Abstract Modules as defined
at http://www.w3.org/TR/xhtml-modularization/, since many modules contain elements and functionality superfluous to
speech functionality.

http://www.w3.org/TR/xhtml-modularization/abstract_modules.html
http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_commonatts
http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_structuremodule
http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_textmodule
http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_hypertextmodule
http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_extformsmodule
http://www.w3.org/TR/xhtml-modularization/
http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_metamodule
http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_scriptmodule
http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_linkmodule
http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_basemodule

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

No Legacy

2.8.2.2.1.1.1 Elements
The following elements and events must be supported by HTML voice browsers:

• <!DOCTYPE>
• <html>
• <head>
• <body>
• <title>
• <div>
• <a>
• <form>
• <input>
• <select>
• <option>
• <textarea>
• <meta>
• <script>
• <link>
• <base>
• Common Events.

The level of support required for the interface of each of the above elements in the supported modules is outlined below.
Interfaces which are required are shown in bold. DOM methods and properties (i.e. not attributes) are italicized.

ID Element Subcategory Detail Comments

General
1 <!DOCTYPE> - -
Structure
2 body Attribute set Common

3 head Attribute set I18N

 head Attribute profile

4 Attribute set I18N
5 Attribute version
6

html

Attribute xmlns For XHTML, this attribute defaults to
"http://www.w3.org/ 1999/xhtml".

7 title Attribute I18N
Text
8 abbr Attribute Common
9 acronym Attribute Common
10 address Attribute Common
11 blockquote Attribute Common
12 blockquote Attribute Common
13 br Attribute Common
14 cite Attribute Common
15 code Attribute Common

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 3

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

16 dfn Attribute Common
17 div Attribute Common
18 em Attribute Common
19 h1 Attribute Common
20 h2 Attribute Common
21 h3 Attribute Common
22 h4 Attribute Common
23 h5 Attribute Common
24 h6 Attribute Common
25 kbd Attribute Common
26 p Attribute Common
27 pre Attribute Common
28 samp Attribute Common
39 span Attribute Common
30 strong Attribute Common
31 var Attribute common
Hypertext
32 Attribute Common
33 Attribute accesskey
34 Attribute charset
35 Attribute href
36 Attribute hreflang
37 Attribute rel
38 Attribute rev

39 Attribute tabindex
40 Attribute type

41

a

DOM method click() This allows the simulation of mouse clicks and
simpler navigation. Not strictly part of the
HTML DOM spec (but is supported in many
visual browsers).

Forms
42 Attribute Common

43 Attribute accept

44 Attribute accept-charset

45 Attribute action

46 Attribute method

47 Attribute enctype

48 DOM Property elements

49 DOM Property length
50 DOM method reset()
51

form

DOM method submit()
52 Attribute Common
53

input
Attribute accept

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 4

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

54 Attribute accesskey
55 Attribute alt
56 Attribute checked
57 Attribute disabled
58 Attribute maxlength
59 Attribute name
60 Attribute readonly
61 Attribute size
62 Attribute src
63 Attribute tabindex
64 Attribute type Only ("text" | "submit" | "reset" | "file" | "hidden")

values need be supported (and not
"password", "checkbox", "button", "radio",
"image".)

65 Attribute value
66 DOM Property defaultValue
67 DOM Property form
68 DOM method click()
69 Attribute Common
70 Attribute disabled
71 Attribute multiple
72 Attribute name
73 Attribute size
74 Attribute tabindex
75 DOM Property form
76 DOM Property length
77

select

DOM Property options
78 Attribute Common
79 Attribute disabled
80 Attribute label
81 Attribute selected
82 Attribute value
83 DOM Property form
84

option

DOM Property index
85 Attribute Common
86 Attribute accesskey
87 Attribute cols
88 Attribute disabled
89 Attribute name
90 Attribute readonly
91 Attribute rows
92 Attribute tabindex
93 DOM Property form
94

textarea

DOM Property type
95 Attribute Common
96

button
Attribute accesskey

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

97 Attribute disabled
98 Attribute name
99 Attribute tabindex
100 Attribute type ("button"|"submit"|"reset")
101 Attribute value
102 fieldset Attribute Common
103 Attribute Common
104 Attribute accesskey
105

label

Attribute for
106 Attribute Common
107

legend
Attribute accesskey

108 Attribute Common
109 Attribute disabled
110

optgroup

Attribute label
Intrinsic events
111 a& Attribute
112 area& Attribute
113 frameset& Attribute
114 Attribute onreset
115

form&
Attribute onsubmit

116 Attribute onload
117

body&
Attribute onunload

118 label& Attribute
119 input& Attribute
120 select& Attribute
121 textarea& Attribute
122 button& Attribute
Metainformation
123 Attribute I18N
124 Attribute content
125 Attribute http-equiv
126 Attribute name
127

meta

Attribute scheme
Scripting
128 noscript Attribute
129 Attribute charset
130 Attribute defer
131 Attribute src
132 Attribute type

133 Attribute xml:space
134

script

Attribute -
Link
135 link Attribute Common

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 6

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

136 Attribute charset
137 Attribute href
138 Attribute hreflang
139 Attribute media
140 Attribute rel
141 Attribute rev
142 Attribute type
Base
143 base Attribute href
Common
144 - Attribute - Core + Events + I18N + Style
145 Attribute class
146 Attribute id
147 Attribute title

Core attribute
collection

Attribute xmlns
148 I18N attribute

collection
Attribute xml:lang (and

lang)
lang is HTML

149 Events attribute
collection

Attribute -

150 Style attribute
collection

Attribute style

2.8.2.2.1.2 HTML DOM
SALT platforms supporting HTML are expected to support the DOM specified in the HTML DOM Level 1 Core spec
(http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/idl-definitions.html).

The following methods however need not be implemented, since they permit application scripts to change the DOM
significantly, possibly invalidating internal browser or script host data structures.

• INode insertBefore, replaceChild, appendChild, removeChild
• INamedNodeMap setNamedItem, removeNamedItem
• IElement setAttribute, setAttributeNode, removeAttributeNode,

normalize
• IText SplitText

2.8.2.2.1.3 Event model
This section contains examples of the event model implemented by (1) the Microsoft Internet Explorer browser (versions
5+), and by (2) the emerging DOM level 2 specification.

2.8.2.2.1.3.1 IE 5,6 event model
Event listener registration:

In HTML, one may use event name like an attribute:

 <listen id="Listen1" onreco="myhandl()"…>

Script method 1: use generic attachEvent method as

 Listen1.attachEvent("onreco", myhandle);

Script method 2: use the event delegate on the object model

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 7

http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/idl-definitions.html

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 Listen1.onreco = myhandle;

All above 3 mechanisms share the same event handler:

 function myhandle() {
 var obj = event.srcElement;
 // obj is listen object that dispatches the event.
 }

Script method 3: use HTML script tag that registers event listener and implements event handler in one step:

<script for="Listen1" event="onreco" language="Jscript">

 var obj = event.srcElement;
 // obj is the listen object that sends the event.

</script>

By definition, an event handler has no argument, returns nothing, and throws no exception.

2.8.2.2.1.3.2 DOM Level 2 model
The DOM Level 2 event model is currently specified at http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/.
This may be used in profiles outside of HTML.

Event listener registration:

Since DOM Level 2 HTML module is not finalized yet, currently the standard way to register an event listener is through
scripting. A standard addListener method, similar to the attachEvent above, is defined in the standard for all nodes
and can be used as follows:

 Listen1.addListener("onreco", myhandle, false);

The third argument is a Boolean flag indicating whether user wants to initiate capture. See DOM Level 2 for precise
definition for event capturing.

As before, an event handler returns nothing and throws no exception, but now has an argument of the event type:

 function myhandle(event e) {
 var obj = e.target;
 // obj is the object that sends the event.
 }

Again, refer to the DOM Level 2 documentation for a definition of event type.

2.8.2.2.1.4 HTML window object
The following is the proposed subset of features of the window object which is required for implementation by a SALT
voice-only browser.

Methods:

• attachEvent
• clearInterval
• clearTimeout
• close
• detachEvent
• navigate
• setInterval
• setTimeout

Attributes/Properties:

• length

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 8

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

• name
• self

Events:

• onbeforeunload (note: this applies to the page)
• onerror
• onload
• onunload (note: this is inherited from HTML object)

Objects:

• clientInformation/navigator
• document
• event
• location
Relevant profiles may also support the PromptQueue object (see section 2.1.5) and/or the CallControl object
(Part 3) within the window object.

2.8.2.2.1.5 Using <meta >
Following the principles established for expressing meta data in HTML (see
http://www.w3.org/TR/html4/struct/global.html#meta-data), the meta element can be used in SALT to express meta data
about the spoken aspects of the page. (This can be used in conjunction with a profile definitions referenced in the HTML
head elements).

