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We discuss the transition between two limiting cases of transverse spin relaxation due to magnetic-
field inhomogeneities: very fast spatial diffusion, when the spins relax exponentially with time, and
very slow spatial diffusion, when the spins relax exponentially with the cube of the time. Both
limiting cases as well as intermediate cases can be described in terms of Airy functions, which are the
eigenfunctions of the time-independent Torrey equation. Branch points in the eigenvalue spectrum
and other interesting properties follow from the fact that the Torrey equation is not self-adjoint.
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I. INTRODUCTION

If a sample of nuclear spins, initially in thermal equi-
librium, is rotated by 90° away from the direction of the
mean magnetic field with a short 7/2 pulse, the spins
subsequently twist about the mean magnetic field into
a spiral-staircase pattern, since the spins in regions of
stronger magnetic field process faster than spins in re-
gions of weaker field. If the spins are fixed in space,
there is no increase in entropy, and Hahn [1] showed that
the initial polarization can be fully recovered by applying
a m pulse, which leads to the formation of a spin echo.
However, if the molecules can diffuse through the sample,
as is the case for liquids or gases, not all of the spin po-
larization can be recovered in an echo experiment. The
fraction of polarization remaining if an echo is formed at
a time t after the m/2 pulse is [1-3]
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where D is the diffusion coefficient of the spin-bearing
molecules or atoms in the liquid or gas, and €2, is the
component of the local Larmor frequency along the z
axis. Physically, the irreversible decay described by (1.1)
occurs because molecules diffuse from regions where the
spins have rotated more into regions where the spins have
rotated less.

According to (1.1), damping due to diffusion should
increase indefinitely as D gets larger. However, the con-
straints of the container walls, which are not considered
in (1.1), become crucial when a spin can diffuse from the
interior to the cell wall during the decay time of the po-
larization. Recent studies of the effects of magnetic-field
inhomogeneities have shown that at low gas pressures,
the transverse spin polarization does not “twist” signif-
icantly, but remains nearly uniform within the sample
volume due to the rapid diffusion. For a spherical cell of
radius R, the magnitude of the spin polarization in this
motional narrowing regime decays as [4]
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Formulas analogous to (1.2) for cylindrical cells are given
by McGregor [5]. The form of (1.2) is slightly different for
very rapid diffusion [4]. The predictions of (1.1) and (1.2)
are in excellent agreement with experimental results for
slow or fast diffusion, and can be used to deduce quite ac-
curate values of diffusion coefficients from measurements
in either regime. The main qualitative differences be-
tween the two regimes are as follows:

(1) In the slow-diffusion regime (1.1), the magnitude
of the spin polarization damps exponentially with the
cube of the time. In the fast-diffusion regime (1.2), the
damping is exponential with the first power of the time.

(2) Decreasing the diffusion coefficient D leads to
slower damping in the slow-diffusion regime but to faster
damping in the fast-diffusion regime.

(3) The damping rate is proportional to the fourth
power of the cell diameter in the fast-diffusion regime but
independent of the cell dimensions in the slow-diffusion
regime.

In this paper we show how the transition occurs be-
tween these two regimes.

As in Refs. [4,6,7], we describe the atoms with a den-
sity matrix |p) which is a function of the spatial position
r of spins within the sample. The rate of change of the
spin density matrix is given by Eq. (18) of Hasson et al.

(7],

0 .

= 0) = (=i - S 4+ DV?)|p). (1.3)
Here S is the spin operator for |p), that is, the in-
finitesimal rotation operator for the polarization of the
spins. Equation (1.3) describes simultaneous spin rota-
tion at the local Larmor frequency €2 and spatial diffusion
through the gas with the diffusion coefficient D. We ig-
nore any other relaxation mechanisms in (1.3). We also
assume no spin relaxation at the walls. Then at any point
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on the wall, |p) must obey the boundary condition

n-Vip) =0, (1.4)

where the unit vector n is normal to the cell surface.
Some of the interesting phenomena which are produced
by walls which cause partial depolarization of the spins
are described by Wu et al. [8], who use the more general
boundary condition n - V|p) = —u|p), where p is the
normal gradient operator.

We will write the local Larmor frequency as

Qr) =20 +r- -V, (1.5)
the sum of a spatially homogeneous mean Larmor fre-
quency of magnitude 2, which defines the z axis of a co-
ordinate system, and an inhomogeneous correction r-V§2,
which is linear in the displacement r from the center of
the cell. We assume that V is a spatially constant ten-
sor.

As described in Ref. [7], we expand the density matrix
|p) onto Fano’s [9] irreducible basis tensors |SM), which
describe the spin polarization of the gas. For gas atoms
with a nuclear spin quantum number K, we can have S =
0,1,...,2K for the angular momentum quantum number
S of the tensor. The coefficients (SM|p) of the basis
tensors are functions of the position r and of the time t.
For magnetic resonance experiments the amplitudes

3 1/2
(Lule) = <K(K FOCK + 1)) (Kb (16)
are of particular interest, where the position-dependent
expectation values of the nuclear spin in spherical and
Cartesian basis systems are related by (Ko) = (K,) and
FV2K11) = (Ko) £ i(Ky).
Projecting out the |11) component of (1.3) we find
%(Hlp) = (—iQ + DV?)(11|p) — ir - VQ,(11]p)
i
- Er - V(Q — 192)(10]p). (1.7)
If VQ = 0, that is, if the magnetic field is perfectly ho-
mogeneous, (1.7) has solutions of the form (lllps,o)) =
ba(r) exp(—iQt — Dk2t), where k, is the spatial fre-
quency of a solution to the wave equation (V2 +k2)¢, =
0, with the boundary condition n - V¢, = 0. The eigen-
functions ¢, for a homogeneous field can serve as spatial
basis states for a perturbative solution of the problem
when VQ # 0. The perturbative methods are described
in Refs. [4], [6], and [7], which are generalizations of ear-
lier work by Gamblin and Carver [10] and by Schearer
and Walters [11], who developed theories of longitudinal
spin relaxation in high-pressure gases due to magnetic-
field inhomogeneities. Related studies of the effects of
very large magnetic field inhomogeneities on spin relax-
ation have been reported by Barbé, Leduc, and Laloé [12]
and Lefévre-Seguin, Nacher, and Laloé [13]. McGregor
[5] has shown that some of the perturbative expressions
of Ref. [4] are identical to those that can be derived with
Redfield theory [14].
From inspection of (1.7), we see that the perturbation
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described by the last two terms is the sum of a term pro-
portional to V,, which mixes spatial states of the same
transverse polarization |11) into the unperturbed states,
and a term proportional to V(2 — i€ ), which admixes
states of longitudinal polarization |10). As the diffusion
rate gets slower, the perturbative methods soon fail to
describe the effects of V(,, although they continue to
account well for the effects of V(Q, — iQ,). The un-
perturbed damping rates, vo,11 = —iQ + Dk2, for states
of the same transverse polarization [11) have the same
imaginary parts, but the separation of their real parts is
of order D/h?, where h is a characteristic linear dimen-
sion of the sample. Thus, the mixing amplitude for states
of the same transverse polarization is on the order of

13 |89,
b= 5|52 (1.8)

If 0Q,/0z # 0, b will exceed unity if the diffusion coeffi-
cient D is sufficiently small, as it is in high-pressure gases
and liquids. Perturbative methods fail when b is on the
order of unity.

Here we want to consider the transition to the nonper-
turbative limit where b > 1. To simplify the subsequent
discussion, we assume a long cylindrical cell, with the
axis z of highest symmetry parallel to the homogeneous
magnetic field, and with the top and bottom located at
z = +h. The radius of the cylinder is relatively small,
that is, R < h, so we neglect any dependence of the
spin polarization on the = and y coordinates. Since the
last term of (1.7) can be well accounted for by pertur-
bation theory, we ignore it. We transform (1.7) to a
dimensionless form by defining new spatial and temporal
coordinates

tD
I
Denote the transverse spin polarization by ¥({,7) =

N(11|p)e?, where N is a normalizing constant. The
boundary condition (1.4) becomes

(=z/h and T = (1.9)

oy _

o= 0 for ¢ ==1. (1.10)
Finally, (1.7) becomes the Torrey equation [3],

op 92 .

II. SOLUTIONS FOR UNBOUNDED DIFFUSION

Consider the situation where the boundary condition
(1.10) does not apply, and (1.11) is valid for all {. We seek
a solution (¢, 7) for times 7 > 0 in terms of ¥(¢,0). As-
sume for the present that b is a non-negative real number.
For notational convenience, we introduce new variables

z=0bY3¢ and t=0b%3r and S(z,t) = ¥((, 7).
(2.1)

This transforms (1.11) into



S

oS  0%*S .
) +izS (2.2)
The Laplace transform of S is
oo
S(z,s) = / e %t S(z,t)dt. (2.3)
0
The inverse of (2.3) is
_ 1 3 st
S(z,t) = i /V S(z,s)e’"ds. (2.4)

The contour V is a vertical line in the complex s plane,
located to the right of all singularities of the integrand.
Substituting (2.3) into (2.2) we obtain the inhomoge-
neous differential equation

(s — iz — %) S(z,s) = S(z,0).

