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Abstract

Almost all scienti�c visualization involving surfaces is currently done via triangles.

The speed at which such triangulated surfaces can be displayed is crucial to interactive

visualization and is bounded by the rate at which triangulated data can be sent to the

graphics subsystem for rendering. Partitioning polygonal models into triangle strips

can signi�cantly reduce rendering times over transmitting each triangle individually.

In this paper, we present new and e�cient algorithms for constructing triangle strips

from partially triangulated models, and experimental results showing these strips are

about 15% better than those from previous codes. Further, we prove that it is NP-

complete to �nd an optimal sequential triangulation. We also study the impact of

larger bu�er sizes and various queuing disciplines on the e�ectiveness of triangle strips.

1 Introduction

Interactive display rates are crucial to exploratory scienti�c visualization and virtual reality.

The speed of high-performance rendering engines on triangular meshes in computer graphics

can be bounded by the rate at which triangulation data is sent into the machine. Obviously,

each triangle can be speci�ed by three vertices, but to maximize the use of the available

data bandwidth, it is desirable to order the triangles so that consecutive triangles share

an edge. Using such an ordering, only the incremental change of one vertex per triangle

need be speci�ed, potentially reducing the rendering time by a factor of three by avoiding

redundant clipping and transformation computations. Besides, such an approach also has

obvious bene�ts in compression for storing and transmitting models.

Consider the triangulation in Figure 1. Without using triangle strips, we would have

to specify the �ve triangles with three vertices each. By using triangle strips, as supported

by the OpenGL graphics library [10, 11], we can describe the triangulation using the strip

(1; 2; 3; 4; 5; 6; 7; 8), and assuming the convention that the ith triangle is described by the

ith, (i+1)st, and (i+2)nd vertices of the sequential strip. Such a sequential strip can reduce

the cost to transmit n triangles from 3n to n+ 2 vertices.

In this paper, we consider the problem of constructing good triangle strips from polyg-

onal models. Often such models are not fully triangulated, and contain quadrilaterals and
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Figure 1: A Triangle Strip

other non-triangular faces, which must be triangulated prior to rendering. The choice of

triangulation can signi�cantly impact the cost of the resulting strips. For example, Figure

2 demonstrates that one triangle strip su�ces to represent a cube, provided it is triangu-

lated in a particular manner. In this paper we will prove that the problem of triangulating

a polygonal model for optimal strips is NP-complete, and we will provide heuristics which

exploit the freedom to triangulate these faces to produce strips that are 10 { 30% better than

those of previous codes. Our linear-time algorithm manages to achieve this by exploiting

both the local and the global structure of the model. Our analysis of the global structure of

a geometric model is done via a non-geometric technique we term patchi�cation, which we

believe is of general interest as an e�cient tool for logically partitioning polygonal models.
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Figure 2: Triangulating a cube for one sequential strip.

To allow greater freedom in the creation of triangle strips, a \swap" command permits

one to alter the FIFO queuing discipline in a triangle strip [13]. A swap command swaps

the order of the two latest vertices in the bu�er so that the instead of vertex i replacing

the vertex (i � 2) in a bu�er of size 2, vertex i replaces the vertex (i � 1). This allows

for a single triangle strip representation of the collection of triangles shown in Figure 3, as

(1; 2; 3; SWAP; 4; 5; 6). This form of a triangle strip that includes swap commands is referred

to as a generalized triangle strip.
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The swap command gives greater freedom in the creation of triangle strips at the cost of

one bit per vertex. Although the swap command is supported in the GL graphics library [13],

keeping portability considerations in mind it was decided to not support it in OpenGL [7].

With OpenGL gaining rapid acceptance in the graphics software community, the one-bit-

per-vertex cost model that was appropriate for a swap command in GL is now outdated. A

more appropriate cost for such a swap command under the OpenGL model is a penalty of one

vertex as explained next. One can simulate a swap command in OpenGL by re-transmitting

the vertex that had to be swapped. This results in an empty triangle two of whose vertices

are the same. This is illustrated in Figure 3, where we simulate (1; 2; 3; SWAP; 4; 5; 6) by

(1; 2; 3; 2; 4; 5; 6). Note that, even though a swap costs one vertex in the OpenGL model, it

is still cheaper than starting a new triangle strip that costs two vertices. In this paper, we

evaluate all algorithms for both the GL and OpenGL cost models.

