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Abstract

Concurrent programs are notorious for containing data races that are difficult to reproduce and

diagnose at run-time. This inspired the development of type systems that statically ensure the absence

of data races. Boyapati and Rinard’s Parameterized Race Free Java (PRFJ) is an extension of Java

with such a type system. We give the first complete formal presentation of PRFJ; Boyapati and Rinard’s

paper gives only an informal sketch of an important part of the type system, namely, support for readonly

objects and objects referenced by a unique pointer. We present a new method for producing the type

annotations needed by the type checker to show that a program is race-free. This approach, called type

discovery, uses a combination of run-time monitoring and static analysis to automatically obtain most

of the annotations. We study the expressiveness of the type system and efficacy of type discovery on

several programs. In our experiments, type discovery reduced the number of annotations that need to

be supplied by the programmer to about 1.9 annotations/KLOC. In Boyapati and Rinard’s experiments,

the programmer needed to supply about 25 annotations/KLOC.

1 Introduction

Type systems are well established as an effective technique for ensuring at compile-time that programs are

free from a wide variety of errors. New type systems are being developed by researchers at an impressive

rate. Many of them are very elaborate and expressive.

Types provide valuable compile-time guarantees, but at a cost: the programmer must annotate the

program with types. Annotating new code can be a significant burden on programmers. Annotating legacy

code is a much greater burden, because of the vast quantity of legacy code, and because a programmer might

need to spend a long time studying the legacy code before he or she understands the code well enough to

annotate it.

Type inference reduces this burden by automatically determining types for some or all parts of the

program. A type inference algorithm is complete if it can infer types for all typable programs. Unfortunately,

complete type inference is impossible or infeasible for many expressive type systems. This motivates the

development of incomplete type inference algorithms. These algorithms fall on a spectrum that embodies a
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der Grants N00014-02-1-0363 and N00014-04-1-0722. Authors’ Email: {ragarwal,amits,stoller}@cs.sunysb.edu Web:
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trade-off between computational cost and power. Roughly speaking, we measure an algorithm’s power by

how many annotations the user must supply in order for the algorithm to successfully infer the remaining

types for a program. For some potentially useful type systems, even incomplete algorithms designed to infer

most types for most programs encountered in practice may have prohibitive exponential time complexity.

Traditional type inference is based on static analysis. A common approach is constraint-based type

inference, which works by constructing a system of constraints that express relationships between the types

of different parts of the program and then solving the resulting constraints.

We propose a novel approach to type inference. The main idea is to monitor executions of the program

and then infer candidate types based on the observed behavior and the results of static analysis. We call

this approach type discovery, to distinguish it from traditional type inference based solely on static analysis.

Static analysis is used in type discovery to reduce run-time monitoring overhead and for intra-procedural

type inference.

Type discovery is effective because, in our experiments, monitoring a small number of simple executions

of a program is usually sufficient to discover most or all of the types. It is not necessary for the monitored

executions collectively to achieve—or even come close to—full statement coverage. This is because simple

and inexpensive intra-procedural static type inference algorithms exist for many powerful type systems. The

hard problem is discovering type information for fields, method parameters, and return values; after that,

intra-procedural static type inference can efficiently propagate the types throughout the code, including code

in unexecuted branches.

This approach is not complete, because the process of generalizing from relationships between specific

objects in a particular execution to static relationships between expressions or statements in the program is

based in part on (incomplete) heuristics. Soundness is ensured by checking the discovered types with a type

checker.

As a first step towards the empirical evaluation of the effectiveness of type discovery, we developed and

implemented a type discovery algorithm for a type system for concurrent programs.

Concurrent programs are notorious for containing errors that are difficult to reproduce and diagnose

at run-time. This inspired the development of type and effect systems (for brevity, we call them “type

systems” hereafter) that statically ensure the absence of some common kinds of concurrent programming

errors. Flanagan and Freund [FF00] developed a type system that ensures that a Java program is race-free,

i.e., contains no data races. A data race occurs when two threads concurrently access a shared variable

and at least one of the accesses is a write. The resulting programming language (i.e., Java with their

extensions to the type system) is called Race Free Java. Boyapati and Rinard [BR01] modified and extended

Flanagan and Freund’s type system to make it more expressive. The resulting programming language is

called Parameterized Race Free Java (PRFJ). 1

This paper contains the first complete formal presentation of PRFJ. [BR01] contains only an informal

sketch of an important part of the type system, namely, support for readonly objects and objects referenced

by a unique pointer. Boyapati’s thesis [Boy04] contains a separate type system for the unique and readonly

properties, but does not combine it with the type system for race-freedom. As we will see in Section 4,

combining them soundly involves some subtle special cases. We also study in detail the notion of uniqueness

required to ensure absence of races.

Although the type systems is occasionally undesirably restrictive, (i.e., the type checker produces warn-

ings for some race-free programs), experience indicates that it is sufficiently expressive for many programs.

1Hereafter, we assume that programs contain all type information required by the standard Java type-checker, and we use
the word “types” to refer only to the additional type information required by these extended type systems.
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The cost of expressiveness is that type inference for Race Free Java and hence PRFJ is NP-complete [FFar].

Flanagan and Freund developed a simple and efficient type inference algorithm for a fragment of Race

Free Java. Roughly speaking, it starts with a set of candidate types for each expression, runs the type

checker, deletes some of the candidate types based on the errors (if any) reported by the type checker, and

repeats this process until the type checker reports no errors [FF01]. However, this algorithm infers types

only for a fragment of the type system (specifically, a fragment without external locks) with significantly

reduced expressiveness.

Boyapati and Rinard [BR01] use carefully chosen defaults and intra-procedural type inference to reduce

the annotation burden. The user provides type annotations on selected declarations of classes, fields, and

methods, and selected object allocation sites (i.e., calls to new). Default types are used for unannotated

classes, fields, and methods. A simple constraint-based intra-procedural type inference algorithm is used

to infer types for local variables and unannotated allocation sites. In their experiments with several small

programs, users needed to supply about 25 annotations/KLOC [BR01].

We believe that type systems like PRFJ are a promising practical approach to verification of race-

freedom for programs that use locks for synchronization, if the annotation burden can be reduced. The

computational complexity of type inference for PRFJ motivated us to develop and implement a type discovery

algorithm for PRFJ. The target program is instrumented by an automatic source-to-source transformation.

The instrumented program writes relevant information (mainly information about which locks are held

when various objects are accessed) to a log file. Analysis of the log, together with a simple static program

analysis that identifies unique pointers, produces type annotations at selected program points. Boyapati

and Rinard’s simple intra-procedural type inference algorithm is then used to propagate the resulting types

to other program points. This has the crucial effect of propagating type information into branches of the

program that were not exercised in the monitored executions. Our experience, reported in detail in Section

7, is that type discovery significantly reduces the annotation burden, to about 1.9 annotations/KLOC on

average.

One useful direction for future work is to consider partial typings, which ensure that parts of a program

are free of races. This would be useful for programs with some races and for programs where a significant

fraction of the methods are not invoked at all by available test suites, because type discovery will not

produce complete typings for such programs. Another direction for future work is type discovery for other

type systems, such as the type system for safe region-based memory management in [BSBR03].

2 Related Work

Type discovery is similar in spirit to Daikon [Ern00]. During execution of a program, Daikon evaluates a large

syntactic class of predicates at specified program points and determines, for each of those program points,

the subset of those predicates that always hold at that program point during the monitored executions.

Among those predicates, those that satisfy some additional criteria are reported as candidate invariants.

Daikon cannot infer PRFJ types, because the invariants expressed by PRFJ types are not expressible in

Daikon’s language for predicates. Daikon infers predicates that can be evaluated at a single program point.

In contrast, a single PRFJ type annotation can express an invariant that applies to many program points.

For example, if the declaration of a field f in a class C is annotated with the PRFJ type self, it means

(roughly): for all instances o of class C, for all objects o′ ever stored in field f of o, o′ is protected by its own

lock, i.e., the built-in lock associated (by the Java language semantics) with o′ is held whenever any field of

o′ is accessed. Such accesses may occur throughout the program.
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Boyapati combines object encapsulation with unique pointers and readonly objects in the SafeJava type

system [Boy04]. Boyapati’s rules for uniqueness (in the context of object encapsulation) allow unique pointers

to be transferred to other variables. He also allows temporary aliases to the unique pointers using a borrow

construct. However, in the context of race-freedom, such temporary aliases may not always be safe, and

may lead to races. To allow temporary aliases but only when safe to do so, we introduce the notion of

active expressions and the !e (“not escaping”) modifier. This makes our typing rules more complicated than

the ones in [Boy04]. We also remain syntactically closer to Java and do not introduce new constructs like

borrow. Boyapati and Rinard [BR01] give only informal sketches of the rules for unique and readonly types

in the context of types for race-freedom and miss subtle issues, such as not allowing readonly objects to

have unique fields, which (as discussed in Section 4) can make the type system unsound. Also, motivated

by the experiments in Section 7, we allow instantiation of classes declared as having first owner self with

unique.

Race Free Java [FF00] and Grossman’s race-free type system for Cyclone [Gro03] lack uniqueness and

escape information.

[RSH04] presents a dynamic type inference technique similar to ours for Race Free Java. Their algorithm

can infer more context-sensitive typings than ours but does not handle the additional features of PRFJ.

Static analyses such as meta-compilation [HCXE02] and type qualifiers [FTA02] can check or verify simple

lock-related properties of concurrent programs, e.g., that a lock is not acquired twice by the same thread

without an intervening release. Such analyses cannot easily be used to check more difficult properties such

as race-freedom. RacerX uses data-flow analysis to find race conditions and deadlocks [EA03]. RacerX is

useful for finding defects but is not a verification tool: to improve scalability and reduce false alarms, it relies

on unsound heuristics and can miss some race conditions and deadlocks. Type discovery builds on a sound

type system that guarantees absence of race conditions.

Tools that simply use run-time monitoring to detect indications of race conditions [SBN+97, vPG01,

JPr02, CLL+02] in monitored executions of a program cannot guarantee absence of data races in other

executions of the program. Type discovery can provide that guarantee. [CLL+02] uses static analysis to

show that some statements cannot be involved in data races and hence do not need to be instrumented.

Their analysis is sound and can perhaps be regarded as equivalent to type inference for some race-free

type system. However, there are many programs for which type discovery succeeds (showing that the

entire program is race-free) while their analysis shows that some but not all statements in the program are

race-free. For example, their analysis does not correlate memory accesses with the corresponding thread

and synchronization information, so it is unable to show race-freedom for a statement that is executed by

multiple threads but accesses a (different) unshared object in each thread. Also, their analysis cannot show

race-freedom for a statement that is executed by multiple threads but accesses a thread-local object with

an empty lockset in one of the threads and a shared object with proper synchronization in other thread.