The content of such data will be meaningful to SALT platforms in proprietary contexts, so it may be considered a page-
level equivalent of the param element (which expresses configuration data particular to an individual element). param is
defined on the prompt, listen, dtmf and smex elements. Browsers may then treat such data as applicable to the
entire page.

The following are sample uses of the meta element in SALT:

<meta name="recoServer" content="myRecoServer.url" />
<meta name="recoSpeechDetectionThreshold" content="0.15" />

 <meta name="promptServer" content="myPromptServer.url" />

<meta name="audioEncoding" content="a-law" />
etc.

2.8.2.3 HTML telephony profile
This profile will be defined in terms of the HTML voice-only profile, and the SALT modules specific to conducting
telephony dialogs. Relevant profiles may also support the PromptQueue object (see section 2.1.5) and/or the
CallControl object (Part 3) within the window object for these profiles.

2.8.3 SALT and SMIL 2.0
This section defines the normative behavior of SALT elements when hosted in a SMIL 2.0 compliant environment. SMIL
2.0 is defined at http://www.w3.org/TR/smil20. SALT modules that are not explicitly described in this section are either
unaffected by SMIL 2.0, or a normative behavior is not defined, (e.g., the non-XML SALT modules).

SALT elements may contain no visual presentation. When this is the case, all the presentation-related SMIL attributes
attached to SALT elements are ignored.

2.8.3.1 SMIL Timing and Synchronization Module
Below are the desired behaviors when the host language claims support of SMIL 2.0 Timing modules. The basic timing
for an element in SMIL consists of specifications on the onset and the duration of the element. This section defines only
the onset and duration for the SALT elements. Advanced timing and synchronization semantics of SALT elements will
follow SMIL 2.0 specification based on the onset and duration specification in the following sections.

2.8.3.1.1 The listen object
 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 8 9

http://www.w3.org/TR/html4/struct/global.html#meta-data
http://www.w3.org/TR/smil20

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

The onset of a listen element is the time when its Start method is called. As a result, the SMIL begin attribute is
used to describe when the Start method of the listen object will be called.

The duration of a listen object is the length of audio consumed. The SMIL min and max attributes are aliased to the
initialtimeout and maxtimeout of the listen object, respectively. Effectively, a SMIL dur attribute will invoke the
Stop method of the listen object. Note that the end of the audio stream does not mean the recognition or recording
results are ready for processing. As a result, it is most often that the SMIL synchronization will be cued off to related
listen events.

A "freezing" (in SMIL sense) listen object simply means the object no longer consumes audio inputs. The recognition or
recording process may continue as described above.

(Note: As the listen object provides programmatic means for changing grammars, using SMIL to repeat a listen
object does not always guarantee the same grammar will be used each time. The same applied to SMIL restart. In other
words, resetting the state of a listen object means to recompile the grammar if the grammar has been modified.)

As of SALT 1.0, a listen object cannot be paused and resumed. Since pausing an active element is most frequent
inside the SMIL excl block, the listen object may treat SMIL pause as an alias for invoking the Cancel method and the
consequent resume as a fresh Start.

The SMIL beginEvent corresponds to the listen object onspeechdetected event. The SMIL endEvent is raised
when the bind subelements are processed, or the listen object is about to raise onreco, onnoreco, or onerror
event.

2.8.3.1.2 The prompt object
Like the listen object, the onset is the time when its Start method is called.

The duration of a prompt object is the length of the audio played plus the time needed to synthesize its textual contents,
if any. The prompt object shall follow SMIL Content Control Module in resolving streamed audio. Once the text to speech
synthesis is finished and streaming audio is resolved per SMIL definitions, the prompt object assumes all the behaviors
of a SMIL audio object.

The SMIL Prefetch Content Control Module may be used to direct the SALT prompt object to synthesize static text prior
to its invocation. When used, SALT prompt object follows the timing, freshness, and other semantics in SMIL.

2.8.3.1.3 Examples

1) Multimedia prompting followed by recognition:

<t:seq>
 <t:par t:endsync="all">
 <t:img id="xxx" src="talkinghead.gif"/>
 <salt:prompt t:begin="xxx.begin-1s">

Please say the name
</salt:prompt>

 </t:par>
 <salt:listen> ...</salt:listen>
</t:seq>

The multimedia prompting is provided by an animated GIF and a SALT prompt object. The synthesis is
estimated to take one second, therefore the SMIL begin attribute is set to start the synthesis 1 second before the
animation. The prompting is contained in a SMIL <par> block, with the endsync attribute set to all. As a result,
the following recognition object will not be activated until both the animation and prompt finish playing.

2) Multimodal activation of recognition or recording:

<input id="clickToTalk" type="button" />
<salt:listen t:begin="clickToTalk.onclick">

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 0

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 ...
</salt:listen>

In this example, an HTML button is used to start the listen object.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 1

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

3 SALT CallControl object
This part specifies the SALT telephony call control object, which can be used in SALT profiles for the control of telephony
functionality. (An alternative is to use the smex element with ECMA-323 messages, as described in 2.4.4.)

3.1 CallControl object definition

3.1.1 Requirements
1. An HTML document containing SALT markup must have the ability to provide access to telephony call control

related functions, such as answering a call, transferring a call (bridged or unbridged), managing a call or
disconnecting a call.

2. The specification must define a means to associate a telephony media stream with SALT media tags, such as
tags for Speech Recognition, Recording, Speech Synthesis, and Audio Playback.

3. The call control related objects defined in the specification must provide a programming abstraction that is
independent of the underlying call control signaling protocol.

4. The call control related tags and objects defined in the specification must be extensible. Different applications will
have varying degrees of need for access to call control functionality from the simple (e.g., interactive voice dialog
with a single caller) to the complex (e.g., full call center capability, or enhanced services by service providers). It
should be possible for SALT documents to perform run-time query of extension availability to handle variances in
the environment.

5. The call control object model specified here should follow an accepted industry standard, and be easy for
programmers to use. This approach leverages a trained telephony developer community. This also provides a
vision and guidelines for the upgrade path.

6. The call control object model specified here supports first party call control (third party call control is outside the
scope of a Speech Recognition endpoint system).21 The specified model should support both client and server
call control requirements.

3.1.2 Solution Overview
The call control object will be specified as an intrinsic entity of the SALT-enhanced browser. Various call control interface
implementations conformant with this specification may be "plugged in" by browser-specific configuration procedures and
in that way be made accessible to SALT documents. SALT documents can query for the presence of these "plug-ins" at
run-time.

The object shall appear in the DOM of the HTML document. The object will have various properties and methods that
can be manipulated via ECMAScript code. Some of these methods will create derivative "child" objects, thereby
instantiating an entire call control object hierarchy. The objects should also generate events. Event handlers may be
written as ECMAScript functions.

The call control object model specification shall be derived from and modeled after the Java Call Processing API (JCP),22
which is an open industry specification. The SALT call control specification will not necessarily follow those specifications
to the letter, as much of those specifications deal with issues specific to the Java language, whereas the SALT call control
specification will be adapted to the ECMAScript programming environment in HTML documents.

For call control use examples see section 3.2.

3.1.2.1 Call Control Object Hierarchy

The SALT call control objects comprise a hierarchy.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 2

21 A first-party call control system is one where the activating entity (the system executing the call control function) is also
one of the parties of the conversation. This is the case with SALT documents, which participate in a dialog with a human.
A third-party call control system is one where the activating entity is not one of the parties of the conversation, but is
instead a "moderator" of the conversation. This is the typical case with a telephony switching element such as a
softswitch, SIP proxy, etc. This specification addresses the former scenario and not the latter.
22 To be explicit, this specification is an ECMAScript binding derived from the documents for JCP/JCC 1.0 (JSR 021) and
selected portions of JTAPI 1.4 (JSR 034), which may be located on the World Wide Web at http://java.sun.com.

http://java.sun.com/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Although each of these objects is present, implementation of many of the features is optional. The capabilities property in
3.1.3.2.1 enumerates which of the features is implemented on the current platform. For example, even on a platform that
does not support the conferencing feature, the conference object is still present, but it has at most one child call object.

At the very top of the hierarchy are one or more window objects within the browser. Each window object has a
document object representing the loaded HTML page. The document object will have all the traditional subordinate
objects as defined elsewhere (q.v., W3C HTML DOM at http://www.w3.org).

Each window contains a single callControl object giving a single point of abstraction for interface to the platform’s call
control functionality.

The callControl object contains one or more provider objects. Each provider allows access to a single telephony
implementation.

