CSE 301
 History of Computing

The Origins of Computing

What is a Computer?

- one who computes
- a person employed to make calculations in an observatory, in surveying, etc.
- "a programmable machine that can execute a list of instructions in a well-defined manner"
- Webopedia

Requirements

- Your computer must be able to:
- perform arithmetic operations
- make logical decisions (if X is true, do Y)
- be programmed
- process data into information
- display results
- store results/data
- store programs for reuse
- We are describing a stored-program computer
- a.k.a. Von Neumann machine

Modern Computers are assemblies of components

- Keyboard
- Monitor
- Central Processing Unit (CPU)
- Random Access Memory (RAM)
- Hard Drive
- Motherboard

CPU (Microprocessor Chip)

- Brain of the computer
- Made of Integrated Circuits (ICs), which have millions of tiny transistors and other components
- Performs all calculations \& executes all instructions
- Example chips for PC:
- Intel (Celeron, Pentium)
- AMD (K-6 and Athlon)

What's a Giga Hertz (GHz) ?

- A unit of measurement for CPU speed (clock speed)
- G (giga) means 1 billion, M (mega) would be 1 million
- Hz is for frequency per second
- GHz means 1 billion clock cycles per second
- CPUs may execute multiple operations each clock cycle
- So what does a 2.8 GHz CPU mean?
- 2,800,000,000 clock cycles per second
- Performs at least $2,800,000,000$ operations per second

Main Memory (RAM)

- Stores data for programs currently running
- Temporary
- empty when power is turned off
- Fast access to CPU

What's a Giga Byte (GB)?

- GB measures the amount of data the it can store
- G (giga) for 1 billion
- M (mega) for 1 million
- Data quantities are measured in bytes
- 1 Bit $=$ stores a single on/off piece of information
- 1 Byte = 8 bits
- 1 Kilobyte $=2^{10}$ ($\sim 1,000$ bytes)
- 1 Megabyte $=2^{20}$ ($\sim 1,000,000$ bytes)
- 1 Gigabyte $=2^{30}(\sim 1,000,000,000$ bytes $)$

Hard Drive

- Stores data and programs
- Permanent storage (theoretically)
- when you turn off the computer, it is not emptied

Motherboard

- Connects all the components together

In studying the history of computers, where do we start?

- We could go back thousands of years
- Mathematical developments
- Manufacturing developments
- Engineering innovations
- The wheel?
- The basis of all modern computers is the binary number system

Count to 8 in binary

- 0001
- 0010
- 0011
- 0100
- 0101
- 0110
- 0111
- 1000

What number system do you use?

- Decimal (base-10)
- Has been in use for thousands of years
- Guesses:
- first China
- then India
- then Middle East
- then Europe (introduced as late as 1200)
- It is not particularly efficient
- Not a good system for computers
- Why use decimal?

Greek Number System

Letter	Value	Letter	Value	Letter	Value
α^{\prime}	$\underline{1}$	I^{\prime}	$\underline{10}$	ρ^{\prime}	$\underline{100}$
β^{\prime}	$\underline{2}$	K^{\prime}	$\underline{20}$	σ^{\prime}	$\underline{200}$
γ^{\prime}	$\underline{3}$	λ^{\prime}	$\underline{30}$	T^{\prime}	$\underline{300}$
δ^{\prime}	$\underline{4}$	μ^{\prime}	$\underline{40}$	U^{\prime}	$\underline{400}$
ε^{\prime}	$\underline{5}$	V^{\prime}	$\underline{50}$	φ^{\prime}	$\underline{500}$
F^{\prime} or S^{\prime} or σT^{\prime}	$\underline{6}$	ξ^{\prime}	$\underline{60}$	X^{\prime}	$\underline{600}$
ζ^{\prime}	$\underline{7}$	0^{\prime}	$\underline{70}$	Ψ^{\prime}	$\underline{700}$
η^{\prime}	$\underline{8}$	Π^{\prime}	$\underline{80}$	ω^{\prime}	$\underline{800}$
θ^{\prime}	$\underline{9}$	ζ^{\prime}	$\underline{90}$	7^{\prime}	$\underline{900}$

Computers use Binary

- Why?
- Much simpler circuits needed for performing arithmetic

Some factoids

- $4^{\text {th }}$ Century AD
- Mayan astronomer-priests begin using a positional number system based on base 20
- 1708
- Swedenborg proposes decimal notation should be replaced for general use by octal.
- 1732
- Leonhard Euler, Swiss mathematician
- used binary notation in correspondence
- 1887
- Alfred B. Taylor publishes "Which base is best?" and concludes it is base 8 .

Early Computational Devices

- (Chinese) Abacus
- Used for performing arithmetic operations

Early Computational Devices

- Napier's Bones, 1617
- For performing multiplication \& division

John Napier 1550-1617

	4	6	7	3	2
1	0	0	0	0	0
2	0	6	1	1	3

Early Computational Devices

- Schickard's Calculating Clock
- first mechanical calculator, 1623

Early Computational Devices

- Pascaline mechanical calculator

Blaise Pascal 1623-1662

Early Computational Devices

- Leibniz's calculating machine, 1674

Gottfried Wilhelm von Leibniz 1646-1716

Early Computational Devices

- Thomas Arithmometer, 1820

Early Computational Devices

- Arithmaurel, 1849

Early Computational Devices

- Comptometer

Dorr Eugene Felt 1862-1930

Early Computational Devices

- Bollée's Machine

Léon Bollée
 1870-1933

Early Computational Devices

- Madas and Curta

Early Computational Devices

- Slide Calculators

Early Computational Devices

- Atari 2600 (1977)