Their analysis does not recognize readonly objects and hence may report false alarms at accesses to readonly

objects. Type discovery can prove absence of races in these cases.

An initial description of this work appeared in [AS04]. The main contributions of this paper relative to

that one are the typing rules (in Section 4 and Appendix A), the technique for refining discovered types (in

Section 5.8), and significantly more experimental results (in Section 7).
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P ::= defn∗ local∗ e
defn ::= class cn〈firstowner [, f ]∗〉 [where [wexpr ]∗]? extends c body

firstowner ::= f | self | thisThread

wexpr ::= f 6= unique | f 6= readonly

body ::= { field∗ meth∗ }
field ::= [ final]? t fd = e
meth ::= t mn (arg∗) requires (e∗final) [where [wexpr ]∗]? { local∗ e }

arg ::= argtype x
local ::= argtype y
s, t ::= c1 | int

c ::= cn〈firstowner [, f ]∗〉 | Object〈firstowner〉
c1 ::= cn〈owner [, owner ]∗〉 | Object〈owner〉

argtype ::= int | cn〈owner [, owner ]∗〉 [mod ]? | Object〈owner〉 [mod ]?
owner ::= f | self | thisThread | readonly | unique | efinal

efinal ::= e
e ::= null | n | new c1 | this | e; e | x | x = e |

e.fd | e.fd = e | e.mn([e]∗) | x-- | e.fd-- |
synchronized (e) { e } | e.fork

n ∈ integer constants

cn ∈ class names
fd ∈ field names

mn ∈ method names
x, y ∈ variable names

f ∈ formal owner names
mod ∈ type modifiers (!e,!w,!e!w)

Figure 1: The grammar for mini PRFJ. [X]? indicates 0 or 1 occurrences of X. [X]∗ indicates 0 or more
occurrences of X separated by commas.

3 Overview of Parameterized Race Free Java (PRFJ)

This section presents the type system in the context of Concurrent Java, a multithreaded subset of Java

[FF00]. We call the resulting language mini PRFJ. The grammar for this language is shown in Figure 1.

efinal ranges over final expressions, which are expressions whose value does not change. Syntactically, final

expressions are built from final variables (including this), final fields, and static final fields. 2 The expression

e.fork evaluates e to an object o, spawns a new thread, invokes o.run() in the new thread and returns 0. We

use Java-like syntactic sugar in examples. For example, a method declaration synchronized t mn(arg ∗) e

abbreviates t mn(arg∗) synchronized (this) {e}. Section 3.1 introduces the basic type system, which

does not include unique and readonly. Section 3.2 introduces unique and readonly.

3.1 The basic type system

The PRFJ type system is based on the concept of object ownership. Each object is associated with an owner

which is specified as part of its type. Each object is owned by another object or by special owner values

thisThread or self. Since an object can be owned by another object which in turn could be owned by

another object, the ownership relation can be regarded as a forest of rooted trees, where the roots may have

2 In mini PRFJ, the only final variable is this (assignments to this are prohibited); in PRFJ, any parameter or local variable
may be annotated as final.
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public class Account<thisOwner> extends Object<thisOwner> {

int balance = 0;

int deposit(int x) requires (this) {

this.balance = this.balance + x;

}

int run() requires() {

synchronized(a2) { a2.deposit(10); }

}

}

Account<thisThread> a1 = new Account<thisThread>;

a1.deposit(10);

Account<self> a2 = new Account<self>;

a2.fork;

a2.fork;

Figure 2: A sample PRFJ program.

self loops. The typing rules enforce the following synchronization discipline: to access an object o, a thread

must hold the lock associated with the root r of the ownership tree containing o; r is called o’s root owner.

This implies that the program is race-free.

An object with root owner thisThread is unshared. Such objects can be accessed without synchroniza-

tion. This is reflected in the type system by declaring that every thread implicitly holds the lock associated

with thisThread. An object with owner self is owned by itself.

Every class in PRFJ is parameterized with one or more owner parameters. Parameterization allows

the programmer to specify ownership information separately for each use of the class. The first parameter

always specifies the owner of the this object. The remaining parameters, if any, may specify the owners of

fields, method parameters, etc. The first parameter of a class can be a formal owner parameter or a special

owner value; the remaining parameters must be formal owner parameters. When the class is used in the

program, its formal owner parameters are instantiated with final expressions, special owner values, or owner

parameters that are in scope at the use. Using final expressions to represent owners ensures that an object’s

owner does not change from one object to another.

Every method is annotated with a clause of the form “requires (e1, . . . , en)”, where the ei are final

expressions. Locks on the root owners of the objects listed in a method’s requires clause must be held at

each call site.

To illustrate the basic PRFJ system, consider the program in Figure 2, copied from [BR01]. The program

defines an Account class with a formal owner parameter, which is instantiated with thisThread for the

thread-local instance stored in variable a1 and with self for the instance stored in variable a2. The deposit

method is annotated with “requires (this)”. a1’s owner is thisThread, and every thread implicitly holds

the imaginary thisThread lock, so this requires clause is satisfied at the call site involving a1. The
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requires clause is satisfied for the shared instance with rootowner self, because the call to a2.deposit

occurs in the scope of synchronized (a2). The program is well-typed and is therefore race free.

3.2 Unique and readonly

The full type system has two more special owner values: unique and readonly. An object with rootowner

readonly cannot be updated. For an object o with rootowner unique, there is a single (unique) reference to

o; only the thread currently holding that reference can access o. In both cases, the object cannot be involved

in a data race, and no lock needs to be held when accessing o.

To support unique objects, additional annotations !e and -- are needed. A !e annotation on a variable

v of a method m means that, if v refers to an object o, then when m returns, no references to o created by

m remain, and during execution of m, actions of m (including methods m calls) do not cause o to become

reachable by other threads. For simplicity, the type system enforces a stronger requirement, namely, that m

does not store references to o in any field of any object. The -- annotation is used to transfer the unique

reference to an object from one variable to another: x = y-- is equivalent to x = y; y = null. Such

an assignment may be accompanied by an ownership change from unique to another owner, as discussed in

detail in Section 4.4. The operational semantics is that this expression transfers the reference from y to x,

assigns null to y, and returns 0. If the entire expression returned the previous value of y, then there are two

references to that value (e.g., z = (x = y−−)), violating the fact that x has owner unique. To avoid this,

all assignment expressions (x = e and e′.fd = e) return 0.

Our definition of uniqueness can now be stated more formally as: for an object o with rootowner unique,

at most one field or variable without a !e annotation refers to o. Multiple variables with !e annotation may

also refer to o, but at any given time, a single thread holds all the references to o.

To support readonly objects, an annotation !w is introduced. A !w annotation on a variable v of a

method m means that, if v refers to an object o, then o is not updated through v or through any storage

location to which a reference to o flows from v inside m or methods m calls. We refer to !e and !w

annotations as type modifiers.

The use of unique and readonly is illustrated in Figure 3. The definition of class ArrayList is not

shown, but it has two owner parameters: the first specifies the owner of the ArrayList itself, and the

second specifies the owner of the objects stored in the ArrayList. The Worker constructor returns a unique

reference to the newly allocated object. Thus, the main thread has unique references to the two instances

of Worker until they are forked. After an instance of Worker is forked, it is accessed by only one thread

and hence is unshared. Thus, the owner of each Worker object changes from unique to thisThread. The

occurrences of -- in the main method indicate that the main thread relinquishes its unique references to m1

and m2 when it forks them. These occurrences of -- are required by the typing rules, and we consider them

to be, in effect, type annotations. The operational semantics of e-- is that it atomically returns the value

of e and assigns null to e; thus, if e contains a unique reference to an object o, then e-- returns a unique

reference to o.

The two instances of Worker share a single ArrayList object a. The lock associated with a is held at

every access to a, so a has owner self, and the first owner parameter of ArrayList is instantiated with

self. Instances of the Integer class are immutable, so they have owner readonly. All objects stored in a

have owner readonly, so the second owner parameter of ArrayList is instantiated with readonly.

The defaults in [BR01] are unable to determine the unique, self, and readonly owners used in this

program. Our type discovery algorithm correctly discovers all of the types for this program.
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public class Worker<thisThread> extends Object<thisThread> {

public ArrayList<self,readonly> l;

public Worker(ArrayList<self,readonly> l) {

this.l = l;

}

public void run() {

synchronized(this.l) { this.l.add(new Integer<readonly>(10)); }

}

public static void main(String args[]) {

ArrayList<self,readonly> ls = new ArrayList<self,readonly>();

Worker<unique> m1 = new Worker<unique>(ls);

Worker<unique> m2 = new Worker<unique>(ls);

m1--.fork;

m2--.fork;

}

}

Figure 3: A sample PRFJ program with unique and readonly variables.

Judgment Meaning
` P : t program P is well-typed and its main expression has type t
P ` defn defn is a well-formed class definition
P ` E E is a well-formed typing environment
P ;E ` meth meth is a well-formed method
P ;E ` field field is a well-formed field
P ;E; cs ` t t is a well-formed type assuming classes in cs are well formed
P ;E ` t1 <: t2 t1 is a subtype of t2
P ` field ∈ cn〈f1 . . . fn〉 class cn with owner parameters f1 . . . fn declares or inherits field
P ` meth ∈ cn〈f1 . . . fn〉 class cn with owner parameters f1 . . . fn declares or inherits meth
P ;E `final e : t e is a final expression with type t
P ;E `owner o o is a well-formed owner
P ;E ` RootOwner(e) = r r is the root owner of final expression e
E ` mod(e) = mod mod is the set of type modifiers associated with expression e
P ;E ` e : t expression e has type t provided all necessary locks are held
P ;E; ls ` e : t expression e has type t provided locks in ls are held

Table 1: Type judgments.

4 Typing rules

The type system is presented using the judgments in Table 1, which is based closely on [BR01]. Some im-

portant typing rules are presented in this section. The appendix contains the complete set of typing rules.
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class C1<thisOwner> {

int f;

int run() {

this.f = ..

}

}

class C<self> {

...

synchronized int m(C1<unique> y) {

borrow (C1<f> x =y) { // x = y --;

C1<f> z = x;

z.fork ;

x.f = ..;

} // y = x--

}

}

Figure 4: A code fragment that shows that simple extensions to [Boy04]’s typing rules for uniqueness (in
the context of object ownership) do not work in the context of race-freedom. This code fragment contains a
race but would be typable in [Boy04] if fork was treated like other method calls.

