Efficient Runtime Invariant Checking:
A Framework and Case Study*

Michael Gorbovitski

Tom Rothamel

Yanhong A. Liu Scott D. I&ip

Computer Science Dept., State Univ. of New York at Stony Rr&iony Brook, NY 11794
{mickg,rothamel,liu,stoller }@cs.stonybrook.edu

Abstract

This paper describes a general and powerful framework fioiesft
runtime invariant checking. The framework supports (1)aedive
specification of arbitrary invariants using high-level gas, with
easy use of information from any data in the execution, (2)ere
ful analysis and transformations for automatic generatfdnstru-
mentation for efficient incremental checking of invariargad (3)
convenient mechanisms for reporting errors, debuggingjfaking
preventive or remedial actions, as well as recording hysiata for
use in queries. We demonstrate the advantages and effexsivef
the framework through implementations and case studids atit
stract syntax tree transformations, authentication in 8%ient,
and the BitTorrent peer-to-peer file distribution protocol

Categories and Subject Descriptors D.2.4 [Software Engi-
neering: Software/Program Verification—Class invariants; D.2.4
[Software EngineerirjgSoftware/Program Verification—Assertion
checkers; D.2.13 Joftware Engineeriig Reusable Software;
F.3.1 Logics and Meanings of PrografsSpecifying and Veri-
fying and Reasoning about Programs—Invariants

General Terms Design, Languages, Performance, Verification

Keywords Alias analysis, Incrementalization, Program Transfor-
mation, Runtime Verification

1. Introduction

Program safety, security, and general correctness piepepend
on all kinds of invariants holding during program executigwen
though static analysis can verify many invariants, manyartgnt
invariants are still too difficult to verify automaticallysing static
analysis. Therefore, itis critical to use dynamic techeggjto check
during program execution that these invariants hold. Thisiown
asruntime invariant checkinglt is challenging for at least three
reasons:

1. invariants that relate information at multiple prograwints
are difficult to specify and to verify at any one point in the
execution,

*This work was supported by NSF under grants CCF-0613913,-CNS
0509230, and CCR-0306399, and by ONR under grant NOOO14-0928.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

WODA — Workshop on Dynamic Analysis,July 21, 2008
Copyright(© 2008 ACM 978-1-60558-054-8/08/07. . . $5.00.

2. the runtime overhead from invariant checking must be -mini
mized, and

3. imminent violations of critical invariants must be de&tbe-
fore they occur, and appropriate actions taken in response.

This paper describes a general and powerful framework for
efficient runtime invariant checking. The framework suppdi.)
declarative specification of arbitrary invariants usinghlevel
queries, with easy use of information from any data in the ex-
ecution, (2) powerful analysis and transformations foromatic
generation of instrumentation for efficient incrementakaiing
of invariants, and (3) convenient mechanisms for reporéngrs,
debugging, and taking preventive or remedial actions, dbasge
recording history data for use in queries. The transforonatiare
built on InvTS rules [20], which describe how to incremelytal
maintain invariants.

We also describe a number of case studies that demonstrate
the advantages of our framework and the effectiveness ofnour
plementation. The implementation is for Python. The experits
include checking invariants about (1) abstract syntax (fe®T)
transformations on programs of varying sizes between 4@D an
16000 AST nodes, (2) Kerberos authentication used by a SMB
client, and (3) a network protocol for distributing files iitBorrent.

All the invariants of interest can be expressed easily infame-
work, and performance results show that our incrementaikihg
scales well on large applications and complex invariants.

Much research has been done on runtime invariant checking,
including a large variety of languages for specifying theaii
ants and methods for efficient instrumentation, as discugse
Section 5. To the best of our knowledge, no previous work both
supports the generality of the kinds of invariants that oamie-
work supports and achieves the efficiency that our impleatimt
method achieves.

The rest of the paper is organized as follows. Section 2 gives
an overview of our framework and describes the language for
specifying invariants and actions. Section 3 describelysisaand
transformations for incrementally checking the invarsar@ection
4 presents our experiments. Section 5 discusses relatéd wor

2. Framework

This section presents our framework for the specificatioinwzri-
ants and the actions to be taken when they are violated.iémar
are expressed as boolean conditions involving variablastified
over collections. Violations of an invariant correspondtaples
containing values of those variables for which the conditsfalse.
We formulate runtime invariant checking as evaluating msathat
return sets of such tuples. The basic form of an invariantking
rule in our framework is

foreach (v; in Si, ..., v, in Sk: condition):

action

whereS; throughS;, are collections (sets, dicts and other collec-
tions that do not allow duplicates and that have constam-them-
bership testsy, throughvy, are quantified over sefs throughsSy,
respectively. The set of tuples of valueswefthroughv, such that
conditionholds is called thejuery result actionis a sequence of
statements to be executed for each violation of the invarian,
for each tuple in the query result.

