CSE 301 History of Computing

Electromechanical & Analog Computing

The typewriter

- First practical typewriter invented by Christopher Latham Sholes in 1867
 - Soon sold by Remington
- One historian of manufacturing has noted, the "typewriter was the most complex mechanism mass produced by American industry, ..., in the 19th century"
- Pioneered 3 key features of the office machine industry (and thus later the computer industry)
 - 1. The perfection of the product & low-cost manufacture
 - 2. A sales organization to sell the product
 - 3. A training organization to enable workers to use the technology

Other office technologies

- Adding Machine
 - Arithmometer by Thomas de Colmar of Alsace (1820)
 - impractical, slow to manufacture
 - Comptometer by Dorr E. Felt (1880s)
 - first "practical" adding machine
 - Burroughs Adding Machine by William Burroughs
 - Printed results, was commercially successful
- Cash Register
 - Invented by restaurateur James Ritty in 1879
 - Sold only one machine to John H. Patterson
 - Patterson, "an aggressive, egotistical crank", ran with Ritty's invention
 - bought and then renamed Ritty's company to the National Cash Register Company (NCR)
 - innovated sales techniques

Thomas J. Watson, Sr.

- Born in Campbell, New York, in 1874
- Worked as salesman for NCR
 - moved up quickly in the company
 - he was a sales fanatic
 - worked on "secret project" for Patterson
 - helped him move up through company ranks
 - after success, he was abruptly fired in 1911
 - Hired by C T R (Computing-Tabulating-Recording Company) in 1914
 - CTR was a firm created by Charles Flint that had merged 3 others, including Hollerith's
 - Watson combined NCR sales techniques with Hollerith's technology
 - renamed the company International Business Machines in 1924
 - Watson helped "Big Blue" grow rapidly
- Gave aid to Nazis during WWII?

Big Blue's Rise

- Hollerith was smart to rent machines rather than sell them
- Watson took advantage of this
 - resisted business & government pressure to sell machines
 - punched cards were sold for huge profit margins
- "rent and refill" nature of the punched-card business made IBM virtually recession proof
 - steady year-after-year income
 - even during the Great Depression
 - rarely lost customers
 - necessary accuracy of punched cards made competition nearly impossible
- Government contracts also helped
 - The government never goes out of business
 - FDR's New Deal gave IBM a lot of business
 - Watson's political support for the New Deal helped IBM get even more
- Another factor that kept IBM on top: technical innovation
 - more on this as the semester progresses

Analog Computers

- Instead of computing with numbers, one builds a physical model (an analog) of the system to be investigated
- Used when a system could not be readily investigated mathematically
- Special purpose instruments
- Their heyday was between WW I & WW II
 - Scaled models of dam projects, electrical grids, the Zuider Zee, California irrigation projects, British weather (yikes)

Analog Computers

- Lord Kelvin (1824-1907) (William Thomson)
 - Father of Analog Computing
 - Invented analog tidepredicting machine (1876)
 - Used in thousands of ports throughout the world
 - Many other inventions

Vannevar Bush

- Developed the profile tracer
 - a bicycle wheel with gadgetry for measurement
 - a one-problem analog computer
 - used to plot ground contours
- During WW II, Bush became chief scientific adviser to Rooservelt
- Another analog computer he developed was the differential analyzer

- Designed by Vannevar Bush at MIT
 - starting in the 1920s and completed in the early 1930s
- More of a general purpose computer (still limited)
 - Useful for differential equations
 - Describe many aspects of the physical environment involving rates of change
 - Accelerating projectiles
 - Oscillating electric currents

Differential Analyzer (continued)

- Useful for a wide range of science & engineering problems
 - versions built and used to advance knowledge at many Universities
 - including University of Pennsylvania, which led to the modern computer (we'll see this later)
- Rockefeller Differential Analyzer completed in 1942 at MIT
 - Massive machine
 - 100-tons
 - 2000 vacuum tubes
 - 150 motors
 - Fell into secrecy during World War II
 - Emerging after WWII, the Differential Analyzer was already obsolete, being replaced by digital computers like ENIAC

The Differential Analyzer (MIT Museum)

Operator's console of the Differential Analyzer (MIT Museum)

Close-up of wheel and disk integrators on the machine (MIT Museum)

Close up of bus rods which carry variables between different calculating units (MIT Museum)

Another view

Advantages of Analog Calculation

- Ability to solve a given problem numerically even without the ability to find a formal mathematical solution
- Ability to solve even a very complex problem in a relatively short time
- Ability to explore the consequences of a wide range of hypothetical different configurations of the problem being simulated in a short period of time
- Ability to transmit information between components at very high rates

Disadvantages of Analog Calculation

- An analog device is not universal.
 - not sufficiently general to solve an arbitrary category of problems
- It is difficult if not impossible to store information and results.
- It does not give exact results.
 - Accuracy can vary between 0.02% and 3%
- The components of an analog computer will function as required only when the magnitudes of their voltages or motions lie within certain limits.

Harvard Mark I

IBM Automatic Sequence Controlled Calculator

- Digital computer
 - Aiken's machine for "makin' numbers"
- Developed by Howard Aiken 1937-1943 at Harvard University
 - Inspired by Babbage
 - IBM funded the construction under the permission of Thomas J. Watson

- Constructed out of switches, relays, rotating shafts and clutches
- Sounded like a "roomful of ladies knitting"

Harvard Mark I

- Contained more than 750,000 components
 - over 50 feet long
 - 8 feet tall
 - weighed approximately 5 tons
 - 750,000 parts
 - hundreds of miles of wiring
- Performance:
 - Could store just 72 numbers
 - Could perform 3 additions or subtractions per second
 - Multiplication took 6 seconds
 - Logs & trig functions took over a minute
 - Fed programs using punched tape
 - Could perform iteration (loops), not conditional branching

Aiken vs. IBM

- Watson had IBM give it a facelift against Aiken's wishes
- 1944 started to be used for table making for the Bureau of Ships
- Intense interest from press & scientific community
 - "Harvard's Robot Superbrain" American Weekly
- Users manual was the first digital computing publication
- 1944 Dedication Ceremony
 - Aiken took full credit for it, ignoring IBM's Engineer's contribution
 - Made Watson furious
 - Watson wanted revenge
 - not the murdering kind, the let's make a machine that puts the Mark I to shame kind
 - The Selective Sequence Electronic Calculator (later)

Harvard Mark I

IBM Automatic Sequence Controlled Calculator

- In 1947, how many electronic digital computers did Aiken predict would be required to satisfy the computing needs of the entire U.S.?
 - Six (that's right: 6)

The Harvard Mark I

Harvard Mark I IBM Automatic Sequence Controlled Calculator

Harvard Mark II

Harvard Mark I IBM Automatic Sequence Controlled Calculator

Harvard Mark IV

The demise of electromechanical computing

- Computers like the Mark I were quickly eclipsed by electronic machines
 - Electronic machines had no moving parts
- Mark I shortcomings
 - was brutally slow
 - our authors go so far as to say:
 - "Not only was the Harvard Mark I a technological dead end, it did not even do anything very useful in the fifteen years that it ran."
 - the Navy might disagree slightly
 - "Babbage's Dream Come True"?
 - ran 10 times as fast as Babbage's Analytical Engine
 - could not perform decision making (branching)
 - within 2 years electronic machines were working 1000 times faster