4.1 Active expressions

Our type system allows temporary aliases to unique references in certain cases. Boyapati’s rules for unique-

ness (in the context of object encapsulation) also allow temporary aliases to the unique pointers using a

borrow construct [Boy04]. However, simple extensions to [Boy04]’s typing rules for uniqueness (in the con-

text of object ownership) do not work in the context of race-freedom. Figure 4 illustrates a code fragment

that contains a race but would be typable if [Boy04]’s rules for uniqueness were naively extended to allow

temporary aliases in the context of race-freedom. In the example, x temporarily borrows the pointer in y. y

becomes unusable in the scope of borrow but x is allowed to create temporary aliases. x creates a temporary

alias z which escapes. z escapes and thus the two temporary aliases to the unique reference can update the

reference simultaneously leading to a data race. At the end of the scope of borrow, x is transferred back to

y. Of course, this example is not typable in our race-free type system. In order to identify when a variable

or field holding a unique reference needs to be nulled, we introduce the notion of active expressions. The

typing rules (specifically [EXP REF] and [EXP VAR]) require that -- is applied to each active occurrence

of a variable or field with root owner unique.

Informally, an expression in a program P is active if a reference is created to the result of the expression.

Formally, active is defined recursively over the structure of expressions (abstract syntax trees, abbreviated

AST). The base cases are:

(b1) The body of a method (i.e., the root of the AST for the body) is active (because a reference to the

return value is created in the calling context). 3

(b2) Arguments (including this) to methods (i.e., roots of ASTs for all arguments of all method calls)

3For Java, this rule is replaced with: the argument of every return statement is active.
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are active (because references from parameters to arguments are created), except arguments passed to

parameters with non-escaping types.

(b3) Right sides of variable assignments and field assignments—including initializers— are active (i.e., in

x = e and e′.fd = e, the root of the AST for e is active) unless both left and right sides are non

escaping (i.e., they have !e in their types) .

The “except” clause in (b2) and the “unless” clause in (b3) allow some temporary aliases to unique

objects. Passing the same unique object as multiple arguments to the same method can create multiple

temporary aliases to a unique object. For example, consider a method declaration m(C<f1>!e x, C<f2>!e

y) {. . .}, and a program fragment C<unique> o; m(o,o);. In this example, passing the same unique object

o as the first and second argument of method m creates temporary aliases (in x and y) to the same unique

object.

The inductive cases of the definition propagate activeness down ASTs: if an expression is active, then

subexpressions that may provide the return value of the expression are active.

(i1) If e1; e2 is active, then e2 is active.

(i2) If synchronized (e1) { e2 } is active, then e2 is active.

(i3) If e-- is active, then e is active.

Note that the definition of active is top-down and therefore cannot easily be expressed in typing rules,

which work bottom-up. The following program illustrates active expressions.

class C<thisOwner> {

C<unique> f;

m1(C<self> this) {

synchronized (this) { this.f = new C<unique>();}

synchronized (this) { this.f-- ;}

}

}

The body of m1 is active by (b1). The second synchronized expression is active by (i1) and the occurrence

of this.f-- in it is active by (i2). The occurrence of this.f in it is active by (i3) and has owner unique,

so -- must be applied to it. new C<unique> is active by (b3), but it is not of the form v or e.fd, so -- need

not be applied. Without the concept of active expressions, it would be difficult to express the requirement

that -- needs to be applied to the second occurrence of this.f, since this depends on how the value is

used multiple steps up the AST. For example, if the synchronized expression had been on the left of an

assignment, -- would not be needed.

By using the -- construct, some checking is shifted from compile time to runtime; for example, the

following program typechecks but throws a NullPointerException.

C<unique> x;

C<f1> y = x--; // x becomes null

C<self> z = x--; // x and z are null

synchronized (z) { z.f =...} // NullPointerException
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Predicate Meaning
ClassOnce(P) No class is declared twice in P
WFClasses(P) There are no cycles in the class hierarchy
FieldsOnce(P) No class contains two fields with the same name, either declared or inherited
MethodsOncePerClass(P) No method name appears more than once per class
OverridesOK (P) Each overriding method has the same return type and parameter

types (including the owner parameters) as the methods being overridden,
except for the this argument where the class names differ but the
owner parameters are same. The requires clause of each
overriding method is the same or a subset of the requires

clause of the methods being overridden. Each parameter of the overriding method
has the same or a superset of the modifiers (!e,!w) of the corresponding
parameter of the overridden method. The where clause of the overriding
method is a subset of the where clause of the method being overridden.

Table 2: Predicates that need to hold for a well-typed program.

To allow (b2) to be checked without virtual method call resolution, and to ensure that the checks in-

volving !e and !w in the [EXP INVOKE] rule are strong enough, we require that for every method msub

that overrides another method msuper, each parameter of msub has the same or a superset of the modifiers

(!e,!w) of the corresponding parameter of msuper. This requirement is part of OverridesOK (P) (shown in

Table 2), which is a premise of rule [PROG].

4.2 Well-formed types and class definitions

Well-formed types are obtained by instantiating the formal owner parameters of a class. Recall that the

first owner in a class declaration may be a constant, specifically, self or thisThread. [BR01] shows that

allowing self there is necessary for typability of self-synchronized classes (also called callee-synchronized,

i.e., all methods except constructors acquire the lock on this). Allowing thisThread there is necessary for

similar reasons. Our type system allows these constants to be “instantiated” with unique.

FO(t) return null if t is a primitive type else it returns the first owner of the class type.

[TYPE THREAD-LOCAL CLASS UNIQUE]

P ` class cn〈thisThread f2...n〉 extends c { [final]? ti fdi = e i∈ 1...k
i . . .}

P ;E `owner o2...n

t′i = ti[o2/f2] . . . [on/fn]
isFinal(fdi) ⇒ FO(t′i) 6= unique

t′i ∈ cs ∨ P ;E; cs, cn〈unique o2...n〉 ` t′i
P ;E; cs ` cn〈unique o2...n〉

Allowing classes with first owner thisThread to be instantiated with first owner unique supports pro-

grams in which the thread allocating the object has a unique reference to it before passing its unique reference

to some other thread, after which the object is thread-local. The example in Figure 3 illustrates this. The

relevant rule is [TYPE THREAD-LOCAL CLASS UNIQUE].

[BR01] states that if a variable or field x is declared to be the unique pointer to an object, then there

is no other variable or field that has a pointer to that object, and hence the object can be accessed safely
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class C<COwner> {

C1<unique> f;

.....

int run() {

synchronized(this) {this.f.f1 =...};

}

m1(C<self> x) {

x.fork;

x.fork;

}

}

class C<COwner> {

C1<unique> f;

.....

int run() {

this.f.f1 =...;

}

m2(C<readonly> x) {

x.fork;

x.fork;

}

}

Figure 5: A program to illustrate two threads accessing the unique object. We assume class C1 has a field
f1. Right side shows that allowing readonly objects to have unique fields can lead to races.

without any synchronization. However, two threads may simultaneously access the unique pointer. The

method m1 in Figure 5 illustrates this: two threads have reference to variable x, hence both threads can

access the object pointed to by x.f, even though x.f has a unique pointer to it. Note that this.f and

this.f.f1 are not active and hence -- is not applied. In this example, the access to f1 is safe, because the

expression this.f.f1 is protected by lock on this.

In contrast, method m2 contains a race condition, since two threads simultaneously update x.f.f1. To

make m2 untypable, we do not allow readonly objects to have fields with owner unique. A similar example

can be constructed to show that final fields with owner unique can be involved in races.

The rules to check well-formed instantiation of classes ([TYPE SELF CLASS], [TYPE THREAD-LOCAL

CLASS], [TYPE SELF CLASS UNIQUE], [TYPE THREAD-LOCAL CLASS UNIQUE], [TYPE C]) pro-

hibit final fields and fields in readonly objects from having owner unique. The rules allow any field of

a class to be instantiated with owner thisThread only if the corresponding class is also instantiated with

owner thisThread. The rules also check that field types are instantiated legally and hence need to han-

dle mutually recursive classes (e.g., class C<f1,f2> {D<f1,f2> x ...} class D<f1,f2> {C<f1,f2> y

...}) correctly. For this they keep track of “class set” cs, the set of classes whose field types have already

been checked. The rule does not generate premises for instantiation of the fields in classes already in set cs.

Figure 6 illustrates why instantiation of self with unique (see rule [TYPE SELF CLASS UNIQUE] in

the Appendix) is useful. Class C is self-synchronized and hence is typable only if its first owner is self, not a

formal owner parameter, as explained in [BR01, Section 5.6]. The init method contains no synchronization

and has an empty requires clause, so the access to this.f is typable only if invoked with a unique pointer

to this. Thus, the owner of this must be made explicit and equal to unique in the declaration of init.

The init method declares this to be !e, so there is still a unique pointer to this after init returns. Since

the this parameter must sometimes be declared explicitly to show its owner and type modifiers (as in this

example), our typing rules require, for simplicity, that this is explicitly declared as the first parameter of

every method and constructor. Thus, our rule [CLASS] for well-formed class definitions, unlike [BR01]’s,

does not add this to the typing environment in the premise that checks the method is well-formed. As

syntactic sugar, if the declaration of this is omitted in a constructor or method of a class cn〈f1, .., fn〉, we
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class C<self> {

C1<..> f;

void init(C<unique>!e this) requires () {

this.f = ...

}

synchronized int m() requires () {

this.f = ...

}

void run() {

m();

}

}

C<unique> o = new C<unique>;

o.init();

C<self> tmp = o--;

tmp.fork;

tmp.fork;

Figure 6: PRFJ program to show that allowing instantiation of self with unique is useful. A typical use of
class C is shown on the right.

class C<thisOwner,fOwner> {

D<fowner> f;

}

class C1<thisOwner,cOwner,fOwner> {

copy(C<cOwner,fOwner> c, C<cOwner,fOwner> c1) where fOwner != unique requires (c,c1) {

c1.f =c.f;

}

}

Figure 7: A program to illustrate the need for where f != unique clause.

add the declaration cn〈unique, f2, ..., fn〉 this or cn〈f1, ..., fn〉 this, respectively.

A where clause in a method declaration constrains the values of formal owner parameters. Constraints

of the form f 6= unique and f 6= readonly are allowed.

Figure 7 illustrates why where f 6= unique clauses are needed. Instantiation of fOwner with unique

must be prohibited (by a where clause on method copy or class C1), because the method creates (in c1.f)

an additional (not unique) reference to c.f.

To see why where f 6= readonly clauses are needed, consider the program in Figure 8; class C is the

same as in Figure 7. Instantiation of fOwner with readonly must be prohibited, because it would make c.f

have owner readonly, and c.f gets updated.

We require that if m1 overrides m2, then m1’s where constraints are the same or a subset of m2’s where

constraints. This requirement is a part of OverridesOK(P ) (shown in Table 2), which is a premise of rule

[PROG].
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class C1<thisOwner,cOwner,fOwner> {

m(C<cOwner,fOwner> c ) where fOwner != readonly requires (c,c.f) {

c.f.x = ...;

}

}

Figure 8: A program to illustrate the need for where f != readonly clause.