The resolvent function G’(m,y,s) is the solution to the
inhomogeneous differential equation

(s — iz — 6‘9—2) G(z,y,5) = 8(z — y).

2

(2.5)

(2.6)
We can use the resolvent to write the solution to (2.5) as

oo
S(z,s) = / G(z,y,s)S(y,0)dy. (2.7)
— o0
The inverse Laplace transform of (2.7) yields the solution
in the time domain
o0
St = [ Gan)Sw 0, (28)
—00
where the Green’s function G is the inverse Laplace trans-
form of G. We will call kernels G(z,y,t) Green’s func-
tions when they transform the initial spin polarization at
position y and time ¢ = 0 into the polarization at position
z at a later time ¢ > 0, and we will call kernels G(z, y, s)
resolvents when they produce the Laplace transform of
the polarization.
To determine the resolvent, we introduce the function

oo
f(z:z: — s, q) — / e(ir—s)k—k:’/:ﬂdk. (29)
q

The lower limit of integration is an arbitrary complex
number ¢, and the upper limit approaches infinity within
the sextant of the complex k plane with |argk| < w/6,
one of the three sextants where e=**/3 — 0 as |k| — oo.
Differentiating inside the integral sign gives

; 9 oo : iz—s)k—k°®
(s — iz — 5@3) f /q (s — iz + /cz)e( ) 134k

o0
- _ / d(e(ix—s)k—ka/S)

q
. .3
= (iz—5)9—¢"/3

(2.10)

Equation (2.10) has a source term on the right-hand side
which is nonzero for all finite values of z, ¢, and s. How-
ever, since (2.10) is linear, we can construct the resolvent
by superposing functions f with different values of g,
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,y7 - 27[' Co q’ N
where the integrand is
F = f(iz — s,q) e~ Gv=2)9+2°/3, (2.12)

We have designated the path of integration in the com-
plex ¢ plane by Cy, which, as sketched in Fig. 1(a), con-
sists of the real axis from —oo to +oco. Also sketched
in Fig. 1(a) are other paths of integration, which will be
useful in subsequent discussions. We shall show below
that F' approaches zero sufficiently rapidly as ¢ — oo
that (2.11) converges. In view of (2.10)- (2.12) we have

s— iz — 6—2 G(z,y,8) = L /00 e1(@=¥)dq
Oz? e 27 J_oo

=é(z —y), (2.13)

so (2.11) is indeed a solution of (2.6). The integrand F'
in (2.11) is analytic in the finite part of the complex ¢
plane. We may therefore replace the path Cj by either
of the large semicircular paths Cy; sketched in Fig. 1(a).
On the semicircles |g| > 1, so convenient asymptotic

(b)

FIG. 1. (a) Integration paths in the complex ¢ plane for
evaluating the resolvent G of (2.23). The paths begin and end
at very large values of |¢|. (b) On the solid lines in the complex
k plane, —Re(k®) has the values indicated. The dashed lines
indicate paths of steepest descent on the surface —Re(k?) from
the initial values at k = ¢, indicated by the solid points. An
asymptotic expression for the integral (2.9) can be obtained
for the four sextants indicated to give the expression (2.15).
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formulas can be used to express the integrand.

For sufficiently large values of |¢| the magnitude of
the integrand of (2.9) will be dominated by the value of
—Re(k3) in the exponential. If we think of k¥’ and k", the
real and imaginary components of k, as orthogonal coor-
dinates, then —Re(k?) is a harmonic function, which has
the same altitude contours as a membrane stretched on
a circular rim whose height above the k/,k” plane varies
as — cos 36, where @ is the azimuthal angle on the plane.
From inspection of (2.9) we see that for large |¢|, most of
the value of the integral comes from the segment of path
near the maximum of —Re(k3). If the path of integration
can be chosen such that —Re(k3) decreases steeply and
monotonically from a relatively large initial value, we can
get an asymptotic approximation to (2.9) by integrating
for a short distance in the direction of steepest descent
of —Re(k®). As sketched in Fig. 1(b), such paths exist
for all large values of |q| outside the two sextants

/2 < |argq| < 57/6. (2.14)
Outside the sextants (2.14), integration of (2.9) along the
direction of steepest descent transforms (2.12) to

had 1
F ~ ef(w—y)q/ e~ 7t gy — Tei(z—y)q.
0

p (2.15)

We see from this expression that for large |q|, F' is expo-
nentially small in the upper half of the ¢ plane if z > y,
and exponentially small in the lower half of the ¢ plane
if £ < y. Also, F approaches zero rapidly enough as
g — oo along the real axis that (2.11) converges.

Now consider values of ¢ in the sextants (2.14) where
(2.15) is not valid, since the path of integration must go
uphill and cross a ridge on the surface —Re(k3) before go-
ing downhill again. For large values of |g| in the sextants
(2.14), the integrand of (2.9) is vanishingly small so f
1s independent of ¢. Furthermore, the right-hand side of
(2.10) approaches zero, and f becomes a solution of the
homogeneous differential equation (s—iz—98%/9z2)f = 0.
With the change of variables w = iz —s and f(iz—s,q) =
x(w), this becomes Airy’s differential equation [15, 16]
x"” = wyx. Since we will frequently be concerned with
the characteristic threefold symmetry of Airy functions
[if x(w) is a solution of Airy’s differential equation, then

x(e£?"/3y) is also a solution], it will be convenient to
denote the angle for a third of a turn about the circle by
2
= —. 2.16
a=2 (2.16)

From the well-known integral expressions of the Airy

functions [16] we find for large values of |g| in the sextants
(2.14)

f— eliz=k—k*/3 g 2rie ' Ai(e™ ¥ (iz — 5))
Cs

as |g| — o0 with /2 <argg < 5w/6. (2.17)

Similarly,
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eo=)k=k*/3g — _on; e Ai(e*(iz — s))

f—

C_s

as |¢g| — oo with —=/2>argq> —57/6. (2.18)
Consider the case > y, and let us evaluate G according
to (2.11) on the upper semicircular path C;. According
to (2.15), F is negligibly small on C; unless 7/2 < argq <
57/6. From (2.12) and (2.17), the asymptotic value of F

in this sextant is

F = 2mie " Ai(e™** (iz — s5))e~(¥=)a+4°/3, (2.19)
Thus, the resolvent (2.11) is
é(x,y,8)=—1—/ Fdg
2T C:
=ie ' Ai(e” % (iz — 5))
X / e~ (y=9)a+a°/34, (2.20)
Ca

Since the integrand F is negligibly small outside the sex-
tant 7/2 < arggq < 57/6, we have replaced C; by C,
and we have used (2.19) to factor out the Airy function.

Since e~(iW=2)9+4°/3 jg negligibly small for the parts of
Cj3 that extend beyond Cs, we can also write

/e-(iy—s)q+q“/3dq___/ e~ (y=9)a+a*/34,
C, Cs

:/ e~(y=91+a*/34,  (2.21)
Cy

The last equality is true because the integrand is analytic
in the finite ¢ plane, and the paths C3 and Cy4 begin and
end at the same points. Setting ¥ = —q in (2.21) and
using (2.18) we find

/ e—(iy—s)q+q3/3dq :/ e(iy")"—k3/3dk
Cy C_s
= —27mie'*Ai(e** (iz — s5)).

Using this in (2.20) we have

(2.22)

G’(:c,y, s) = 2mAi(e ™" (iz — 5))Ai(e*(iy — 5)) if = > y.
(2.23a)

For z < y we may replace Cp in (2.11) with the lower
semicircle C_; and proceed as above to find

G’(:c,y, s5) = 2mAi(e'*(iz — s))Ai(e " (sy — 5)) if = < y.

(2.23b)

In subsequent sections, we will denote the resolvent

(2.23) by Gy to distinguish it from related resolvents with
one or two boundaries.

To find the Green’s function that appears in (2.8) we
introduce new variables ¢ and r defined by

r—t and k::r+t
2 2

Then (2.11) becomes

g= : (2.24)
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G(z,y,8) = 3= [3° dt emts+itl+)/2-0/12
x (ffooo dr eir(:c—-y)/2—r2t/4)

e-(z‘~y)2/4t+it(x+y)/2—t3/12-—at .