Different telecommunication vendors can market providers for different styles of telecommunication platforms, so long as
they are conformant with this specification. For example, vendor "A" may market a SIP telephony provider for Voice over
IP, while vendor "B" may market an ISDN telephony provider for a specific T1/E1 adaptor card.

The SALT call control interface is platform and protocol independent. It provides a common abstraction above many
possible telephony platform implementations.
Which providers are present on any given system is a platform browser configuration issue.

Each provider object provides telecommunications connectivity through one or more addresses. In traditional telephone
networks, an address is commonly known as a telephone number.

Providers also allow creation and management of conferences, which are logical groupings of calls.23 Conferences
may be created and terminated. Calls may be created and terminated, and also moved into or out of conferences. A
call is commonly thought of as a "call leg".

Each call has media streams associated with it, known as channels. These media streams will typically be audio, but
could also be video streams (for support of video conferencing) or text (for support of teletext or chat).

3.1.2.2 Browser Configuration of Call Control Providers
The method of instantiation of call control providers inside the browser is a platform specific configuration issue.

All other call control objects are derived from the provider object programmatically using methods of call control objects.
For example, you can use the createConference() method of a provider object resulting in a conference object.
Likewise, you can use the createCall() method of a conference object resulting in a call object, and so on.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 3

23 Those of you intimately familiar with Java call control will notice that this specification is using the terms conference
and call in place of call and connection objects, respectively. This is for alignment with the terminology used by the
current draft of the Call Control XML (CCXML) document of the W3C Voice Browser Working Group.

http://www.w3.org/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

The major exception is that incoming calls can result in conference and call objects being spontaneously created by the
platform. Appropriate events will be generated informing the script of the creation of those objects, and the names of the
newly created objects.

3.1.2.3 Call Control Event Handling
When the browser starts up and each provider object is "plugged in", the first event each provider throws is the
"provider.inService" event.

An ECMAScript event handler to catch this event can be written as shown below.

<script language="JavaScript">
 callControl.provider[0].attachEvent("provider.inService", myProviderEventHandler);

function myProviderEventHandler(event, object) {
 if (event == "provider.inService") {
 // handle In-Service event here.

}
}

</script>

Any call control object can have a programmer-written ECMAScript event handler attached to it using the attachEvent
method as illustrated above. The event handler may be dedicated to handling a single event, or multiple events may be
attached to a single handler. The handler can discriminate between different arriving events by examining the event
parameter passed to the handler. The handler can also tell what call control object threw the event by examining the
object parameter.

If any call control object throws an event and it is not caught by a handler attached to the object throwing the event, then
the event will "bubble" up to its parent object. The event will continue to "bubble" up the object hierarchy until it is either
caught by an attached event handler, or until it ultimately reaches the callControl object, where it will be processed by a
system-default event handler.

At a minimum, all events have a srcElement sub-property that refers to the object that generated an event. You can
tell, for example, which call was disconnected when you get a call.disconnected event by examining
event.srcElement.

Other properties of events depend on the individual event in question.

3.1.2.4 Lifetime of Objects
Objects such as conferences and calls do not spontaneously disappear. For example, a call object does not destroy
itself just because of a call disconnect. The programmer must explicitly destroy the object when finished with it.

Objects are persistent regardless of how many windows are opened or closed. All the objects are accessible to any child
window of a single browser. The objects are destroyed when the browser exits, however.

The programmer must typically create objects needed before using them. The only exceptions are as follows:

• A conference object and a call object are spontaneously created on an incoming call.
• The programmer has no control over what addresses a provider offers; addresses cannot be created or

destroyed, they are essentially a platform provisioning issue.

3.1.2.5 Associating Media Streams with SALT Tags
Because each window is defined to have a single PromptQueue object (for audio output) and single active listen and/or
dtmf object (for audio input), the SALT browser implementation will connect the audio input or output to telephony
streams as it deems appropriate.

Each telephony media stream is represented by a channel. Each call object typically has two channels: channel[0] for
audio output, and channel[1] for audio input. Each conference object also has a channel[0] whose audio is "split
out" to each child call of the conference, and a channel[1] comprised of the mixed input audio of all child calls of a
conference.
 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 4

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

The programmer has some control over which specific audio input channel and/or audio output channel are in use. See
the description of mediaSrc and mediaDest properties in the callControl object section below.

Note: Any SALT document that needs to process more than one input stream or output stream concurrently will require
the use of multiple windows. The implications of multi-window browsing are still under consideration.

3.1.2.5.1 Associating Telephone Call Disconnect with SALT Tags
When an active telephone call that has associated media streams disconnects (either by the remote end hanging up, or
by the local end executing the disconnect() method), the platform will cause the following actions to occur:

• Any active speech objects in the window will be made inactive by having its Stop() method invoked, in this
order:

o All active <listen> objects
o All active <dtmf> objects
o In profiles where the PromptQueue is supported, the PromptQueue object
o In profiles where the PromptQueue is not supported, playback of <prompts> will be stopped.

• A call.disconnected event will be thrown by the call object upon which the disconnect occurred. This event
will invoke any attached ECMAScript handlers on that call object, or on any ancestor object in the DOM if the
event bubbles up through the DOM (bubbling is the default behavior unless overridden).

3.1.2.6 Support for a Call Distributor
A Call Distributor is an application program that waits for incoming calls and then dispatches sub-programs to service
them. In VoiceXML platforms, the Call Distributor behavior is either provided by (i) the platform vendor and inaccessible
to the programmer, or (ii) CCXML scripts may be used to program the same functionality.

SALT provides a method of the callControl object named spawn() to assist the coding of a Call Distributor in
ECMAScript. Programmers may use this facility if they wish, but they are not required to do so.

The following steps are suggested to implement a Call Distributor behavior:

• Code a SALT document to act as the parent window that waits for incoming calls, and another SALT document
to act as the child window to process the call.

• Upon receipt of an incoming call indication (conference.created and call.created events), the
callControl.spawn() method may be invoked with an HTML document URL (the child SALT document) as a
parameter, and the object ID of the new conference.

• The parent window will "donate" the conference object (and its children) to the child window. The object will be
deleted from the DOM of the parent window, and appear in the DOM of the child window. The parent document
can go back to listening for more incoming calls. Note that the "donated" conference is not destroyed; it is
merely re-parented from one DOM to another.

• The child document will receive the incoming call indication (conference.created and call.created
events), as if the call had come into the child window in the first place. ECMAScript code in the child document
can now process the call.

• The child window may terminate itself by calling the window.close() method.

3.1.3 Call Control Object Dictionary
The descriptions of object properties below contain abbreviations "R/O" for Read Only and "R/W" for Read / Write. "Read
Only" properties can only be examined, not set. "Read / Write" properties may be examined and/or set.

3.1.3.1 Events
All events have at least the following properties, and may have more, depending upon the particular event in question.

3.1.3.1.1 Properties

• cause – R/O – the reason the event was thrown.

• srcElement – R/O – reference to the object that threw the event.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

3.1.3.2 callControl Object
The callControl object is the top-level browser object for call control interface. It is a child of each window object.

3.1.3.2.1 Properties

• capabilities – R/O – an XML documentElement listing the functionality supported by the call control
implementation. Scripts can use XML DOM methods, e.g., selectNodes(), to discover what capabilities are
supported before trying to use them. An implementation that conforms fully to this specification may minimally
supply a string value of <conformance version="X.Y" /> where X.Y is the version number of the SALT
specification (e.g., "1.0"). If the implementation deviates by subsetting features (e.g., not supporting
conferencing) or by extending features (e.g., by adding call center methods to the call object), then this string
must represent a valid XML document with all the referred namespaces fully decorated and their schemas
publicly discoverable.

• id – R/O – symbolic globally unique id of this object assigned by the platform (URN format).

• mediaDest – R/W – controls where audio output, i.e. the output from the PromptQueue, is heard. If null, output
is sent to the device's speaker (or is lost if there is no speaker). If it contains a reference to the output channel of
a conference, the audio is heard by all calls in the conference. If it contains the output channel of a call
object, the output is sent to and only heard by the specific call referenced, (such a scenario is sometimes
referred to as "whisper", in which only one conference participant hears the message). If mediaDest is null
and a conference is created, mediaDest is automatically set to that conference object’s channel[0]. If
mediaDest refers to a conference that is destroyed, mediaDest is automatically set to null. If a prompt is
playing while mediaDest changes, the precise timing of when the actual audio switchover takes place is
platform-specific. For example, platforms may implement the switchover immediately, at the end of the current
prompt, or at the end of all queued prompts. However, the switchover is guaranteed to take place prior to playing
a subsequent prompt once the PromptQueue is empty or is stopped.