4.3 Well-formed method

The [METHOD] rule typechecks the method body assuming the locks in the requires clause are held.

Method owner parameters are formal owner parameters that appear in a method declaration and not in

the declaration of the enclosing class. To see why they are useful, consider the print(Object) method of the

PrintStream class [BR01, Section 9]. If parameterized methods were not allowed, then all objects that can

be printed by a single instance of PrintStream must have the same owner, which is undesirably restrictive.

The [METHOD] rule adds ordinary parameters, method owner parameters, and where constraints to the

typing environment. (Formal owner parameters of the class are added to the typing environment by the

[CLASS] rule.) Note that in class declarations, only the first owner parameter can be a special owner; all

other owner parameters must be formal owner parameters. In declarations of method parameters, special

owners may appear in all positions.

[METHOD]

P ` t mn(arg0..n) [ where f ′
1 6= o1, . . . , f

′
p 6= op ]? requires (e1..m) {local1..l e} ∈ cn〈f1..k〉

each f ′
i appears in some arg i

each formal owner in t appears in some arg i

arg0 matches cn〈. . .〉 . . . this
E′ = E, final arg0, . . . , final argn

E′′ = E′ ∪ { ownerformal f | f appears in some arg i } ∪ { where f ′
1 6= o1, . . . , f

′
p 6= op }

P ;E′′ `final ei : ti
P ;E′′ ` RootOwner(ei) = ri

P ;E′′, local1..l; thisThread, r1..m ` e : t
P ;E ` t mn(arg0..n) [ where f ′

1 6= o1, . . . , f
′
p 6= op ]? requires (e1..m) {local1..l e}

4.4 Well-formed expressions

The [EXP VAR] rule for reading the value of a variable x requires that -- is applied to x if the occurrence

of x is an active expression and the first owner in the type of x is unique or a formal owner parame-

ter f without a where f 6= unique restriction. The rule uses a predicate possiblyUnique(t, E), which holds

if the first owner of t is unique or a formal owner parameter f without a where f 6= unique restriction in E.

[EXP VAR]

P ` E E = E1, [final]? t mod x,E2

x is active ∧ possiblyUnique(t, E) ⇒ -- is applied to x
P ;E; ls ` x : t
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The rule [EXP VAR ASSIGN] for assignments to variables (including method parameters) checks that

an expression with non-escaping type is assigned only to a variable with non-escaping type. Similarly, an

expression whose type modifier contains a !w can be assigned only to a variable whose rootowner is readonly

or whose type contains a !w modifier. The type judgment E ` mod(e) = mod means that mod is the set

of type modifiers associated with the result of expression e. For example, Object !e x, Object y ` mod(

synchronized (y) { x }) = { !e }.

[EXP VAR ASSIGN]

P ;E ` x : t
P ;E; ls ` e : t

E ` mod(e) = mod E ` mod(x) = mod′

!e ∈ mod ⇒ !e ∈ mod′

!w ∈ mod ⇒ !w ∈ mod′ ∨ RootOwner(x) = readonly

P ;E; ls ` x = e : int

During initialization of an object, there is usually a unique reference to the object, regardless of subse-

quent ownership. To accommodate this, our type system uses subtyping to allow the owner of an object to

change from unique to any other owner. Note that this does not introduce the possibility of race conditions.

[EXP SUB UNIQUE]

P ;E; ls ` e : cn〈unique o∗〉
P ;E `owner o1

P ;E; ls ` e : cn〈o1 o∗〉

For a dereference e.fd, the rule [EXP REF] checks that either the root owner of e is in the current lockset

ls or the root owner of e is readonly or unique (since no synchronization is needed to access objects owned

by readonly or unique). As an exception, if the field is final, then the dereference is always allowed.

t[σ] denotes the result of applying substitution σ to type t. Our definition of substitution is standard

except that special owners in the domain of the substitution are ignored. For example, C〈thisThread,f〉

[unique/thisThread] [self/f] equals C〈thisThread,self〉, not C〈unique,self〉. To see why this is needed,

consider the program fragment:

class C<self> {

C1<self> fd;

}

C<unique> o;

... = o.fd;

If the [EXP REF] rule unconditionally substituted o1 for f1 in the type of the expression (as in [BR01]),

we would conclude that the type of o.fd is C1〈self〉[unique/self], which is C1〈unique〉, which is not what

we want.

The [TYPE THREAD-LOCAL CLASS UNIQUE] rule allows a class declared with first owner thisThread

to be instantiated with first owner unique. The fields of such a class may have owner thisThread, and

15



class D<thisThread> {

Object<thisThread> f1;

...

}

class C<thisThread> extends Thread<thisThread>{

D<thisThread> f ;

C(C<unique> this) {

f = new D();

}

void run() {

this.f.f1 = ...

}

}

C<unique> c = new C<unique>;

D<thisThread> d = c.f;

c--.fork;

d.f1 =...;

Figure 9: A program to illustrate that unique objects with thisThread fields can be involved in a race.

allowing objects with owner unique to have thisThread fields can cause a race, as illustrated in Figure 9.

In the example, an instance o of class C is created with owner unique. However, a thread-local instance o1 of

D gets a reference to the thread-local instance o2 of D stored in o.f. After the unique reference to o is passed

to the spawned thread, simultaneous dereference of object o1 in the main thread and o.f in the spawned

thread can cause a race. To avoid this, the type of an expression e.fd, where e has owner unique and fd

has been declared with first owner thisThread, is treated as unique in [EXP REF] (the tfu function defined

below accomplishes this). In the example in Figure 9 this means that, to make the program typable, d =

c.f must be replaced with d = c.f--, so this.f.f1 will cause a NullPointerException instead of a race.

If a field access expression e.fd is active and its owner is unique or a formal owner parameter f with-

out a where f 6= unique restriction, -- must be applied to e.fd, as discussed in Section 4.1. We define

tfu(o, t) (“thisThread field of unique”) as: if o = unique and t has the form cn〈thisThread, f2...n〉 then

cn〈unique, f2...n〉 else t.

[EXP REF]

P ;E; ls ` e : cn〈o1...n〉
P ;E ` RootOwner(e) = r

(P ` (t fd) ∈ cn〈f1...n〉 ∧ r ∈ ls ∪ {unique, readonly}) ∨ (P ` (final t fd) ∈ cn〈f1...n〉)
t′ = tfu(o1, t)[e/this][o1/f1][o2/f2] . . . [on/fn]

e.fd is active ∧ possiblyUnique(t′, E) ⇒ -- is applied to e.fd
P ;E; ls ` e.fd : t′

For an assignment e.fd = e′, the typing rule [EXP ASSIGN] checks that the root owner of e is in the
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current lockset or is unique. If e has root owner readonly, then typechecking fails (as it should), because

ls never contains readonly. If e′ is a variable then it should not have !e modifier, because this assignment

makes e′ escape to a field of e. If e is a variable, it should not have !w modifier. The typing rule also checks

that fd is not final. The type of a thisThread field of a unique object is changed to unique, as in [EXP

REF].

isROFormal(r) is true if r is of the form RO(e).

[EXP ASSIGN]

P ;E; ls ` e : cn〈o1 . . . on〉
P ` (t fd) ∈ cn〈f1 . . . fn〉 and fd is not final

P ;E ` RootOwner(e) = r
r ∈ ls ∪ {unique} ∧ isROFormal(r) ⇒ where r 6= readonly ∈ E

E ` mod(e) = mod E ` mod(e′) = mod′

!w /∈ mod ∧ !e /∈ mod′

t′ = tfu(o1, t)[e/this][o1/f1][o2/f2] . . . [on/fn]
P ;E; ls ` e′ : t′

P ;E; ls ` e.fd = e′ : int

The [EXP INVOKE] rule checks that all locks in the requires clause of the method declaration are held

at the call site. The rule works as follows. Let tp be the type of a method parameter (possibly this), and

let ta be the type of the corresponding argument. tp and ta must be related as follows for the invocation to

type-check. (i) If tp is a primitive type, then ta = tp. (ii) If tp is a class type, then ta is a class type for

the same class. Let f be a formal owner parameter in tp. If there is a constraint where f 6= unique (or

where f 6= readonly) in the method declaration then the corresponding owner in ta cannot be unique (or

readonly). If f is a class parameter (i.e., f appears in the declaration of the class containing the method),

then the corresponding owner in ta is the same as the instantiation of f in the type of the target (receiver)

object. If tp contains special owners, then the corresponding owners in ta must be the same special owners.

(iii) If ta has owner unique or modifier !e, then tp has modifier !e. If ta has owner readonly or modifier

!w, then tp has modifier !w.

In this rule, σ is the substitution that instantiates formal owner parameters. It is used to ensure that a

formal owner parameter that occurs multiple times (in the parameter list and return type) is instantiated

consistently.

In this rule j ranges over 0 . . . k; note that y0 is this. FormalSatisfiesWhere(f,E, g) is defined as: where

constraints on f in the environment E are a superset of the where constraints on g. formalOwners(t) =

formal owner parameters that appear in t. isFormal(f) is true iff f is a formal owner parameter.
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[EXP INVOKE]
P ;E; ls ` ej : t′j

ej does not contain synchronized

P ` (t mn(tj modj y j∈0...k
j ) [ where g1 6= o1, . . . , gl 6= ol ]? requires (e′1...m)) ∈ cn〈f1...n〉

t′j = tj [σ][e0/this]
dom(σ) = formalOwners(t0...k)

gi[σ] 6= oi ∧ isFormal(gi[σ]) ⇒ FormalSatisfiesWhere(gi[σ], E, gi)
∀f ∈ dom(σ) : P ;E `owner f [σ]

possiblyUnique(t′j , E) ⇒ !e ∈ modj ∨ ej is of the form e′−−
possiblyReadonly(t′j , E) ⇒ !w ∈ modj

E ` mod(ej) = mod′
j

modj ⊇ mod′
j

P ;E ` RootOwner(e′i[e0/this][e1/y1] . . . [ek/yk]) = r′i
r′i ∈ ls ∪ {unique, readonly}

P ;E; ls ` e0.mn(e1...k) : t[σ][e0/this]

synchronized expressions in method arguments are prohibited; this implies that all locks held during the

evaluation of the arguments are held during the invocation. This prevents some subtle races as illustrated

in Figure 10. In the example, the instance oc of class C has a unique field f that refers to an instance od of

class D. oc and od are passed as arguments to method m. The main thread spawns a new thread inside the

method body. The main thread and spawned thread both access od.f1; the spawned thread holds the lock

held on oc, whereas the main thread accesses it without holding any locks, causing a race. This happens

because the second argument to the method was a synchronized expression, and the lock on oc needed to

access oc.f was held only during the evaluation of the argument and not during the method call.

