
Trust Management and Trust Negotiation in an
Extension of SQL?

Scott D. Stoller

Computer Science Dept., Stony Brook University, Stony Brook, NY 11794-4400 USA

Abstract. Security policies of large organizations cannot be expressed
in the access control policy language defined by the SQL standard and
provided by widely used relational database systems, because that lan-
guage does not support the decentralized policies that are common in
large organizations. Trust management frameworks support decentral-
ized policies but generally have not been designed to integrate conve-
niently with databases. This paper describes a trust management frame-
work for relational databases. Specifically, this paper describes a SQL-
based policy language with support for certificate discovery and trust
negotiation, a portable system architecture, and a large case study based
on an existing realistic policy for electronic health records.

1 Introduction

The increasingly complex security policies of large organizations cannot be ex-
pressed in the role-based access control policy languages defined by the SQL 2003
standard and provided by widely used relational database systems. As a result,
much of the access control for enterprise applications in large organizations is
implemented in application-specific code (e.g., in Java or C). This approach
has several disadvantages. First, security policies encoded in general-purpose
programming languages are difficult to read, verify, and maintain. Second, per-
forming access control in application code, instead of the database system where
the sensitive data resides, leaves open the possibility that some user or other
application will access the database in a way that circumvents the access con-
trol mechanism. Third, enterprise security policies themselves often refer to data
stored in the database (data about employees and their job functions, about pa-
tients and their physicians, etc.), and this can be done more conveniently and
efficiently if the access control mechanism is tightly integrated with the database.

Therefore, we advocate extending database access control mechanisms to
support policy languages sufficiently expressive for enterprise security policies.
A crucial requirement is support for the decentralized nature of enterprise sys-
tems, as electronic interactions between administrative domains (departments
within a company, companies within a conglomerate, consultants and clients,
? This work was supported in part by ONR under Grant N00014-07-1-0928 and

NSF under Grants CCF-0613913 and CNS-0627447. Author’s email address:
stoller@cs.stonybrook.edu

outsourcing service providers and customers, coalition partners, etc.) become
more common. In such systems, different parts of the security policy and the
data on which it depends come from different sources, and each source is trusted
only for certain decisions or certain information. This observation motivated
work on trust management [8, 3] and trust negotiation [4, 14]. However, trust
management and trust negotiation systems such as RT [9], Cassandra [2], and
PeerTrust [12] are not designed to integrate easily with databases.

A trust management service designed specifically for relational databases is
described in [7]. We follow the same basic approach, namely, we extend SQL
with new constructs to express trust management policies that control the con-
figuration of (and hence are enforced by) the database’s existing access control
mechanism. The main advantages of this approach, compared to using a stand-
alone trust management system together with a database, are: (1) performing
access control in the database system eliminates the possibility that some user or
application will access the database in a way that circumvents the access control
mechanism, (2) data stored in the database can conveniently and efficiently be
used in the policy, and (3) the policy language is a relatively small extension of
SQL, so the policy language is easily accessible to the many people who already
know SQL (most other recent trust management frameworks, including [9, 2, 12],
have policy languages based on Datalog, which is elegant but less widely used).

This paper is organized as follows. Section 2 defines the policy language.
Section 3 describes our system design and prototype implementation. Section
4 describes extensions that support credential discovery and trust negotiation.
Section 5 presents a case study, based on the electronic health records (EHR)
policy in [1]. Section 6 describes how to support applications in which users do
not have individual database accounts. Section 7 discusses related work.

2 Policy Language

A trust management policy consists of ordinary SQL statements, such as table
definitions, view definitions, and grant statements, plus the additional kinds
of statements listed in Figure 1. This section presents a version of the frame-
work without support for certificate discovery or trust negotiation. Extensions
to support these features are described in Section 4.

