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Abstract

This paper proposes a framework for detecting global state predicates in systems of processes

with approximately-synchronized real-time clocks. Timestamps from these clocks are used to

de�ne two orderings on events: \de�nitely occurred before" and \possibly occurred before".

These orderings lead naturally to de�nitions of 3 distinct detection modalities, i.e., 3 meanings

of \predicate � held during a computation", namely: Poss
db
! � (\� possibly held"), Def

db
!�

(\� de�nitely held"), and Inst� (\� de�nitely held in a speci�c global state"). This paper

de�nes these modalities and gives e�cient algorithms for detecting them. The algorithms are

based on algorithms of Garg and Waldecker, Alagar and Venkatesan, Cooper and Marzullo, and

Fromentin and Raynal. Complexity analysis shows that under reasonable assumptions, these

real-time-clock-based detection algorithms are less expensive than detection algorithms based

on Lamport's happened-before ordering. Sample applications are given to illustrate the bene�ts

of this approach.

Key words: global predicate detection, consistent global states, distributed debugging, real-

time monitoring

1 Introduction

A history of a distributed system can be modeled as a sequence of events. Since execution of a

particular sequence of events leaves the system in a well-de�ned global state, a history uniquely

determines the sequence of global states through which the system has passed. Unfortunately, in a

distributed system without perfect clock synchronization, it is, in general, impossible for a process

to determine the order in which events on di�erent processors actually occurred. Therefore, no

process can determine the sequence of global states through which the system passed. This leads

to an obvious di�culty for detecting whether a global state predicate (hereafter simply called a

\predicate") held.

�A preliminary description of this work appeared in [32]. The author gratefully acknowledges the support of
NSF under CAREER Award CCR-9876058 and the support of ONR under Grant N00014-99-1-0358. Email:
stoller@cs.indiana.edu Web: http://www.cs.indiana.edu/~stoller/
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Cooper and Marzullo proposed a solution for asynchronous distributed systems [6]. Their

solution involves two modalities, which we denote by Poss
hb
! (\possibly") and Def

hb
! (\de�nitely").

These modalities are based on logical time [19] as embodied in the happened-before relation
hb!,

a partial ordering1 of events that reects potential causal dependencies. Happened-before is not

a total order, so it does not uniquely determine the history, but it does restrict the possibilities.

Given a predicate �, a computation satis�es Poss
hb
!� i� there is some interleaving of events that

is consistent with happened-before and in which the system passes through a global state satisfying

�. A computation satis�es Def
hb
!� i� for every interleaving of events that is consistent with

happened-before, the system passes through a global state satisfying �.

Cooper and Marzullo's de�nitions of these modalities established an important conceptual

framework for predicate detection in asynchronous systems, which has been the basis for consider-

able research [8, 13, 4, 18, 34, 14, 5, 12]. In practice, though, Poss
hb
!, Def

hb
!, and other modalities

based on happened-before have signi�cant drawbacks in many cases. First, in many systems, it

is di�cult to determine the happened-before relation. Happened-before can be determined if each

process maintains a vector clock. This requires that a vector timestamp with O(N) components

be attached to every message, where N is the number of processes in the system, and imposes

computational overhead of O(N) operations per message received (to update the vector clock).

Generating code that inserts and removes the vector timestamps without changing the existing

types in the programs (which would open a can of worms) or copying entire messages (which is in-

e�cient) can be di�cult. If the programs use a stream-oriented communication protocol that does

not provide message boundaries, such as TCP, the di�culty is signi�cantly compounded, since a

receiver might receive a fragment of a \message" or several \messages" in a single receive event.

Furthermore, piggybacking vector timestamps requires changing all communication statements in

the application, even if the predicate of interest involves the state of only one module. If source

code is not available for part of the system, this might be impossible. Happened-before can be

determined without vector clocks, if all processes inform the monitor of all send events and receive

events and provide the monitor with enough information to determine the correspondence between

send and receive events (i.e., for each receive event, the monitor can determine which send event

sent the received message). However, this method often has signi�cant drawbacks, too. In general,

determining the correspondence between send and receive events requires piggybacking an identi�er

(e.g., a sequence number) on each message; this involves the same di�culties as piggybacking a

vector timestamp.2 An additional drawback of this method is that the monitor must be informed

of all send events and receive events. With vector timestamps (or if the happened-before relation

is not needed), it su�ces to inform the monitor only of events that might change the truth value

of the predicate of interest;3 this can signi�cantly reduce the amount of information sent to the

1In this paper, all partial orderings are irreexive unless speci�ed otherwise.
2Even if the underlying communication protocol uses sequence numbers, operating-system protection mechanisms

may prevent the monitoring system from accessing them.
3This optimization is not explicitly incorporated in our algorithms, but that is easily done.
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monitor.