The [EXP FORK] rule checks the invocation e.run with a lockset that contains thisThread and is oth-

erwise empty. This check (the second premise of the rule) ensures that e has a run method, the owner of

e is compatible with the type of the this parameter of the run method, and the where constraints on the

run method are satisfied. The object to which e evaluates escapes to the new thread, so e should not have

a !e modifier. Also the first owner in the type of e should not be thisThread unless e has first owner unique.

[EXP FORK]
P ;E; ls ` e : cn〈o1...n〉

P ;E; thisThread ` e.run() : int
E ` mod(e) = mod ∧ !e /∈ mod

o1 = thisThread ⇒ e has type cn〈unique . . . fn〉
P ;E; ls ` e.fork : int

4.5 Typing Rules for Additional Language Features

This section briefly sketches how several additional language features present in Java—specifically, static

fields and static methods, arrays, and exceptions—are handled.

Static fields and static methods. The typing rule for dereferencing a static field of class cn checks whether

cn (representing the lock associated with the class) is in the lockset. A static field must be protected by

the lock associated with its class. There is currently no provision to specify a different owner, although this

could be accommodated using guarded by annotations [FF00]. The type of a static field cannot have owner

thisThread, because static fields are accessible to all threads. A static method cannot use formal owner

parameters of the class, because those parameters normally get instantiated based on the type of the target

object, and static methods do not have a target object.
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class C<self> {

D<unique> f = new D<unique>;

int run() {

synchronized(this) { this.f.f1 = ... ;}

}

}

class M<thisThread> {

void m(C<self> x, D<fOwner>!e y) requires (fOwner) {

x.fork ;

y.f1 = ... ;

}

}

M<thisThread> m = new M<thisThread> ;

C<self> c = new C<self>;

m.m(c,synchronized(c) {c.f} );

Figure 10: A program to illustrate that synchronized expressions in method arguments can lead to races.
Assume class D has a field f1.

Arrays. An example array type is C<unique>[]<self>. This type means that the owner of the array is

self, and elements of the array are unique references to instances of C. Only arrays with owner thisThread

may have elements with owner thisThread. readonly arrays cannot have unique elements for reasons

similar to those discussed in Section 4.4. -- must be applied to active array access expressions. For example,

if a has the above array type, then synchronized(a) {C<unique> c = a[0]--} is typable.

Exceptions. To check throws clauses of methods, typing judgments must be extended to keep track of

the set of exceptions that might be thrown by an expression. For example, the judgment P ;E; ls ` e : t,X,

where X is a set of exception types (i.e., types that extend Throwable) means that in the context described

by P ;E; ls, evaluation of e either returns a value of type t or throws an exception with a type in X.

This requires changes to the typing rules [METHOD] (to deal with throws clauses), [EXP INVOKE] (to

deal with throws clauses and NullPointerException), and [EXP REF] and [EXP ASSIGN] (to deal with

NullPointerException). Most of the other rules change simply to propagate sets of exceptions. For

simplicity, we require that all exception types are declared with exactly one owner parameter, which is a

formal owner parameter, and that all throw statements throw unique references to exception objects. Note

that implicit throws of NullPointerException and other run-time errors also throw unique references.

Thus, the types of arguments to catch handlers and throw statements, and types in throws clauses are

instantiated with owner unique.

5 Type Discovery for PRFJ

Our algorithm has three main steps.
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First, static analysis is used to infer unique owners and !e annotations for fields, method parameters,

return values, and local variables. We use static analysis for this to avoid the run-time overhead of tracking

unique references.

Second, run-time information is used to infer owners for fields, method parameters and return values,

and owners in class declarations.

Third, the intra-procedural type inference algorithm in [BR01, Section 7.1] is applied, to infer the types

of local variables and allocation sites whose types have not already been determined.

Our algorithm does not infer which classes C need multiple owner parameters or how those parameters

should be used in the declarations of fields and methods of C; we assume this information is given. This is

acceptable because in our experiments, relatively few classes need multiple owner parameters, and most of

the classes that do are library classes, which can be annotated once and re-used. Our algorithm does try to

discover how to instantiate those owner parameters in all uses of C.

5.1 Inferring Unique Owners and !e and -- Annotations

Aldrich et al.’s static analyses for !e (they call it lent) and uniqueness are flow-insensitive context-insensitive

inter-procedural data-flow analyses whose running times are linear in the size of the program [AKC02]. To

infer !e annotations, we use [AKC02]’s lent analysis as is. To infer unique annotations, we use the following

modified version of [AKC02]’s uniqueness analysis.

First a directed value flow graph is constructed. The graph contains a node for each field, local variable

and method parameter. We refer to the node corresponding to x as N(x). In addition, for each method m,

for each call site k of m and each parameter p of m, there is a special node denoted Sk(p). We extend the

domain of N (without changing the set of nodes) by defining: N(e.fd) = N(fd). For each assignment of the

form el = er such that el and er are variables or field accesses, there is a directed edge from N(er) to N(el).

For the kth callsite of method m, for each argument e that is a variable or field access, there is a directed

edge from N(x) to Sk(p), where p is the method parameter corresponding to that argument, and there is a

directed edge from N(p) to N(x).

The algorithm labels each program variable and expression with unique or non-unique. We define an

ordering on the labels: unique ≺ non-unique. Let U(n) denote the label of node n. Initially, everything

is optimistically labeled unique, except for final fields and arguments and results of native methods. Final

fields cannot have owner unique for reasons discussed in Section 4.4. Live variable analysis annotates the

last use of each variable and field access. For each assignment of the form el = er such that el and er are

variable or field accesses, if er is a variable and last use of er, then U(N(el)) = U(N(el))
⊔

U(N(er)), else

U(N(el)) = non-unique because it aliases er which is still live and if either el or er are not marked !e, then

U(N(er)) = non-unique.

For a call site k of the form m(. . . , e, . . .), if e is a variable or field access and is not the last use of a

variable, and if the corresponding parameter p of method m is not marked !e, then U(N(e)) = non-unique

and U(Sk(p)) = non-unique. If this is the last use of a variable, then U(Sk(p)) = U(Sk(p))
⊔

U(N(e)).

Starting from the non-unique base cases generated above, we propagate non-unique forward along the

edges of the directed value flow graph. At the end, if any of the special nodes corresponding to a method

parameter p is labeled non-unique then p is not given owner unique, even if N(p) is labeled unique, although

p’s owner may be a formal owner parameter that is instantiated with unique at some call sites.

This notion of uniqueness is subtly different than in [AKC02] which does not consider concurrency.

[AKC02] always allows a unique reference to be assigned to a non-escaping variable. Our notion of unique-

ness allows this only if the unique pointer is itself non-escaping. Figure 11 illustrates why this change is
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class C<thisOwner> {

C1<thisOwner> f;

int run() {

synchronized(this) { this.f = ...;}

}

}

class C2<thisOwner> {

...

int m() {

C<unique> y; // y is unique but is allowed to escape

C<unique>!e x; // x is not escaping

C<self> t;

x =y ; // a unique variable is allowed to be assigned to !e variable

// allowed by [AKC02] even though y is not dead.

t = y--; //ownership transfer

t.fork;

x.f =... // done without lock, race here

}

Figure 11: Program illustrating that using [AKC02]’s notion of uniqueness would lead to races. y is unique
according to [AKC02]’s analysis but not according to ours.

necessary. Since the typing rules check unique owners, unsoundness of this static uniqueness analysis would

cause the type checker to emit type errors. We insert -- on active expressions that are the last use of a

unique variable or field.

5.2 Discovering Owners for Fields, Method Parameters and Return Values

Let d denote a field, method parameter, or method return type with class type (i.e., not a primitive type).

To infer the owner of d, we monitor accesses to a set S(d) of objects associated with d. If d is a field of some

class C, S(d) contains objects stored in that field of instances of C. For a method parameter d, S(d) contains

arguments passed through that parameter. For a method return type d, S(d) contains objects returned by

the method. Let FE(d) denote the set of final expressions that are syntactically legal at the declaration of d.

After an object o is added to S(d), every access to o is intercepted and the following information is

updated: lkSet(d, o), the set of locks that were held at every access to o after o was inserted in S(d)

[SBN+97]; rdOnly(d, o), a boolean that is true iff no field of o was written (updated) after o was inserted

in S(d); shar(d, o), a boolean that is true iff o is “shared”, i.e., multiple threads accessed non-final fields

of o after o was inserted in S(d); val(o, e), the value of final expression e for object o (e.g., if e is the final

parameter this, then val(o, e) is o.this) for each e ∈ FE(d).

The owner of d is determined by the first applicable rule below.

1. If the type of d is an immutable class (e.g., String or Integer), then owner(d)=readonly.
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2. If (∀o ∈ S(d) : ¬shar(d, o)) and d is not a static field, then owner(d)=thisThread.

3. If (∀o ∈ S(d) : rdOnly(d, o)), then owner(d)=readonly.

4. If (∀o ∈ S(d) : o ∈ lkSet(d, o)), then owner(d)=self.

5. Let L(d) be the set of final expressions e in FE(d) such that, for each object o in S(d), val(o, e) is a lock

that protects o; that is, L(d) = {e ∈ FE(d) | ∀o ∈ S(d) : val(o, e) ∈ lkSet(d, o)}. If L(d) is non-empty,

select an arbitrary element e in L(d), and take owner(d) = e.

6. If d is a field or a method return type, take owner(d) to be the formal owner parameter thisOwner,

which will also be used as the first owner parameter of the class containing d. If d is a method

parameter, take owner(d) to be a fresh formal owner parameter.

To reduce the run-time overhead, in our implementation, S(d) contains only selected objects associated

with d. This typically does not affect the discovered types. We currently use the following heuristics to

restrict S(d). For a field d with type C, S(d) contains at most one object created at each allocation site for

C. For a method parameter or return type d, S(d) contains at most one object per call site of the method.

Also, we restrict FE(d) to contain only the values of final expressions of the form this or this.f , where f

is a final field.

To infer the owner of elements of an array a, we monitor the objects stored in a[0 . . . 2] and use the rules

above.

5.3 Discovering Values of Non-First Owner Parameters

If the type of d is a class C with multiple owner parameters, for each formal owner parameter P of C other

than the first, we need to infer the value with which P should be instantiated for d, denoted ownerP (d).

Let SP (d) denote a set of objects o′ associated with P for d and such that P denotes the first owner of o′.

In particular, for each o in S(d): (1) for each field f of C such that the first owner of f is P (i.e., class

C<..., P, ...> { ... D<P> f; ... }), objects stored in o.f are added to SP (d); (2) for each parameter p of

a method m of C such that the first owner of p is P (i.e., class C<..., P, ...> { ... m(..., D<P> p,...)

... }), add to SP (d) arguments passed through parameter p when o.m is invoked; (3) for each method

m of C whose return type has first owner P , add to SP (d) objects returned from invocations of o.m. We

instrument the program to monitor accesses to objects in SP (d) and infer an owner based on that, just as

in Section 5.2, and instantiate P with that owner for d. For efficiency, we may restrict SP (d) to contain a

subset of the objects described above.