• mediaSrc – R/W – controls where audio input is sourced for <listen> objects (speech recognition and/or audio
recording). If null, input is received from the device's microphone. If it contains a reference to the input channel
of a conference object, input is received from a mixture of all of the calls in the conference. If it contains a
reference to the input channel of a call object, input is received from only the specific call referenced. If
mediaSrc is null and a conference is created, mediaSrc is automatically set to that conference object. If
mediaSrc refers to a conference that is destroyed, mediaSrc is automatically set to null. If a <listen> is in
progress while mediaSrc changes, the precise timing of when the actual audio switchover takes place is
platform-specific. For example, platforms may implement the switchover immediately, at the end of the current
<listen>. However, the switchover is guaranteed to take place prior to beginning a subsequent <listen>
operation.

• provider[] – R/O -- array of providers configured into the system and accessible through the browser.

• provider.length – R/O -- number of providers configured into the system

3.1.3.2.2 Methods

• spawn(uri, [conf]) -- create a new window object using the URI parameter as the start document, and begin a
new sandboxed thread of execution. The new window will have its own callControl object. If the optional conf
parameter is specified, it refers to a conference object that the parent window will donate to the new child
window. The child window will receive a conference.created event for the conference and a
call.created event for each call object that is a child of the conference object being donated. The donated
conference and its child objects will be deleted from the DOM of the donating parent window. This is how a
parent window can "hand off" a conference and/or call to a child window for processing. Scripts in the child
window can be written with the belief that the events represent one or more incoming calls.

3.1.3.2.3 Events

The callControl object does not throw any events; however, it is usually useful to attach an event handler to this object to
catch events that bubble up from lower-level objects in the hierarchy.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 6

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

3.1.3.3 Provider Object
A provider represents an abstracted interface to an implementation of a telephony protocol stack; it is the SALT
document’s "window" into the telephony platform.

Example providers can include SS7-ISUP, ISDN, POTS, SIP, and H.323. Vendors may choose to develop one or more
of these as separate providers, or a single (multi-protocol) provider giving an abstracted view of one or more of these.

The provider object(s) visible to a SALT document are instances of interfaces to the platform’s implementation, and when
any SALT document manipulates it’s own provider instance, it does not affect the instances of any other running SALT
document (i.e., it is a misconception that invoking the shutdown() method will shutdown the provider for the entire
system).

The methods, properties, and events of provider objects and all derivative call control objects are themselves protocol
and implementation independent.

3.1.3.3.1 State Machine

The provider object state machine has three states:

• InService – This state indicates that the provider is currently alive and available for use.
• OutOfService -- This state indicates that a provider is temporarily not available for use. Many methods in

this API are invalid when the provider is in this state. Providers may come back in service at any time (due
to system provisioning by the administrator); however, the application can take no direct action to cause this
change.

• Shutdown -- This state indicates that a provider is permanently no longer available for use by this SALT
document. Most methods in the API are invalid when the provider is in this state. Applications may use the
shutdown() method on this interface to cause a provider to move into the Shutdown state.

3.1.3.3.2 Properties

• address[] – R/O -- array of addresses hosted by the provider.

• address.length – R/O -- number of listenable addresses hosted by the provider.

• conference[] – R/O -- array of conferences.

• conference.length – R/O -- number of child conferences currently in existence.

• id – R/O – symbolic globally unique id of this object assigned by the platform (URN format).

• parent – R/O – the object id of the callControl object the provider instance is within.

• state – R/O -- the current state of the provider object’s finite state machine. String value, see section "State
Machine" above.

3.1.3.3.3 Methods

• createConference – create a child conference object.

• shutdown – completely shut down the provider (this provider instance of a given window cannot be restarted).
This function performs object memory cleanup in a typical implementation. Some platforms may not need to
implement the shutdown() function, in which case it silently ignores such calls made by scripts.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 7

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

3.1.3.3.4 Events

• provider.inService -- the provider is available for use by the script.

• provider.outOfService -- the provider is unavailable.

• provider.shutdown -- the provider has been shut down.

3.1.3.4 Address Object
An address is a connectable endpoint. In order to receive incoming calls, you must listen on a particular address.

In a traditional Public Switched Telephone Network (PSTN) environment, addresses are known as "telephone numbers".
They are represented in RFC 2806 compliant URL format, e.g., "tel:+1-888-555-1212".

In Voice over IP (VoIP) environments, addresses are represented as SIP URLs (q.v., RFC 2543) appearing typically like
electronic mail addresses (e.g., "sip:fred@flintstone.com") or as H.323 URLs (q.v., RFC 2000) which may appear
as electronic mail addresses, simple IP addresses, or free-form gatekeeper aliases (e.g., "h323:barney@rubble.org",
"h323:134.128.1.10", or "h323:arbitrary-alias").24

How an application registers one or more addresses with a directory service in order to receive incoming calls is beyond
the scope of this specification.

Note that applications never explicitly create new address objects. Which addresses are available for use is a provider
provisioning/configuration issue.

3.1.3.4.1 State Machine
The address object has no associated state machine.

3.1.3.4.2 Properties

• id – R/O – symbolic globally unique id of this object assigned by the platform (URN format).

• parent – R/O -- id of the provider this address is a member of.

• state – R/O -- the current "listen" state of the address object. String value, either "Listening" or "Idle".

• uri – R/O -- URI of the address. Must be an RFC 2806 URI, a SIP URI, or an H.323 URI.

3.1.3.4.3 Methods

• listen(state, [answer]) – begin listening for incoming calls on this address (state is True) or stop listening
(state is False). This function allows the programmer to have control over exactly which addresses may receive
incoming calls, which is useful on platforms (especially servers) that have multiple addresses. Some
implementations may choose to automatically listen by default, in which case an explicit call to listen() is not
necessary. The optional parameter answer is a boolean indicating whether incoming calls are automatically
accepted (value True, the default) so that explicit invocations of accept() are not required; or whether incoming
calls must be explicitly accepted or rejected (value False) in order to leave the Alerting state. Note that if you
call listen(True), the address will continue listening until you call listen(False), i.e., the listen state is not
automatically reset when an incoming call occurs.

3.1.3.4.4 Events

The address object throws no events. Incoming calls will generate conference.created and call.created events.

3.1.3.5 Conference Object
A conference is a logical grouping of calls that can share their media streams.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 8

24 The "callto:" URI namespace as used in Microsoft NetMeeting was never formally registered with the IETF and is
deprecated by RFC 2806.

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

Every call must be created as a member of some conference, even if it is in a conference all by itself. For example, a
voicemail application would typically use a conference object with only one call: the person who called in to leave or
retrieve messages.

When more than one call is a child of the same conference object, these calls become "conferenced together".

Conference objects are only good for one "lifetime". When the last call leaves a conference, the conference enters the
Invalid state. No new calls can enter an Invalid conference. Properties may be examined, and then the
conference can be destroyed, and a new one created if needed.

3.1.3.5.1 State Machine

The conference object state machine has three states:

• Active – A conference with some current ongoing activity is in this state. Conferences with one or more
associated calls must be in this state.

• Idle -- This is the initial state for all conferences, immediately after creation. In this state, the conference
has zero calls.

• Invalid -- This is the final state for all conferences. Conference objects which lose all of their call objects
(via a transition of the last call object into the Disconnected state) moves into this state. Conferences in
this state have zero calls and these conference objects may not be used for any future action.

3.1.3.5.2 Properties

• call[] – R/O -- array of the calls in the conference.

• call.length – R/O -- number of active calls in the conference.

• channel[] – R/W – channels of the conference’s media mixer … channel[0] is the audio output channel which
can be used as a mediaDest for <prompt> tags, allowing beeps or intrusion messages to be played into
conferences (e.g., "the conference will end in five minutes") … channel[1] is the audio input channel which can be
used as a mediaSrc for recording, so that you can record the entire conference.

• channel.length – R/O – number of channels of the conference.

• id – R/O – symbolic globally unique id of this object assigned by the platform (URN format).

• parent – R/O -- id of the provider this conference is a member of.

• state – R/O -- the current state of the conference object’s finite state machine. String value, see section "State
Machine" above.

3.1.3.5.3 Methods

• createCall() – create a call as a member of this conference.

• destroy() – destroy the conference object. If a conference is in the Active state at the time it is destroyed,
the following sequence will occur:

o All connected child calls are disconnected, resulting in call.disconnected events being thrown. See
section 3.1.2.5.1 for a list and order of actions that occur in response to a disconnect.

o All child call objects are destroyed.

o A conference.invalid event is thrown, and then the conference object is destroyed.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 9 9

o The document script will now get a chance to respond to the pending events. Note that this implies that
the call.disconnected event handler will not be able to query the state of the call object because it

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

has already been destroyed. If this behavior is not desired, then the connected calls should be
individually disconnected before destroying the parent conference.