1

5 6

3

2 4

1 2 3 Swap 4 5 6 = 1 2 3 2 4 5 6

Figure 3: Replacing a swap requires an extra vertex.

Special-purpose rendering hardware is needed to fully exploit the advantages of triangle

strips, by maintaining a bu�er with the k previously transmitted vertices as determined

by a certain queuing discipline. Although current rendering engines use a bu�er of size of

k = 2 and FIFO queuing discipline, there has been recent interest in studying the impact of

larger bu�er sizes, for both rendering [3] and geometric compression [6]. The decomposition

of a triangular mesh into a triangle strip data structure that back-references the previous

k vertices, k � 2 is referred to as a generalized triangle mesh [6]. Towards this end, we

provide extensive analysis of the impact of bu�er size and queuing discipline on triangle

strip performance. We demonstrate that relatively small bu�er sizes are su�cient to achieve

most of the potential bene�ts of triangle strips, making for a desirable tradeo� between

increasing hardware cost versus the speedup in rendering time.

In Section 2, we summarize previous work on triangular strips. In Section 3, we describe

our local and global algorithms for constructing quality triangle strips from polygonal meshes.

Experimental results are presented in Section 4. In Section 5, we prove that it is NP-Complete

to �nd an optimal sequential triangulation. In Section 6, we study the impact of bu�er size

on triangle strip performance. Our conclusions are stated in Section 7.
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2 Previous Work

The problem of constructing quality triangle strips has received attention from both the

graphics and the computational geometry communities.

Akeley, Haeberli, and Burns have written a program that converts triangle meshes to

triangle strips [1]. We discuss the approach in this program in greater details in Section 3.

Deering has proposed the use of generalized triangle meshes for compressing connectivity

information in geometric polygonal models [6]. He has proposed maintaining a stack of size

k = 16 to store 16 previous vertices. A vertex for a new triangle is speci�ed either through

back-referencing one of the existing vertices on the stack, or by reading-in a new vertex and

replacing an existing vertex on the stack. Although a novel idea, no algorithms have been

proposed there to suggest how one can decompose polygonal models into generalized triangle

meshes for a given bu�er size k. An interesting alternative to compressing connectivity

information is presented by Hoppe in [8] where vertex-split/edge-collapse information is

encoded e�ciently with respect to its neighbors. Although not as e�cient as generalized

triangle meshes for a single resolution model, this approach has the advantage of being able

to encode multiresolution models compactly.

Within computational geometry, interest has focused on constructing and recognizing

Hamiltonian and sequential triangulations. A triangulation is Hamiltonian if its dual graph

contains a Hamiltonian cycle. Hamiltonian triangulations can be represented by using gener-

alized triangle strips (triangle strips with swaps). Arkin, et.al. [2] proved that every point set

has a Hamiltonian triangulation. Further, they showed that the problem of testing whether

a triangulation is Hamiltonian is NP-complete. They gave an O(n2) algorithm for construct-

ing a Hamiltonian triangulation of a polygon that has since been improved to O(n lg n) by

Narasimhan [9].

A triangulation is sequential if its dual graph contains a Hamiltonian cycle whose turns

alternate left-right. Sequential triangulations can be represented by using one triangle strip

without any swaps. A Hamiltonian triangulation is sequential if three consecutive edges do

not share a common vertex. Arkin, et.al. [2] proved that for any n � 9 there exists a set of

n points in general position that do not admit a sequential triangulation. Although linear

time su�ces to test whether a triangulation is sequential, we will show in Section 5 that

the problem of �nding a sequential triangulation of a partially triangulated surface is NP-

complete using a reduction from 3-satis�ability. Hence, heuristics such as those described in

this paper are required to �nd good sequential strips.

A simple path in the dual of a triangulation identi�es a sequence of triangles that form a

\strip" or a (triangular) \ribbon" . Bhattacharya and Rosenfeld [4] have studied geometric

and topological properties of ribbons. The Hamiltonian triangulation problem can be con-

sidered that of identifying if a set of points or a polygon has a triangulation that consists of

a single strip (triangular ribbon).

Bose and Toussaint [5] have recently studied a set of problems involving quadrangulation

of point sets, and have obtained several interesting results. A quadrangulation of a point

set S is a decomposition of the convex hull into quadrilaterals, such that each point of S is

a vertex of some quadrilateral. In particular, they have applied the notion of Hamiltonian

triangulations to this problem, and they have obtained an alternate method of computing
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Hamiltonian path triangulations.