For example, the following rule may be used to check that
the usage_count field of each instance of theile class is non-
negative.

foreach (o in extent(File): o.usage_count < 0):
report ("Error: File ", o, " has negative",
" usage_count.")
stop()

For every clas€§’, extent (C) is a special set defined by our frame-
work to contain the set of currently existing objects of typerhe
report andstop functions are two functions in the subject pro-
gramming language (Pythom)eport takes any number of argu-
ments and prints the concatenation of their string reptatiens;

stop stops the program and drops into a debugger, allowing the

user to examine the state of the program at the point at whieh t
invariant was violated.

While it is easy to see how to efficiently check simple invarsa
like the one above (by inserting checks at all assignmentheo
usage_count field), it becomes more difficult for even slightly
more complex invariants. For example, consider a prograah th

nication protocol. A query cannot refer to the set of all pslsent
by the program, unless the program happens to maintainghdt s
is not an extent, because packet objects are removed froexthe
tent by garbage collection. To support such queries, oundveork
supports rules that add code throughout the program. Thtsrie
is similar to aspect-oriented programming, and it can bel use
insert code that maintains additional sets.

foreach (query) :
action
(de (in scope (field|method)? declaration)*)?
(at update
(if condition)?
(de (in scope (field|method)? declaration)™)?
(do (before maint)? (instead maint)? (after maint)?)?

)*

Figure 1. General form of an invariant checking rule.

The general form of an invariant checking rule is shown inFig
ure 1. The syntax of the new clauses is taken from InvTS [20],
where they are used in rules that describe how to maintaariinv
ants; this is why we usepdate and maint as suggestive names
for the code patterns in thet anddo clauses, but they are not lim-
ited to matching updates and specifying maintenance cdueail
clause contains a code patterpdate, which may contain subject-
language code and meta-variables. Names of meta-varistalgs
with “$”. For each part of the code in the subject program that
matches theipdatepattern in theat clause, if theconditionin the

manipulates ASTs. We want to check that no node has an edgeif clause is satisfied, then tlleclarations in thede (mnemonic

to itself. Assume that AST nodes are instances of\itde class,
which has achildren field. The invariant can be checked using
the rule:

foreach (o in extent(Node): o in o.children):
report ("Error: ", o, " has a self-edge.")
stop()

Checking this invariant efficiently is difficult, becauséaalng im-
plies that it can potentially be violated by any statemeat #dds
an object to a collection, as in this scenaties . children; ...;
x.add (o). Manually writing code to detect such bugs is tedious:
one must intercept all calls to theld method of all instances of
set, determine whether the target object equalscthil dren field

of some instance afode, etc. In our framework, the user writes the
simple rule above, and our system takes care of the restrajere
correct and efficient code for it.

Queries that involve multiple variables typically involy@in
conditions, which relate the values of the variables. Fangxe,
suppose the ASTs in the previous example should also s#tisfy
invariant that every node has at most one incoming edge.cHns
be checked using the rule:

foreach (n in extent(Node), m in extent (Node),
c in extent(Node): c¢ in n.children and

¢ in m.children and n'!=m):
report ("Error: ", c, "is a child of both ",
m, n and ||’ n, ||‘||)
stop()

Again, it is easy to write this rule in our framework, but idig-
ficult to manually write code that efficiently checks thisanant
at runtime, since this requires maintaining auxiliary datactures
with information about edges, in addition to dealing witk #lias-
ing issue discussed above.

Some invariants cannot be expressed using queries overtexte
and existing sets in the program. For example, consider amoem

for “declaration”) clause are inserted into the programhia $pec-
ified scope (while thele clause is usually used to declare and ini-
tialize variables, classes, or fields, it can be used totisbitrary
code at a specified location) and tirint code in thedo clause

is insertedbefore or after the matched code, as specified, or, if
instead is used in thedo clause, the matched code is replaced
with the code in thelo clause. The condition in thef clause is
built from standard logical connectives and functions dsfifor
the subject language. For exampieéass (expr) returns the class
in which expr appears, andype (expr) returns the type ofzpr.

In the de clause,scopecan beglobal or the name of a class,
method, or module.

Continuing the above example, the following rule could bedus
to check an invariant about packets that is expressed irstefra
set$sent_packets containing all sent packets (a specific example
appears in Section 4). The meta-varial§leent_packets gets
instantiated with a fresh program variable when the progimam
transformed.

foreach (...:
report ("Error :
stop()

in global:
$sent_packets=set ()
$x.send ($packet)
extends (type ($x) ,socket)
before:

global $sent_packets
$sent_packets.add($packet)

... $sent_packets ...):
oM

de

at
if
do

3. Analysis and transformations

The straightforward way to implement the framework desatib
above is to compute the result of every query from scratcheate
program point. This is clearly correct, yet very slow, esakg if

the query involves large collections. A better way is to carep

each query result at the program points that can update #oét re
of the query. This is faster, yet still requires repeateduataon of
the query. A better approach is to efficiently maintain (update)
the result of the query whenever a collection or object thergu
depends on changes.