Attribute Certificate. We briefly describe attribute certificates before describing
the policy language. An attribute certificate contains a list of attribute-value
pairs, the issuer’s public key, and a digital signature from the issuer. Every
attribute certificate contains an attribute named subject; the other attribute-
value pairs provide information about the subject. In examples, we write at-
tribute certificates as a set of equalities, with the digital signature implicit, and
with public keys represented by common names, such as Alice, for readability.
For example, the following attribute certificate issued by Clive states that Alice
is an agent for Pat.

subject = Alice, cert type = register agent, patient = Pat,
issuer = Clive

(1)

create [per-user | shared] certtable name
(column def∗) check (issuer constraint [&& constraint]?)

insert certificate [into ct] cert

delete certificate from ct where condition

ab grant privilege to (select column from ctv∗) grant options name name

ab revoke name

column def ::= name type
issuer constraint ::= issuer in (select subject from ctv∗) | issuer is pkfile
privilege ::= privilege type on object

Fig. 1. Extensions to SQL to form the policy language. X∗ denotes a comma-separated
list of zero or more elements of the form described by X. X+ denotes at least one oc-
currence of elements described by X. [X]? means that X is optional. [X1|X2] means
that exactly one of X1 and X2 is present. constraint and condition are Boolean-valued
SQL expressions. ct is the name of a certtable. cert denotes an expression that eval-
uates to a string encoding of an attribute certificate. pkfile denotes the name of a file
containing a public-key certificate. ctv is the name of a certtable or a view of certtables.
privilege type is an SQL privilege type. grant options are the same as in SQL.

Certtable Definition. A certtable is a special kind of table that stores information
from attribute certificates from specified trusted sources (issuers). A certtable
definition has the form shown in Figure 1. Every certtable contains the following
columns, even if they are not declared explicitly in the definition of the certtable:
subject principal type, issuer principal type, expiration datetime.
For readability, we use principal type to denote the SQL data type used for
identities of principals; typically, principal type will be varchar(40), for hex
encodings of public keys. Certtable definitions require the same privileges as
table definitions, i.e., they require the create privilege.

The check clause imposes requirements on certificates added to the certtable.
The issuer constraint indicates the trusted sources for information stored in the
certtable. For example, suppose agent certificates like (1) are valid if the issuer
is a clinician registered with the National Health Service (NHS). Then those
certificates might be stored in a certtable defined by

create shared certtable Register Agent
(cert type varchar(30), patient principal type)
check (issuer in (select subject from Clinician) &&

cert type = ’register agent’)

where the Clinician certtable contains certificates issued by NHS indicating
that the certificate’s subject is a registered clinician; NHS.crt is a file containing
NHS’s public key.

create shared certtable Clinician
(cert type varchar(30), specialty varchar(30))
check (issuer is ’NHS.crt’ &&

cert type = ’register clinician’)

If a certtable definition statement contains the shared option, then it defines
a single certtable shared by all users.1 If it contains instead the per user option,
then it defines a family of certtables, one per user. Each certtable in the family
has the same structure but independent contents. This feature allows the policy
writer to control a trade-off between isolation (of users from each other) and
efficiency. A user can add and remove certificates from shared certtables and
his (or her) own per-user certtables; a user cannot access other users’ per-user
certtables. In addition, our policy language does not allow the contents of a
user’s per-user certtables to affect the privileges (i.e., permissions) available
to other users. Thus, per-user certtables provide a kind of isolation between
users: they prevent users from affecting other users’ permissions by adding and
removing certificates. Shared certtables do not provide this isolation, but they
are sometimes more convenient and efficient, because adding a certificate to a
shared certtable can have a desired effect on the privileges of multiple users
at once. For example, making the Clinician certtable (defined above) shared
allows each clinician’s certificate to be validated once and stored once, regardless
of how many users access it. If the Clinician certtable were per-user, then
for each user who needs to check that the clinician is properly registered (e.g.,
each patient with an agent registered by the clinician), the clinician’s certificate
would need to be validated and stored in that user’s instance of the Clinician
certtable. An example of a per-user certtable appears in Section 5.

Use of certtables and views in check clauses induces dependencies between
certtables. A policy is invalid if a shared certtable depends, directly or tran-
sitively, on a per-user certtable or a view defined using a function (such as
current user or session user) that depends on the user’s identity.

Insert Certificate and Delete Certificate. The insert certificate statement is
used to insert data from an attribute certificate into one or more certtables. A
certificate cert matches a certtable ct if cert contains attributes corresponding to
all of the columns in ct (the certificate may contain other attributes as well), and
the values in cert satisfy ct’s check clause. For example, the above certificate
matches the Register Agent certtable defined above, provided the Clinician
certtable contains a record whose subject is Clive.

An insert certificate statement of the form in Figure 1 first checks va-
lidity of the signature on the certificate cert and then, if the into clause is
omitted, for each shared certtable for which the user has insert privilege, and
for each per-user certtable for the user that submitted the statement, it checks
whether cert matches the certtable and, if so, adds its contents to the certtable,

1 “User” and “principal” are basically synonyms, although “user” implies someone
who actually accesses the database, not just issues certificates.

by creating a new record and copying the attribute values in cert into the cor-
responding columns of the new record. If the “into ct” clause is present, the
insert certificate statement works as above except that it only attempts to
add the contents of the certificate to the specified certtable.