By Euler's theorem on graphs, the number of triangles in a triangulation is at most

twice the number of vertices, and on average we will have to send each vertex twice to the

renderer using sequential triangle strips and a bu�er of size 2. Bar-Yehuda and Gotsman [3]

studied the extent to which we can increase the stack (bu�er) size to reduce this duplication of

vertices. This yields a time-versus-space tradeo�; for as we increase memory usage, rendering

time will decrease. Bar-Yehuda and Gotsman have shown that a bu�er of size 13:35
p
n is

su�cient to render any mesh on n vertices in the optimal time n, and that a bu�er size of

1:649
p
n is necessary for optimal rendering in the worst-case. They show the problem of

minimizing the bu�er-size for a given mesh is NP-hard, using a reduction from the problem

of �nding minimum separators of a planar graph.

3 Constructing Triangle Strips

In this section, we propose several heuristics for constructing triangle strips from polygonal

models. There are at least three di�erent objectives such heuristics might reasonably seek

to achieve:

� Maximize the length of each strip { since each strip of length s represents s�2 triangles,

maximizing strip length minimizes this overhead.

� Minimizing swaps { since each swap costs one additional vertex in the OpenGL cost

model.

� Minimizing the number of singleton strips { since each triangle left isolated after re-

moving a strip creates a singleton strip, we should seek to begin and end our strips on

low-degree faces of the triangulation.

The best previous code for constructing triangle strips which we are aware of is [1],

implementing what we will call the SGI algorithm. The SGI algorithm seeks to create strips

that tend to minimize leaving isolated triangles. It is a greedy algorithm, which always

chooses as the next triangle in a strip the triangle that is adjacent to the least number

of neighbors (i.e. minimizes the number of adjacencies). When there is more than one

triangle with the same, least number of neighbors, the algorithm looks one level ahead to

its neighbors' neighbors, and chooses the direction of minimum degree, choosing arbitrarily

if there is again a tie. After starting from an arbitrary lowest degree triangle, it extends its

strips in both directions, so that each strip is as long as possible. There is no reluctance

to generate swaps, and understandably so, since this algorithm was aimed at generating

triangle strips for Iris GL.

A fast, linear-time implementation is obtained by using hash tables to store the adjacency

information, linked to a priority queue maintaining strip length to choose which triangle

starts a new strip.

Figure 4 illustrates how the algorithm breaks ties. Starting with a face of lowest adjacency

(of degree 1 on the upper center of the �gure), the algorithm always selects the lower degree
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Figure 4: The SGI algorithm uses adjacency count to construct triangle strips.

face as the next triangle in the strip to peel o� the marked strip. At the face of degree 3 it

turns left because the adjacent face is of degree 1 as opposed to 2.

The SGI algorithm uses strictly local adjacency information in constructing the triangle

strips. However, fully exploiting the freedom to triangulate quads seems to require a more

global approach. We have experimented with several variants of local and global algorithms,

as discussed in the following two sections.

3.1 Local Algorithms

Our class of local heuristics starts from the same basic idea as the SGI algorithm { to

use least adjacencies as the basis for choosing the next face in a strip. However, we have

tried to improve upon their algorithm by dynamic triangulation and alternate tie-breaking

procedures.

We have considered three di�erent approaches to triangulating faces:

� Static triangulation { In this approach, we triangulate all quads and larger faces in

our model as a pre-processing step before we begin �nding strips. We use alternate

left-right turns, as shown in Figure 5(b) because such a triangulation is inherently

sequential, as opposed to the simpler and more conventional fan triangulation. The

SGI algorithm accepts only triangulated models as input and thus uses this static

triangulation approach.

Figure 5: Fan versus sequential triangulation of a polygonal face.
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� Dynamic whole-face triangulation { A second approach completely triangulates each

face when we �rst enter it via some edge on a strip. After using one of the tie-breaking

procedures described below to determine the exit edge e, we can triangulate the face

as sequentially as possible while exiting at e. If the surface normals do not vary across

a face, then whole face triangulation has the additional advantage of encoding fewer

normal transitions.