Y dt !
- /0 Vant
(2.25)

Comparing this with the definition of the Laplace trans-
form, cf. (2.3), we see that

(z—-y)? dt(z+y)
)
(2.26)

G(z,y,t) =

1
Vant
We define the spatial Fourier transform of the resolvent
by

- 1 . .
P(k,q,s) = o /e_’(“_qy)G(z,y,s)d:x dy. (2.27)
The inverse of (2.27) is
G(z,y,8) = 51—— /ei(kx"qy)}s(k,q,s)dk dq. (2.28)
T

From inspection of (2.28), (2.9), (2.11), and (2.12) we
recognize that

P(k,q,5) = n(k — q) exp[—(k* — ¢°) — s(k — q)],

(2.29)
where 7 is the Heaviside unit-step function
1 ifz>0
n(=) = {0 ifo<0. (2:30)

The momentum-space Green’s function is given by the
inverse Laplace transform of (2.29). We may use the
well-known identity fj, e**ds = 2mi6(z) and note that
t > 0 to find

P(k,q,t) = 6(k — q — t) exp[—3(k® — ¢°)]. (2.31)

To discuss the physical significance of these results, we
reintroduce the variables ¢ and 7 and the parameter b in
accordance with (2.1). We denote the functions for the
two sets of variables with the same letters G and P. The
context will indicate which set of variables is understood.
Then (2.26) becomes

G((, &, 1) =b3G(z,y,1)

Gogr ey frty

= Jarr exp( ar 2 12
(2.32)

Physically, (2.32) describes the transverse spin polariza-
tion, observed at the position ¢ and time 7, generated
by a point source of transverse spin, located at the posi-
tion £ at time 7 = 0. If b = 0, the Torrey equation (1.11)
reduces to the equation for heat conduction in one dimen-
sion, and (2.33) becomes the well-known [17] space-time
dependence of a heat-pole. For nonzero b, the behavior
is similar to heat diffusion, but at an observation point
¢ the polarization precesses at the average of the Lar-
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mor frequencies b and b( at the source and observation
points, and the polarization damps exponentially with
73. Note that

G((,& 1) —6(C—¢)  as

For a uniform initial polarization, %(¢,0) = 1, the polar-
ization evolves to

W(C7) = /_ G(C, €, T)P(E, 0)de
=exp (ib¢T — b*7°%/3) ,

7 — 0.

(2.33)

(2.34)

from which Hahn’s formula (1.1) follows.
To reintroduce b to the formulas for momentum space
and the resolvents, we make the change of variables

k=xb"13  and q=pb~1/3. (2.35)

The momentum-space Green’s function (2.31) becomes
P(x,p,7) =071 2P(k,q,1)
1
=6(k —p—br)exp (_5(,‘;3 - p3)> . (2.36)

According to (2.36), a component of the wave func-
tion with initial momentum (spatial frequency) p will
evolve into a component with momentum &« = p + br
at time 7, and will have been damped by the factor
exp[(p® — £3)/3b]. Physically, an initially positive spatial
frequency p > 0, that is, a right-handed spiral of spins,
will increase, because the field inhomogeneity twists the
transverse spin polarization into ever tighter spirals. The
damping is caused by diffusion of spins across the half-
period distances 7/k of the instantaneous spatial fre-
quency k. If the initial spatial frequency is negative,
p < 0, the field inhomogeneity will first unwind the left-
handed spiral and then wind the spins into a right-handed
spiral with an increasingly positive spatial frequency.
The double line integral (2.11) permits one to ob-
tain four kernels: space time (2.26), space frequency
(2.23), momentum time (2.31), and momentum fre-
quency (2.29). Alternatively, all of the kernels can be
derived directly by solving differential equations with ap-
propriate boundary conditions, but it is hard to show di-
rectly that (2.23) and (2.26) are Laplace-transform pairs
and that (2.23) and (2.29) are Fourier-transform pairs.

III. ONE NONDEPOLARIZING BOUNDARY

Suppose there is a nondepolarizing boundary at £ =1
so that the resolvent (2.6) satisfies the boundary condi-
tion

%(m,y,s)zo at z =1 (3.1)
For convenience, we make the change of variable
w=1ix—s with x(w) = G(z,y, s), (3.2)

and we think of y as a fixed parameter. Then for z # y,
(2.6) becomes Airy’s differential equation

1

X" = wx, (3.3)
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where the prime denotes differentiation with respect to
w. Any pair of the Airy functions Ai(w), Ai(e™**w), or
Ai(e**w) can be used to express the general solution of
(3.3), so we write

fez<y

o= () L DA 35 o9

Note that

as z — 00, Ai(e™**w)—0 and Ai(e!“w) — oo;
(3.5)

Ai(e”**w) — co and Ai(e’*w) — 0.
(3.6)

Suppose that the diffusion is bounded on the left at {.

Then we are interested in solutions of (2.6) that satisfy

(3.1) and for which z > ! and y > [l. For finite values of
y and s we must have

as £ — —o00,

G(z,y,s) — 0 as z — oo. (3.7)
We conclude from (3.5) and (3.7) that

D=0. (3.8)
From (3.1) and (3.4) we see that

Aie ' Ai'(e7"*wy) + Bie'*AV'(e“wy) =0,  (3.9)
where

w =il —s. (3.10)

The § function in (2.6) produces a unit discontinuity in
the slope of G at z = y, so (3.4) implies

1= Aie™*Ai'(e7**w,) + Bie'*Ai'(e'*w,)

— Cie " AV (e™""wy), (3.11)

where

wy =iy — s. (3.12)
Since G’ is_continuous except for the unit discontinuity
at z = y, G must be continuous for all z > I, including
T = y, SO we Wwrite

AAi(e™**wy) + B Ai(e'*wy) — C Ai(e™"*w,) = 0.
(3.13)

Solving the simultaneous equations (3.9), (3.11), and
(3.13) for the coefficients A, B, and C, and substitut-
ing these values into (3.4), we obtain the resolvent for
diffusion to the right of a nondepolarizing boundary at
z=1

G =Go+ Gy, (3.14)
where Go, the resolvent for unbounded diffusion, is given
by (2.23), and the correction due to the boundary is

G1 = — 27e¥ AV (' (il — 5))Ai(e™**(iz — 5))

xAi(e™*(iy — 5)) /Ai’ (e "' (il — 5)). (3.15)
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Note that
Gi—0 a I— —oo. (3.16)
The Wronskian [19]
eidal4 } ) )
o = e " Al(e*¥2)Ai' (e T*%2)
— " Ai’'(e'*2)Ai(e % 2) (3.17)

was used to simplify (3.14) and (3.15). Equation (3.17) is
valid for any complex number 2. For future reference, we
note that (3.17) remains valid if we substitute —« for a.
We see from (3.15) that the resolvent (3.14) has simple
poles when

Ai'(e7*(il — 5)) = 0, (3.18)
that is, when
$ = Spq = il — ale'® forn=1,2,3,..., (3.19)

where a}, is one of the zeros of the entire function Ai’. The
a;, are negative real numbers [15]. In order of increas-
ing magnitude the first three are af = —1.01879297,
ay = —3.248 19758, aj = 4.82009921. The poles recede
to —2oo when | — —o00, as one would expect, since the re-
solvent for unbounded diffusion has no poles in the finite
s plane.

The residue of the resolvent (3.14) at s = s,, is readily
shown to be

im (s — spa)G(z,y,5) = N2, Ai(e ™ (iz — 5n4))

xAi(e™ ' (iy — 5nq)).  (3.20)
The normalization coefficient is

1

NZ —
nE T eTialt gl Ai%(al)

(3.21)
The Wronskian (3.17) was used to simplify these expres-

sions. The Airy functions of (3.20) are solutions of the
homogeneous version of (2.6),

ik ;
(s,m — iz — W) Ai(e™*(iz — spa)) = 0. (3.22)

The Airy functions of (3.22) satisfy the boundary condi-
tions

A" =0 when z=1 Ai—0 as z — oo.

(3.23)

Multiplying (3.22) on the left-hand side by the eigenfunc-
tion for s, and integrating, one can readily verify that

NﬂaNma/ Ai(e™*(iz — sp4))Ai(e (i — sSpa))dz
1
(3.24)

= bnm.

To verify the normalization explicitly, one can make use
of ( 10.4.57) of Ref. [15]. In analogy with (2.4), the
Green’s function is the inverse Laplace transform of the
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resolvent
G=:m / Getds
27rl v
=D N2 Ai(e™*(iz — 5pa))Ai(e™**(iy — 5na))
n=1

X exp(Snat). (3.25)

Thus, the Green’s function (3.25) for a nondepolarizing
boundary on the left at £ = [ can be conveniently ex-
pressed as an eigenfunction expansion. Since the oper-
ator in (3.22) is not Hermitian, the eigenvalues s,, are
complex instead of real, and there is no complex con-
jugate symbol on either of the eigenfunctions in the or-
thogonality relation (3.24). According to (3.19), the real
parts of the eigenvalues are all negative, so (3.25) is a
sum of damped oscillations with respect to time. The
eigenfunctions span a complex orthogonal space rather
than a unitary space, and the eigenvalues are said to
be rectanormal. Schneider and Freed [18] have given an
excellent review of the basic properties of such spaces,
which occur naturally in the discussion of many kinds of
spin relaxation.