The delete certificate statement is similar to the SQL delete statement.

Attribute-Based Grant. An SQL grant statement grants a privilege to an ex-
plicitly named user or role. To support granting of privileges to a set of users
identified by their attributes (obtained from trusted sources), we introduce an
attribute-based variant of the grant statement, called ab grant. The meaning
of an ab grant statement of the form in Figure 1 is that users whose identities
are returned by the select statement are granted the specified privilege. For
example, the following statement in a hospital’s policy gives clinicians access to
the name and emergency phone columns of the Staff Directory table.

ab grant select(name, emergency phone) on Staff Directory
to (select subject from Clinician) name grant dir to clin

The effects of an ab grant statement are constrained by the grant privileges of
the user u that executed it: it successfully grants the specified privileges to other
users only if u has those privileges with the grant option. Thus, there is no need
to introduce new privileges to control the execution of ab grant statements.

The effects of each ab grant statement is updated as the contents of certta-
bles change, until the ab grant statement is cancelled by a matching ab revoke
statement; the name is used to match ab grant and ab revoke statements.

As a special case, an attribute-based grant of privilege type insert or delete
on a certtable is interpreted as permission to perform insert certificate or
delete certificate (not SQL insert or delete) on the certtable.

3 System Design and Prototype Implementation

The following principles guided the design of our system. (1) No overhead should
be incurred on SQL statements; overhead should be incurred only for trust man-
agement statements, i.e., the statements defined in Figures 1 and 2. (2) The
implementation should be easily portable among databases. (3) Users should
not be able to store unauthenticated information (i.e., information from un-
signed or improperly signed certificates) in any certtables, including certtables
defined in their own policies.

The first principle implies that the existing DBMS access control mechanism
should be used to enforce the trust management policy. The first two principles
both imply that the trust management system should not intercept or parse SQL
statements sent by clients to the database. Therefore, in our system architec-
ture, clients send SQL statements and trust management statements on different
communication channels. SQL statements may be sent directly to the database
in any manner (command line, JDBC, ODBC, etc.). Trust management state-
ments are sent to a separate process, called a trust manager. The trust manager

parses and processes trust management statements, sending SQL statements to
the database as appropriate.

Using different communication channels for these two categories of state-
ments is a negligible inconvenience for application programmers. An application
generally knows the category of each statement it generates and can easily send
it on the appropriate communication channel. When reading a mixture of SQL
and trust management statements from (say) a file, a trivial syntactic check on
the first two words in each statement is sufficient to determine its category; this
incurs a negligible overhead on the SQL statements.

The third principle implies that ordinary users should not directly create
certtables, because if they did, they would be able to insert records in them
using the SQL insert statement, bypassing the signature validation performed
by insert certificate (the owner could revoke his or her insert privilege but
could always grant it to himself or herself again). Therefore, the trust manager
accesses the database as a super user called a trust management administrator.
All certtables are owned by trust management administrators.

When a trust manager receives a create certtable statement from a user
u, it converts that statement into an SQL create table statement (by inserting
explicit definitions of the subject, issuer, and expiration columns, removing
the issuer constraint from the check clause, etc.), checks that u has the privileges
required to create the table, sends the create table statement to the database,
and grants to u all privileges on the table except insert, update, delete, and
alter; furthermore, it grants these privileges with the grant option.

When a trust manager receives an ab grant statement from a user u, it
evaluates the select statement and sends to the database an appropriate grant
statement for each user in the result set (as an exception, if the insert privilege is
being granted on a certtable, the trust manager simply remembers this itself, and
uses this information to check privileges when processing insert certificate
statements). The trust manager is designed to execute all grant statements
resulting from the ab grant statement with the security context (privileges) of
user u. This ensures that such a grant statement succeeds only if u is permitted
to grant the specified privileges, i.e., u has those privileges with the grant option.
It also ensures that cascading revocation of privileges works correctly. The trust
manager also stores the ab grant statement, together with the identity of u, so
that it can submit appropriate grant and revoke statements in the future, when
the contents of the certtable (s) mentioned in the ab grant statement change.