5.4 Discovering Owners in Class Declarations

Let owner(C) denote the first owner parameter in the declaration of class C (e.g., it denotes o in class

C<o,...> {. . .}). Let S(C) contain instances of C stored in or passed through fields, method parameters or

method returns that have not been inferred to be unique by static uniqueness analysis. We monitor accesses

to elements of S(C) as in Section 5.2 and then use the following rules to determine owner(C).

1. If C is a subclass of a class C ′ with owner(C ′)=self, then owner(C)=self.

2. If S(C) = ∅ (i.e., there are no instances of C), then owner(C)=thisThread.4

4For example, in many programs, the class containing the main method is never instantiated.
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3. If (∀o ∈ S(C) : ¬shar(d, o)), then owner(C)=thisThread.

4. If (∀o ∈ S(C) : o ∈ lkSet(d, o)), then owner(C)=self.

5. owner(C)=thisOwner.

For efficiency, we restrict S(C) to contain only a few instances of C. Currently, we arbitrarily pick two

fields or method parameters or method returns of type C and take S(C) to contain the objects stored in or

passed through them. For a class whose first owner parameter is inferred to be a constant (i.e., not a formal

owner parameter), all occurrences of that class in the program are instantiated with that constant as the

owner.

5.5 Discovering where Clauses

For each method m and each parameter p of m, if owner(p) (from Section 5.2) is a formal owner parameter

f and N(p) is labeled non-unique (from Section 5.1), then a where f 6= unique clause is added to the

declaration of m.

To infer where f 6= readonly annotations, the following information is also recorded at runtime: for

each write to a field of a monitored object, the name of the executing method is recorded. For each method

m and each parameter p of m, if m performs a write to an object in S(p), and owner(p) is a formal owner

parameter f , then add a where f 6= readonly to the method declaration. This technique is also used to

infer !w annotations. However, the analysis above cannot discover where constraints for method m where

the updates to the parameters with formal owners are not done in m but in methods that m calls. (e.g.,

m1(C<g> x) {m2(x)} m2(C<f> y) {y.f1 =...} ). To discover constraints on the formal owner parameters

of parameters of methods like m1 above, a simple static analysis is done following the runtime analysis. All

call sites of the methods with a where f 6= readonly (like m2 above) constraints (inferred from runtime

analysis) are checked to see if the corresponding argument’s owner is a formal owner g . If so, it is also

constrained with a where g 6= readonly clause. These constraints are then propagated up the call chain

till a fixed point is reached.

5.6 Discovering requires Clauses

We infer requires clauses basically as in [BR01], except we use type discovery (in Section 5.4) instead of

user input to determine which classes C have owner thisThread.

Each method declared in a class with owner thisThread is given an empty requires clause. For other

classes, the requires clause for a method m contains all method parameters p (including the implicit this

parameter) such that m contains a field access p.f (for some field f) outside the scope of a synchronized(p)

statement; as an exception, the run() method of a class that implements Runnable is given an empty

requires clause, because a new thread holds no locks.

5.7 Static Intra-Procedural Type Inference

The last step is to infer the types of local variables and allocation sites whose types have not already been

determined, using the intra-procedural type inference algorithm in [BR01, Section 7.1]. Each incomplete

type (i.e., each type for which the values of some owner parameters are undetermined) is filled out with

an appropriate number of fresh distinct formal owner parameters. Equality constraints between owners

are constructed in a straightforward way from each assignment statement and method invocation. [EXP
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SUB UNIQUE] rule allows unique variables to transfer ownership to variables with any valid owner. To

accommodate this, no equality constraints are generated when an active occurrence of a variable or field

with owner unique is assigned to a variable or field or passed as an argument. The constraints are solved in

almost linear time using the standard union-find algorithm [CLR90]. For each of the resulting equivalence

classes E, if E contains one known owner o (i.e., an owner other than the fresh formal owner parameters),

then replace the fresh owner parameters in E with o. If E contains multiple known owners, then report

failure. If E contains only fresh formal owner parameters, then replace them with thisThread. This last

rule is a heuristic that is adequate for the examples we have seen. If necessary, we could instrument accesses

to local variables and discover their owners directly.

5.8 Refining Discovered Types

The preceding steps produce an initial candidate typing for the program. That typing is now refined based

on the error messages from the typechecker.

If the type of a field d is statically inferred to be unique but the typechecker reports a warning because

the class containing d is instantiated as readonly (a combination prohibited by the type system), re-run

type discovery and monitor field d as well, and then use the discovered type for d.

If the type of a field, method parameter or a method return type d is discovered to be a formal owner

parameter and the typechecker reports a possible race on d, change the discovered owner to self and proceed

with discovering owners in class declarations, discovering requires clauses and static intra-procedural type

inference. If this results in fewer warnings from the typechecker, use self as the owner for d, otherwise revert

to the original annotation. This refinement is beneficial for objects that are self-synchronized except for a few

accesses protected by some other synchronization (e.g., start/join synchronization). Other owners—notably

this—could also be tried, and the owner leading to the fewest warnings selected; this was not necessary

for the benchmarks we considered. Note that the tentative change to each error-producing annotation

is evaluated independently; this works well in practice. In principle, better results could be obtained by

evaluating sets of simultaneous changes to multiple annotations, but this would be expensive.

6 Implementation

A source-to-source transformation, implemented in the Kopi compiler [Kop02], instruments programs to

record the information needed for type discovery. The transformation is parameterized by the set of classes

for which types should be discovered.

All instances of Thread are replaced with ThreadwithLockSet, a new class that extends Thread and

declares a field locksHeld. Synchronized statements and synchronized methods are instrumented to update

locksHeld appropriately; a try/finally statement is used in the instrumentation to ensure that exceptions

are handled correctly. For each field, method parameter and return type x being monitored, a distinct

IdentityHashMap is added to the source code. The hashmap for x is a map from objects o in S(x) to the

information recorded for o, as described in Section 5, except the lockset. We store all locksets in a single

IdentityHashMap. Thus, even if an object o appears in S(x) for multiple x, we maintain a single lockset

for o. Object allocation sites, method invocation sites, and field accesses are instrumented to update the

hashmaps appropriately.

We do not instrument Java API classes. Instrumenting them creates new dependencies among the

bootstrap classes, and since the VM loads those classes in a fixed order, an initialization error occurs.

Instead, the following heuristic is used: for every method invoked on the library class, we assume all the
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parameters including the implicit this parameter are accessed. The locks held during these accesses is the

set of locks held at the method call site and if the method is a synchronized method then the object invoking

the method is also added to the set.

Boyapati and Rinard’s typechecker for PRFJ is not available, so we implemented our own typechecker,

by modifying rccjava, Flanagan and Freund’s typechecker for Race Free Java [FF00].

Neither Kopi nor rccjava handles inner classes correctly, so for our experiments, we systematically man-

ually transformed inner classes into regular classes.

7 Experience

We evaluated the expressiveness of our type system and the efficacy of our type discovery technique on

eleven multi-threaded programs. The first five are multithreaded server programs used in [BR01]. The next

three programs (elevator, tsp and hedc) were developed at ETH Zürich and used as benchmarks in [vPG01].

The last three programs (moldyn, raytracer and montecarlo) are part of the Java Grande Forum Benchmark

Suite, available at http://www.epcc.ed.ac.uk/ .

A significant number of annotations in these programs are unique and readonly. Race-Free Java lacks a

notion of uniqueness, and [FF00, FF01] rely on potentially unsafe escapes to reduce the number of resulting

false alarms. For example, they give an option to the typechecker that effectively causes it to ignore accesses

to this in constructors, and they explain that this is safe assuming constructors do not allow this to escape

from the current thread. They claim that violations of this assumption are unlikely [FF00]. Using a simple

static analysis, we found violations of this assumption in the Sun JDK 1.4 standard library and W3C’s Jigsaw

web server [Jig]; furthermore, the constructor accesses this after it escapes. This indicates the importance

of extending the type system with unique types.

We also looked into W3C’s Jigsaw web server [Jig] but we did not pursue it, because with the simple

testcases we used, most methods did not get invoked at all. Type discovery is not effective in such cases.

7.1 Expressiveness of the type system

To evaluate the expressiveness of the type system, we compare the number of races reported by the type

checker to the actual number of races in the program. The results are shown in Table 3 and discussed in

detail below. For about 15.5 KLOC involving 568 fields, the typechecker reported races involving 97 fields

whereas there are bugs on 7 fields and benign races on 7 fields. The typechecker reports which field accesses

are involved in races, to help the user check whether the reported races are false alarms. 59 of the false alarms

can easily be removed by adding a final modifier to some fields; this yields the results in the “modified

program” column in Table 3. In some of these programs, static fields are used in a thread-local manner,

causing false alarms, because static fields cannot have owner thisThread (see Section 4.5). Other false

alarms result from use of synchronization constructs not analyzed by the type system, specifically barriers

and Thread.join. A few false alarms are reported because different fields in a class have different protection

mechanisms, which PRFJ does not allow. Besides this, a few lines of code needed to be changed in elevator

and hedc to get them to typecheck.

The five multithreaded server examples (game, chat, phone, stock quote, and http) from [BR01] are

race-free and are typable with no false alarms.

elevator is a simple discrete event simulator [vPG01]. Three lines of code had to be changed in the

elevator example. The Lift class extends Thread and invokes the start method inside its constructor.

Essentially, after the instance of Lift is started, it is accessed by only one thread (namely, itself) and hence
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Program LOC # fields # false alarms # false alarms # bugs # benign races
(original pgm) (modified pgm)

game 87 3 0 0 0 0
chat 308 7 0 0 0 0

phone 302 11 0 0 0 0
stock quote 242 6 0 0 0 0

http 563 19 0 0 0 0
elevator 523 21 1 1 0 0

tsp 706 36 14 4 4 3
hedc 7072 206 31 10 2 3
jgfutil 376 10 0 0 0 0

Barrier classes 134 3 2 0 0 1
moldyn 730 91 7 5 0 0

raytracer 1308 61 2 1 1 0
montecarlo 3198 94 26 3 0 0

total 15549 568 83 24 7 7

Table 3: Experimental results on the expressiveness of the type system

is unshared. Thus, the owner of Lift object changes from unique to thisThread. But -- cannot be applied

to this inside the constructor (because this is final), so we change the code to call start immediately after

(instead of during) the call to the constructor. Then our system discovers that l.start() can be annotated

as l--.start(), similar to the example in Figure 3. The one remaining false alarm is on the static field

Lift.count, which is accessed only by the main thread, but our type system does not allow static fields to

be owned by thisThread.

tsp solves the travelling salesman problem [vPG01]. We added final declarations to 6 static fields of

TspSolver class and 4 static fields of Tsp class to eliminate false alarms on them.

tsp contains races that are defects (bugs) on the fields TspSolver.MinTourLen, TourElement.last,

TourElement.prefix, and TourElement.prefix weight.