For diffusion bounded on the right, we require z <[
and y < . We must replace a by —a in (3.14)—(3.25).
Additional modifications are in (3.16), G, — 0 as | — oo;
in (3.23), Ai — 0 as ¢ — —oo; in (3.24), the integral
extends from —oo to l. Sketched in Fig. 2 are the eigen-
values s, +, for diffusion to the right and to the left of a
boundary.

IV. TWO NONDEPOLARIZING BOUNDARIES

The first analysis of the Torrey equation (b # 0)
with two nondepolarizing boundaries seems to be that
of Robertson [19], who obtained approximate solutions,
with qualitatively correct limiting decay rates for slow
and fast diffusion, but with a range of validity which
is hard to estimate. Freed [20] and his colleagues, in
their analysis of spin waves in polarized atomic hydro-
gen, showed that the eigenfunctions are Airy functions.
They made extensive numerical studies of the solutions,
and they showed that these solutions provide a good de-
scription of spin-wave experiments. We will discuss the
problem from several viewpoints: first, as an extension of
the previous discussion of unbounded diffusion and dif-
fusion with one nondepolarizing boundary; secondly, by
means of direct numerical integration of the Torrey equa-
tion; and finally, in terms of an abstract vector space.

Suppose there are nondepolarizing boundaries at x =
J
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FIG. 2. Pole locations in the complex s plane of the re-
solvent (3.14) for a single nondepolarizing boundary. Open
circles: sn,o for diffusion to the right of a boundary located
at £ = —(200)'/2. Solid circles: $n,—o for diffusion to the left
of a boundary located at z = (200)1/3.

4! so that

%%(x,y,s) =0 at z =+l (4.1)
and let -l < z <l and -l < y < I. The same con-
siderations apply as in the discussion of one boundary.
The four coefficients A, B,C, and D of (3.4) are deter-
mined by the two conditions (4.1), by the requirement
that G have a unit discontinuity at £ = y, which gives
an equation analogous to (3.11), and by the requirement
that G be continuous at z = y, which gives an equation
analogous to (3.13). The resolvent is

G= éo + él, (4.2)

where the correction to the resolvent éo for unbounded
diffusion is

Gi= iAi'(e‘“w_)Ai'(e-‘“w+) [Ai(e™ " w, ) Ai(e**wy) + Ai(e “wz)Ai(e ™ *wy)]

A

—%eziaAi'(e“"w_)Ai(e*"w+ YAi(e™ w; )Ai(e T ¥ wy)

~%e‘2i“Ai'(e_‘°w_ YAi(e™ *wy )Ai(e w, ) Ai(e *wy),

(4.3)
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where the denominator is the entire function
A(s, ) = 2—1;[ Ai (e7 " w_)Ai (e'*wy)
— AV (e w_) AV (e7*%w, )], (4.4)
and where
wy = +il — s Wy = 1T — S wy = iy — S.

(4.5)
The resolvent has poles at the values s = s,, for which
A(sn,l) =0. (4.6)

There are infinitely many first-order poles, as in the case
discussed above of a single boundary. In addition, there
are second order poles for exceptional values of I. Nu-
merical studies show no evidence for higher-order poles.

A. Numerical studies

Much insight can be gained from numerical studies of
the Torrey equation. We investigate solutions that decay
exponentially with the first power of the time,

P(¢, ) = d(C)e™ . (4.7)

Substituting (4.7) into (1.11) we obtain the time-
independent Torrey equation

. 62
where ¢ must satisfy the boundary conditions
0¢
—(0) = = +1. 4.

Solutions of (4.8) satisfying (4.9) exist only for discrete
eigenvalues v,. We can more clearly understand the de-
pendence of v,, on b if we think of b as an arbitrary com-
plex number. The eigenvalues v, of (4.8) are branches,
interconnected at branch points, of the multivalued func-
tion v(b). For ordinary magnetic resonance applications
of the Torrey equation (1.11), the parameter b will be a
real number, but an imaginary component of b is conceiv-
able. It could correspond to a local relaxation mechanism
that varied linearly along the cell axis. A gradient in the
chemical composition or temperature could cause such a
dependence. If b is purely imaginary, (4.8) becomes the
time-independent Schrodinger equation for a particle of
fixed energy, F o< v, subject to a constant force, F' o< b,
in the ¢ direction. When written in terms of {, 7, and
b, the expressions for Green’s functions and resolvents of
Sec. IT and III remain formally correct for complex values
of b. For some complex values of b, however, the solutions
grow without limit as time increases.

For b = 0, the Torrey equation (1.11) with the bound-
ary condition (1.10) reduces to the equation of heat con-
duction on a thin ring with a circumference of two units.
Sommerfeld [17] shows that for this case the Green’s func-
tion G is the sum of two ¥ functions. For b = 0 the
solutions of (4.8) are simply
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én(¢) =cosnm((+1)/2 forn=0,1,2,... .
(4.10)
The eigenvalues are
n2x?
Yno = y) (4.11)

For sufficiently small values of b, the eigenvalue v,, can
be expressed as a power series in b; that is

n?m?

T = + kab® + kab® 4 -+, (4.12)
where the coefficients ko, k4,..., depend on n. For ex-
ample, using the perturbation methods of Refs. [4], [6],

and [7], one can readily show that

_»
Yo = 15 .
Multiplying (4.8) for the nth eigenfunction ¢, by the
complex conjugate ¢} and integrating by parts over the
interval [-1,1] with the boundary conditions (4.9) gives

w=(f 11 v [ 11 satcac) ([ 11 6a )

We see from (4.14) that for real values of b, the real
part of the eigenvalue v, must be non-negative, while for
purely imaginary values of b, v, will be real, which must
be so since (4.8) is then Hermitian.

Suppose that (4.8), with the boundary conditions
(4.9), is satisfied for the parameter b,;, an eigenvalue
Yn1, and an eigenfunction ¢,;. Then the symmetry of
(4.8) implies that there are three other solutions ¢, for
m = 2,3,4, corresponding to inhomogeneity parameters
b = b.m and eigenvalues ¥y, as listed in Table 1.

There can be no more than one linearly indepen-
dent solution of (4.8) with the boundary condition (4.9).
Thus, if b,; and v, are real, we must have ¢};(—() x
¢n1(€), and we can always choose ¢,; such that

(4.13)

-1

(4.14)

21(Q) = én1(=¢). (4.15)
Starting with the identity
1 d2
/ Om (7n + b¢ + @) ¢nd¢ =0, (4.16)
-1

which follows from (4.8), integrating by parts, and using
(4.9), one can show that

1
(Ym — ) /_1 PmndC = 0. (4.17)

Thus, [2) dmén dC = 0 if Ym # a-

We have used a Runge-Kutta algorithm [21] to inte-
grate (4.8) from ¢ = —1 to ¢ = +1 with the initial con-
dition

o(-1)=1 and

¢'(-1) = 0. (4.18)
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TABLE 1. Symmetry relations among solutions of the TABLE II. Zeros of J_5;3 and corresponding branch
time-independent Torrey equation. points.
m bnm ¢nm(c) Ynm p jp BP
1 br1 #n1(C) Yn1 1 1.243 04 2.2581
2 —bn1 én1(—¢) Yn1 2 4.42912 28.669
3 b én1(—C) Y1 3 7.57945 83.956
4 —bny én1(€) Th1 4 10.724 74 168.09
5 13.86837 281.08
6 17.01125 422.91
7 20.15373 593.59

Values of ¢/(1) were computed for two trial values of v,
and several iterations of the secant method [21] were used
to find the values of ¥ for which ¢’(1) = 0, in accordance
with the boundary condition (4.9). Asshown in Fig. 3, as
b increases along the positive real axis, successive pairs of
eigenvalues coalesce at branch points b = By, Bs, Bg, .. .,
to common values I'1, '3, '3, ... . In Sec. VI we show that
the positive, real values of b and 4 at the branch points
are related by

B, = \/l—’;l"p.

The first few B,, calculated from the zeros j, of the
Bessel function J_j/3 in accordance with the formula
(6.20) derived below, are listed in Table II. There is no
difference, within computational accuracy, between the
branch points found by numerical solution of (4.8) and

(4.19)

60—

i
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@ v
20 F

(b) v"

() Y o

FIG. 3. (a) The real parts of the eigenvalues of the time-
independent Torrey equation (4.8) for diffusion between two
nondepolarizing boundaries. (b) The imaginary parts of the
eigenvalues above. There are infinitely many branch points
on the real b axis. (c) The eigenvalues of (4.8) for imaginary
b; all eigenvalues are real and there are no branch points.

the values from (6.20).

