
 T Trust Management in Databases

Trust Management in Databases

Scott D. Stoller
Department of Computer Science,
Stony Brook University, Stony Brook, NY, USA

Related Concepts
�Access Control; �SQL Access Control Model; �Trust
Management

Definition
Trust management in databases refers to access con-
trol models that support the characteristic features of
trust management – notably, decentralization of secu-
rity policies and information used by the policies – and
are seamlessly integrated with a database management
system.

Background
Traditional database access control models, such as the
SQL access control model, are static – the assignment
of privileges to users and roles is defined manually by
administrators, and does not depend on or vary with the
contents of the database or other information sources –
and centralized – the access control policy for a database
is stored locally in that database and does not depend on
any external information sources.
Such models are not well suited to distributed com-

puting systems. Access control models better suited to
such systems are attribute based – the assignment of priv-
ileges is based on attributes of (and relations between)
users and resources and varies automatically when this
information changes – and decentralized – the policy and
information used by the policy may come from multiple
sources. To support this, all information is labeled with its
source, and policies specify which sources are trusted for
which kinds of information. Access control models with
these characteristics are often called trust management
models.
Trust management policy languages are fundamen-

tally relational: they define the authorization relation,
which relates users with their privileges, in terms of rela-
tions describing the attributes of users and resources.
Policies may also define and use auxiliary relations; this
makes policies more modular and easier to read. Most
trust management policy languages define these rela-
tions using rules, similar to rules in logic programming
languages.

Theory
A general-purpose trust management system can, in prin-
ciple, be used to control access to any resource, including a
database, but trust management systems designed specifi-
cally for databases offer greater efficiency, security, and ease
of use, by reusing existing functionality in the database.
A key observation is that the most widely used databases
are based on a relational language, namely, the Structured
Query Language (SQL). Thus, the relations defined and
used in trust management policies can be represented by
tables in the database, and the policy language can be based
on SQL, instead of rules. di Vimercati et al. [] proposed the
first trust management system with this design.
Several syntactically small but semantically powerful

extensions to SQL are needed. One extension allows spec-
ification of trusted sources for the information in each
table. Specifically, the definition of a database table T may
include an optional clause that specifies a table or view
S that contains a record for each trusted source for T;
concretely, a designated column in S contains the source’s
name (e.g., public key or X. distinguished name). Only
information from those sources may be inserted in T. For
example, using syntax similar to that proposed by Stoller
[], the statement create certtable Patient
(name varchar(30), id varchar(9)) check
(issuer in (select subject from
Physician)) defines a table named Patient with
columns name and id and whose trusted sources are
principals named in the Physician table. Specifically,
data in an X. attribute certificate C can be inserted in
Patient if () C’s issuer is named in the subject col-
umn of some record in Physician and () C contains
an attribute corresponding to (i.e., with the same name as)
each column of Patient.
A second extension connects the attribute informa-

tion stored in tables and views with access privileges and
role memberships. A new form of the SQL grant statement
specifies a table or view T and a privilege P (e.g., per-
mission to update a specified table). Each user for which
T contains a record is granted privilege P. This invari-
ant is maintained whenever the contents of T changes.
A similar variant of the grant statement specifies a role
R instead of a privilege P: each user for which T con-
tains a record is granted membership in R. For example,
using syntax similar to that proposed by Stoller [], the
attribute-based grant statement ab_grant delete
on Patient to (select subject from
Physician) grants the privilege to delete records from
the Patient table to principals whose name appears in
the subject column of some record in the Physician
table.

http://dx.doi.org/10.1007/978-1-4419-5906-5_179
http://dx.doi.org/10.1007/978-1-4419-5906-5_690
http://dx.doi.org/10.1007/978-1-4419-5906-5_693
http://dx.doi.org/10.1007/978-1-4419-5906-5_693