This requires two steps: (1) generating maintenance cate th
properly maintains the query results in the face of updaiebe
data the query depends on, and, (2) applying the mainterauize
at all places where the query result might change. The retbteof
section uses “set” instead of “collection” as the methodliapp
(with very minor modifications) to any collection that caintaob-
jects, does not allow duplicates, and has constant-timelraeship
testing.

Step 1 is accomplished by compiling the query into an InvTS
rule [20], which then transforms the subject program so ithat
crementally maintains the query result. InvTS (the Invariariven
Transformation System) is a program transformation sysheis
geared towards source-to-source transformations thattamaiin-
variants.

Step 2 is performed by InvTS itself. To maintain the result
of a query, InvTS inserts the maintenance code from step 1 at
every location that updates the variables the query depends
The straightforward way is to insert maintenance code atyeve
statement in the program, preceded by a runtime check ofhehet
the statement actually updates the data the query depends$isn

slows down the transformed program even when no such updates

occur, due to the evaluation of the runtime check at evetgstant.
InvTS uses control-flow, data-flow, type, and alias inforiorato
evaluate as many of these checks as possible at compile tbme,
reduce the runtime overhead of maintaining the query result

Generating maintenance code. As InvTS alone cannot generate
the code to maintain a query result, we give a method thata for
class of queries, generates maintenance code (in the fohma 6
at/if/de/do clauses) that incrementally maintains the result of
these queries.

We generate efficient maintenance code for queries of time for
(v1 in Si, ..., v, in Sk: conditior), whereconditionis a conjunc-
tion and each conjunct is either (1) a join condition of thenfo
e1 op ez, Whereop is ==, !=, in, Ornot in, ande; isv orv.f,
wherew is a variable and is a field, or (2) a boolean expression
whose value depends only on the objects bound fo. ., v, the
fields of these objects, and immutable objects.

Three kinds of updates can affect the result of a query: addin
an object to a set, removing an object from a set, and changing
the value of a field on an object. We decompose more compticate
updates into these simple updates. We further simplify thblpm
by replacing field updates (for both scalar and set fieldd) eade
that removes an object from all sets containing it, upddtesield,
and re-adds it to all sets. This transformation requirestaaiing
an auxiliary map from each object to the sets containing it.

With this simplification, the query result can increase amhen
an object is added to any of the sds, ..., Sk, and the query
result can decrease only when objects are removed from sie¢se
Since the action is executed only when the result set inesedlsis
means that we only need to handle the addition case apptelgria
to update the query result. However, during removal we magne
to update auxiliary maps.

Handling element addition. To handle addition of an object to a
set, we run the query with the correspondingariable bound to the
object being added. We then generate statements corrésgdod
each of the clauses (enumeration, predicate, and joinkiitery.
The code is generated in the following order:

1. For a predicate with all variables bound, an if-statencbetk-
ing the predicate is generated.

2. For an enumeration of the form in S wherev and S are
both bound, an if-statement that performs a membership test
is generated.

. For a join condition with both variables bound, an if-staent
that checks whether the join condition is satisfied is gardra

. For an equality or set-membership join with exactly one-va
able bound, a for-statement that iterates over the entmecor
sponding to the bound variable in a hash-join map is gergrate

. For an enumeration where onfyyis unbound, a for-statement
that iterates over the elements®fs generated.

If a clause does not match one of the conditions in this hsmnt
it cannot be generated yet. Each generated for-statemeds ki
variable, which can cause statements to become generable s
in priority. As all variables can be bound through the- statement,
eventually all clauses will be generated. The generatefiSroode
has the form of additionalt, if, de, anddo clauses thatat each
element additiondo the above-described maintenance.

Handling joins. For each join, we maintain a hashmap, which
we call a hash-join auxiliary map. For example, for the join
vl.parent==v2.name, if v1 is bound, ands2 iterates oveis2,

we introduce a hashmap with domaia that mapso . name to o.
Maintaining these mappings requires the generation oftiaddi
code which must be run in response to the addition and removal
of elements 062 and changes t6.name. This code must be run
before the maintenance code that handles element additrs,
either newat/if/de/do clauses are created, or existing ones are
modified so that the new maintenance code is prepended to the
appropriatedo clauses.

Auxiliary clauses. Theat, if, de anddo clauses have the same
syntax and meaning as in InvTS. Thus they are copied into the
InvTS rule being generated.

Type analysis. Our system uses static type analysis to reduce the
number of runtime checks. If a variable of a known type is gein
updated, and variables (or fields) of this type are not usetien
query, then the update cannot affect the result of the qaen/the
corresponding runtime check can be eliminated.