In view of the symmetry properties of Table I, there
are also branch points on the negative real axis at
—By,—B3,—Bg,.... Also shown in Fig. 3 is the depen-
dence of the eigenvalues on purely imaginary b. There
are no branch points on the imaginary axis, but there
are branch points above and below the real axis of the
complex b plane. The mapping of two sheets of the b
plane onto one sheet of the 4 plane near the first com-
plex branch point is shown in Fig. 4.

For large real values of b, many eigenvalues are com-
plex. A plot of the eigenvalues in the complex v plane is
shown in Fig. 5 for b = 200. Note that the eigenvalues lie
very nearly on a trigon, which intercepts the imaginar
v axis at +ib and has a vertex on the real axis at b/\/i_iy

The qualitative behavior of the eigenfunctions ¢, is
sketched in Fig. 6. We have represented the eigenfunc-
tions ¢,(¢) in the space &,7,{ with £ = Re(¢,) and
1 = Im(¢n). For esthetic reasons, we chose a left-handed
coordinate system, so the sketches correspond to a field
gradient which twists the spin polarization into a left-
handed screw. The eigenfunction of Fig. 6(a), ¢, for
b = 400, is localized near the left boundary; the damping
rate v is complex and has a relatively small real part. The
eigenfunction of Fig. 6(b), ¢¢ for b = 400, is localized on
the left-hand side of the interval; it has a complex damp-
ing rate with a larger real part. The eigenfunction of
Fig. 6(c), ¢12 for b = 400, is centered in the interval and
has a purely real damping rate, but it is still strongly
perturbed and localized with respect to the function it
evolves from in the limit of no field inhomogeneity. The
eigenfunction of Fig. 6(d), ¢10 with b = 2, is delocalized
and has a damping rate that differs only slightly from the
value (4.11) for no field inhomogeneity. It differs from the
sinusoids of (4.10) by not quite lying in the £-¢ plane. The
eigenfunctions of Figs. 6(a) and 6(b) are almost identical
to the eigenfunctions of Sec. III for a single nondepo-
larizing boundary. The eigenvalue equations (3.22) and
(4.8) are identical if we make the substitution (2.1) with
v = —b?*/3s,. If the eigenfunction is vanishingly small
at one of the two boundaries, then the conditions (4.9)
for two boundaries have the same effect as the conditions
(3.23) for one boundary. Thus, (3.19) implies that the
complex eigenvalues should be given very nearly by
Yo = ib+ b*/3al e for n=1,2,3,.... (4.20)

Equation (4.20) works for complex as well as real values
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(a)

FIG. 4. (a) Arcs of constant |b| and rays of constant argd
in the neighborhood of the branch point with [B| = 10.991
and arg B = 2.452 in the complex b plane. (b) The mapping
of the rays and arcs of (a) onto the v plane. The cut outward
along a ray through the branch point in the b plane keeps the
mapping one-to-one. Since the branch point is second order,
a circuit from one edge of the cut in the b plane, around the
branch point to the adjacent point on the other edge carries
the corresponding value of 4 to the opposite side of the branch
point, located at I' = 7.76 + 1.98:. The mappings near other
real and complex branches are similar (cf. Fig. 7).

of b; the criterion for validity is that the eigenfunction be
well localized near one of the two boundaries and negligi-
ble near the other. Figure 7 shows the exact and asymp-
totic mappings of the circle |b| = 28.669 from the complex
b plane into the complex v plane. This circle goes through
the second pair of real branch points B = +28.669. The
eigenfunction of (4.8) remains localized near one or the
other boundary for a large range of arg b, and the asymp-
totic mapping (4.20), shown by dashed lines, remains al-
most indistinguishable from the exact mapping, shown
by solid lines, and obtained by numerical integration of
(4.8). The asymptotic mapping fails in the neighborhood
of branch points, where the eigenfunctions are affected by
both boundaries and the exact mapping is very compli-
cated.

Physically, the eigenfunctions shown in Fig. 6 represent
the spatial distributions of transverse spin polarization
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FIG. 5. Eigenvalues of the time-independent Torrey equa-
tion (4.8) for b = 200. The complex eigenvalues are nearly the
same as the negatives of the pole locations for a single non-
depolarizing boundary (cf. Fig. 3). The large real eigenvalues
are very nearly equal to the eigenvalues (4.11) for spin dif-
fusion between two nondepolarizing boundaries with no field
inhomogeneity.

that damp exponentially at the rate Re(y) and precess at
the rate Im(vy). The precession rate Im(y) is proportional
to the amount that the spiral is off-center, where the
majority of the spins precess faster (or slower) than at
the center of the interval.

B. Similarity to Mathieu functions

We note that the eigenfunctions and eigenvalues of

(4.8) resemble the solutions y = ceo,cez, ceq, ... of the
Mathieu equation [15, 22, 23]
-dz—y+(a 2¢cos2z)y =0 (4.21)
dz? 1 y="q :

These solutions have the period = and satisfy the bound-
ary conditions ce}, (0) = ce},(w/2) = 0, which are analo-
gous to the boundary conditions (4.9). Sketched in Fig. 8
as a function of purely imaginary values of ¢ are the eigen-
values ag,as,ay,..., of ceg,ceq, ceq,... . Like the eigen-
values v, of Fig. 3, the eigenvalues of the Mathieu func-
tions coalesce in successive pairs at branch points.

To understand the similarity, note that one can replace
¢ in (4.8) by the periodic “potential” V(¢ +4) = V (),
which we define to be

(C+2) if —2<¢<~1
V(C)={—C if —1<(<1
(¢C-2) if1<¢<2

A solution ¢ of (4.8) with the boundary conditions (4.9)
can be used to define a periodic function y(¢ +4) = y(¢)
on the real ¢ axis by

(4.22)
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FIG. 6. The eigenfunctions ¢, of the time-independent
Torrey equation (4.8). (a) n = 0, b = 400, v = 27.6 + 3521 ;
(b) n =6, b =400, v = 167 +110i ; (c) n = 12, b = 400,
y=321; (d)n=10,b=2, vy =247. The eigenfunctions
for the complex eigenvalues are very nearly the same as the
eigenfunctions of (3.22) for diffusion to the right (or left) of a
single nondepolarizing boundary. The eigenfunctions for suf-
ficiently large real eigenvalues differ little from the delocalized
sinusoids of (4.10).

”(O) = {¢(<) if —1<¢<1 (423)

$(2-¢) f1<(¢<3

Then y is a solution of y” + yy = ibVy. The periodic
functions y thus formed are Bloch functions of vanishing
“crystal momentum” and even symmetry with respect
to the points of the sawtooth potential (4.22). Both the
Mathieu equation and the time-independent Torrey equa-
tion are Hill equations [24]. They depend on two complex
parameters, a and ¢ in the case of the Mathieu equation
(4.21), and v and b in (4.8). Meixner and Schafke [25, 26]
have shown that the existence of branch points, which
they call Ausnamewerte or exceptional values, is a gen-
eral property of eigenvalue equations that depend on two
parameters. The solutions ceg, ces, cey, .. ., of the Math-
ieu equation for purely imaginary values of the parameter
g describe the evolution of spin polarization transverse
to the x axis in a thin cell with nondepolarizing walls at
z = 0 and z = 7/2 when the spins can simultaneously
diffuse along the z direction and rotate around the « axis
at a Larmor frequency proportional to iq cos 2z. Presum-
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b"

3n
4

FIG. 7. Mapping of the circle |b] = 28.67 from (a) the
complex b plane into (b) the complex v plane. Several
branches of the multivalued function v(b) are shown. For
the higher sheets, one of which is shown near v = 40, a single
turn in the b plane produces two turns about a small circle
in the v plane. The first and second sheets of v(b) have coa-
lesced. For these, one turn in the b plane maps to the single
large loop in the 4 plane. The third and fourth sheets just
intersect at the branch point ¥ = 16.55, which corresponds to
b = +28.67.

ably, a large class of periodic potentials similar to (4.22)
will have eigenvalue spectra qualitatively similar to those
of the Torrey equation and the Mathieu equation.

C. Eigenfunction expansions

One might surmise from (4.17) that the eigenfunc-
tions ¢, form a complete set on the interval [—-1,1], so
the Green’s function for (1.11) with two nondepolarizing
boundaries should be

G((,&,7) =D N26n(C)én(€) exp(—7a7),  (4.24)

n=0

in analogy to (3.25). The normalization coefficients N,
are chosen such that

1
1=n; [ REGL3 (4.25)

A proof that the expansion (4.24) is valid ezcept when
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FIG. 8. (a) The real parts of the eigenvalues a of the
Mathieu equation (4.21) for imaginary ¢. (b) The imaginary
parts of the eigenvalues above. (c) The eigenvalues for real g;
all eigenvalues are real. Note the qualitative similarity to the
behavior of the eigenvalues of the Torrey equation, as shown
in Fig. 3.

b is a branch point will be presented in Sec. V. However,
a very convincing case for the validity can be made by
examining the expansion with the numerically computed
eigenfunctions and eigenvalues of (4.8). We found that
the first 14 eigenfunctions at b = 200 represent the func-
tion 1((,0) = 1 to better than 1%. In Fig. 9 we show
the time dependence of %(0,7) = [, G(0,£, 7)(¢, 0)dt,
as given by the first 14 terms of the Green’s function
(4.24). As one can see from the logarithmic plot, the
eigenfunction expansion decays exponentially with 73 at
early times, in accordance with Hahn’s formula (1.1).
One can see from the linear plot that the oscillations
at late times, which are due to the most slowly decaying
eigenfunctions, are of no practical significance. Near the
center of the interval and for large values of b, the series
solution which follows from (4.24) is practically indistin-
guishable from the solution (2.34) for unbounded diffu-
sion. There are increasingly noticeable differences from
(2.34) as the position ¢ moves closer to either boundary.