� Dynamic partial-face triangulation { Partial-face triangulation provides the freedom to

triangulate and walk only part of a face before exiting it. This approach can under

certain conditions provably perform better than the whole-face triangulation, as is seen

in the example where we represent a cube using a single sequential triangle strip. After

identifying the exit edge e of the face with the minimum number of adjacencies, we

sequentially triangulate the smallest portion possible of the face from the input edge

to exit at e. This is illustrated in Figure 6.

Whole

1
2

12

Partial

1
2

122

1
2

1

13 2

Input

Figure 6: Examples of partial and whole-face triangulation.

We have considered several di�erent approaches in breaking ties when there is more than

one polygon that has the least number of adjacencies to the current face. Such ties often

occur since the possible number of adjacencies ranges only over 1, 2, and 3. In particular,

we tried:

� Arbitrary { meaning that we use the �rst face found among the low-adjacency faces.

� Look-ahead { this is the same approach that SGI algorithm takes, as described above.

� Alternate { this rule tries to alternate directions in choosing the next polygonal face.

To motivate this option, note that sequential strips alternate directions.

� Random { chooses the next face randomly from those that were tied.

� Sequential { chooses the next face that will not produce a swap, and picks randomly if

there is no such face.
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To quickly identify the lowest adjacency face to start from, we maintain a priority queue

ordered by the number of adjacent polygons to each face. The faces in the priority queue are

linked to the adjacency list data structure representing the dual graph of the triangulation.

This enables fast lookup to �nd and delete faces when forming the triangle strips.

3.2 Global Algorithms

Although the problem of �nding the strip-minimal triangulation is NP-complete, we perform

a global analysis of the structure of a polygonal model using a technique we call patchi�cation,

which we believe is of independent interest.

In typical polyhedral models, there are many quadrilateral faces, often arranged in large

connected regions. We attempt to �nd large \patches", rectangular regions consisting only

of quadrilaterals, as illustrated in Figure 7. Figure 8 shows the largest patches in a typical

model. These patches can be triangulated sequentially along each row or column, although

there is a cost of either 3 swaps per turn or 2 vertices to stop and restart each strip at the

end of a row or column.

Figure 7: Patchi�cation �nds large rectangular patches of quadrilaterals.

E�cient patchi�cation requires computing the number of polygons to the east, west,

north, and south of each face, and making sure that when forming the patches, the polygons

in the patch are all adjacent. Hence, we have to \walk" through the faces and calculate

the number of adjacent polygons to them in each orientation. Each \walk" only visits each

face exactly 2 times: once for the north-south direction and once for the east-west direction;

once we visit a face in a walk, that face does not require visiting again. To avoid generating

too many small patches, we keep a patch cuto� size which is the area of the smallest patch

we would like to generate. Since we generate patches in decreasing order of size, we can

conveniently stop the process once the areas of the patches being generated falls below this

cuto� size. This approach takes us time O(pn) where p is the number of patches found. In

our studies p was much smaller than n and therefore this approach demonstrated a linear

behavior.

We tried two di�erent approaches for exploiting the coherence identi�ed in large patches:

� Row or column strips { After selecting all patches whose size was greater than a speci-

�ed cuto� size, we partitioned the patches into sequential strips along rows or columns
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Figure 8: The six largest patches in a triceratops model.

(whichever direction yielded larger strips) and deleted them from the model. Next,

a local algorithm (using whole-face triangulation) was used on the remaining model.

By generating one strip along each row or column, we minimize the number of swaps

needed.

� Full-patch strips { Each patch larger than the cuto� size was converted into one strip,

at a cost of 3 swaps per turn. Further, every such strip was extended backwards from

the starting quadrilateral and forwards from the ending quadrilateral of the patch to

the extent possible. As before, the local algorithm was used on the model left after

removing the patches and their forward and backward extensions.

4 Experimental Results

We have exhaustively tested our local and global algorithms on several datasets and compared

them with the best known triangle strip code [1]. For our local approaches there were

ten di�erent options for each data �le that we ran our experiments on: (a) whole-face

triangulation and (b) partial-face triangulation, for each of the four tie breaking methods {

(i) arbitrary, (ii) look-ahead, (iii) alternate, (iv) random, and (v) sequential. For our global

approaches there were ten di�erent options for each data �le that we ran our experiments

on: (a) row/column strips and (b) full-patch strips, for each of �ve di�erent patch cuto�

sizes of { 5, 10, 15, 20, and 25.