Our type system expands on Python'’s type system by making it
more precise. We introduce types that represent constrgsact
values such as lists of constant lengths, and unions of two or
more types. This higher precision, plus static analysiseftypes,
in contrast to Python’s dynamic type analysis, allows In6S
evaluate a large number of checks statically. In our expamis)
this reduces overhead by a factor of two or more in most cases,
based on Table 1 in Section 4. For example, for “BitTorrent -
No duplicate data”, this reduces CPU usage from 3.9% witle typ
analysis disabled, to 3.3% with type analysis enabled;ngive
CPU usage of 2.7% for the program running without any checks,
this reduces the overhead of invariant verification from 4#6
22%. For the other BitTorrent experiment, the overheaddsced
from 125% to 28%.

Alias analysis. InvTS also uses alias analysis to reduce the num-
ber of runtime checks, as an update to a variable that is rasteal

to a variable in the query cannot affect the query resulta@le
more precise alias analysis allows more runtime checks &difme-
nated. We use a flow-sensitive interprocedural may-algsrhm,

in contrast to simpler but less precise flow-insensitiveoatgms
such as Andersen'’s.

The alias analysis algorithm we use is based on the intrapro-
cedural, flow-sensitive may-alias analysis by Goyal [10dy&'’s
algorithm is intraprocedural, works on C, and has a runniimg t
of O(n®). Thus, it had to be extended to handle Python, and to

work interprocedurally. This resulted in a worst-vase ctaxipy of
O(n*), although in practice, for all programs we analyzed, the ru
ning time increased quadratically with the size of the paogrin
our experiment “InvTS - No own child”, alias analysis redsitiee
overhead from 100% (Overhead of “No Alias Analysis” complare
to “No Check”) to 62% (Overhead of “Incremental” compared to
“No Check”), as shown in Table 1.

4. Experiments

To demonstrate that our technique can efficiently verifyamv
ants, we have applied it to invariants from multiple domagis-
stract syntax tree transformations, authentication, afile distri-
bution protocol. For each invariant, we compare the peréorce
of the program without any invariant checking; with invatis be-
ing checked incrementally using the method described mphi
per; and with invariants checked in a non-incremental mabge
re-evaluating the query from scratch each time an updaterecc

All experiments were performed using Python 2.5.1 on Win-
dows Vista, running on a Core 2 Duo (Q6600@3.0GHz) machine
with 8GB of memory, of which 6GB were free.

4.1 AST transformations

An abstract syntax tree (AST) should satisfy several ilaves. For
our first two experiments, we check that no AST node is its own
child, and that each AST node is the child of at most one parent

For these experiments, we apply InvTS to itself to create
checked-InvTS, a version of InvTS that checks to ensurepittat
gram transformations do not violate the AST invariants. ¢kbd-
InvTS is then run with a rule-set that transforms subjecymms
into static single-assignment (SSA) form. Note that in ttase,
we are checking the correctness of checked-InvTS, ratlaer tthe
programs it is applied to.

Not own child. Recall from Section 2 that the following rule
detects violations of the invariant “a node is not a childteélf”.

foreach (o in extent(Node): o in o.children):
report ("Error: ", o, " has a self-edge.")
stop()

currently alive in the program, as it iterates over threeetg of
nodes. This leads us to the estimate that, in the best caseoth
incrementally instrumented program is#gode>) worse than the
uninstrumented one. It is not a surprise that all experimerith
non-incremental instrumentation timed out. When we mdpiiral
troduced a bug that assigned the same child to multiple aren
checked-InvTS detected the violation.

|y g
=3 0

Running time ratio to "No check"

o
n

EE No shared child
3 No own child
Il No check

tarfile
7877

bdb
2026

Fortran2003
15955

weakref
1021

chunk
493

pickled
4239
Proaram. number of AST nodes

Figure 2. Running times of InvTS normalized to the running time
of the non-instrumented version.

Overall, these experiments show that verifying invariattsin-
time can be efficient (with overhead smaller than 95%) fomeve
complex queries that involve multiple joins and membersagis.
We also see that when joins used by the query have a highiselect
ity, as these do, the running time of the instrumented pragsanot
very dependent on the query, but more so on the number okslass
for which we maintain extents.

4.2 Authentication

We performed two experiments involving the Kerberos auihen
cation used by pysmb, a SMB client written in Python. The first

Figure 2 shows that checking this invariant cause a constant checks that all packets sent are authenticated; the sedwuks:

factor slowdown. The overhead is close to 70%. About halhaf t
overhead is the cost of maintaining extents, while the oltladfris
the cost of maintaining invariants.

We do not give the running time of the non-incremental instru
mentation, as not even the smallest experiment was ablente co
plete in the time limit of 20 minutes. Since the query is runtea
time an AST node is created or updated, the non-incremeatal v
sion incurs an asymptotic slowdown. Incremental instrutigisom
eliminates this asymptotic penalty, rendering invarianéaking
practical.

No shared child. Inan AST, no two parents may refer to the same
child. The following rule checks for violations of this imant:

foreach (n in extent(Node), m in extent (Node),
c in extent(Node): c¢ in n.children and

¢ in m.children and n'!=m):
report ("Error: ", c, "is a child of both ",
m, n and ||’ n, ||‘||)
stop()

As this invariant contains multiple join conditions in m.children,
c in n.children, n!=m), hash-join maps are used to evaluate it
efficiently.