Also note that the conference object will be automatically destroyed if its parent provider is shutdown.

3.1.3.5.4 Events

• conference.active -- the first call has joined the conference.

• conference.created – the conference has been created.

• conference.invalid -- the last call has left the conference.

3.1.3.6 Call Object
A call is a connection between an external endpoint address and an endpoint address on the platform.

A call can be created in order to place an outgoing call, or may be created as a result of an incoming call.

The external endpoint address is known as the remote.uri and the platform endpoint address is known as the
local.uri. They retain these relationships regardless of whether the call was incoming or outgoing (unlike ANI and
DNIS who switch senses depending upon the direction of the call).

For calls that have at least one audio output channel and at least one audio input channel, the primary audio output
channel is channel[0] and the primary audio input channel is channel[1]. The direction is with respect to the platform upon
which SALT is executing.

3.1.3.6.1 State Machine

The call object state machine has seven states:

• Alerting -- This state implies notification of an incoming call.
• Connected -- This state implies that a call is actively part of a telephone call. In common terms, two people

talking to one another are represented by two calls of a single conference in the Connected state. A
person interacting with a dialog script only requires a single call.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 0

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

• Disconnected -- This state implies the call is no longer part of an active telephone call. A call in this state is
interpreted as once previously belonging to this telephone call.

• Failed -- This state indicates that a call has failed for some reason. One reason why a call would be in the
Failed state is because the destination party of an outgoing call was busy.

• Idle -- This state is the initial state for all new calls. Calls which are in the Idle state are not actively part of
a telephone call. Calls typically do not stay in the Idle state for long, quickly transitioning to other states.

• InProgress -- This state implies that the call object has been contacted by the origination side or is
contacting the destination side. The contact happens as a result of the underlying protocol messages. Under
certain circumstances, the call may not progress beyond this state. Extension packages elaborate further on
this state in various situations.

• Unknown – This state implies that the implementation is unable to determine the current state of the call
(perhaps due to limitations or latency in underlying signaling). Typically, methods are invalid on calls that are
in this state. Calls may move in and out of the Unknown state at any time.

3.1.3.6.2 Properties

• channel[] – R/O -- array of the channels of the call; channel[0] is the audio output channel which can be used
as a mediaDest for <prompt> tags, allowing beeps or messages to be played into calls … channel[1] is the
audio input channel which can be used as a mediaSrc for recording, so that you can record the entire call.

• channel.length – R/O -- number of active channels of the call.

• id – R/O – symbolic globally unique id of this object assigned by the platform (URN format).

• local.pi – R/O – presentation indicator, set as a result of specifying pi in the connect() method. See
acceptable values in the table in a section below.

• local.si – R/O -- screening indicator, set as a result of specifying si in the connect() method. See
acceptable values in the table in a section below.

• local.uri – R/W -- URI of the local address endpoint of the call; for incoming calls, this is equivalent to (and
may be mapped from) DNIS. The ability to programmatically change local.uri on outgoing calls is provider
implementation dependent. This field is in RFC 2806 format.

• parent – R/O -- id of the conference this call is a member of.

• redirect[] – R/O – array of redirections of the call (e.g., occurrences of the call being forwarded)

• redirect.length – R/O – length of the redirect[] array, i.e., the number of entries.

• redirect[].reason – R/O – reasons for each of the redirections.

• redirect[].uri – R/O – URI(s) of the intermediate address(es) that redirected the call (e.g., call forwarded);
for incoming calls, this is equivalent to (and may be mapped from) RNE. The order of redirect entries is from
least recent to most recent: redirect[0].uri is the first number that call was redirected from, and
redirect[redirect.length - 1].uri is the last.

• remote.pi – R/O – presentation indicator of the remote phone, set as a result of an incoming call or connection
of an outgoing call by the connect() method. See acceptable values in the table in a section below.

• remote.si – R/O -- screening indicator of the remote phone, set as a result of an incoming call or connection of
an outgoing call by the connect() method. See acceptable values in the table in a section below.

• remote.uri – R/O -- URI of the remote address endpoint of the call; for incoming calls, this is equivalent to
(and may be mapped from) ANI. This field is in RFC 2806 format.

• state – R/O -- the current state of the call object’s finite state machine. String value, see section "State
Machine" above.

3.1.3.6.3 Methods

• accept()– answer an Alerting call (in response to receiving a call.alerting event), moving it to the
Connected state. Accepting a call will cause a call.connected event.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 1

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

• connect(uri, [pi, si]) – place an outbound call on a call. This is only valid if the call is in the Idle state. The
URI parameter is in RFC 2806 format. 25 The presentation indicator pi and the screening indicator si are optional
parameters that may be used to control permissions for how caller ID information will be displayed, if the call
control implementation supports such functionality. See acceptable values in the table in a section below.

• destroy() – destroy the call object. If the call was connected at the time it is destroyed, it will be disconnected
first. The call object will be automatically destroyed if any of its ancestor objects in the DOM are destroyed. See
section 3.1.2.5.1 for a list and order of actions that occur in response to a disconnect.

• disconnect() -- hang up on a call. See section 3.1.2.5.1 for a list and order of actions that occur in response to
a disconnect.

• join(conference) -- remove call from existing parent conference object and add call to this conference
object.

• reject([reason])– reject an Alerting call (in response to receiving a call.alerting event), moving it to
the Disconnected state. Rejecting a call will cause a call.disconnected event. The optional reason
parameter is a character string describing the reason the call was rejected, it may be one of the following:
busyOverflow, queueTimeOverflow, capacityOverfow, calendarOverflow, unKnownOverflow. See
section 3.1.2.5.1 for a list and order of actions that occur in response to a disconnect.

• transfer(uri, [bridge, pi, si]) -- transfer a call from its current endpoint (the telephony platform) to some other
destination specified by the URI parameter. The optional bridge parameter is a request that the platform perform
a "trombone" transfer (when True) or a "release trunk" transfer (when False). In a "trombone" transfer, the
SALT browser remains a party to the call, a new call object is added to the conference object and a
call.connected event occurs when the third-party answers. In a "release trunk" transfer, the SALT browser is
disconnected from the call and receives a call.disconnected event. The default value is False. The
presentation indicator pi and the screening indicator si are optional parameters that may be used to control
permissions for how caller ID information will be displayed, if the call control implementation supports such
functionality. See acceptable values in the table in a section below.

3.1.3.6.4 Values for Presentation Indicator and Screening Indicator
• Presentation Indicator pi: An indicator whether the URI and name fields are allowed to be presented (if available)

to the user. This field is optional; if not supported, value is undefined. If supported, the default value is
presentation-allowed.

Value Description
presentation-allowed Display URI and name.
presentation-restricted Do not display URI and name: show "private".
number-lost-due-to-interworking Information not available for display: show

"unknown" or "out of area".
reserved-value Implementation specific.

• Screening Indicator si: An indicator of which party or network element has set and/or verified the URI and name

fields. This field is optional; if not supported, value is undefined. If supported, the default value is user-
provided-unscreened.

Value Description
user-provided-unscreened The application set URI and name, and has not

screened it.
user-provided-passed The application set URI and name, has

screened it, and it passed screening.
user-provided-screening-failed The application set URI and name, has

screened it, and it failed screening.
network-provided The network set URI and name.

3.1.3.6.5 Events

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 2

25 Please consult the RFC 2806 document for format details. RFC 2806 contains a very rich syntax, including such things
as wait-for-dialtone and calling-card DTMF sending for the "tel:" URI, as well as modem dialing strings for the "modem:
" URI.

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

• call.alerting -- an incoming call is "ringing".

• call.connected -- the call has been answered and connected to both local and remote endpoints; for outgoing
calls this event may have a type property indicating the type of device that answered (e.g., voice, fax, modem).

• call.created -- the call object was created, either it is an incoming call, or the script explicitly used the
createCall() method of a conference object.

• call.disconnected -- the call has been disconnected, either by the remote end, or by the near end using the
disconnect() method; this event will have a cause property indicating the disconnect reason and a properties
for the call start time and call end time for billing purposes.

• call.failed -- the call has experienced an unexpected failure, or the method could not be performed, e.g., an
outgoing call attempt could not connect; this event will have a cause property indicating the failure reason.

• call.inProgress -- an outbound call is in the process of connecting to the remote end.

• call.unknown – the call is in an unknown state.

The cause property may be one of the following: normal, unknown, busy, callCancelled, destNotObtainable,
incompatibleDestination, lockout, resourceNotAvailable, networkCongestion, or
networkNotObtainable.