After comparing the results we had from the above-mentioned 20 di�erent approaches

on several datasets, we found that the best option was to use the the global row or column

strips with a patch cuto� size of 5. We have implemented this option in our tool, Stripe.

Table 1 compares the results for Stripe against the SGI algorithm. The cost columns show
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the total number of vertices required to represent the dataset in a generalized triangle strip

representation under the OpenGL cost model (where each swap costs one vertex).

Data File Vertices Triangles SGI Cost Stripe Cost % Savings

plane 1508 2992 4005 3509 12%

skyscraper 2022 3692 5621 4616 18%

triceratops 2832 5660 8267 6911 16%

power lines 4091 8966 12147 10621 13%

porsche 5247 10425 14227 12367 11%

honda 7106 13594 16599 15075 9%

bell ranger 7105 14168 19941 16456 17%

dodge 8477 16646 20561 18515 10%

general 11361 22262 31652 27702 12%

Table 1: Comparison of triangle strip algorithms on representative models.

Figures 9, 10, and 11 show the performance comparisons between our best local and best

global algorithms against the SGI algorithm for (a) GL and (b) OpenGL cost models. The

models sorted by number of triangles are along the x-axis and the cost of generalized triangle

strip representation is along the y-axis in these �gures.

Observations include:

� Little if any savings seems possible by sophisticated algorithms under the GL model.

However, under the more realistic model the combined local/global algorithm can save

up to 20% over the SGI algorithm.

� Our results are close to the theoretical lower bound of the number of triangles + 2, so

there is limited potential for better algorithms.

� Although the number of strips and number of swaps required is sensitive to the com-

position of the model, the total cost grows linear in the size of the model.

Our times for execution of these algorithms behaved linearly with respect the input size.

The timings for our local algorithms were about a factor of 2 slower than those generated

by SGI. Thus, for example, dynamic partial-face method with sequential triangulation took

around 8 seconds on the 22K triangle model general whereas the SGI code took around 4

seconds.

When rendering the models with the triangle strips that were produced by each algorithm,

the savings in transmission time to the renderer did prove to be a signi�cant savings in

rendering time. The triangle strips produced by our code were on average 30% faster to

draw than those produced by the SGI algorithm, and were about 60% faster to draw than

without using triangle strips at all. These savings increased as the size of the model increased,

as shown in Table 2.
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Costs to the renderer for GL

SGI data

Whole sequential

Extended cutoff 25
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Costs to the renderer for OpenGL
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Figure 9: Overall cost comparisons for GL and OpenGL cost models.
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Strips to the renderer for GL
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Whole sequential

Extended cutoff 25
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Strips to the renderer for OpenGL

SGI data

Partial sequential data

Extended cutoff 5
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Figure 10: Number of strips produced for GL and OpenGL cost models.
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Swaps in the triangle strips for GL 

SGI data

Whole sequential

Extended cutoff 25

SWAPS x 103

3TRIANGLES x 10
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Swaps in the triangle strips for OpenGL 

SGI data

Partial sequential data

Extended cutoff 5

SWAPS x 103

3TRIANGLES x 10
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Figure 11: Total swaps produced for GL and OpenGL cost models.
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Machine File Triangles Triangulated SGI Ours

SGI Indigo2 Triceratops 5660 0.5 0.3 0.27

Bell Ranger 14168 1.62 0.8 0.59

General 22262 2.52 1.2 0.88

PC- 150MHz Triceratops 5660 0.86 0.6 0.56

Bell Ranger 14168 1.93 1.2 1.0

General 22262 3.13 2.4 1.89

Table 2: Comparison of rendering times in seconds.

For local algorithms under the GL cost model whole-face triangulations worked better

than those with partial-face triangulations; under the OpenGL cost model the reverse was

true. Partial-face triangulations produce less swaps than whole-face triangulations because

the former have a greater choice in selecting the next face in a strip, and are therefore more

likely to be able to select faces that do not require a swap. For global algorithms, full-patch

strips with cuto� size of 25 have the best performance under the GL cost model whereas

full-patch strips with a cuto� size of 5 have the best performance under the OpenGL cost

model. This is because a cuto� size of 5 generates more patches than a cuto� size of 25 and

more patches means lesser number of swaps.

Figure 12 provides visual comparison of the results obtained by our tool Stripe and those

obtained by the earlier algorithm being used by SGI.