A second drawback of detecting Poss
hb
!� or Def

hb
!� is the computational cost: the worst-case

time complexity is 
(EN ), where E is the maximum number of events executed by any process.

The worst case occurs when there is little or no communication and hence few causal dependencies,

so that many interleavings must be explored. For example, this exponential cost was seen in two

sample applications considered in [33], namely, a coherence protocol and a spanning-tree algorithm.

A third drawback is that, in systems with hidden channels [2] (i.e., means of communication other

than messages), happened-before does not accurately capture causal relationships, so Poss
hb
!� and

Def
hb
!� do not accurately capture the meanings of \possibly held" and \de�nitely held".

This paper proposes a framework for predicate detection in systems with approximately-synchro-

nized real-time clocks. Timestamps from these clocks can be used to de�ne two orderings on events:
db! (\de�nitely occurred before") and

pb! (\possibly occurred before"). By (roughly speaking) sub-

stituting each of these orderings for happened-before in the de�nitions of Poss
hb
! and Def

hb
!, we

obtain de�nitions of four new modalities. The two modalities based on
db! are closely analogous to

Poss
hb
! and Def

hb
!, so we denote them by Poss

db
! and Def

db
!. We obtain algorithms for detecting

Poss
db
! and Def

db
! by adapting algorithms of Garg and Waldecker [13, 14], Alagar and Venkatesan

[1], and Cooper and Marzullo [6]. Modalities based on
pb! are quite di�erent, because

pb! (unlike
hb!

and
db!) is not a partial ordering. In fact,

pb! yields a degenerate case, in which the analogues of

Poss
hb
! and Def

hb
! are equivalent. We show that this single modality, which we denote by Inst, is

closely related to Fromentin and Raynal's concept of Properly
hb
! [9, 10], and we adapt for detecting

Inst an algorithm of theirs for detecting Properly
hb
!.

Our detection framework is applicable to a wide range of systems, since it does not require that

clocks be synchronized to within a �xed bound. However, the quality of clock synchronization does

a�ect the two event orderings just described and therefore the results of detection. For example,

consider Inst�. Informally, a computation satis�es Inst� i� the timestamps imply that there was

an instant during the computation when predicate � held, i.e., i� there is some collection of local

states that form a global state satisfying � and that, based on the timestamps, de�nitely overlapped

in time. Suppose � actually holds in a global state g that persists for time �. Whether Inst� holds

depends on the quality of synchronization. Roughly, if the maximum di�erence between clocks is

known to be less than �, then Inst� holds; otherwise, there is in some cases no way to determine

whether the local states in g actually overlapped in time, so Inst� might not hold.

The quality of clock synchronization a�ects also the cost of detection. For example, consider

Poss
db
!�. Informally, a computation satis�es Poss

db
!� i� there is some collection of local states

that form a global state satisfying � and that, based on the timestamps, possibly overlapped in

time. The larger the error in clock synchronization, the more combinations of local states possibly

overlap. In general, � must be evaluated in each such combination of local states. Thus, the larger

this error, the more expensive the detection. If this error is bounded relative to the mean interval

between relevant events (i.e., events that potentially truthify or falsify �), then the number of

global states that must be checked is linear in E. In the asynchronous case, the number of global
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states that must be checked is O(EN ).

The above condition on the error in clock synchronization holds in many systems. In most local-

area distributed systems, protocols like NTP can e�ciently maintain synchronization of clocks to

within a few milliseconds [28]. Even in extremely wide-area distributed systems like the Internet,

clock synchronization can usually be maintained to within a few tens of milliseconds [26, 28]. The

detection framework and algorithms proposed here are designed to provide a basis for monitoring

and debugging applications in such systems. Some sample applications are described in Section

7, including applications in which clocks and timers provide a hidden channel, causing detection

based on happened-before to be less appropriate. These examples also illustrate that the clocks are

available to the monitored processes as well as the detection algorithm.

Directions for future work include: implementing the detection algorithms described above;

developing e�cient algorithms for detecting global properties that depend explicitly on time; and

investigating clock-based detection of sequences of global states, perhaps along the lines of temporal

modalities based on happened-before [17, 3, 11].