3.2 SALT CallControl illustrative examples

3.2.1 Cooperative call control libraries
The CallControl object can be implemented natively, or it can be implemented as a scripting library that, for example,
uses a messaging layer to access underlying call control engines such as ECMA 323 or CCXML. In both cases,
applications should use the CallControl object interface directly, and thereby allow interoperability of the application
on a wide variety of platforms. Direct use of smex for call control is not necessary in these cases. Where a platform
implements additional proprietary features beyond the CallControl object, this should be done by extending the
scripting library.

3.2.1.1 CCXML
This example shows how a library script can use CCXML to answer a telephone call, launch a SALT document, and then
handle disconnect or transfer requests from the SALT document26. This example does not preclude the CCXML
interpreter process from running on the same system as the SALT browser or on a different system in a distributed
fashion.

The platform supplies the call control library script and corresponding CCXML script. The SALT application programmer is
therefore only responsible for supplying the SALT code. For example:

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
<head>
<title>call control example using CCXML library</title>
</head>
<script language="JavaScript" src="http://vendor/saltcc.js"></script>
<script language="JavaScript">
 var caller;
 callControl.attachEvent("call.connected", procConnected);
 callControl.attachEvent("call.disconnected", window.close);
function procConnected(event) { //incoming call
 caller = event.srcElement;
 query_action.Start();
 get_action.Start();

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 3

26 Note that to date, the W3C has not selected a standard protocol for transmitting event messages or even the format of
event messages like shown here. The Multimodal Working Group (MMWG) may in the future recommend a mechanism
and format for passing XML Events (q.v., http://www.w3.org). The SOAP specification is one likely contender for this
mechanism. Assuming that the message format is XML-based (likely), the bind tag may be used inside smex to parse
the return message from CCXML.

http://www.w3.org/

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

}
function handleAction() {
 if (action.value == 'disconnect') {
 caller.disconnect();
 window.close();
 } elseif (action.value == 'transfer') {
 query_number.Start();
 get_number.Start();
 }
}
</script>
<body>
 <salt:prompt id="query_action">
 Do you want to disconnect or transfer?
 </salt:prompt>
 Action: <input name="action" type="text" value="disconnect" />
 <salt:listen id="get_action" onreco="javascript:handleAction();">
 <salt:grammar>

<!--
grammar enables "disconnect | transfer" as input
and returns this value in "ACTION" node

-->
</salt:grammar>

 <bind targetelement="action" value="//ACTION" />
 </salt:listen>
 <salt:prompt id="query_number">
 What number do you want to transfer to?
 </salt:prompt>
 Telephone number: <input name="number" type="text" />
 <salt:listen id="get_number" onreco='javascript:caller.transfer("tel:" +
number.value);();'>
 <grammar src="./telephone_number.grxml" />
 <bind targetelement="number" value="//NUMBER" />
 </salt:listen>
 <salt:smex id="cc_socket" onreceive="javascript:cc_Receive();">
 <salt:param name="target">ccxml_server.mycompany.com:7777</salt:param>
 <salt:param name="protocol">SOAP</salt:param>
 </salt:smex>
</body>
</html>

Note that other than the declaration of the smex object and of the saltcc.js include script, the application is coded no
differently than if the call control object was implemented natively by the platform.

The platform implementation supplies the call control library and corresponding CCXML scripts. For illustrative purposes,
only a subset of the complete library and CCXML scripts is shown here. The saltcc.js library implements the call control
object methods by calling smex, for example:

function cccalltransfer(uri) {
 var msg = '<event value="salt_request.transfer">';
 + '<phone_number value="' + number.value + '" />';
 + '</event>';
 cc_socket.sent = msg;
}

function cccalldisconnect(uri) {
 cc_socket.sent = '<event value="salt_request.disconnect" />';
}

function call(parent) { // constructor
 this.parent = parent;
 call.prototype.transfer = cccalltransfer;

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 4

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 call.prototype.disconnect = cccalldisconnect;
}

var cccaller;
function cc_Receive () {
 var event;
 switch (cc_socket.received) {
 case 'salt_response.connected':

cccaller = new call();
 event.srcElement = cccaller;
 event.reason = "call.connected";
 callControl.fire(event);
 break;
 case 'salt_response.transferred':

event.srcElement = cccaller;
 event.reason = "call.transferred";
 callControl.fire(event);
 break;
 case 'salt_response.disconnected':

event.srcElement = cccaller;
 event.reason = "call.disconnected";
 callControl.fire(event);
 break;
}

The CCXML script handles CCXML events and handles smex messages, for example:

<?xml version="1.0"?>
<ccxml version="1.0">
 <authenticate server="radius.mycompany.com" userid="johnq" password="secret" />
 <var name="salt_sessionid" />
 <eventhandler>
 <transition event="call.CALL_CONNECTED">
 <dialogstart src="mysession.html" type="text/html" />
 </transition>
 <transition event="dialog.started">
 <assign name="salt_sessionid" expr="_event.sessionid" />
 <send target="salt_sessionid" event="salt_response.connected" />
 </transition>
 <transition event="salt_request.disconnect">
 <disconnect />
 <send target="salt_sessionid" event="salt_response.disconnected" />
 </transition>
 <transition event="salt_request.transfer">
 <transfer dest="_event.phone_number" />
 <send target="salt_sessionid" event="salt_response.transferred" />
 </transition>
 </eventhandler>
</ccxml>

3.2.2 Call Control use case examples

3.2.2.1 Voicemail incoming call
In this example, a caller reaches the number of a network service provider based voice mail service. The service
determines whether the caller is the voice mail subscriber or not, and performs the appropriate action.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
<head>
<title>Voicemail incoming call</title>
<script type="text/javascript"><![CDATA[
 // Events conference.created and call.created will automatically
 // occur upon incoming calls.

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 5

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 // With autoAnswer=True, the call will automatically
 // accept as well, causing call.connected.

// Attach an event handler to catch the incoming call connected event.

callControl.attachEvent("call.connected", procConnected);
 function procMailbox() {
 window.navigate("subscriber.asp?mailbox=" + recoMailbox.value);
 }
 function procConnected(event) {
 // call object that caused this event
 var caller = event.srcElement;
 if (0 == caller.redirect.length) {
 // call dialed into voicemail system directly

// (was not forward-no-answer)
 if (hasVoicemail(caller.remote.uri)) {
 // subscriber called-in from own office phone,

// no need to ask for mailbox
 window.navigate("subscriber.asp?mailbox="

+ caller.remote.uri);
 } else {
 // subscriber called-in from another phone
 askMailbox.start();
 recoMailbox.start();
 }
 } else {
 // someone called subscriber, but got forward-no-answer,

// so now wants to leave a message
 window.navigate("message.asp?mailbox="

+ caller.redirect[caller.redirect.length-1].uri);
 }
 }
]]></script>
</head>
<body>
 <salt:prompt id="askMailbox">
 Welcome, please say your mailbox number.
 </salt:prompt>
 <salt:listen id="recoMailbox" onreco="javascript:procMailbox()">
 <salt:grammar src="./digits.grxml" />
 </salt:listen>
</body>
</html>

3.2.2.2 Notification call
In this example, a notification service dials an outbound call to a subscriber to notify him of a pending dentist appointment.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
<head>
<title>Notification call</title>
<script type="text/javascript"><![CDATA[
 var callee, conf;
 function procOnLoad() {
 conf = callControl.provider[0].createConference();
 callee = conf.createCall();
 callee.attachEvent("call.connected", procConnected);
 callee.connect("tel:+1-415-555-1212");
 }
 function procConnected(event) {
 sayReminder.start();
 }
]]></script>
</head>
<body onLoad="javascript:procOnLoad()">

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 6

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 <salt:prompt id="sayReminder" oncomplete="javascript:callee.disconnect()">
 Hello, this call is to remind you of your dentist appointment tomorrow.
Goodbye.
 </salt:prompt>
</body>
</html>

3.2.2.3 Notification call with Caller Line Identity set
This is an elaboration of the dentist appointment example, illustrating how to set the Caller ID that would appear on the
subscriber's phone.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
<head>
<title>Notification call with arbitrary CLI (calling line identity)</title>
<script type="text/javascript"><![CDATA[
 var callee, conf;
 function procOnLoad() {
 conf = callControl.provider[0].createConference();
 callee = conf.createCall();
 callee.attachEvent("call.connected", procConnected);
 callee.local.uri = "tel:+1-408-555-1212";
 callee.connect("tel:+1-415-555-1212");
 }
 function procConnected(event) {
 sayReminder.start();
 }
]]></script>
</head>
<body onLoad="javascript:procOnLoad()">
 <salt:prompt id="sayReminder" oncomplete="javascript:callee.disconnect()">
 Hello, this call is to remind you

of your dentist appointment tomorrow. Goodbye.
 </salt:prompt>
</body>
</html>

3.2.2.4 Voice Activated Dialing
In this example, a subscriber calls a voice activated dialing service, speaks the number to dial, and the service places the
call using network transfer facilities.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
<head>
<title>Voice Activated Dialing - Intelligent Network Transfer</title>
<script type="text/javascript"><![CDATA[
 var caller;
 callControl.attachEvent("call.connected", procConnected);
 function procConnected(event) { //incoming call
 caller = event.srcElement;
 askPhoneNumber.start();
 recoPhoneNumber.start();
 }
 function procPhoneNumber() {
 caller.transfer("tel:" + recoPhoneNumber.value);
 }
]]></script>
</head>
<body>
 <salt:prompt id="askPhoneNumber">
 What phone number would you like to dial?
 </salt:prompt>
 <salt:listen id="recoPhoneNumber" onreco="javascript:procPhoneNumber()">
 <salt:grammar src="./phone.grxml" />