Figure 2 shows that incrementally checking this invariamt i
creases the running time by less than 95%. In contrast, the no
incremental instrumentation would be cubic in the numberoofes

that authentication does not occur more frequently thaessary.

Require valid ticket. Our first experiment checks that we do not
send packets to hosts that have an invalid Kerberos ticketaged
with them. This invariant needs to remain true until the gack
actually sent. To find violations of it, we keep a set of pasketing
sent, and report an error if a packet in the set is associatbdaw
invalid ticket.

foreach (sp in $sending_packets,
kt in extent(KerberosTicket):
kt.invalid and kt.ip==sp.target_ip):
report("Sending ", sp, " with invalid ticket!")
stop()
in global:
$sending_packets=set ()
$x.send ($p):
subclass (type($x) ,asyncore.dispatcher):
in class type($x) in function handle_write($arg):
if $arg in $sending_packets:
$sending_packets.remove ($arg)
o after:
if $p not in $sending_packets:
$sending_packets.append ($p)

de
at
if
de

Q

This rule tracks all sends of data over asynchronous sqckets
stops the program when a packet was sent to a server withaidinv

Kerberos ticket. Thele and do clauses work in the following
manner: When aend method call is encountered, the packet being
sent is added to thsending_packets queue. It is removed from
there once the packet is actually sent, which may not be sadbs
immediate. This is detected by intercepting findle_write
callback in the class subclassirgyncore.dispatcher. This
callback is called by Python when a packet is actually senvoer
the given socket.

When we ran this on pysmb, while transferring a 10GB file over
a 100Mbit/sec connection, the average CPU load increased fr

manner makes it CPU bound: it results in a 96.9% CPU load, and
the running time increases from 1302 to 8750 seconds.

The pysmb examples show that instrumenting complex pro-
grams in ways not anticipated by their creators is easilyedeith
our framework due to the ability to specify complex prograams-
formations, such as maintaining the set of sent packetbhemsdt of
packets waiting to be sent. It also demonstrates that congole-
ditions, including nested queries, are supported by thiméwork,
and their use does not cause excessive overhead.

3.6% to 11.7%. The throughput remained the same, because the#-3 File distribution protocol

program was |O-bound in both cases. The increase is due joithe
and the fact that many Kerberos tickets may match an IP asldkes
straightforward implementation increased CPU usage to, @i

BitTorrent (ttp://download.bittorrent.com/dl/) is a peer-to-pees fil
distribution protocol. When multiple peers download thmedile
concurrently, they can relay data to each other, making $sipo

reduced the throughput of the program by 73%, as pysmb becamepie for the file source to support very large numbers of doaaHo

CPU-bound. The times taken by the program to transfer the file
were 1302 seconds for the uninstrumented version, 135Indeco
for the incrementally instrumented version, and 6321 sesdar

the non-incrementally instrumented version.

Repeated authentication. It is inefficient for a program to re-
quest tickets from the Kerberos server long before the ntiyre
valid ticket times out. Thus, a useful invariant to checkhatta
successful authentication is not repeated until the rasuticket is
about to time out. A ticket times out when there was no agtiét
lating to that ticket for 300 seconds, i.e., no data was sethiet host
the ticket was issued for for the last 300 seconds. Thus tagiant
is: there are no two valid tickets such that they are bothrriefe
to the same host, are both valid, and are much lessthasout
(i.e., 300 seconds) apart. We define much less as 10 secawls le
as the MIT Kerberos client requests a new ticket 10 seconfdsebe
the current one times out. To verify this invariant, we needep
track of Kerberos tickets and of SMB activity.

The invariant is expressed using a nested query, with therinn
query computing the latest packet sent to a given host, amd th
outer query doing a join on all pairs of currently existingrBeros
tickets. The max aggregate is maintained using a heap.

foreach (k_old
k_new
k_old.
k_old.

in extent (KerberosTicket) ,
in extent (KerberosTicket):
valid and k_new.valid and
issue_time<k_new.issue_time and
k_old.ip==k_new.ip and
k_new.issue_time-max([p.time
for p in $sent_packets
if p.target_ip==k_new.ip and
p-time < k_new.issue_time])
< 300-10):
report ("Reauthenticated to host ", k_new.ip)
stop()
in global:
$sent_packets=set ()
$x.send ($p)
type ($x)==asyncore.dispatcher
after:
$sent_packets.add ($p)

de

at
if
do

When run on pysmb, while transferring a 10GB file over a
100Mbit/sec connection, the average CPU load increased fro
3.6% to 17.9%, mainly due to the need to maintain a heap per IP
address, and an additional join over the previous exampedJ
specific domain knowledge, the heap could be avoided: wedcoul
just keep track of the latest packet sent to each IP addrégs. T
works because time is monotonic. A rule modified in such a way i
less easily adapted towards other uses, though. Note thatéth
the maintenance of the heap, the instrumented programiligCsti
bound, not CPU bound. Checking invariants in a non-increaien

ers with only a modest increase in its load. Each peer dowsloa
chunks of a file from (likely different) peers, and then resss
bles the original file from the chunks. The BitTorrent pratbis
relatively complex, so we use our method to instrument arl@mp
mentation and check it for potential errors.