V. BRANCH POINTS

In this section we show that the eigenfunction expan-
sion (4.24) is correct when b is not a branch point, and
we discuss modifications that are necessary when b is a
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FIG. 9. Time dependence of the eigenfunction expansion

of (¢, r) with the Green’s function (4.24) at the center, ¢ =
0, of the spatial interval. The initial polarization was uniform,
i.e,, ¥(€,0) = 1. The expansion was truncated after the first
14 terms. The field inhomogeneity parameter was b = 200.
(a) In[9(0,7)] as a function of (107)%. The initial straight
line is in excellent agreement with the predictions of Hahn’s
formula (2.34). The oscillations at late times are due to the
eigenfunctions of the two left-most eigenvalues of Fig. 5. (b)
|#(0,7)| as a function of . On a linear scale, the oscillations
at late time are hardly noticeable.

branch point. The resolvent é((,f) for two nondepo-
larizing boundaries is a continuous function of ¢ on the
interval —1 < ¢ < 1 that satisfies the differential equa-
tion

(A= H)G((, &) = 6(¢ - ¢), (5.1)
where £ is some source point on the interval and
92
H = 57 +iC. (52)
The boundary conditions are
%?—:0 at ¢ =+l (5.3)

Define two solutions u and v of the homogeneous equation

(A-—H)u=0 and (A=H)» =0, (5.4)
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with the boundary conditions

u(=1)=1; 4'(-1)=0 and »(1)=1; (1) =0,

(5.5)

where the prime denotes a partial derivative with respect
to (. Here u and v are functions of the position { and
of the complex parameters A and b. For conciseness, we
will write u({) or simply u instead of u(A, ,{) when the
values of the arguments are clear from the context. Since
the coeflicients of the differential equations (5.4) have
no singularities in the finite { plane, u and v are entire
functions [27] of ¢. Also, Ou/8X and du/db are entire
functions of (, defined by the inhomogeneous equations
(A= H)0u/0X = —u and (A — H)Ou/db = i(u, with
Ou/dA, Bu/db, Bu' /0N and Ou’' /Db all equal to zero at
¢ = —1. Similar considerations hold for v. Thus, u and
v are entire functions of A and b. We use u and v to
construct the function

~ W l(Ow(€) if¢ <€
G(C,E) - { W—lvgc))ugfg lfC ;f, (56)
where the Wronskian is
W =W(A,b) = v({)v'(¢) — v'(Qu(C)
=u'(1) = —=v'(-1). (5.7)

From (5.4) and (5.5) we see that the function (5.6) is a
solution of (5.1) with the boundary conditions (5.3) and
is therefore the resolvent. Since u, v, v’, and v’ are entire,
the resolvent (5.6) is the ratio of entire functions.

Equation (5.4) implies that W is independent of ¢, so
it can be conveniently evaluated at ( = £1 with the aid
of (5.5) to give the last two equalities in (5.7). For any
fixed value B of b, G will have poles at those values \A; of
A for which

W(Xi, B)=u'(A\, B, 1) = 0. (5.8)
Let us consider values of A and b near a pole,

A=A+ AX and b= B + Ab. (5.9)
We can expand u as a power series in A\ and Ab |

u=1ugy + Aluig + Abug; + é;—?ugo + AAAbuqy

+ S‘zﬁuw 4o (5.10)

where

Upg = %;;%(/\;,B,C). (5.11)
Here

ugo = u(A;, B, (), (5.12)
so (5.5) and (5.8) imply that

ugo(—1) =1 and ugo(E£1) = 0. (5.13)

The partial derivatives of u satisfy the boundary condi-
tions

7471

upe(—1) =0 and u;q(—l) =0 for pg # 00.
(5.14)

The analogous power series expansion of v is

AN?
v=1vgp + AAvig + Abvy; + vgg + AAAb vy
Ab?
+_2 voa + -, (5.15)

where

Voo = ’l)(/\i, B,C) (516)
with

voo(l) =1 and wge(1) = 0. (5.17)

The boundary conditions for the partial derivatives of v
are

Upg(1) =0 and v, (1) =0 for pg+# 00. (5.18)

Substituting the power series (5.10) into (5.4) and setting
coefficients of AN Ab? equal to zero, we find that the
expansion functions u,, satisfy the differential equations

(A,‘ — H)uOo = 0, (5.19&)
(Ai— H)upg=—pup_1,¢+qiCupq-1 for pq#00.
(5.19b)

In (5.19), the operator H is evaluated with b = B, and
functions u,, with negative values of p or ¢ are under-
stood to be identically zero. Substituting (5.15) into (5.4)
shows that the vy, satisfy the same differential equations
(5.19) as the up,. The boundary conditions (5.14) and
(5.18) together with the differential equations (5.19) fully
determine the functions upq and vp,.

We see that ugp 1s an eigenfunction of H with eigen-
value );, satisfying the boundary conditions (5.13). It is
identical to the eigenfunction ¢ discussed in connection
with (4.8). The Laplace variable A and the damping rate
v are related by A = —+.

Multiplying (5.19a) on the left by upo, multiplying
(5.19b) with ¢ = 0 by ugo, and subtracting the equations
which result gives the identity

uoou;,'o —_ ugoupo = pup_l,ou()o, (520)
Integrating (5.20) we find
1
p/ uOoup_l’odC = U.oo(l)u;,()(l)‘ (5.21)
-1
In a similar manner we find
1
iq] CUOOUO,q—ldC = —’Ltoo(l)ué)q(l). (522)
-1
We note that
uoo(1) # 0. (5.23)

Indeed, since upy(1) = 0 according to (5.13), if it were
also true that ugo(1) = 0, then (5.19a) would imply that
ugo = 0 for all values of ¢, in contradiction to (5.13).

We can think of the condition (5.8) as implicitly defin-
ing a function A; = A;(B), which gives the location of the
pole as a function of B. Using (5.10), (5.21), and (5.22)
we find
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di _ —up (1)
dB ~ (1)

1 1
- (i/_ICugo dc) (/_1u§od<)

Thus, there are singularities in the function A;(B) at
values of B when u{3(1) = 0, or equivalently, when
f L udod¢ = 0 and the function ugo is self-orthogonal.
Although we will focus on the spectrum of pole locations
A; for a fixed value B of b, there is a completely analogous
viewpoint in which we consider the spectrum of pole lo-
cations b; for a fixed value A of A. There are singularities
in the function b;(A) when ug,(1) = 0, or equivalently,

i (5.24)

when f ¢udod¢ = 0. Examples of both types of singu-
larities are visible on Fig. 3, where the slope of one of the

curves v(b) equals 1nﬁnlty or zero.
Substituting the series (5.10) and (5.15) into (5.7) we
find, for Ab =0,

/ /
W = (voougg — VooUoo)
/ / ! !
+ AX(voou)o + V10U — YooU10 — VipUoo)

+ .. (5.25a)
A/\2 A3
= AXuio(1) + = uzo(l) + = 30 uzo(1) + -
(5.25b)
|

[u0o(€) + AXuso(¢) + -

Jvoo(€) + AXvio(€) + - -]
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The coefficient of each power of AX in (5.25a) must be
equal to the corresponding coefficient in (5.25b). Thus,
the first term in parentheses is zero, and since this is the
Wronskian of vgg and ugg, we conclude that

1
U.()()(l) )

(5.26)

where c=

v90(¢) = cuoo(¢)

The value of the coefficient ¢ follows from the boundary
conditions (5.17). Thus, when A = A; and b = B, the
two solutions u and v of (5.4) are multiples of each other
and it is impossible to find a function G that is both
continuous and has an appropriate discontinuity in the
derivative at ¢ = & to give the é function in (5.1).