A trust manager processes insert certificate statements as described in
Section 2. Note that the trust manager checks the issuer constraint itself; the
database checks the regular constraint (if any) in the certtable’s check clause. In
addition, the trust manager checks whether each successful certificate insertion
changes the result of the select statement in any ab grant statements, and if
so, it sends appropriate grant statements to the database, as described above.

When a certificate expires (or appears on a certificate revocation list), the
trust manager automatically deletes records for that certificate from all certta-
bles. When a certificate is deleted from a certtable ct for any reason, the trust

manager (1) revokes permissions if the deletion removes a user from the result
of the select in an ab grant statement, and (2) removes certificates from other
certtables that use ct or views thereof in their issuer constraint, if the deletion
removes the issuer of those certificates from ct. Note that (2) can cause chain
reactions. Users are not given delete privilege on certtables in order to force
them to use the delete certificates command, making the trust manager
aware of all deletions from certtables.

Prototype Implementation. Our trust manager is implemented in Java and com-
municates with the database using JDBC. It has been tested with MySQL 5.0.
We expect that it will work with other database systems with few changes. It
uses the Bouncy Castle library to manipulate X.509 public-key certificates and
X.509 attribute certificates. It implements credential discovery and trust negoti-
ation as described in the next section; the get certificates function is offered
using XML-RPC.

Conceptually, a per-user certtable definition creates a family of certtables,
with one certtable per user. Following the approach in [7], it is implemented as a
single table with an additional column user; the certtable for user u corresponds
to the records with user = u in this table.

4 Credential Discovery and Trust Negotiation

With the policy language described above, users must explicitly insert appropri-
ate certificates into certtables, in an appropriate order, in order to obtain desired
privileges from ab grant statements. Consider again the example in which Alice
is Pat’s agent; an agent certificate and certtable definitions for this example ap-
pear in Section 2. To obtain access to Pat’s health record, Alice would need to be
aware that the Register Agent certtable depends, via its check clause, on the
Clinician certtable, and she would need to insert Clive’s clinician credential
(unless it happens to be present already) before inserting her agent credential.
The problem of determining which supporting certificates are necessary and
where to obtain them is a well-known problem in trust management, sometimes
called credential discovery [10]. In this section, we describe how to extend trust
managers to help with this task.

A trust manager “discovers” credentials by identifying appropriate users or
processes and then requesting the desired credentials from them. Specifically,
in our design, trust managers request credentials from other trust managers,
by invoking the get certificates function described below. Each trust man-
ager stores the certificates that it may send in response to such requests in
certtables. To accommodate this, we extend all certtables with an additional
implicitly declared column, named certificate, and we extend the code for
insert certificate to store the the certificate itself in that column.

Certificates may contain sensitive information. This section describes an ex-
tension to our policy language to express trust negotiation policies that specify
the conditions under which certificates may be released (i.e., sent) to a requester,
based on attributes of the requester. We also refer to these policies as release

create [per-user | shared] certtable name
[fetch from location+]?

[release to release target]∗

(column def∗) check (issuer constraint [&& constraint]?)

request privilege privilege

location ::= issuer | subject | user
release target ::= public | pkfile | ctv [for same column]?

Fig. 2. Extensions to the policy language to support credential discovery and trust
negotiation. The syntax of create certtable is extended, and the request privilege

statement is introduced.

policies. The release policy for a copy of a certificate is determined primarily
by the principal holding it; specifically, the release policy for certificates stored
in a certtable is specified in the definition of the certtable. However, we also
allow the issuer of a certificate to override that release policy, as follows. If the
issuer of a certificate does not trust other principals to impose acceptable re-
lease policies, the issuer simply includes a boolean field named releasable with
value false in the certificate; principals other than the issuer never release such
certificates. To accommodate this, we extend all certtables with an additional
implicitly declared column, named releasable, with default value true, and we
revise the definition of matching in Section 2 so that a certificate can match a
certtable even if the certificate does not contain the releasable attribute. This
design could be extended to allow certificates to contain richer descriptions of
the issuer’s release policy, if desired.