No duplicate data. Receiving the same piece of data from two
sources too often may mean that the client is using bandridth
ficiently. We check for this using a rule that detects whensidrae
data is received from two or more distinct sources (idemtifig IP
address), and logs the event without stopping the progrée|dg
could be analyzed later to determine whether the duplicasidue

to a bug or misconfiguration.

foreach (pl in $in_queue, p2 in $in_queue:
pl.source_ip!=p2.source_ip and
pl.payload==p2.payload) :
report ("Receiving same data from peers ",
pl.source_ip, " and ", p2.source_ip)
in global:
A queue of incoming packets.
It supports 0(1) membership tests,
holding at most 100000 packets
$in_queue=queue (max_length=100000)
$x.type=$s
$s=="incoming" and type($x)==Packet
after:
if $x not in $in_queue:
$in_queue.append ($x)

at
if
do

Experiments involved receiving a 10GB file from 30 peersyove
a 100Mbit/sec connection. We measured CPU load to detetiiméne
impact of the runtime checking. The average CPU load inectas
from 28.3% for the original program to 36.1% for the instruntesl
program. The small increase is due to the high selectivitthef
pl.payload==p2.payload join condition. Just like with pysmb,
both versions of the program are 10-bound.

No packet modification in transit. To verify that the correct data
is being sent between peers, we check the following invari&n
packet sent from one peer must be received by another pdenwit
a change in the payload.

We check this invariant by creating a server to which peerd se
summaries of the packets they send and receive. These parket
put into a set on the server. We write a query that detects when
packets of the same chunk have a different payload, by congpar
the MD5 hashes of the payloads.

The server maintains a seéc_set containing all packets sent
and received by BitTorrent peers. The following rule chethes
invariant:

foreach ($from in self.rec_set, $to in self.rec_set:

No Type Analysis| No Alias Analysis | Non-Incremental

| NoCheck | Incremental
pysmb - Require valid ticket 3.6% (1302s) | 11.7% (1351s)
pysmb - Repeated authentication | 3.6% (1302s) | 17.9% (1535s)

BitTorrent - No duplicate data 28.3% (1771s)

36.1% (1779s)

19.7% (1819s) | 14.1% (1601s) | 97.3% (6321s)
31.7% (2011s) | 23.3% (1943s) | 96.9% (8750s)
63.8% (1790s) | 36.3% (1830s) | 99.8% (3210s)

BitTorrent - No packet modification 2.7% (1783s) | 3.3% (1687s) | 3.9% (1763s) 3.4% (1805s) 93.1% (1801s)
InvTS - No shared child 13s 25s 349s 25s >1200s
InvTS - No own child 13s 21s 312s 26s >1200s

Table 1. CPU utilization (if I0-bound) and wall time taken for expaents under differing optimizations.

$from!=$to and $from.source!=None and
$from.target!=None and
$from.source==$to.source and
$from.target==%to.target and
$from.chunk==$to.chunk and
$from.chunk!=None and
$from.sent and $to.received and
$from.md5!'=$to.md5 and $from.md5!=None):
report ("Packet sent from ", $from.source,
" to ", $from.target, " changed in transit!")
stop()

We use two InvTS rules to modify the BitTorrent program to
send the information needed for invariant verification & slerver.
The rules state that a socket should be opened to the secepen
program, and that anytime a packet is written to any sockegaul
from any socket, the packet (minus the body) should be seheto
server. The rule for handlingend is the same as the rule below for
handlingreceive, with receive replaced withsend.

at $x.receive($p)
if type($x)==asyncore.dispatcher
de in global:
import socket
#0pen a socket to server on 192.168.17.46:636
$check_socket=socket.open_udp(192.168.17.46,636)
in global in function(myreceive(socket,packet)):
global $check_socket
For efficiency, do not sent the payload
$body=packet.body
$arg.body=None
$check_socket.send(packet)
packet.body=$body
instead:
myreceive ($x, $p)

do

After applying the query and rules to the BitTorrent clientla
our server, we benchmarked the CPU utilization of the client
and the server (which were running on the same computerh Wit
5 BitTorrent clients and the server running, the CPU utiiza
increased from 73 to 78 percent. When the clients were medsur
in isolation, the CPU utilization of a single client (withettother
4 clients and the server running on another system) was 14%, v
10% for the untransformed client. The server, when run ondse
machine (with the 5 clients running on a different machirtéized
3.3% of the CPU with the instrumentation enabled, versu%2.7
with no instrumentation.