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 7

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 </salt:listen>
</body>
</html>

3.2.2.5 Voice Activated Dialing with Active Listen
This is a slightly different example of voice activated dialing. The subscriber calls the service, speaks the number to dial,
and is connected using a "trombone" (or "hairpin") of the two call legs in a single conference.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
<head>
<title>Voice Activated Dialing - Trombone Conference with Active Listen</title>
<script type="text/javascript"><![CDATA[
 var caller, callee;
 callControl.attachEvent("call.connected", procConnected);
 function procConnected(event) { //incoming call
 caller = event.srcElement;
 askPhoneNumber.start();
 recoPhoneNumber.start();
 }
 function procPhoneNumber() {
 callee = caller.parent.createCall();
 callee.attachEvent("call.connected", calleeConnected);
 askHangup.start();
 callee.connect(recoPhoneNumber.value);
 recoHangup.start();
 dtmfPoundPound.start();
 }
 function calleeConnected(event) { //outgoing call connected
 // note that incoming & outgoing calls now conferenced.
 }
 function procHangup(callee) { // request to hangup on callee
 // allow caller to place another call
 callee.disconnect();
 askPhoneNumber.start();
 recoPhoneNumber.start();
 }
]]></script>
</head>
<body>
 <salt:prompt id="askPhoneNumber">
 What phone number would you like to dial?
 </salt:prompt>
 <salt:listen id="recoPhoneNumber" onreco="javascript:procPhoneNumber()">
 <salt:grammar src="./phone.grxml" />
 </salt:listen>

<salt:prompt id="askHangup">
 I am now placing the call. To hang-up, say 'Please hang up now'.
 </salt:prompt>
 <salt:listen id="recoHangup" onreco="javascript:procHangup(callee)">

<salt:grammar src="./hangup.grxml" />
 </salt:listen>
 <salt:dtmf id="dtmfPoundPound" onreco="javascript:procHangup(callee)">
 <salt:grammar>

<!-- grammar enabling "##" as input -->
</salt:grammar>

 </salt:dtmf>
</body>
</html>

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 8

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

3.2.2.6 Find Me
This is more elaborate example of the "trombone" scenario above. An arbitrary caller dials a subscriber, the service
attempts to contact three locations the subscriber might be at using parallel dialing. When the subscriber answers one of
the three lines, he is connected to the caller using a "trombone" conference, and the other two lines are disconnected.

<html xmlns:salt="http://www.saltforum.org/2002/SALT">
<head>
<title>Find Me - Simultaneously Dial Several Numbers</title>
<script type="text/javascript"><![CDATA[
 var caller, callee[3], answerer;
 var phoneNumber[3];
 phoneNumber[0] = "tel:+1-408-555-1212";
 phoneNumber[1] = "tel:+1-415-555-1212";
 phoneNumber[2] = "tel:+1-925-555-1212";
 var timeoutID;
 callControl.attachEvent("call.connected", procCallerConnected);
 function procCallerConnected(event) { //incoming call
 caller = event.srcElement;
 caller.attachEvent("call.disconnected", procCallerDisconnected);
 askPleaseWait.start();

// abort if no answer within 60 seconds
 timeoutID = setTimeout(procTimeout, 60000);
 for (var i = 0; i < phoneNumber.length; i++) {

var conf = callControl.createConference();
callee[i] = conf.createCall();

 callee[i].attachEvent("call.connected", procCalleeConnected);
 callee[i].connect(phoneNumber[i]);
 }
 }
 function procCalleeConnected(event) { // got a callee to answer
 answerer = event.srcElement;
 callControl.mediaDest = event.srcElement.channel[0];
 callControl.mediaSrc = event.srcElement.channel[1];
 askTakeCall.start();
 recoTakeCall.start();
 }
 function procTakeCall() {
 callControl.mediaDest = caller.parent.channel[0];

callControl.mediaSrc = caller.parent.channel[1];
 if (recoTakeCall.value == "yes") {
 clearTimeout(timeoutID);
 // disconnect all other outgoing calls
 for (var i = 0; i < phoneNumber.length; i++) {
 if (answerer != callee[i]) {
 callee[i].parent.destroy();
 }
 }
 }
 var conference = answerer.parent;
 answerer.join(caller.parent); // join outgoing call to incoming

// call's conference
 conference.destroy(); // destroy the now empty outgoing conference
 }
 function procTimeout() {
 promptQueue.stop();
 callControl.mediaDest = caller.channel[0];
 // disconnect all outgoing calls
 for (var i = 0; i < phoneNumber.length; i++) {
 callee[i].parent.destroy();
 }
 sayNotAvailable.start();
 }
]]></script>

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 0 9

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

</head>
<body>
 <salt:prompt id="askPleaseWait">
 Please hold while I attempt to reach him.
 </salt:prompt>
 <salt:prompt id="askTakeCall">
 Someone is trying to reach you, do you want to take the call?
 </salt:prompt>
 <salt:listen id="recoTakeCall" onreco="javascript:procTakeCall()">
 <salt:grammar src="./yesno.grxml" />
 </salt:listen>
 <salt:prompt id="sayNotAvailable" oncomplete="javascript:caller.disconnect()">
 Sorry, he is not available. Goodbye.
 </salt:prompt>
</body>
</html>

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 1 0

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

4 SALT conformance
This section specifies the conformance criteria for SALT browsers in rendering a SALT document. The SALT modules
referenced in this chapter are defined in section 2.8.1.

In this section, uses of the words 'must', 'should' and 'may' are to be interpreted as "MUST" (REQUIRED), "SHOULD"
(RECOMMENDED) and "MAY" (OPTIONAL), respectively, as defined in IETF RFC 2119
(http://www.ietf.org/rfc/rfc2119.txt).

Generally speaking, SALT browsers should conform to any interoperability criteria required by the hosting environment.
For example:

• SALT platforms should support openly specified Internet application-level protocols, e.g. HTTP 1.1 (IETF RFC
2616), for retrieval of XML or HTML documents containing SALT markup.

• SALT platforms which support the Basic Media Playback module or the Recording module must support ITU
G.711 audio encoding (as noted in sections 2.1.1.3 and 2.2.8.1.1, respectively) and may support other standard
audio encodings.

• SALT platforms which support the Basic Media Playback module or the Recording module should support
audio/basic (IETF RFC 1341), or audio/wav media types for playback and/or recording of audio content, and
openly specified Internet protocols for audio transmittal.

• SALT platforms which support the Basic Media Playback module or the Recording module may support RTSP
(IETF RFC 2326) and RTP (IETF RFC1889), if streaming audio playback or recording.

• SALT platforms which support telephony interfaces should support openly specified telephony signaling and
media transport protocols, such as standards published by IETF, ITU, ECMA or other organizations.

• SALT platforms which support remote speech synthesis and recognition services should support openly specified
standard protocols for remote speech services such as standards published by IETF, W3C, ETSI or other
organizations.

4.1 Portable extensibility
A SALT compliant browser must allow standardized extensibility in XML and make publicly discoverable (1) all the
namespaces it natively recognizes, and (2) the policy of processing a non-natively recognized namespace, which may
range from as simple as ignoring the namespace to as sophisticated as publishing the UDDI providers the browser will
use to obtain a list of Web services that can potentially resolve the namespace. A SALT application must be able to
ascertain whether a compliant SALT browser can render XML extensions in a SALT document, or the extensions must be
translated before a SALT document is served to the browser.

A SALT compliant browser must recognize the namespaces for W3C speech recognition grammar (SRGS) and speech
synthesis markup language (SSML) for inline grammar and synthesis markups once they reach W3C Recommendation
status. In addition, it is recommended that SALT browsers recognize the specifications for W3C Semantic Interpretation
for Speech Recognition specification once it reaches Recommendation.