Fetch From. Certtable definitions are extended with an optional fetch from
clause (see Figure 2) that specifies the locations from which the trust manager
should request certificates when a desired certificate is not already present in this
certtable. More precisely, the fetch from clause specifies a set of principals,
and the trust manager requests certificates from the home locations of those
principals. A principal’s home location is the network address of a trust manager
that, in this context, acts as an attribute certificate repository for that principal.
For example, in a business application, the home location for all employees in a
division might be a trust manager running on a designated server for the division.
A principal’s home location may be determined in a variety of ways, e.g., from
optional information in the principal’s public-key certificate or by querying a
directory service.

fetch from issuer means to query the home locations of the potential is-
suers of the desired certificate, namely, the potential issuers of certificates for this
certtable, as determined by the issuer constraint. fetch from subject means
to query the home location of the subject of the desired certificate. fetch from
user means to query the home location of the user interacting with the database.

As an example of fetch from, we extend the definition of the Clinician
certtable in Section 2 to indicate that the certificates should be fetched from the
issuer.

create shared certtable Clinician
fetch from issuer
(cert type varchar(30), specialty varchar(30))
check (issuer in (select subject from NHS) &&

cert type = ’register clinician’)

Release To. Certtable definitions are extended with an optional release to
clause (see Figure 2) that specifies the principals to which the trust manager
may release (disclose) certificates stored in this certtable, provided the certifi-
cates do not contain releasable = false. If the release to clause is absent
in a certtable definition, certificates stored in that certtable are never released.
Release target public means that certificates in this certtable may be released
to everyone. Release target pkfile means that certificates in this certtable may be
released to the principal whose public-key certificate is in pkfile. Release target
ctv means that a certificate stored in a record r in ct may be released to prin-
cipals p such that ctv contains a record r1 with r1.subject = p; in addition, if
the for same column clause is present, then r and r1 must together satisfy the
equality r.column = r1.column. For example, suppose all agent certificates for a
patient may be released to the patient’s general practitioner (GP). This policy
can be expressed as follows, assuming that the certtableGP contains a record with
subject = c and patient = p if clinician c is patient p’s general practitioner
(i.e., primary physician).

create shared certtable Register Agent
release to GP for same patient)
(cert type varchar(30), patient principal type)
check (issuer in (select subject from Clinician) &&

cert type = ’register agent’)

Request Privilege. A request privilege statement of the form in Figure 2
attempts to provide the invoking user u with the specified privilege, by fetching
certificates as needed. First, the trust manager identifies trustpolicy statements
that directly grant the specified privilege or a privilege that implies it (e.g., the
privilege select on EHR implies the privilege select(address) on EHR). Let
T be the set of certtables t such that t or a view of t appears in one of those
trustpolicy statements.

For each certtable t in T , the trust manager tries to find credentials whose
subject is u and that match certtable t. It tries to find such certificates by
requesting them from the trust managers running at the home locations of the
principals indicated by t’s fetch from clause. The requests are performed by re-
motely invoking get certificates(subject, u, def(t)) on those trust man-
agers, where def(t) returns the definition of certtable t. The algorithm follows

dependencies between certtables. In other words, when it receives a certificate
c in response to a request for certificates that match certtable t, if it does not
already know that c’s issuer i satisfies t’s issuer constraint, and if a certtable t1
is mentioned (directly or via a view definition) in t’s issuer constraint, then the
trust manager tries to find certificates with subject i that match trustable t1, in
order to try to establish that i satisfies t’s issuer constraint.

Get Certificates. get certificates(column, val, ct def) returns a set of cer-
tificates to the requester r. For each certtable t such that t contains all the
columns in ct def, for each certificate c in t, if c.column = val and c satisfies
the constraint in the check clause in ct def and c is releasable to r (based on
c’s releasable attribute and t’s release to clause), then c is included in the
return value.

If a certificate c in t satisfies these conditions except that c’s issuer i is not
currently known to satisfy t’s release policy, the algorithm attempts to establish
that i satisfies t’s release policy by fetching credentials for i that match certtables
mentioned in t’s release to clause. Continuing the above example, if the issuer
of an register agent certificate for a patient p was not known to be p’s general
practitioner, the algorithm would request certificates with c.patient = u from
the locations specified by the fetch from clause of the GP certtable.

A call to get certificates can lead to recursive calls to get certificates
(in other words, trust negotiation can involve multiple “rounds” of interaction
between principals). To avoid deadlock, each trust manager should be multi-
threaded, so it can respond to an incoming get certificates request while
waiting for a response to its own get certificates requests. To avoid livelock
due to cyclic dependencies, before each call to get certificates, a trust man-
ager checks whether it already has an outstanding call to get certificates
with the same arguments, and if so, instead of actually making the new call, it
pretends that the new call returned the empty set of certificates.