Similarly, equating the coefficients of AX in (5.25) and
using (5.26), we find

(Cullo - ”/10)“00 — (cu1o0 — vlo)uf)o = “’10(1)a (5.27)

which is valid for all values of (.
Inserting the series (5.10), (5.15), and (5.25) into (5.6),
we find, for Ab =0 and ¢ < &,

G(¢,€) =

There is an analogous expression for { > . We see that
the resolvent has a pole at A = );, and the order p of
the pole is equal to the smallest value of p for which

Upo(1) # 0.
Consider a simple, first-order pole. Then
and (5.28) reduces to
~ __uoo(¢) uoo(§)
GO0 = T um (e *
N2¢(C)¢(§)
Y e (5.30)

The singular term in (5.30) is the same for { > £. The
additional terms, indicated by the dots, remain finite as
A — A;, but are different for { < € or ¢ > €. In ac-
cordance with the notation of (4.24) and (4.25) we have
written

G(¢,6) = 2 { ugo(¢)uoo(€)

uoo(1)uge(1) L (A = Ao)?

AN o(1) + AX2uby(1)/2! + AX3 ufy(1)/3! + - -

(5.28)
[
ugo(¢) = ¢(¢), (5.31)
and
N2 = [ ubodc = uoo(1)uo(1) (5.32)

where the last equality follows from (5.21) with p = 1.
Now consider a double pole at A = Ag. Then

who(1) = 0 uo(1) 0. (5.33)

In view of (5.33), we conclude that the Wronskian (5.27)
is zero, so for all values of {

and

ul()(].)
~ Tuoo(DF’
The value of the coefficient a can be determined by set-

ting ¢ = 1 in (5.34) and using (5.18) and (5.26). Then
(5.28) becomes

where (5.34)

(Culo - 'UIO) = aupo

ulo(l)

b [wan(©uia() + wia(Ouoo(©) ~ (220 + 20D o @yuna(e)] | +

(5.35)
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The singular terms in (5.35) are the same for ¢ > &.
The additional terms, indicated by the dots, remain finite
as A — Ag, but are different for { < £ or ¢ > &.

We have already shown that in the neighborhood of a
simple pole, the rate of change of A; with b is finite and
given by (5.24). For a second-order pole, (5.10) shows
that it is possible to keep u/(1) = 0 if the lowest-order
changes in A and b are related by

Ab— —2u61(1)Ab) 1z
2upy (1)

ar= *( (1)

(5.36)

The displacement Ab of the pole location in the b plane is
second order in A, the displacement of the pole location
in the A plane. One implication of this is that equal and
opposite displacements of ¥ = —A from the branch point
I’ correspond to the same value of b. An example is shown
in Fig. 4.

Near a second-order branch point we can use (5.36) to
write the eigenfunction (5.10) as

—2uh, (1)Ab\?
¢=q>0+A,\q>1+...—_-q>0i(_%1_()_> O+,

uho(1)
(5.37)
where the eigenfunction at the branch point is
®o(¢) = uoo(¢), (5.38)
and its rate of change with A is
@1(¢) = u10(¢)- (5-39)
|

66,6 = 7 [20020) , 1

Moi | (A= Ao)? A

We can write the resolvent as the sum of all of its sin-
gular terms. If b is not one of the branch points, we sim-
ply sum the contributions (5.30) from the simple poles.
Taking the inverse Laplace transform yields the familiar
expansion (4.24), which is therefore complete if all of the
singularities of G(¢, &, A) are simple poles in the A plane.

The simple eigenvalue expansion (4.24) is not correct
if b is one of the branch points, as one might expect since
one of the eigenfunctions is lost. Equation (5.40) shows
that ®¢ is orthogonal to itself, so it is not possible to solve
(4.25) for the corresponding normalization coefficient. If
there are double poles, they must be excluded from the
sum (4.24) and replaced by the inverse Laplace transform

of (5.45),

-I'r
AG = [ Bo()21(€) + $1()20()
+ (7 — M11/Mo1)®o({)®o(£)], (5.46)
where I' = — ;. The solution at a branch point contains

T (¢0(<)¢1(s) + ®4(C)®o(€) - %%(O%m)] e
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From (5.32) and (5.33) we see that
Moo = /11 ®2d¢ = 0. (5.40)
With p = 2 in (5.21) we find
Moy = /_11 Bo®,dC = %uoo(l)u’m(l) £0.  (541)

Multiplying both sides of (5.19b) by wu1o, setting p = 2
and ¢ = 0, and integrating gives

1 1
oMy, = 2/1 ®2(¢)d¢ = — / . u10(Ao — H)uzo d¢

1
=— / ug0(Ao — H)uiod( + uio(1l)uye(1), (5.42)
-1

where the last equality is obtained by integrating by parts
and using the boundary conditions (5.14) and (5.33).
From (5.19) and (5.21) we find

1 1
/ uz0(Ao — H)uyod( = —/ Uz0U00d(
-1 -1

1

= —guoo(l)uéo(l)- (5.43)

With this (5.42) becomes

1
2Mi1 = ur0(1)uze(1) + Fuoo(1)uso(1)
uio(1) | us(1) )
=2M, , 5.44
o (i * S (540
and (5.35) becomes

(5.45)

-

a term that evolves as 7e~I'"

damped oscillator.

The special form #b¢ of the “potential” for the Torrey
equation allows us to find an explicit form for ®; = u;o,
namely,

, reminiscent of a critically

P!
d, = o + r®y + s6,.

= (5.47)

The first term on the right-hand side of (5.47), when sub-
stituted into (5.19), yields the correct source term, —ugo,
on the right-hand side of the equation. The coefficients r
and s multiply independent solutions of the homogeneous
equation, namely ®¢ = wugg, which we have already dis-
cussed, and a second solution ©, which satisfies bound-
ary conditions complementary to those of (5.13), which
are

Oo(—1)=0 and 0y(-1) = 1. (5.48)

The boundary conditions (5.13), (5.14), (5.33), and
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(5.48) imply

I
r=0 and s=1+ L, (5.49)
B
so (5.47) becomes
@I
&, = ’B + (1+ )eo (5.50)

One can carry through a similar analysis for higher-
order branch points, but numerical studies show no evi-
dence for their existence.

VI. REAL BRANCH POINTS

It is possible to find explicit expressions for the eigen-
values I' and the expansion functions &y and ®; at the
real branch points B. For nonzero values of b we make
the change of variables

w=v/b*3 +i¢bY3  with  x(w) = ¢(¢). (6.1)
Then (4.8) becomes Airy’s differential equation [16]
X’ = wy, (6.2)

where the prime denotes differentiation with respect to
w. The solutions of (4.8) with the boundary conditions
(4.9) correspond to solutions of (6.2) with the boundary
conditions

x'=0 at w=wy = 7/b*3 £b!/3, (6.3)
Let p(w) and g(w) be two independent solutions of (6.2)
with the boundary conditions (6.3), and suppose that
p'(wg) = 0. We also assume that p(wg) # 0 (or else we
have the trivial solution p(w) = 0). If ¢ is an infinitesi-
mal complex number, the derivative of the function

x(w) = p(w) + g(w) é¢, (6.4)
will have a zero at wy + dwy, where
—al
wp = —L (W) 5 (6.5)
wip(wy)

We have assumed that w; # 0. For ¢ to be independent
of p we must have ¢'(wi) # 0. Let two distinct zeros of
p’, wr = w4, define values of b and +, according to (6.3).
Then b+ b and v + §v correspond to w4 + 6wy, where

3b2 3

6b = (6’U)+1 - 5w__1) (66)

and

b2/3 2y
by = —(6w+1 + dw-1) + 6b (6.7)
Real branch points of the function (b) occur where
db/dy = 0, or equivalently, where 6b = 0.
Any solution of Airy’s equation (6.2) can be written as
a superposition of the two power series [15]
4 1x4x7
1 1 x wb + x4xT o

fw) =1+ zw v+ — sT—w o (68)

and

S

g(w)-—w+z 4 2X5 o 2><5><8w10

7T TR /T

+ . o
(6.9)

Here f and g are entire functions of w, which are related
to the Bessel functions J,, of fractional order n by [15]

Vz

f(=2) = §W(—2/—3)J—1/3(C) (6.10)
and
__
where
2 32
C = gz s (6.12)
and T is the gamma function. Similarly,
1) — <
and
, _ z
Denote a zero of J_y/3 by jp, that is,
J_2/3(jp) =0. (615)

Tables of the positive numbers j, can be found in Ref.
[28]. Setting ¢ = jp in (6.12) we find that each value of
Jp gives three zeros of ¢’, located at

35 2/3 _
Wpn = — (Tp> et™i3  for n=0,+1. (6.16)
Suppose that
p=g and g¢=/f (6.17)

From (6.8) and (6.9), the negative of the coefficient in

(6.5) is
_1, 1 (3 2+_1_(%)4
2 120 \ 2 540 \ 2-

(6.18)

Therefore, (6.5) and (6.18) imply that dwp +1 = éwp,—1,
and (6.6) implies that 60 = 0. Thus, real branch points
of y(b) occur when the eigenfunction of (6.2) is x(w) =
g(w).