There are benign races on TspSolver.PrioQLast, PrioQElement.index, and PrioQElement.priority.

There are read accesses to these fields without synchronization in the DumpPrioQ() method, which dumps

debugging information, so the races do not affect the execution of the program.

The main thread starts several worker threads, whose owners change from unique to thisThread when

they are started, except that the main thread later calls Thread.join on the worker threads, causing our

typechecker to produce a false alarm.

Warnings reported (of possible races) on fields TourElement.conn and TourElement.lower bound are

false alarms as these fields are accessed without any synchronization but only by the main thread before any

new threads are created. There are also false alarms on two non-final static fields of the TspSolver class,

namely, TourStackTop and Done, which are protected by two final fields of the TspSolver class. These false

alarms could be eliminated by extending the type system to allow different owners for different fields, as in

Race Free Java [FF00]. This extension is non-trivial because of its interactions with special owners unique

and thisThread.

hedc [vPG01] is a meta-crawler for searching multiple Internet archives in parallel. We received an

updated version that differs slightly from the one used in [vPG01]: some redundant code was eliminated,

and a data race reported in [CLL+02] was fixed. We commented out some unreachable code. hedc uses

part of Doug Lea’s synchronization library; we treat it as part of the application (i.e., we discover types for

it). The typechecker identified 2 bugs and 3 benign races in the program. It also produced 31 false alarms.

26



Twenty one of them can easily be eliminated by making the corresponding fields final; this sometimes requires

moving the initialization code for the field into an initializer for the field.

False alarms are reported because some static fields are accessed without synchronization before other

threads have started or after they have terminated, or because a field is not updated when shared. Warnings

on fields poolSize , maximumPoolSize and minimumPoolSize of class PooledExecutorWithInvalidate

reflect benign races; they are benign because each field is volatile and whenever the field is written into, it

is protected by a lock.

A possible race is also reported on the prev field of class Regexp. Each Regexp object acts as a node in

a doubly linked list and has prev and next fields which point to previous and next objects in the list. All

instances of Regexp are thread-local except one, which is readonly. However, that readonly instance is used

as the last node in every list, and this sharing pattern is not typable in our type system, causing this false

alarm.

Two races reported by the typechecker are defects (bugs) in hedc. The first race is on the field

MetaSearchRequest.request. It is a defect because request can be set to null in MetaSearchResult.cancel()

just as the Worker thread completes execution and request.countDownInterrupt() is called in

MetaSearchResult.run() leading to a NullPointerException. This defect was also discovered by the anal-

ysis in [CLL+02]. The typechecker also reported a previously unreported defect, which escaped detection by

run-time monitoring [CLL+02], because it involves a code path that is not exercised by the test cases that ac-

company the program, which are also the test cases we used for type discovery. There is a race on the valid

field of class Task. The valid field can be accessed in Worker.run() and MetaSearchResult.cancel()

simultaneously. If a task is cancelled just after it is removed from the handoff queue and checked for validity,

the run() method on the task object will be called even though the task has been cancelled. Tasks are

placed in the handoff queue only if all worker threads are busy, which does not occur in the supplied test

cases.

The Java Grande Forum benchmarks raytracer, moldyn and montecarlo use the jgfutil package that

provides a Timer for measuring program execution time and an Instrumentor for manipulating Timers

(starting, stopping, resetting etc). Since all three bechmarks use this package, we present results for it

separately and do not count it in the statistics for these three benchmarks. Also, raytracer and moldyn

use Barrier and TournamentBarrier classes for barrier-based synchronization. We separate the results for

these two classes too.

TournamentBarrier implements barrier-based synchronization. Our typechecker reports races on fields

numThreads, isDone[] and maxBusyIter. maxBusyIter and numThreads can be made final. There is a

benign race on the isDone field.

moldyn simulates molecular dynamics. Each thread is assigned a unique identifier when it is started.

The typechecker produces false alarms on the static fields md.PARTSIZE, md.epot[], md.vir[], md.ek[],

md.interactions, md.interacts[] and JGFMolDynBench.nthreads. There is no race on PARTSIZE or

nthreads because the only write to it occurs in the main thread before any other threads are started; these

fields can be made final after moving their initialization. The static int field md.interactions is accessed

only in the thread with id = 0. Barriers are used to prevent races on the int arrays in the static fields epot,

vir, ek, interacts. Our type system does not analyze use of barriers, so the typechecker produces false

alarms on accesses to these arrays.

raytracer implements a parallel 3-dimensional ray tracing algorithm. The typechecker signals possible

races on three static fields, nthreads, staticnumobjects and checksum1 in JGFRayTracerBench. The warn-

ings on nthreads and staticnumobjects are false alarms. For nthreads, the situation is exactly the same
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Program LOC # annotations # annotations changed manually
game 87 24 0
chat 308 51 0

phone 302 55 0
stock quote 242 50 0

http 563 127 0
elevator 523 56 0

tsp 706 61 0
hedc 7072 503 21
jgfutil 376 27 0

Barrier classes 134 3 1
moldyn 730 64 0

raytracer 1308 263 7
montecarlo 3198 230 0

total 15549 1514 29

Table 4: Experimental results on the efficacy of type discovery

as for nthreads in moldyn. The warning on staticnumobjects is a false alarm since staticnumobjects is

written into only in the constructor RayTracerRunner(). RayTracerRunner() is called several times from

the main thread sequentially. Thus the write accesses to staticnumobjects are sequential. The only read

access to staticnumobjects occurs in the main thread after all the worker threads have terminated. The

race on JGFRayTracerBench.checksum1 is a bug, also noted in [OC03].

montecarlo is a financial simulation. The typechecker produces false alarms on 26 static fields. 23 of

these fields can be made final after moving their initialization. The typechecker produces false alarms on

AppDemo.initAllTasks, AppDemo.JGFavgExpectedReturnRateMC and objects that are stored in the static

vector AppDemo.tasks. initAllTasks is initialized only once, before new threads are started. However, it

cannot be made final since the only valid annotation for the field is unique, and our type system does not

allow a final field to have a unique annotation. The accesses to AppDemo.JGFavgExpectedReturnRateMC

occur after all threads have joined. The typechecker also produces a false alarm on accesses to ToTask objects

that are stored in the static vector tasks. These objects are accessed by only one thread after initialization,

but cannot be typed with owner thisThread because they are reachable from a static field.

7.2 Effectiveness of Type Discovery

To study the efficacy of type discovery, we study the number of annotations that were not discovered

correctly (for the “modified pgm”, described above) ignoring untypable parts of the programs, corresponding

to the false alarms and actual races described above. Results are shown in Table 4 and discussed in the

following paragraphs. In summary, for all of the benchmarks together, out of 1514 annotations, type discovery

automatically produced 1485 (98%) of them. We manually changed 29 annotations, or 1.9 annots/KLOC.

If hedc (a program with unusually complex synchronization) is excluded, we changed only 8 annotations in

8477 LOC, or 0.9 annotations/KLOC.

Boyapati and Rinard’s experiments with the five multithreaded server examples (game, chat, phone,

stock quote, and http) required the programmer to supply about 25 annots/KLOC [BR01]. Our algorithm

discovers all of the annotations in these examples. We discover types only for the application (i.e., server)

code; we assume PRFJ types are given for Java API classes used by the servers. Four of the server programs

did not come with clients, so we wrote very simple clients for them. The examples use Boyapati’s modified

versions of Java API classes (e.g., Vector), from which synchronization has been removed. The benefit
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is that synchronization can be omitted in contexts where it is not needed; the downside is that, when

synchronization is necessary, it must be included explicitly in the application code. We also considered

variant of these examples that use unmodified Java library classes. Our algorithm infers complete and

correct typings for both variants with no annotations.

Note that it would be misleading to compare the 0.9 annots/KLOC required by our system across all

benchmarks excluding hedc with the 25 annots/KLOC required in [BR01] for these 5 server benchmarks,

because some of the other benchmarks that we use are more complicated and would probably require more

than 25 annots/KLOC using the defaults in [BR01].

All the discovered annotations are also correct for elevator, tsp, moldyn and montecarlo.

In raytracer example, we changed some annotations from readonly and unique to thisThread. Some

fields that should be owned by thisThread are discovered as readonly because they are accessed by two

threads. Annotating the field as readonly creates problems as the corresponding class then needs to be

parameterized with a formal owner which prohibits it from having thisThread fields. Changing the owner

to thisThread works, since we allow thisThread to be instantiated with unique, and the field is unique

while the first thread is accessing it. We changed some unique annotations for local variables and fields to

thisThread, because instantiating the class C in the type of the local variable or field with unique causes

the fields of C owned by thisThread to be instantiated with unique, which is incorrect.

In hedc, 21 annotations were inferred incorrectly. Almost all of the annotations that were inferred

incorrectly are for fields that were not accessed in our traces and hence were given a default annotation of

thisThread. However, the correct annotation is self. Also, we changed the owner in the return type of a

method from thisThread to readonly, because the return value was assigned to a static field, and static

fields can not have owner thisThread.
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A Typing Rules

[CLASS]

gi = ownerformal fi

if isFormal(f1) then E = g1...n else E = g2...n

P ; E; ∅ ` c
P ; E, final cn〈f1...n〉 this ` fieldi

P ; E ` methi

P ` class cn〈f1...n〉 extends c {field1...j meth1...k}

[PROG]

ClassOnce(P ) WFClasses(P ) FieldsOnce(P )
MethodsOncePerClass(P ) OverridesOK(P )

P = defn1...n local1...l e
P ` defni P ; local1...l; thisThread ` e : t

` P : t

[OWNER UNIQUE]

P ` E
P ; E `owner unique

[OWNER READONLY]

P ` E
P ; E `owner readonly

[OWNER THISTHREAD]

P ` E
P ; E `owner thisThread

[OWNER SELF]

P ` E
P ; E `owner self

[OWNER FINAL]

P ; E `final e : t
P ; E `owner e

[OWNER FORMAL]

P ` E
E = E1, ownerformal f, E2

P ; E `owner f

[ENV ∅]

P ` ∅

[ENV OWNER]

P ` E
f /∈ Dom(E)

P ` E, ownerformal f

[ENV X]

P ; E; ∅ ` t x /∈ Dom(E)
P ` E, [final]? t mod? x

[ENV WHERE]

P ` E f ∈ Dom(E)
o ∈ {unique, readonly}
P ` E, where f 6= o

[TYPE INT]

P ` E
P ; E; ∅ ` int

[TYPE OBJECT]

P ; E `owner o
P ; E; ∅ ` Object〈o〉

[TYPE SELF CLASS]