Privacy. The trust negotiation algorithm sketched above favors simplicity and
efficiency over privacy (sometimes called safety). In response to a request for
a certificate, a trust manager running this algorithm requests certificates to
try to satisfy the release policy for a certtable only if the certtable actually
contains a certificate that satisfies the original request. Thus, the existence of
those secondary requests reveals the existence of such a certificate, compromising
privacy, even if that certificate does not get released. More sophisticated trust
negotiation algorithms that ensure privacy can be used instead, e.g., algorithms
based on the trust target graph (TTG) [13]. The basic idea is that a trust
manager tries to satisfy the release policies for the certtables relevant to a request
regardless of whether the certtables actually contain certificates that satisfy the
request.

5 Case Study: Electronic Health Record (EHR) Policy

As a case study to evaluate the expressiveness and usability of our policy lan-
guage, we translated the trust management policy for electronic health records

(EHR) in [1] into our policy language. This large and complex policy is a for-
malization of the policy developed by the U.K. National Health Service for its
proposed national EHR system [11]. The formal policy consists of 375 rules that
occupy 40.5 pages in [1, Appendix A]. It is the largest and most realistic formal
trust management policy that we have seen. As such, we consider it to be a
useful benchmark for evaluating and comparing trust management systems.

Our translation of the policy consists primarily of 111 certtable definitions, 60
view definitions, 32 attribute-based grant statements, and 34 trigger definitions
(this adds up to less than the 375 rules in the Cassandra version mainly be-
cause SQL, unlike Cassandra, allows disjunction, so we could translate multiple
Cassandra rules with the same conclusion into a single statement.)

Overview of the EHR Policy. The policy is divided into four parts. The first part
is the policy for the Spine, a single nation-wide EHR system, with a health record
for every patient. The second part is the policy for the Patient Demographic
System (PDS), a single nation-wide system with basic information about all
users of the EHR system. The third part is a typical policy for a local health
organization (hospital, doctor’s office, etc.), which stores a more detailed health
record for each patient treated at that organization. The fourth part is the policy
for a typical Registration Authority (RA); each registration authority serves a
group of local health organizations by issuing credentials for clinicians affiliated
with those organizations.

The main roles include clinician, a few kinds of managers, administrator,
receptionist, Caldicott guardian (a patient advocate and ombudsman), patient,
agent, and third party (when a patient’s EHR contains information about an-
other person (e.g., a parent), that person is called a “third party”).

The main purpose of the policy is to control permissions to create, read,
update, and annotate items in an EHR. The policy also supports registration
and de-registration of users in the main roles and some auxiliary roles (such as
membership in a workgroup in a local health organization), patient consent to
treatment by a clinician or a workgroup, referral of patients to other clinicians,
concealing of data from specified users by clinicians, requests by patients, their
agents, or their clinicians to conceal data from specified users, and approval of
such requests by appropriate clinicians.

Translation of Parameterized Roles. The EHR policy makes extensive use of
parameterized roles. For example, suppose Alice is Pat’s agent, as shown by a
certificate such as (1). This relationship is represented in the policy by allowing
Alice to activate the role Agent(Pat). Here, Agent is a parameterized role, with
the identity of the patient as a parameter. Unfortunately, SQL does not support
parameterized roles, and merging Agent roles with different parameter values
into a single unparameterized Agent role would violate the principle of least
privilege. Therefore, our EHR policy does not use SQL roles. In our formulation,
a user u activates a role by creating a self-signed certificate c containing the name
of the role—by convention, it is stored in the activated role attribute—and
values for the role parameters (if any) and then inserting the certificate in an

appropriate certtable. Continuing the above example, Alice activates the role
Agent(Pat) by creating and inserting the certificate

subject = Alice, activated role = Agent, patient = Pat,
issuer = Alice

By convention, certificates for activation of role r are stored in a certtable named
r activation. For example, the above certificate would be stored in the certtable
defined by

create per-user certtable Agent activation
(subject principal type, patient principal type,
activated role varchar(30))

check (issuer in (select subject from Register Agent) &&
subject = issuer && activated role = ’Agent’)

A user de-activates a role by deleting the corresponding activation certificate
from the appropriate certtable.

Translation of Cascading Deactivation. The EHR policy also involves cascading
deactivation rules. For example, suppose a clinician Clive appoints an agent
Alice for a patient Pat. Suppose Alice then activates the role Agent(Pat). A
cascading deactivation rule specifies that “de-activation” (deletion) of Clive’s
appointment of Alice as Pat’s agent should automatically trigger de-activation
of Alice’s activation of Agent(Pat). We translate such cascading deactivation
rules into SQL create trigger statements.