2 Related Work

Marzullo and Neiger [24] discuss global property detection in partially-synchronous systems in which

a �xed bound � on the error between clocks is known. In the notation of this paper, they de�ne

modalities Poss
hd
! and Def

hd
!, where

hd! �

=
db! [ hb!, and give detection algorithms for these two

modalities. Combining happened-before and real-time ordering exploits more information about

the computation and hence can reduce the number of explored global states (compared to using

either ordering alone). This is certainly desirable whenever it is feasible. Modifying the algorithms

in this paper to take happened-before into account is a straightforward exercise, and the resulting

algorithms would be appropriate for monitoring some systems. This paper presents algorithms that

do not use happened-before for three reasons. First and most important, as discussed in Section 1,

it is often di�cult in practice to modify a system so that the monitor can determine the happened-

before relation; consequently, detection algorithms that depend on happened-before have limited

applicability.4 Second, not using happened-before enables some optimizations (speci�cally, those

involving priority queues) that are impossible if causal ordering is also used. Third, incorporating

happened-before would have obscured the presentation and complexity analysis of the real-time-

based parts of the algorithms, which are the novel parts.

Contributions of this paper relative to [24] include: detection algorithms based purely on real-

time clocks; more e�cient detection algorithms; and de�nition of an algorithm for Inst. [24] does

not consider any modality analogous to Inst. Also, [24] assumes a �xed bound on the error in

clock synchronization. Our framework allows that bound to vary over time; this supports tighter

4Our algorithms apply directly even to programs that use high-level communication libraries (e.g., a distributed
shared memory (DSM) library) for which source code is not available; detecting happened-before in such cases would
be di�cult.
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bounds hence more accurate monitoring results.

An attractive feature of Properly
hb
! [9, 10] and Inst is that the monitor can report a single

global state g satisfying � that the system actually passed through. Def does not have this

feature. However, Properly
hb
! gives useful information only about systems that perform global

(i.e., system-wide) barrier synchronization. Such synchronization is expensive and rarely used. In

contrast, assuming reasonably good clock synchronization, Inst is informative even in the absence

of barrier synchronization. Since Inst, like Properly
hb
!, can be detected e�ciently for arbitrary

predicates, it appears to be a useful modality.

The \possibly occurred before" relation
pb! is reminiscent of Lamport's \can a�ect" relation for

concurrent systems [21, 22]. Both relations may contain cycles because of overlap: for
pb!, overlap

of interval timestamps; for \can a�ect", overlap of non-atomic events. Our framework assumes

events are atomic; this is appropriate for systems with message-based communication.

Ver��ssimo [35] discusses the uncertainty in event orderings caused by the granularity5 and imper-

fect synchronization of digital real-time clocks, analyzes the conditions under which this uncertainty

is signi�cant for an application, and describes a synchronization technique, suitable for certain ap-

plications, that masks this uncertainty. However, [35] does not aim for a general approach to

detecting global properties in the presence of this uncertainty.

Mayo and Kearns [25] present two detection algorithms for distributed systems with partially-

synchronized clocks. Both algorithms assume a �xed upper bound on the di�erence between clocks;

they neither tolerate worse clock synchronization under bad conditions nor exploit better clock syn-

chronization under good conditions. The �rst algorithm attempts to determine whether a predicate

holds at a speci�ed instant; our algorithms are designed for continuous monitoring. The second

algorithm detects Inst� with worst-case time complexity O(N2E), compared to O((N logN)E)

for our algorithm in Section 6.

3 Background

A computation of a single process is called a local computation and is represented as a �nite or

in�nite sequence of local states and events. Thus, a local computation has the form

e1; s1; e2; s2; e3; s3; : : : (1)

where the e� are events, and the s� are local states. By convention, e1 corresponds to creation of

the process. If the sequence is �nite, it ends with an event that corresponds (by convention) to the

termination of the process.

A computation of a distributed system is a collection of local computations, one per process.

A computation is represented as a function from process names to local computations. We use

5Our framework accommodates the granularity of digital clocks by using � instead of < in TS1 and TS2, introduced
in Section 3.
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integers 1; 2; : : : ; N as process names; thus, for a computation c, the local computation of process i

is c(i). Variables i and j always range over process names. We use Ev(c) and St(c) to denote the

sets of all events and all local states, respectively, in a computation c. For convenience, we assume

that all events and local states in a computation are distinct.