4.2 Browser types
Within the SALT namespace, the compliance criteria are based on the modularization described above, and can be
summarized in the following table where M stands for Mandatory, O for Optional, and N/A for not applicable27. A SALT
browser must specify which category (column) it claims compliance. A browser claiming compliance to a particular
category must support all the mandatory modules for the category, and within each module, all the behavior required in
the module definition (section 2.8.1) must be implemented.

For modules which are optional, browsers which implement functionality similar to the functionality provided in the
optional module are strongly encouraged to support such functionality exactly according to the module definition, that is to
support the SALT module rather than proprietary methods, in order to allow greater portability of applications.

 Smart Clients

w/o Scripting
Smart Clients
w/Scripting

Rich Clients Telephony
Servers

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 1 1

27 "Mandatory" and "Optional" should be interpreted as equivalent to "REQUIRED" and "OPTIONAL", respectively, as
defined in IETF RFC 2119 (http://www.ietf.org/rfc/rfc2119.txt)

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

S p e e c h A p p l i c a t i o n L a n g u a g e T a g s (S A L T) 1 . 0

 © S A L T F o r u m f o u n d i n g c o m p a n i e s p a g e 1 1 2

Declarative
Programming

M O M M

Basic
Recognition

M M M O

Basic
Recording

O O M M

Concurrent
Recognition
and Recording

O O M O (M if Basic
Recognition is
supported)

Basic Media
Playback

O O M M

Speech
Synthesis

O O O O

Messaging O O M M
DTMF O O O M
Prompt Queue N/A O O M
Logging N/A O O M
Call Control O O O O

Support for the Call Control module is described in further detail below.

As noted in the definition of the Basic Recognition module (2.8.1.2), "automatic" mode recognition is the minimum level of
compliance. Browsers must also make publicly discoverable all recognition modes which are natively implemented.

4.3 Call control support
As indicated in the table above, support of the telephony call control module in SALT is optional for all browser types.
However, in order to permit applications which use call control to be portable across browsers, SALT browsers may also
make a Portability Claim, as described below.

Portability Claim
In addition to claiming conformance to one of the SALT browser types in 4.2, SALT browsers may claim application
portability if the telephony call control functions are provided through either (1) the message formats defined in ECMA-323
using the smex object, or (2) the CallControl object model defined in Part II of the SALT specification.

When a portability claim is made based on ECMA-323, browsers implement the functionality of one or more profiles of
ECMA-269 (as defined in section 2.1.3 of the ECMA-269 specification, http://www.ecma.ch/ecma1/STAND/ecma-
269.htm), and adhere to the conformance criteria of ECMA 323 (http://www.ecma.ch/ecma1/STAND/ecma-323.htm).
Browsers should make publicly discoverable the ECMA-269 profiles which are implemented and the XML namespaces
which are recognized.

When portability claim is made based on the CallControl object model, browsers must implement the capability
discovery in the CallControl object and make discoverable the XML schema of the capability description. The
CallControl object model does not necessarily have to be provided as a browser native feature. As a result, telephony
platforms using private messages other than ECMA 323 can claim application portability if a CallControl object library
exists to translate the private messages.

http://www.ecma.ch/ecma1/STAND/ecma-269.htm
http://www.ecma.ch/ecma1/STAND/ecma-269.htm
http://www.ecma.ch/ecma1/STAND/ecma-323.htm

	Introduction
	Overview
	Scenarios
	Design principles
	
	Modes of execution

	Dynamic manipulation of SALT elements
	Events and error handling
	Event models and notation

	Management of external resources

	Document structure
	Terms and definitions

	SALT speech interface
	Speech output: <prompt>
	prompt content
	Text and inline TTS markup
	value
	content
	Speech output configuration: <param>

	prompt attributes and properties
	Attributes
	Properties

	prompt methods
	Queue
	Start

	prompt events
	onbookmark
	onbargein
	oncomplete
	onerror
	Telephony hang-up

	PromptQueue object
	PromptQueue properties
	PromptQueue methods
	Start
	Pause
	Resume
	Change
	Stop
	Flush

	PromptQueue event handlers
	onempty
	onerror

	PromptQueue illustrations
	Initializing a subqueue
	Adding a second prompt to the subqueue
	Adding a third prompt to the subqueue
	Call to begin playback
	Prompt queuing during playback
	Playback using Start on the prompt
	A third subqueue
	End of the second subqueue
	Subqueue awaiting call to playback
	Two subqueues before a Stop call
	Result of Stop, next subqueue not yet scheduled
	Two subqueues before a Stop call, both scheduled
	Result of Stop, next subqueue already scheduled
	Result of Flush
	Pause() and the queuing model

	Speech input: <listen>
	listen content
	<grammar> element
	<bind> element
	Recording: <record>
	Speech recognition configuration: <param>

	listen attributes and properties
	Attributes
	Properties

	listen methods
	Start
	Stop
	Cancel
	Activate
	Deactivate

	listen events
	onreco
	onsilence
	onspeechdetected
	onnoreco
	onerror

	Interaction with DTMF
	Recognition mode
	Automatic mode
	Single mode
	Multiple mode

	Events which stop listen execution
	Recording with listen
	<listen> content for recording
	<record> element
	<grammar> element
	<bind> element
	<param> element

	Attributes and properties
	Attributes
	Properties

	Object methods
	Start
	Stop
	Cancel
	Activate
	Deactivate

	Recording events
	onspeechdetected
	onreco
	onsilence
	onnoreco
	onerror

	Timeline for recording listen
	Stopping audio recording

	Advanced speech recognition technology

	DTMF input : <dtmf>
	dtmf content
	<grammar>
	<bind>
	DTMF configuration: <param>

	dtmf attributes and properties
	Attributes
	Properties

	dtmf methods
	Start
	Stop
	Flush

	dtmf events
	onkeypress
	onreco
	onnoreco
	onsilence
	onerror

	DTMF event timeline
	Using listen and dtmf simultaneously
	Disabling timeouts
	Automatic stop
	listen and dtmf interaction event timeline

	Events which stop dtmf execution

	Platform messaging: <smex>
	smex content
	bind
	param

	smex attributes and properties
	smex attributes
	smex properties

	smex events
	onreceive
	ontimeout
	onerror

	Using smex for telephony call control

	Logging
	Overview
	Format
	Requirements

	SALT illustrative examples
	Controlling dialog flow
	Click to talk
	Dialog flow with HTML and scripting
	Form-filling
	Form-filling and giving help

	Downlevel dialog flow

	Prompt examples
	Prompt control example
	Using bookmarks and events
	Prompt playback during page transitions
	Queuing prompt subqueues in advance

	Using SMIL
	Wireless Phone (WML) example
	A 'safe' voice-only dialog
	smex examples
	Logging
	Call control with ECMA 323

	Compatibility with visual browsers
	Audio recording example
	Using XPath for DOM queries

	Appendix A: SALT DTD
	Appendix B: SALT modularization and profiles
	Modularization of SALT
	Declarative Programming Module
	Basic Recognition Module
	Basic Recording Module
	Concurrent Recording and Recognition Module
	Basic Media Playback Module
	Speech Synthesis Module
	Messaging Module
	Call Control Module
	DTMF Module
	PromptQueue Module
	Logging Module
	Run-time determination of supported modules

	SALT/HTML profiles
	HTML multimodal
	accesskey and style

	HTML voice-only
	HTML module support
	XHTML Modules
	Elements

	HTML DOM
	Event model
	IE 5,6 event model
	DOM Level 2 model

	HTML window object
	Using <meta >

	HTML telephony profile

	SALT and SMIL 2.0
	SMIL Timing and Synchronization Module
	The listen object
	The prompt object
	Examples

	SALT CallControl object
	CallControl object definition
	Requirements
	Solution Overview
	Call Control Object Hierarchy
	Browser Configuration of Call Control Providers
	Call Control Event Handling
	Lifetime of Objects
	Associating Media Streams with SALT Tags
	Associating Telephone Call Disconnect with SALT Tags

	Support for a Call Distributor

	Call Control Object Dictionary
	Events
	Properties

	callControl Object
	Properties
	Methods
	Events

	Provider Object
	State Machine
	Properties
	Methods
	Events

	Address Object
	State Machine
	Properties
	Methods
	Events

	Conference Object
	State Machine
	Properties
	Methods
	Events

	Call Object
	State Machine
	Properties
	Methods
	Values for Presentation Indicator and Screening Indicator
	Events

	SALT CallControl illustrative examples
	Cooperative call control libraries
	CCXML

	Call Control use case examples
	Voicemail incoming call
	Notification call
	Notification call with Caller Line Identity set
	Voice Activated Dialing
	Voice Activated Dialing with Active Listen
	Find Me

	SALT conformance
	Portable extensibility
	Browser types
	Call control support