Translation of Constraints. Cassandra’s policy language is based on Datalog
extended with constraints. The EHR policy uses equality (=), inequality (>),
disequality (6=), set membership (∈), and subset (⊆) constraints. All of these
can be translated easily into SQL (subset constraints can be expressed using
subqueries), after restructuring (flattening) the data to avoid the use of sets.

Comparison with Implementation in Cassandra. Our implementation of the
EHR policy is more complete and realistic than its implementation in Cassandra,
in three ways.

First, the implementation of Cassandra itself is incomplete [1, Chapter 10];
for example, it is centralized and does not support requests for certificates.

Second, the Cassandra implementation stores certificates in simple but ineffi-
cient data structures. It is noted [1, Chapter 10] that the system would be more
scalable if certificates were stored instead in an indexed relational database. Our
implementation stores certificates in relational database tables, and we can sim-
ply allow SQL index clauses to be included in certtable definitions and passed
along to the database.

Third, the Cassandra implementation does not interface to a database for
storing the actual electronic health records. Ours does. This has important ben-
efits. One is that the policy can use standard SQL to access information in the
EHR database. For example, consider the policy rule that permits the author of

an item in a patient’s EHR to read that item. In our system, the author is de-
termined using, e.g., select author from EHR where In Cassandra, the
EHR database is accessed using numerous special-purpose “external functions”,
such as Get-spine-record-author, which need to be implemented individually.
Similarly, in our framework, the actions controlled by the policy are SQL oper-
ations with standard and well-defined meanings. In Cassandra, the actions con-
trolled by the policy have suggestive names, such as Read-spine-record-item,
but no formal meaning; a real EHR system based on Cassandra would need some
mechanism to relate those names to actual database operations.

6 Users Without Database Accounts

In many applications, most users do not have individual database accounts. In-
stead, user identities are managed in an application program that connects to
the database with a fixed username. For example, databases for an on-line store
typically do not have a separate database account for each customer. Such ap-
plications can be supported in our framework using a pool of re-usable database
usernames (e.g., user1, user2, ...).2

We extend the policy language with two new statements for managing these
usernames. assign username to pkcert tells the trust manager to associate a
currently unused username u in the pool with the public key K in public-
key certificate pkcert; the statement grants privileges to u, based on the active
ab grant statements and on certificates for subject K in the certtables, and
then returns the selected username u. unassign username u removes the cur-
rent association for username u if any; the trust manager deletes the contents
of per-user certtables for u, revokes all privileges that were granted to u, and
marks u as unused. When a user starts a session in the application, the appli-
cation sends an assign username statement to the trust manager to associate
a currently unused username u with the user, and then the application accesses
the database as user u. When the user’s session is finished, the application sends
an unassign username u statement to the trust manager.

7 Related Work

As mentioned in Section 1, we adopt the same basic approach proposed in [7],
by using a policy language based on SQL. Nevertheless, our work differs from [7]
in numerous ways. Our framework supports automatic credential discovery and
trust negotiation, while the framework in [7] does not; these features are needed
to express the EHR policy in Section 5. Our system design is easily portable be-
tween DBMSs and does not require access to the source code of the DBMS; the
system architecture in [7] is not easily portable, because it requires modifying

2 Session identifiers are used for a similar purpose in [7]; that approach has some
advantages but requires changing the implementation of the SQL grant statement
to allow session identifiers as targets of grant statements.

the source code of the DBMS. We consider policy administration, by defining the
privileges needed for successful execution of each trust management statement,
and we consider the effects of deletion from certtables on permissions and other
certtables; these issues are not considered in [7]. Our framework has been evalu-
ated using a large case study; no significant case studies are described in [7]. We
introduce the attribute-based grant statement ab grant to trigger granting of
privileges based on information in attribute certificates. In [7], activation of roles
(not granting of privileges) is triggered by information in attribute certificates.
The integration with SQL’s RBAC features seems attractive, and could easily
be added to our framework if desired, but is less expressive: it is unclear how
to express policies that involve parameterized roles, such as the EHR policy in
Section 5, in the language of [7]. Our framework allows certtables and views of
certtables to be used to characterize the allowed issuers for certificates in a cert-
table; [7] allows certain certtables but not views for that purpose. This makes
the policy language in [7] less expressive and unable to express parts of the EHR
policy in Section 5, e.g., a certtable for which the allowed issuers are users that
are the subject of both an appropriate certificate from the Spine and an appro-
priate certificate from the Patient Demographic System. Our framework, like
[7], supports delegation at the granularity of certificates, by specifying allowed
issuers for certificates for each certtable. The feature in [7] that supports dele-
gation at the granularity of individual attributes (allowing a single record in a
certtable to be composed from information in multiple certificates) could be in-
cluded (or simulated) in our framework but is currently omitted; it seems rarely
useful in practice, because the attributes in a certificate are usually intended to
be interpreted together.