On a reliable connection we found no problems. When we sim-
ulated a bad connection by randomly injecting changes iomoes
packets, we found the errors before the BitTorrent erroeatiin
algorithm, which operates on bigger chunks.

Effect of optimizations. Table 1 shows the CPU utilizations
and running times of the pysmb and BitTorrent examples under
different implementation options. It is easy to see thatriba-
incremental implementation is far worse than any otherioers

Disabling type or alias analysis also produces a noticeslble-
down.

5. Related work and conclusion

This paper touches two areas: runtime invariant verificgg, and
incremental query result maintenance.

There are several systems for runtime checking of temporal
properties. These include Java-MaC [15], JPAX [13] , INUKe [
and EAGLE [4]. These systems express the properties in arline
temporal logic (LTL) or a related rule languages.

Our system does not support writing invariants in LTL, al-
though, as our system supports comprehensions, extedtgiag,

a subset of LTL can be emulated. The pysmb example does so by
maintaining history and specifying queries over it. Whilestmay
incur a performance penalty compared to systems specjfidaH
signed to test LTL-based invariants, it is not a very sigaificper-
formance penalty (As seen in Section 4, the overhead is sonsi
tently under 100%).

The category into which our system fits best is tools that use a
side-effect free subset of their subject language, extendh var-
ious operators such as quantifiers or set operations, tohpjpec
variants. Such invariant specification languages inclidie [19],
Spec# [3], and Jahob [17]. For JML and Spec#, there are toats t
allow the user to combine/compile an invariant and a sulpest
gram into a compiled program that, at runtime, checks whettee
specified invariant holds. These tools include Boogie [2]Spec#
and jmic [7], jass [5], jmle [16], and DITTO [24] for JML. A run
time verifier for Jahob is under development [28].

Spec# does not support comprehensions[28]; or extents. As
such, it cannot easily encode the invariants we wish toyweHL
supports set comprehensions, quantifiers, and other ésattidoes
not natively support extents [18]. Jahob supports both cetrem-
sions and extents (as a subset of éveVariables set). The
language presented in this paper supports both set conmgiehe
and extents. It is worth noting that support for extents fiadilt
to emulate without support for liveness testing, becausbage
collection must be taken into account.

The JML compilers jmic, jmle, and jass all support a large-sub
set of JML, including comprehensions. But, they evaluatame-
hensions in a straightforward manner, by recomputing thémna
ever they are encountered. In contrast, our system incrathen
maintains the value of set comprehensions. DITTO provides i
cremental maintenance of some JML expressions, but it does n
incrementally maintain set comprehensions [24].

JQL [27] extends Java to support both comprehensions and ex-
tents, to support querying over collections. Recent worklQh
adds incremental maintenance of JQL queries in the face -of up
dates to the data they depend on. The fact that our system is de
signed with only invariant verification in mind allows us tomne
efficiently maintain invariants. For example, it is easier fis to
handle removal of elements from the sets that the query dspen
on. We support a marginally larger set of conditions on qsenive
can incrementally maintain query results for queries toatain a

condition of the forna in b.f. Also, theat andde clauses allow
us to do program transformations that maintain datastrestthat
would be unavailable to a pure query language, such as a a8t of
previously sent packets.

Potanin et al. [23] query snapshots of object graphs, biopar
the queries non-incrementally. PQL [21] queries over piasés of
the program, but not over extents. It uses BDDs to computeyque
results, but not incrementally.

Aspect-oriented programming can be used to check invariant

The user can directly write pointcuts and advice to checkeari-
ant and take appropriate action on violations [14, 25]. Ashaee
shown in Section 3, for even moderately complex invariahts t
is tedious and error-prone. Alternatively, the user carieaaitool
that generates pointcuts and advice from a specificationg28).
These tools are task-specific, so the user will likely havetioe
such a tool for his particular task. This is non-trivial, esjally if
the user wants to create a tool that will generate adviceirtlced-
mentally verifies invariants. Our system lets the programeweid
manually writing pointcuts and advices that incrementaigintain
invariants, as well as absolving him of the responsibilityvating
a system that generates such pointcuts and advices. Ingtésd
him concentrate on the task of specifying invariants.

There is a large amount of work on incremental maintenance of

invariants, e.g, [11, 22, 12, 20, 24]. From these, espgaialevant
to this paper is our system InvTS [20], which applies rulest th
incrementally maintain query results. We use InvTS to applgs
generated from queries in debugging rules. The advantage B8

is its utilization of static analysis to reduce runtime dwad, as
described in Section 3.

[9] T. Gibbs and B. Malloy. Weaving aspects into C++ applmag for
validation of temporal invariantsProc. of the 7th European Conf. on
Software Maintenance and Reengineeripgges 249-258, 2003.

[10] D. Goyal. Transformational derivation of an improvdiha analysis
algorithm. Higher-Order and Symbolic Computatioh8(1/2), Feb.
2005.

[11] D. Gries.The Science of Programmin&pringer, 1981.