5 Sequential Triangulation Completion is NP-Complete

In this section, we consider the complexity of two problems associated with completing a

partial triangulation so that it has a certain path property. In particular, we are interested

in:

Hamiltonian Triangulation Completion

Input: A partially triangulated n-vertex polygon P (with holes).

Output: Is there a way to complete the triangulation of P such that the triangulation is

Hamiltonian?

Sequential Triangulation Completion

Input: A partially triangulated n-vertex polygon P (with holes).

Output: Is there a way to complete the triangulation of P such that the triangulation is

sequential?

The hardness of Hamiltonian Triangulation Completion follows immediately from the

result of [2] that it is NP-complete to decide whether a full triangulation is Hamiltonian.

However, establishing the complexity of Sequential Triangulation Completion proves consid-

erably more subtle, because sequential triangulations are highly constrained. Indeed, the
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Figure 12: Visual Comparison of Triangle Strips Generated by SGI and Stripe
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corresponding problem of testing whether a full triangulation is sequential can be solved in

O(n) time [2].

We prove that Sequential Triangulation Completion is NP-complete with a reduction from

Hamiltonian path in directed graphs with vertex degree three, shown hard by Plesnik [12]. A

sketch of our proof is as follows. First, we show how to construct polygonal gadgets to play

the role of low-degree vertices in a directed graph. Second, we will show that these polygonal

gadgets can be used to construct polygonal implementations of the graph gadgets used in

Plesnik's hardness proof. Finally, we show how to modify these polygonal gadgets so that

any Hamiltonian paths in the graph will correspond to sequential paths in the triangulation.

For the �rst phase of our proof, we construct polygonal gadgets corresponding to 1-input

2-output and 2-input 1-output vertices of a directed graph. These gadgets will be described

in Lemmas 1 and 2, respectively. We say an edge e is oriented (x; y) in a sequential path p

if vertex x appears immediately before vertex y in p.

Lemma 1 For every n � 4, there exists a partially triangulated convex n-gon with consecu-

tive vertices labeled (1; : : : ; n) and an interior point v which can be sequentially triangulated in

the following two di�erent ways. For even n, the triangulations enter oriented edge e = (1; 2)

but exit oriented edges a = (n=2 + 3; n=2 + 2) and b = (n=2 + 1; n=2). For odd n, the tri-

angulations enter oriented edge e = (1; 2) but exit oriented edges a = (dn=2e + 1; dn=2e + 2)

and b = (dn=2e � 1; dn=2e). (All arithmetic is modulo n.)

Proof: The smallest case for even n is n = 4. Consider the polygon P in Figure 13, with

hole vertex v near edges (1; 2) and (2; 3). We can sequentially triangulate P with 1 input

and 2 outputs, so that a=(1,4) and b=(3,2), as shown in Figure 13. For larger even n, we

can simply prepend pairs of triangles to the input face of this gadget.

3

v

1

2 3

4 1 4

2

v

12v
2v3
v31
314

124
24v
4v3
v32

1

v

3

4

2

Figure 13: The 1-input, 2-output gadget for n = 4.

The smallest case for odd n is n = 5. Consider the polygon P and triangulations in

Figure 14. Due to the odd number of triangles, the output edge orientations will be reversed

from the even case.

Lemma 2 For every n � 4, there exists a partially triangulated convex n-gon with consecu-

tive vertices labeled (1; : : : ; n) with hole which can be sequentially triangulated in the following

two di�erent ways. The triangulations enter oriented edges a = (1; 2) and b = (3; 4). For

even n, the triangulation exits edge e = (3+n=2; 2+n=2). For odd n, the triangulation exits

edge e = ((3 + n)=2; (3 + n)=2 + 1). (All arithmetic is modulo n.)
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Figure 14: The 1-input, 2-output gadget for n = 5.
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Figure 15: The 2-input, 1-output gadget for n = 4.

Proof: This proof is analogous to that of Lemma 1. The smallest even case is when n = 4,

and shown in Figure 15. The construction generalizes to larger even n by appending pairs of

triangles to the output edge. To realize the construction for odd n, append an odd number

of triangles to the output edge, as in Figure 16.

For the second phase of our reduction, we mirror the three types of gadgets used by

Plesnik in showing that the directed Hamiltonian path hard for vertex degree-3 digraphs.