The following functions are implicitly parameterized by a computation; the computation being

considered should be evident from the context. For an event e, pr (e) denotes the process on which

e occurs. For a local state s, pr(s) denotes the process that passes through s, and S(s) and T (s)
denote the start event and terminal event, respectively, of s. For example, for a computation

containing local computation (1), S(s2) is e2, and T (s2) is e3.
A global state of a distributed system is a collection of local states, one per process, represented

as a function from process names to local states. The set of global states of a computation c is

denoted GS (c); thus, g is in GS (c) i� for each process i, g(i) is a local state in c(i). We de�ne a

reexive partial ordering � on global states by:

g � g0
�

= (8i : g(i) = g0(i) _ g(i) occurs before g0(i)): (2)

All of the orderings de�ned in this paper, including �, are implicitly parameterized by a computa-

tion; the computation being considered should be evident from the context.

Each event e has an interval timestamp its(e), which is an interval with lower endpoint lwr (e)

and upper endpoint upr (e). Our results apply to any totally-ordered time domain, regardless of

whether it is continuous or discrete. Thus, the interval could be a range of integers or a range

of real numbers. We model events as being atomic and instantaneous; the width of the interval

timestamp depends only on the quality of clock synchronization when the event occurs. We assume

that the interval timestamps are non-decreasing and are consistent with the order of events; more

precisely, we assume:

TS1. For every event e, lwr (e) � upr(e).

TS2. For every event e1 with an immediately succeeding event e2 on the same process, lwr (e1) �
lwr (e2) and upr(e1) � upr(e2).

TS3. For every event e1 and every event e2, if e1 occurred before e2 in real-time, then lwr (e1) �
upr (e2).

There are various ways of satisfying these assumptions, depending on the underlying clock synchro-

nization mechanism. As a simple (yet realistic) example, if the clock synchronization algorithm

never decreases the value of a clock, and if all of the machines (more precisely, all of the machines

relevant to the predicate being detected) synchronize to a single time server, then TS1{TS3 hold

if timestamps are chosen such that the value of the time server's clock was in the interval its(e)

when event e occurred. Thus, a machine can take lwr(e) = t� " and upr(e) = t+ ", where t is the

value of its local clock when e occurred, and " is a bound on the di�erence between its clock and

the time server's clock when e occurred. In systems in which time servers are organized in peer
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groups or in a client-server hierarchy, its(e) can be determined from an appropriate combination

of the bounds on the errors between the relevant clocks. In either case, the information needed

to construct interval timestamps can be obtained from standard clock synchronization subsystems,

such as NTP [27, 28] or the Distributed Time Service in OSF DCE [29].

4 Generic Theory of Consistent Global States

Predicate detection in asynchronous systems is based on the theory of consistent global states

(CGSs) [2]. Informally, a global state is consistent if it could have occurred during the computation.

It is convenient to de�ne \consistent" in terms of ideals. Recall that an ideal of a partial order

hS;�i is a set I � S such that (8x 2 I : 8y 2 S : y � x ) y 2 I). Ideals of hEv(c); hb!i are called
consistent cuts [2]. Recall that for any partial order, the set of its ideals ordered by inclusion (�)
forms a lattice [8]. Furthermore, the set of CGSs ordered by � forms a lattice that is isomorphic to

the lattice of consistent cuts [30, 2]. This isomorphism has an important consequence for detection

algorithms: it implies that a minimal increase with respect to � corresponds to advancing one

process by one event (because adjacent ideals of hEv(c); hb!i di�er by exactly one event) and hence

that the lattice of CGSs can be explored by repeatedly advancing one process by one event. This

principle underlies detection algorithms of Cooper and Marzullo [6], Garg and Waldecker [13, 14],

and Alagar and Venkatesan [1].

In this section, we show that the above theory is not speci�c to the happened-before relation but

rather applies to any partial ordering ,! on events, provided ,! is process-wise-total, i.e., for any

two events e1 and e2 on the same process, if e1 occurred before e2, then e1 ,! e2. This generalized

theory underlies the detection algorithms in Sections 5 and 6.

De�nition of CGSs. Let c be a computation, and let ,! be a relation on Ev(c). We de�ne a

relation ,! on St(c), with the informal interpretation: s ,! s0 if s ends before s0 starts. Formally,

s ,! s0
�

=

(
S(s) ,! S(s0) if pr (s) = pr (s0)

T (s) ,! S(s0) if pr (s) 6= pr (s0).
(3)

Two local states are concurrent with respect to ,! if they are not related by  ,!. A global state

is consistent with respect to ,! if its constituent local states are pairwise concurrent:

consis,!(g)
�

= (8i; j : i 6= j ) :(g(i) ,! g(j))): (4)

Thus, the set of CGSs of computation c with respect to ,! is

CGS ,!(c) = fg 2 GS (c) j consis,!(g)g: (5)

Note that CGS
hb
! is the usual notion of CGSs.
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De�nitions of Poss and Def. The modalities Poss
hb
! and Def

hb
! for asynchronous systems are

de�ned in terms of the lattice hCGS hb
!(c);�i. We generalize them as follows.