[12] A. Gupta, I. Mumick, and V. Subrahmanian. Maintainingws
incrementally. Proc. of the 1993 ACM SIGMOD Intl. Conf. on
Management of Datgages 157-166, 1993.

[13] K. Havelund and G. Rosu. An Overview of the runtime fiestion
tool Java PathExplorer. Formal Methods in System Design
24(2):189-215, 2004.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.rPabnd
W. Griswold. An overview of AspectJLecture Notes in Computer
Science2072:327-355, 2001.

[15] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokglskava-
MaC: a run-time assurance approach for Java prografaesmal
Methods in System Desig?v(2):129-155, 2004.

[16] B. Krause and T. Wahls. jmle: a tool for executing JML gfieations
via constraint programmingLecture Notes in Computer Science
4346:293-296, 2007.

[17] V. Kuncak and M. Rinard. An overview of the Jahob anaysjistem:
project goals and current statug0th Intl. Parallel and Distributed
Processing Symppages 8-16, 2006.

[18] G. Leavens, A. Baker, and C. Ruby. Preliminary desigdMi.: a
behavioral interface specification language for J&d@M SIGSOFT
Software Engineering Notg31(3):1-38, 2006.

Using our framework for other languages such as Java and C [19] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Célow

requires implementing the framework as described in Se@io
including in particular implementing the type and alias lgsia

algorithms for the desired language. As a proof of concept, w

the design of jml accommodates both runtime assertion ahgekd
formal verification.Science of Computer Programmirigh(1-3):185—
208, 2005.

have extended InvTS to transform GCC C, where we implemented [20] Y. Liu, S. Stoller, M. Gorbovitski, T. Rothamel, and YitL

our interprocedural alias analysis and used GCC's builie
analysis. Future work includes refinements and experinfentsir
InvTS implementation for GCC C.

References

[1] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and
B. Zweimuller. JNuke: Efficient dynamic analysis for Jatacture
Notes in Computer Sciencgl14:462—-465, 2004.

M. Barnett, B. Chang, R. DelLine, B. Jacobs, and K. Lein@ogie:
A modular reusable verifier for object-oriented prograrfsoc. of
the 4th Intl. Symp. on Formal Methods for Components and chje
pages 364-387, 2006.

M. Barnett, R. DeLine, M. Fahndrich, K. Leino, and W. Stu
Verification of object-oriented programs with invariantiournal of
Object Technology3(6):27-56, 2004.

H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rbksed
runtime verification. Proc. of the 5th Intl. Conf. on Verification,
Model Checking and Abstract Interpretatiopages 44-57, 2004.

[5] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim.sSaJava
with assertions.Electronic Notes in Theoretical Computer Science
55(2):103-117, 2001.

[6] F. Chen and G. Rosu. Mop: an efficient and generic runtime
verification framework. Proc. of the 22nd annual ACM SIGPLAN
Conf. on Object Oriented Programming Systems and Appliosti
pages 569-588, 2007.

[7] Y. Cheon. A Runtime Assertion Checker for the Java Modeling
Language PhD thesis, lowa State University, 2003.

2

—

3

—

4

[l

[8] L. Clarke and D. Rosenblum. A historical perspective antime
assertion checking in software developmeé@M SIGSOFT Software
Engineering Notes31(3):25-37, 2006.

Incrementalization across object abstractiBroc. of the 20th Annual
ACM SIGPLAN Conf. on Object Oriented Programming Systems
Languages and Applicationpages 473-486, 2005.

[21] M. Martin, B. Livshits, and M. Lam. Finding applicatiogrrors and
security flaws using PQL: a program query langua®€M SIGPLAN
Notices 40(10):365-383, 2005.

[22] R. Paige and S. Koenig. Finite differencing of compleab
expressions.ACM Transactions on Programming Languages and
Systems4(3):402—454, 1982.

[23] A. Potanin, J. Noble, and R. Biddle. Snapshot quenebakebugging.
Proc. of Australian Software Engineering Confages 251-259,
2004.

[24] A. Shankar and R. Bodik. DITTO: automatic incremeiattion
of data structure invariant checks (in Javaproc. of the 2007
ACM SIGPLAN Conf. on Programming Language Design and
Implementationpages 310-319, 2007.

[25] F. Steimann. The paradoxical success of aspect-edeptogram-
ming. Proc. of the 21st Annual ACM SIGPLAN Conf. on Object-
oriented Programming Languages, Systems, and Applicatiages
481-497, 2006.

[26] V. Stolz and E. Bodden. Temporal assertions using ASpec
Electronic Notes in Theoretical Computer Scienté4(4):109-124,
2006.

[27] D. Willis, D. Pearce, and J. Noble. Efficient object gyirg for Java.
Proc. of the European Conf. on Object-Oriented Programmpages
28-49, 2006.

[28] K. Zee, V. Kuncak, M. Taylor, and M. RinardLecture Notes in
Computer Scien¢el839:202-213, 2007.