Figures 17, 18, and 19 illustrate these components, and demonstrate that they can be repli-

cated with abutting and non-crossing convex polygons in the plane, each of which contains

the appropriate vertex replacement gadget from Lemmas 1 and 2.

Thus we replicate Plesnik's reduction yielding a partially triangulated polygon with holes
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Figure 16: The 2-input, 1-output gadget for n = 5.
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Figure 17: Plesnik gadget 1, as a graph and in the plane.

Figure 18: Plesnik gadget 2, as a graph and in the plane.

which can have a Hamiltonian triangulation i� the original graph was Hamiltonian.

Corollary 3 Hamiltonian triangulation completion is NP-complete.

Unfortunately, this construction need not yield a sequential triangulation, due to orienta-

tion inconsistencies at the junctions of these gadgets. Resolving these problems will require

modi�cations to the above gadgets and the following observation:

Lemma 4 The outgoing edges of any 1-input vertex in Plesnik's construction are adjacent

to 2-input vertices. The outgoing edge of any 2-input vertex is adjacent to a 1-input vertex.

Hence any path in the resulting graph must alternate between 1 and 2-input vertices.

To correct sequential inconsistencies at the junctions of the gadgets, we �rst assign orien-

tations to the unique starting and terminating edges of the Hamiltonian path construction.

We then compare the orientations on both sides of each gadget-junction in the construction.

The junctions between the original 1-input and 2-input gadgets described above may be

inconsistent. Indeed there can be six possible types of inconsistencies between gadgets. Four

of them are easily resolved by adding single vertices to the gadgets:

� 2-input,1-output gadget, with the output edge reversed { Raising the output edge into

a triangle with one additional vertex corrects the orientation, as shown in Figure 20.

� 2-input,1-output gadget, with both input edges reversed { The gadget in Figure 21

resolves the di�culty.
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represents Plesnik gadget 2.)(Note that 

Gadget2

Gadget2

Gadget2

Gadget2

Gadget2

Gadget2

Figure 19: Plesnik gadget 3, as a graph and in the plane. Note that the dotted region in the

gragh is the region that is represented in the plane.
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Figure 20: Reversing the output orientation of a 2-Input, 1-Output gadget.
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Figure 21: Reversing the orientation of both inputs of a 2-Input, 1-Output gadget.
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� 1-input,2-output gadget, with the input edge reversed { Raising the input edge into a

triangle with one additional vertex corrects the orientation, as shown in Figure 22.
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Figure 22: Reversing the input orientation of a 1-Input, 2-Output gadget.

� 1-input,2-output gadget, with both output edges reversed { The gadget in Figure 23

resolves the di�culty.
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Figure 23: Reversing the orientation of both outputs of a 1-Input, 2-Output gadget.

After performing these corrections, the only possible remaining inconsistent orientations

are one wrong input to a 2-input gadget or one wrong output from a 2-output gadget.

However, by Lemma 4, gadgets must alternate input sizes, and so these inconsistent gadgets

must occur in pairs, with a 1-input gadget feeding into a 2-input gadget.

1 IN 2 INBAD GOOD

GOOD

GOOD

GOOD

Figure 24: The remaining case of inconsistent orientations.

We can replace this pair as in Figure 24 by one gadget that resolves the inconsistency

and still maintains the orientations of the external inputs and outputs. To replace this pair,

20



we use the gadget in Figure 25. This combined gadget is shown in Figure 26. In the interests

of brevity, we omit a detailed case analysis, but these are the only way to cover the gadget

with possible entries and exits from the connection edges. As no other faces of the gadget

will be adjacent to other gadgets, any Hamiltonian path must cover the gadget in one of

these two ways.

x

x

x

x

x

x

Figure 25: The combined gadget with all the forced edges drawn in. The points marked

with \x" are points that are collinear and form degenerate triangles in the two possible

triangulations.
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Figure 26: The two possible triangulations of the combined gadget.

In conclusion:

Theorem 5 Sequential triangulation completion is NP-complete for polygons with holes,

even when no untriangulated face has more than 24 vertices.
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6 Impact of Bu�er Size

The bene�ts realized by using triangle strips could be further enhanced by special-purpose

hardware that has additional bu�er space (beyond the usual storage for two vertices) and

alternate queuing disciplines. In this section, we study the impact of such resources on

performance, to provide guidance for future hardware design.