Our framework is layered on top of the existing SQL access control mech-
anism and is compatible with the traditional approach of using views to help
achieve fine-grained (row-level and cell-level) access control. Techniques that
provide better support for fine-grained access control, such as Oracle Virtual
Private Database (VPD), are generally complementary to and compatible with
our work. For example, Chaudhuri et al. recently proposed a modification to
SQL to better support fine-grained authorization [5]. The main change is a more
powerful version of the grant statement, called a predicated grant. Their work
and ours can be combined by layering our design on top of the modified SQL
they propose, making our attribute-based grant statement an extension of their
predicated grant statement.

Cook and Gannholm’s method for enforcing rule-based access control poli-
cies for accesses to databases introduces a component that intercepts Requests
to access the database, checks whether the request complies with the rule-based
policy, and modifies or denies the request if appropriate [6]. Their method differs
from ours in several ways: its policy language is not based on SQL, it consid-
ers only centralized policies (no trust management or trust negotiation), and it
introduces an additional enforcement mechanism that imposes overhead on all
accesses to the database.

Acknowledgments. Jung-Hoon Lee and Gregory Shackles did most of the trans-
lation of the EHR policy and implemented the prototype trust management
system. Stefano Paraboschi provided helpful comments about [7].

References

1. M. Y. Becker. Cassandra: Flexible Trust Management and its Application to Elec-
tronic Health Records. PhD thesis, University of Cambridge, Oct. 2005.

2. M. Y. Becker and P. Sewell. Cassandra: Flexible trust management, applied to
electronic health records. In Proc. 17th IEEE Computer Security Foundations
Workshop (CSFW), pages 139–154. IEEE Computer Society Press, 2004.

3. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The role of trust
management in distributed systems. In Secure Internet Programming, volume 1603
of Lecture Notes in Computer Science, pages 185–210. Springer-Verlag, 1999.

4. P. A. Bonatti and P. Samarati. A uniform framework for regulating service access
and information release on the web. Journal of Computer Security, 10(3):241–272,
2002.

5. S. Chaudhuri, T. Dutta, and S. Sudarshan. Fine grained authorization through
predicated grants. In Proc. 23rd IEEE International Conference on Data Engi-
neering (ICDE 2007), pages 1174–1183, Apr. 2007.

6. W. R. Cook and M. R. Gannholm. Rule based database security system and
method. United States Patent 6820082. Published November 2004.

7. S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Trust manage-
ment services in relational databases. In Proc. 2007 ACM Symposium on Infor-
mAtion, Computer and Communications Security (ASIACCS), 2007.

8. B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4):265–310, Nov. 1992.

9. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust man-
agement framework. In Proc. 2002 IEEE Symposium on Security and Privacy,
pages 114–130. IEEE Computer Society Press, 2002.

10. N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain dis-
covery in trust management. Journal of Computer Security, 11(1):35–86, 2003.

11. National Health Service of the United Kingdom. Output based specifica-
tion for integrated care record service version 2, Aug. 2003. Available via
http://www.dh.gov.uk/.

12. W. Nejdl, D. Olmedilla, and M. Winslett. Peertrust: Automated trust negotiation
for peers on the semantic Web. In Proc. Workshop on Secure Data Management
(SDM 2004), volume 3178 of Lecture Notes in Computer Science, pages 118–132.
Springer-Verlag, 2004.

13. W. H. Winsborough and N. Li. Safety in automated trust negotiation. ACM
Transactions on Information and System Security, 9(3):352–390, 2006.

14. T. Yu, M. Winslett, and K. E. Seamons. Supporting structured credentials and
sensitive policies through interoperable strategies for automated trust negotiation.
ACM Transactions on Information and Systems Security, 6(1):1–42, Feb. 2003.

