CSE 301
History of Computing

The Origins of Computing
What is a Computer?

- one who computes
- a person employed to make calculations in an observatory, in surveying, etc.
- “a programmable machine that can execute a list of instructions in a well-defined manner”
 - Webopedia
Requirements

- Your computer must be able to:
 - perform arithmetic operations
 - make logical decisions (if X is true, do Y)
 - be programmed
 - process data into information
 - display results
 - store results/data
 - store programs for reuse

- We are describing a stored-program computer
 - a.k.a. Von Neumann machine
Modern Computers are assemblies of components

- Keyboard
- Monitor
- Central Processing Unit (CPU)
- Random Access Memory (RAM)
- Hard Drive
- Motherboard
CPU (Microprocessor Chip)

- Brain of the computer
- Made of Integrated Circuits (ICs), which have millions of tiny transistors and other components
- Performs all calculations & executes all instructions
- Example chips for PC:
 - Intel (Celeron, Pentium)
 - AMD (K-6 and Athlon)
What’s a Giga Hertz (GHz) ?

- A unit of measurement for CPU speed (clock speed)
 - G (giga) means 1 billion, M (mega) would be 1 million
 - Hz is for frequency per second
 - GHz means 1 billion clock cycles per second
- CPUs may execute multiple operations each clock cycle
- So what does a 2.8 GHz CPU mean?
 - 2,800,000,000 clock cycles per second
 - Performs at least 2,800,000,000 operations per second
Main Memory (RAM)

- Stores data for programs currently running
- Temporary
 - empty when power is turned off
- Fast access to CPU
What’s a Giga Byte (GB)?

- GB measures the amount of data it can store
 - G (giga) for 1 billion
 - M (mega) for 1 million

- Data quantities are measured in bytes
 - 1 Bit = stores a single on/off piece of information
 - 1 Byte = 8 bits
 - 1 Kilobyte = 2^{10} (~1,000 bytes)
 - 1 Megabyte = 2^{20} (~1,000,000 bytes)
 - 1 Gigabyte = 2^{30} (~1,000,000,000 bytes)
Hard Drive

- Stores data and programs
- Permanent storage (theoretically)
 - when you turn off the computer, it is not emptied
Motherboard

- Connects all the components together
In studying the history of computers, where do we start?

- We could go back thousands of years
 - Mathematical developments
 - Manufacturing developments
 - Engineering innovations
 - The wheel?

- The basis of all modern computers is the binary number system
Count to 8 in binary

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000
What number system do you use?

- Decimal (base-10)
 - Has been in use for thousands of years
 - Guesses:
 - first China
 - then India
 - then Middle East
 - then Europe (introduced as late as 1200)

- It is not particularly efficient
- Not a good system for computers
- Why use decimal?
Greek Number System

<table>
<thead>
<tr>
<th>Letter</th>
<th>Value</th>
<th>Letter</th>
<th>Value</th>
<th>Letter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α´</td>
<td>1</td>
<td>ι´</td>
<td>10</td>
<td>ρ´</td>
<td>100</td>
</tr>
<tr>
<td>β´</td>
<td>2</td>
<td>κ´</td>
<td>20</td>
<td>σ´</td>
<td>200</td>
</tr>
<tr>
<td>γ´</td>
<td>3</td>
<td>λ´</td>
<td>30</td>
<td>τ´</td>
<td>300</td>
</tr>
<tr>
<td>δ´</td>
<td>4</td>
<td>μ´</td>
<td>40</td>
<td>υ´</td>
<td>400</td>
</tr>
<tr>
<td>ε´</td>
<td>5</td>
<td>ν´</td>
<td>50</td>
<td>φ´</td>
<td>500</td>
</tr>
<tr>
<td>θ´ or ς´ or στ´</td>
<td>6</td>
<td>ξ´</td>
<td>60</td>
<td>χ´</td>
<td>600</td>
</tr>
<tr>
<td>ζ´</td>
<td>7</td>
<td>ο´</td>
<td>70</td>
<td>ψ´</td>
<td>700</td>
</tr>
<tr>
<td>η´</td>
<td>8</td>
<td>π´</td>
<td>80</td>
<td>ω´</td>
<td>800</td>
</tr>
<tr>
<td>θ´</td>
<td>9</td>
<td>ζ´</td>
<td>90</td>
<td>η´</td>
<td>900</td>
</tr>
</tbody>
</table>
Computers use Binary

Why?

- Much simpler circuits needed for performing arithmetic
Some factoids

- 4th Century AD
 - Mayan astronomer-priests begin using a positional number system based on base 20

- 1708
 - Swedenborg proposes decimal notation should be replaced for general use by octal.

- 1732
 - Leonhard Euler, Swiss mathematician
 - used binary notation in correspondence

- 1887
 - Alfred B. Taylor publishes “Which base is best?” and concludes it is base 8.
Early Computational Devices

- (Chinese) Abacus
 - Used for performing arithmetic operations
Early Computational Devices

- Napier’s Bones, 1617
 - For performing multiplication & division

John Napier
1550-1617
Early Computational Devices

- Schickard’s Calculating Clock
 - first mechanical calculator, 1623

Wilhelm Schickard
1592-1635
Early Computational Devices

- Pascaline mechanical calculator

Blaise Pascal
1623-1662
Early Computational Devices

- Leibniz’s calculating machine, 1674

Gottfried Wilhelm von Leibniz
1646-1716
Early Computational Devices

- Thomas Arithmometer, 1820
Early Computational Devices

- Arithmaurel, 1849
Early Computational Devices

- Comptometer

Dorr Eugene Felt
1862-1930
Early Computational Devices

- Bollée’s Machine

Léon Bollée
1870-1933
Early Computational Devices

- Madas and Curta
Early Computational Devices

- Slide Calculators

William Oughtred
1574-1660
Early Computational Devices

- Atari 2600 (1977)