Increasing the bu�er size from a capacity of two vertices naturally decreases the cost of

transmission, since we can now specify which of the previous k vertices in the bu�er de�nes

the next triangle. The cost of speci�cation becomes dlg ke bits, instead of number of bits

representing one vertex, thus enabling us to potentially represent polygonal models at a cost

of less than one vertex per triangle. In our paper, we will ignore the costs of these index

bits, since we only seek to determine an upper bound potential improvement in rendering

time to assess whether it might be worth the increase in hardware costs.

We considered two di�erent queuing disciplines for maintaining the bu�er:

� First-in, �rst-out (FIFO) { This implies that there is no rearrangement of the vertices

in the bu�er, excluding swaps. FIFO is easiest to implement in hardware, and would

thus be preferable if performance is comparable.

� Least recently used (LRU) { LRU dynamically rearranges the vertices in the bu�er, by

placing a vertex that was used most recently into the spot in the bu�er that holds the

most recently admitted vertex. The least recently used vertex is eliminated when a

new vertex is added to the queue. LRU provides the bene�t that popular vertices are

held in the bu�er in the hope that they will likely be used in the near future.

The results of running our tests on several datasets are presented in Figure 27. These

�gures show the cost of the LRU and FIFO queuing disciplines versus the dataset sizes. As

can be seen the advantages to be gained from larger bu�er sizes diminish rapidly beyond a

bu�er size of about 8. For this range of bu�er sizes, LRU performs better than the FIFO

scheme by a factor about 10%.

7 Conclusions

We have explored a total of twenty di�erent local and global algorithms on over two hundred

data models in our quest for an e�ective triangle strip generation algorithm that can perform

well under the prevalent OpenGL cost model. Our conclusion is that the best approach for

the OpenGL cost model is global row or column strips with a patch cuto� size of 5. Our

source code is freely available from http://www.cs.sunysb.edu/�evans/stripe.html.

As can be seen from the results of Table 1, we are able to outperform the SGI algorithm

signi�cantly. We typically produce a signi�cantly lower number of strips than they do (usu-

ally 60%-80% less using the local whole-triangulation algorithm), resulting in an average cost

savings of about 18% less than SGI algorithm under the OpenGL model. Further, our cost

averages just 10% more than the theoretical minimum of using one sequential strip with no

swaps, when using the global row or column strips algorithm with a patch cuto� size of 5,

as shown in Figure 9.
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Effects of changing the buffer sizes for plane 
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Figure 27: Cost versus bu�er size for nine models.
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We have found that using global algorithms for detecting large strips of quads proves

very e�ective for reducing swaps. This has proved to be quite useful for generating e�cient

triangle strips for the OpenGL cost model where every swap costs one vertex.

All our algorithms run in linear time. Although the SGI algorithm does have a slightly

better running time, we do not believe this to be a serious drawback of our approach since the

triangle-strip generation phase is typically done o�-line before interactive visualization. Also,

our algorithm can take as input a polygonal model, while the SGI algorithm cannot handle

polygonal data. Therefore to use their algorithm, the user needs to �rst pre-triangulate the

data model, which is an extra step not added into the SGI running time.

The results of our experiments with larger bu�er sizes o�er only limited room for op-

timism. As we increase the bu�er-size the savings do increase, however the improvements

diminish very quickly. LRU seems to work much better than FIFO in the smaller bu�ers,

although this must be contrasted with the time and hardware needed to maintain a LRU

bu�er. The theoretical minimum of using larger bu�ers is the number of vertices in the

model, since each vertex would only have to be transmitted exactly one time, and then

could remain in the bu�er forever to be used again, provided the bu�er is large enough.

However, in our implementation we had been assuming that the bu�er gets 
ushed between

renderings of di�erent generalized triangle meshes, i.e. a generalized triangle mesh cannot

take advantage of the bu�er references left behind by a previous mesh. Even if we do not

make this assumption, achieving close to the minimum requires a prohibitively large bu�er,

which is not feasible for hardware implementation. Further, as the result of Bar-Yehuda and

Gotsman [3] shows, to achieve this minimum for a mesh of size n a bu�er of size 1:649
p
n

is necessary, thus making the size of the bu�er depend on the size of the input mesh. All

of these factors combined with our results seem to make a choice of a small bu�er size, say

around 8, attractive.
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