Trusted Boot T 

T

Advanced trust management features, such as creden-
tial discovery and trust negotiation, also fit naturally in this
framework. For example, suppose a user tries to insert a
certificate C into a table T, but C’s issuer I does not appear
in the table or view S of trusted sources for T. The sys-
tem might automatically ask trusted sources for S to send
certificates about I, which could then be inserted in S,
allowing C to be inserted in T. This is an example of cre-
dential discovery. Sources for S can create such certificates
from information stored in tables. However, a site will do
this only if the requested information is releasable to the
requester according to the site’s trust negotiation policy,
whichmight specify that the information is releasable only
to requesters with certain attributes. Another small exten-
sion to the syntax of database table definitions is needed to
specify trust negotiation policies.
Although database systems do not currently support

trust management, it seems likely that they will support
it in the future, because of the importance of trust man-
agement in large-scale systems, because current database
security models can be extended seamlessly to support
trust management, and because these extensions require
only localized changes to the database implementation.

Recommended Reading
. De Capitani di Vimercati S, Jajodia S, Paraboschi S, Samarati
P () Trust management services in relational databases. In:
Proceedings of the  ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS), ACM, New
York, pp –

. Stoller SD () Trust management and trust negotiation in an
extension of SQL. In: Proceedings of the th International Sym-
posium on Trustworthy Global Computing (TGC ). Lecture
notes in computer science, vol . Springer-Verlag, Berlin,
pp –

Trusted Boot

William D. Casper, Stephen M. Papa
High Assurance Computing and Networking Labs
(HACNet), Department of Computer Science and
Engineering, Bobby B. Lyle School of Engineering,
Southern Methodist University, Houston, TX, USA

Synonyms
IC integrated circuit

Related Concepts
�Levels of Trust; �Trusted Computing

Definition
Trust: (a) assured reliance on the character, ability,
strength, or truth of someone or something (b) one in
which confidence is placed [].
Trusted Boot refers to the ability to have confidence or

trust in the security of a system startup, beginning with the
initial configuration boot of the system.

Background
Computer security is reliant on trust. This trust is com-
posed of several fundamental principles, including confi-
dence that the targeted system is configured as expected,
will operate as intended, and has not already been compro-
mised or exploited. A verification strategywith appropriate
methodology should be used to validate this trust. The
validation can be done with a combination of hardware
attestation and software integrity verification.
Validation of hardware and software components is

performed by validation hardware and software primitives.
At the lowest level, these primitives are controlled by the
boot process of the system and are ideally the first items
to execute after power-on of a system, but how are these
hardware and software primitives validated? In order to
trust the hardware and software primitives they themselves
must be trusted. If an attacker can undermine the trust of
the trusted primitives then the attacker can own the sys-
tem and control the results of the system validation, thus
circumventing the validation process. This initial trust of
the system primitives can be ensured through the use of a
trusted boot process.

Theory
A trusted boot process is rooted in the ability of the sys-
tem to securely ensure the integrity of the boot primi-
tives. These boot primitives must not be susceptible to
compromise, either by modification or by substitution. In
other words, these boot primitives must be exactly what
was implemented and cannot have unknown and unde-
tected changes made to them. Once undetected changes
are made, the boot primitives lose their trustworthiness.
A trusted boot is usually a process of multiple smaller

validated boot iterations. These iterations may be com-
prised of hardware or software verification stages, depend-
ing on the implementation mechanisms utilized. Some
mechanisms utilize both hardware and software features
during the same verification iteration to cross-check the
trustworthiness of both features. Iterations build on the
trustworthiness of the previous iterations and thus are
allowed to inherit the trust values of the preceding steps
in the boot process. This process relies on the ability of
a particular iteration to be validated prior to acceptance

http://dx.doi.org/10.1007/978-1-4419-5906-5_1323
http://dx.doi.org/10.1007/978-1-4419-5906-5_907
http://dx.doi.org/10.1007/978-1-4419-5906-5_795