(From (6.3) and (6.16) we see that the branch point
b = B and the eigenvalue at the branch point y(B) =T
must satisfy the equation

(wp £1)
wp +19(wp +1)

35 \2/3
(—;"—) e*i"/3 = 1/B%® + iB'/3, (6.19)
Solving (6.19) for B and I' we find
B, 27,
= -— = .2
T, 7 3370 (6.20)
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thus verifying (4.19). The first few values of B, that
follow from (4.21) were listed in Table II. The numeri-
cal calculations mentioned earlier suggest that all of the
positive branch points are given by (6.20), and the sym-
metries of Table I imply that there are also branch points
at —Bj.

FI‘OI’IIJI (5.13) we see that the properly normalized eigen-
function is

(w)
Po(¢) = uoo(¢) =
With the aid of (10.4‘57) of Ref. [15] one can verify that
(6.21) satisfies (5.40).
We can write the second solution of (5.4), defined by
the boundary conditions (5.48), as

(6.21)

©0(¢) = rg(w) + s f(w). (6.22)
The coefficients are found to be
s = 1 and r= 1 f(w-)
B (w) B (w) g(w.)
(6.23)
Substituting (6.21)—(6.23) into (5.50) gives
— _p-2/3 g'(w)
Pr=-5 g(w-)
2e=7/3 flw) [ f(w)  g(w)
eyl o o) B

Other special values of the function v(b) can be found
from tabulated zeros of x’ for solutions of the Airy equa-
tion (6.2), by substituting pairs of these zeros into (6.1),
and solving for b and . Particularly useful are the func-
tions f’ and ¢’ of (6.13) and (6.14), and the function
Bi’, for which a number of the complex zeros have been
tabulated by Olver [16, 29].

VII. SUMMARY

We have discussed the solutions of the Torrey equa-
tion for the relaxation of spins that are free to diffuse
along one coordinate axis in the presence of an inhomo-
geneous magnetic field. In the limit of vanishing field
inhomogeneity, the Torrey equation is identical to the
well-known equation for heat diffusion in one dimension.
The Torrey equation is also formally identical to the
Schrodinger equation for a particle of imaginary mass
accelerated by a constant force. The “Hamiltonian” is
non-Hermitian, and there are interesting qualitative dif-
ferences between the solutions of the Torrey equation and
the more familiar solutions of the heat equation and the
Schrédinger equation. We have discussed three different
situations.

Unbounded diffusion. In Sec. II we derived the Green’s
functions and the resolvents for the Torrey equation in
ordinary coordinate space and in momentum (spatial fre-
quency) space for the case of unbounded diffusion. The
Green’s function (2.33) resembles a classical heat pole,
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and it leads naturally to Hahn’s well-known result (1.1);
the magnitude of initially uniform, transverse spin polar-
ization decays exponentially with the cube of the time,
the square of the field inhomogeneity, and the first power
of the diffusion coefficient. In contrast to unbounded heat
diffusion, where the resolvent kernel has a branch cut
along the negative real axis in the plane of the Laplace
variable, the resolvent (2.23) for the Torrey equation is
an entire function of the Laplace variable and has an es-
sential singularity at infinity.

One nondepolarizing boundary. In Sec. III we derived
the resolvent for diffusion to the right or to the left of
a nondepolarizing boundary. As shown by (3.14), the
resolvent is the sum of the resolvent for free diffusion
Go, which is an entire function of the Laplace variable
A = b2/3s, and a correction term Gl, which for real b has a
line of surnple poles in the negative half-plane, Re(s) < 0,
as shown in Fig. 2. The resolvent can be expressed as an
eigenvalue expansion, which we write in abstract vector
form as

~ 1

6o i)l

—H A=

(7.1)

The projections onto the coordinate (¢) axis are

(Cld) = (1¢) = N;b /P Ai(e™ b 3(i¢ — Xy /b)) (7.2)
The Airy function is appropriate for diffusion to the right
of a boundary. The pole locations A; = b*/3s; are given
by (3.19), and the normalization coefficients N; by (3.21).
The phase angle is & = 27/3. The expansion (7.1) is rem-
iniscent of similar expansions for the resolvent in quan-
tum mechanics, but we note that the eigenfunction itself,
not its complex conjugate, is the left factor in the expan-
sion, and the eigenvalues A; have both real and imaginary
parts.

Two nondepolarizing boundaries. Diffusion between
two nondepolarizing boundaries is discussed in Secs. IV—
VI. The negatives of the pole locations A; are the char-
acteristic damping rates v; of the spin polarization, so
we also use the variable v = —X. As shown by (4.2) and
(4.3), the resolvent is the sum of the free-diffusion resol-
vent Go and a correction term G, with simple poles. In
addition, G; has double poles at exceptional values of the
field inhomogeneity b. We think of the eigenvalues v of
the time-independent Torrey equation (4.8) as different
branches of the multivalued function v(b), where we al-
low b to be complex. Different sheets of v(b) connect at
those values of b that produce double poles. Some of the
branch points for real b are illustrated in Fig. 3. There
are also branch points at complex values of b, one of
which is illustrated in Fig. 4. We are not certain whether
higher-order poles of G and higher-order branch points
of y(b) exist, but we have found no evidence for them in
numerical studies of the Torrey equation. As illustrated
in Fig. 5, the pole locations form a trigonal pattern for
large real values of b. Some of the eigenfunctions are lo-
calized at one boundary, some at the other, and some are
delocalized sinusoids.

The resolvent can be expressed as a sum of its singular
parts, which we write as
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Q R

N 1 P
G_/\—H_Zj:A—Aj+A—A0+(A—A0)2' (7:3)

The sum over j is the contribution from all of the simple
poles of the resolvent. We assume that the field inho-
mogeneity b is equal to one of the exceptional values for
which a double pole exists at A = A\g. The contribution
from the double pole is described by the last two terms
of (7.3), which therefore should be omitted if b is not one
of the exceptional values. Numerical studies discussed
above suggest there is never more than one double pole
at an exceptional value of . Should several double poles
occur for the same value of b, one should sum over pairs
of terms analogous to the last two terms of (7.3).
For a simple pole at A;

Py =150l (Cl7) = (4I¢) = N;8;(0)-

The eigenfunction ¢; is determined by (4.8) with v =
—)j. The normalization coefficient N; is given by (4.25).
For the double pole

_ o+ 1¢o) _ 1]1)

with (7.4)

=" oz 001 and R = [0)(0l,
(7.5)

with

(€10) = (0[¢) = ®o(¢) and (¢[1) = (1[¢) = @1(¢).

(7.6)

Here @, is the eigenfunction at the double pole A of the
resolvent, as defined by (5.38), (5.19a), and (5.13), and
®; is not an eigenfunction but is the rate of change of ®q
with A, as defined by (5.39), (5.19b), and (5.14).

Since the eigenfunctions ¢; at the simple poles can be
normalized, as shown by (5.32), the projectors P; are
mutually orthonormal and are orthogonal to @ and R,

PjP)c =6jk and PjQ:QPj =R1'R:RPJ' =0.

(1.7)

In view of the self-orthogonality (5.40) of the branch-
point eigenfunction, namely, (0|0) = 0, we find

R? = 0; QR = RQ = R; Q*=Q.

If we expand (7.3) in powers of 1/ and equate coeffi-
cients of 1/ and (1/X)? we find

(7.8)
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J
and
H=Y )P +XQ+R (7.10)

J

Equation (7.9) expresses the completeness of the eigen-
functions, when augmented by ®;, which is not an eigen-
function. The expansion (7.10) of the Hamiltonian is
reminiscent of similar expansions in elementary quantum
mechanics, but the additional term R and the form (7.5)
of ) are unusual, since branch points do not occur for
Hermitian operators in one dimension. The locations of
the real branch points are given explicitly by (6.20).

The existence of branch points is a general property of
equations similar to the Torrey equation for two nondepo-
larizing boundaries [25,26]. The dependence of the eigen-
values of the Mathieu equation on the depth of the sinu-
soidal potential is shown in Fig. 8. These plots could eas-
ily be mistaken for those of the Torrey equation, Fig. 3.

Because of the branch points which occur in the multi-
valued function y(b), the radii of convergence of the per-
turbation expansions used to express the spin-relaxation
rate v as power series in b cannot be larger than the first
branch point of the sheet of interest. In the case of the
simple Torrey equation, the power series expansion of v,
the leading term of which is given by (4.13), fails when
b = 2.2581, the first exceptional value, as given in Table
II.

For large values of the field inhomogeneity b, or equiv-
alently, for large displacements ! of the boundaries from
the origin, one can very nearly ignore the boundaries.
This is confirmed by numerical studies of the Torrey
equation, like those of Fig. 9, and by the form of the
corrections Gp, given by (3.15) and (4.3), to the free-
diffusion resolvent G of (2.23). From the known asymp-
totic behavior of Airy functions, it is straightforward to
show that G; — 0 as || — oo.
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