P ` class cn〈self f2...n〉 extends c { [final]? ti fdi = e i∈ 1...k
i

. . .}
P ; E `owner o2...n

t′i = ti[o2/f2] . . . [on/fn]
isFinal(fdi) ⇒ FO(t′i) 6= unique

FO(t′i) 6= thisThread

t′i ∈ cs ∨ P ; E; cs, cn〈self o2...n〉 ` t′i
P ; E; cs ` cn〈self o2...n〉

[TYPE THREAD-LOCAL CLASS]

P ` class cn〈thisThread f2...n〉 extends c { [final]? ti fdi = e i∈ 1...k
i

. . .}
P ; E `owner o2...n

t′i = ti[o2/f2] . . . [on/fn]
isFinal(fdi) ⇒ FO(t′i) 6= unique

t′i ∈ cs ∨ P ; E; cs, cn〈thisThread o2...n〉 ` t′i
P ; E; cs ` cn〈thisThread o2...n〉

[TYPE SELF CLASS UNIQUE]

P ` class cn〈self f2...n〉 extends c { [final]? ti fdi = e i∈ 1...k
i

. . .}
P ; E `owner o2...n

t′i = ti[o2/f2] . . . [on/fn]
isFinal(fdi) ⇒ FO(t′i) 6= unique

FO(t′i) 6= thisThread

t′i ∈ cs ∨ P ; E; cs, cn〈unique o2...n〉 ` t′i
P ; E; cs ` cn〈unique o2...n〉

[TYPE THREAD-LOCAL CLASS UNIQUE]

P ` class cn〈thisThread f2...n〉 extends c { [final]? ti fdi = e i∈ 1...k
i

. . .}
P ; E `owner o2...n

t′i = ti[o2/f2] . . . [on/fn]
isFinal(fdi) ⇒ FO(t′i) 6= unique

t′i ∈ cs ∨ P ; E; cs, cn〈unique o2...n〉 ` t′i
P ; E; cs ` cn〈unique o2...n〉
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[TYPE C]

f1 is a formal owner parameter

P ` class cn〈f1...n〉 extends c { [final]? ti fdi = e i∈ 1...k
i

. . .}
P ; E `owner o1...n

t′i = ti[o1/f1] . . . [on/fn]
isFinal(fdi) ⇒ FO(t′i) 6= unique

o1 = readonly ⇒ FO(t′i) 6= unique

FO(t′i) = thisThread ⇒ o1 = thisThread

t′i ∈ cs ∨ P ; E; cs, cn〈o1...n〉 ` t′i
P ; E; cs ` cn〈o1 . . . on〉

[SUBTYPE REFL]

P ; E; ∅ ` t
P ; E ` t <: t

[SUBTYPE TRANS]

P ; E ` t1 <: t2 P ; E ` t2 <: t3
P ; E ` t1 <: t3

[SUBTYPE CLASS]

P ; E ` cn1〈o1...n〉
P ` class cn1〈f1...n〉 extends cn2〈f1 o∗〉 . . .

P ; E ` cn1〈o1...n〉 <: cn2〈f1 o∗〉[o1/f1] . . . [on/fn]

[FINAL VAR]

P ` E
E = E1, final t mod x, E2

P ; E `final x : t

[FINAL REF]

P ` (final t fd) ∈ cn〈f1...n〉
P ; E `final e : cn〈o1...n〉

t′ = tfu(o1, t)[e/this][o1/f1][o2/f2] . . . [on/fn]
P ; E `final e.fd : t′

[ROOTOWNER UNIQUE]

P ; E ` e : cn〈unique o∗〉 | Object〈unique〉
P ; E ` RootOwner(e) = unique

[ROOTOWNER READONLY]

P ; E ` e : cn〈readonly o∗〉 | Object〈readonly〉
P ; E ` RootOwner(e) = readonly

[ROOTOWNER THISTHREAD]

P ; E ` e : cn〈thisThread o∗〉 | Object〈thisThread〉
P ; E ` RootOwner(e) = thisThread

[ROOTOWNER SELF]

P ; E ` e : cn〈self o∗〉 | Object〈self〉
P ; E ` RootOwner(e) = self

[ROOTOWNER FINAL TRANSITIVE]

P ; E ` e : cn〈o1...n〉 | Object〈o1〉
P ; E `final o1 : c1

P ; E ` RootOwner(o1) = r
P ; E ` RootOwner(e) = r

[ROOTOWNER FORMAL]

P ; E ` e : cn〈o1...n〉 | Object〈o1〉
E = E1, ownerformalo1, E2

P ; E ` RootOwner(e) = RO(e)

[FIELD INIT]

P ; E; thisThread ` e : t
P ; E ` [final]? t fd = e

[FIELD DECLARED]

P ` class cn〈f1...n〉 . . . {. . . field . . .}
P ` field ∈ cn〈f1...n〉

[FIELD INHERITED]

P ` field ∈ cn〈f1...n〉
P ` class cn′〈g1...m〉 extends cn〈o1...n〉 . . .
P ` field[o1/f1] . . . [on/fn] ∈ cn′〈g1...m〉

[METHOD]

P ` t mn(arg
0..n) [ where f ′

1
6= o1, . . . , f ′

p 6= op ]? requires (e1..m) {local1..l e} ∈ cn〈f1..k〉
each f ′

i appears in some argi

each formal owner in t appears in some argi

arg0 matches cn〈. . .〉 . . . this
E′ = E, final arg

0
, . . . , final argn

E′′ = E′ ∪ { ownerformal f | f appears in some argi } ∪ { where f ′

1
6= o1, . . . , f ′

p 6= op }
P ; E′′ `final ei : ti

P ; E′′ ` RootOwner(ei) = ri

P ; E′′, local1..l; thisThread, r1..m ` e : t
P ; E ` t mn(arg

0..n) [ where f ′

1
6= o1, . . . , f ′

p 6= op ]? requires (e1..m) {local1..l e}

[METHOD DECLARED]

P ` class cn〈f1...n〉 . . . {. . . meth . . .}
P ` meth ∈ cn〈f1...n〉

[METHOD INHERITED]

P ` meth ∈ cn〈f1...n〉
P ` class cn′〈g1...m〉 extends cn〈o1...n〉 . . .
P ` meth[o1/f1] . . . [on/fn] ∈ cn′〈g1...m〉

[MOD VAR]

E = E1, [final]? t mod x, E2

E ` mod(x) = mod

[MOD SEQ]

E ` mod(e2) = mod
E ` mod(e1; e2) = mod

[MOD –]

E ` mod(e) = mod
E ` mod(e−−) = mod
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[MOD SYNC]

E ` mod(e2) = mod
E ` mod(synchronized (e1) {e2}) = mod

[MOD OTHER]

e is not a variable, sequence expression, -- expression or a synchronized expression.
E ` mod(e) = {}

[EXP TYPE]

∃ls P ; E; ls ` e : t
P ; E ` e : t

[EXP SUB]

P ; E; ls ` e : t′ P ; E; ls ` t′ <: t
P ; E; ls ` e : t

[EXP SUB UNIQUE]

P ; E; ls ` e : cn〈unique o∗〉
P ; E `owner o1

P ; E; ls ` e : cn〈o1 o∗〉

[EXP --]

e is a variable or a field access
P ; E; ls ` e : cn〈unique o∗〉

P ; E; ls ` e−− : cn〈unique o∗〉

[EXP NEW]

P ; E; ∅ ` c
P ; E; ls ` new c : c

[EXP SEQ]

P ; E; ls ` e1 : t1 P ; E; ls ` e2 : t2
P ; E; ls ` e1; e2 : t2

[EXP SYNC]

P ; E `final e1 : t1
P ; E; ls, e1 ` e2 : t2

P ; E; ls ` synchronized (e1) {e2} : t2

[EXP VAR]

P ` E E = E1, [final]? t mod x, E2

x is active ∧ possiblyUnique(t, E) ⇒ -- is applied to x
P ; E; ls ` x : t

[EXP VAR ASSIGN]

P ; E ` x : t
P ; E; ls ` e : t

E ` mod(e) = mod E ` mod(x) = mod′

!e ∈ mod ⇒ !e ∈ mod′

!w ∈ mod ⇒ !w ∈ mod′ ∨ RootOwner(x) = readonly

P ; E; ls ` x = e : int

[EXP REF]

P ; E; ls ` e : cn〈o1...n〉
P ; E ` RootOwner(e) = r

(P ` (t fd) ∈ cn〈f1...n〉 ∧ r ∈ ls ∪ {unique, readonly}) ∨ (P ` (final t fd) ∈ cn〈f1...n〉)
t′ = tfu(o1, t)[e/this][o1/f1][o2/f2] . . . [on/fn]

e.fd is active ∧ possiblyUnique(t′, E) ⇒ -- is applied to e.fd
P ; E; ls ` e.fd : t′

[EXP ASSIGN]

P ; E; ls ` e : cn〈o1 . . . on〉
P ` (t fd) ∈ cn〈f1 . . . fn〉 and fd is not final

P ; E ` RootOwner(e) = r
r ∈ ls ∪ {unique} ∧ isROFormal(r) ⇒ where r 6= readonly ∈ E

E ` mod(e) = mod E ` mod(e′) = mod′

!w /∈ mod ∧ !e /∈ mod′

t′ = tfu(o1, t)[e/this][o1/f1][o2/f2] . . . [on/fn]
P ; E; ls ` e′ : t′

P ; E; ls ` e.fd = e′ : int

[EXP INVOKE]

P ; E; ls ` ej : t′j
ej does not contain synchronized

P ` (t mn(tj modj y j∈0...k

j
) [ where g1 6= o1, . . . , gl 6= ol ]? requires (e′

1...m)) ∈ cn〈f1...n〉

t′j = tj [σ][e0/this]
dom(σ) = formalOwners(t0...k)

gi[σ] 6= oi ∧ isFormal(gi[σ]) ⇒ FormalSatisfiesWhere(gi[σ], E, gi)
∀f ∈ dom(σ) : P ; E `owner f [σ]

possiblyUnique(t′j , E) ⇒ !e ∈ modj ∨ ej is of the form e′−−
possiblyReadonly(t′j , E) ⇒ !w ∈ modj

E ` mod(ej) = mod′

j

modj ⊇ mod′

j

P ; E ` RootOwner(e′
i
[e0/this][e1/y1] . . . [ek/yk]) = r′

i

r′

i ∈ ls ∪ {unique, readonly}
P ; E; ls ` e0.mn(e1...k) : t[σ][e0/this]

[EXP FORK]

P ; E; ls ` e : cn〈o1...n〉
P ; E; thisThread ` e.run() : int
E ` mod(e) = mod ∧ !e /∈ mod

o1 = thisThread ⇒ e has type cn〈unique . . . fn〉
P ; E; ls ` e.fork : int
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