A computation c satis�es Poss,!� i� CGS ,!(c) contains a global state satisfying �.

Def ,! is de�ned in terms of paths. A path through a partial order hS;�i is a �nite or in�nite

sequence6 � of distinct elements of S such that: (i) �[1] is minimal with respect to �; (ii) for all
� 2 domain(�), if � < j�j, then �[� + 1] is an immediate successor7 of �[�]; and (iii) if � is �nite,

then �[j�j] is maximal with respect to �. Informally, each path through hCGS ,!(c);�i corresponds
to an order in which the events in the computation could have occurred.

A computation c satis�es Def ,!� i� every path through hCGS ,!(c);�i contains a

global state satisfying �.

CGSs and Ideals. When ,! is a process-wise-total partial ordering, there is a natural corre-

spondence between CGS ,!(c) and ideals of hEv(c); ,!i. One can think of an ideal I as the set

of events that have occurred. Executing a set I of events leaves each process i in the local state

immediately following the last event of process i in I. Thus, ideal I corresponds to the global state

g such that for all i, S(g(i)) is the maximal element of fe 2 I j pr(e) = ig. This correspondence is
an isomorphism.

Theorem 1. For every process-wise-total partial ordering ,! on Ev(c), the partial order hCGS ,!(c);�
i is a lattice and is isomorphic to the lattice of ideals of hEv(c); ,!i.
Proof. This is true for the same reasons as in the standard theory based on happened-before

[30, 2, 8]. The proof is straightforward.

The following corollary underlies the detection algorithms in Sections 5 and 6.

Corollary 2. For any process-wise-total partial ordering ,!, if global state g0 is an immediate

successor of g in hCGS ,!(c);�i, then the ideal corresponding to g0 contains exactly one more event

than the ideal corresponding to g.

Proof. This follows from Theorem 1 and the fact that for any partial order S, if one ideal of S is

an immediate successor of another ideal of S, then those two ideals di�er by exactly one element.

4.1 Instantiations of ,!

This paper focuses on two instantiations of the generic theory of CGSs. In Section 5, ,! is instan-

tiated with the ordering
db! (\de�nitely occurred before"), de�ned by

e1
db! e2

�

=

(
e1 occurs before e2 if pr(e1) = pr (e2)

upr(e1) < lwr(e2) if pr(e1) 6= pr (e2).
(6)

6We use 1-based indexing for sequences.
7For a reexive or irreexive partial order hS;�i and elements x 2 S and y 2 S, y is an immediate successor of x

i� x 6= y ^ x � y ^ :(9 z 2 S n fx; yg : x � z ^ z � y).
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This ordering cannot be de�ned solely in terms of the timestamps its(e1) and its(e2), because TS1

and TS2 allow consecutive events on a process to have identical timestamps. Therefore, we assume

that a process records a local sequence number as well as an interval timestamp for each event.

The following theorem, together with Corollary 2, implies that detection algorithms for Poss
db
! and

Def
db
! can explore all elements of CGS

db
! by repeatedly advancing one process by one event.

Theorem 3. For every computation c,
db! is a process-wise-total partial ordering on Ev(c).

Proof. It follows immediately from the de�nitions that
db! is process-wise-total. We need to

show that
db! is irreexive, acyclic, and transitive. Irreexivity is obvious. For transitivity, we

suppose e1
db! e2 and e2

db! e3, and show e1
db! e3. First consider the case pr(e1) = pr (e3). In

this case, it su�ces to show that e1 occurred before e3. If pr(e2) = pr (e1), then the desired

result follows from transitivity of \occurred before". If pr (e2) 6= pr(e1), then using TS1, the

hypothesis e1
db! e2, TS1 again, and �nally the hypothesis e2

db! e3, we have the chain of inequalities

lwr (e1) � upr(e1) < lwr (e2) � upr (e2) < lwr (e3), so lwr (e1) < lwr (e3), so by TS2, e1 occurred

before e3. Next consider the case pr (e1) 6= pr(e3). Note that :(pr(e1) = pr(e2)^ pr(e2) = pr (e3)).

If pr (e2) 6= pr (e1), then it is easy to show (by case analysis on whether pr (e2) = pr (e3)) that

upr(e1) < lwr (e2) � lwr (e3), so upr(e1) < lwr (e3), as desired. If pr (e2) 6= pr (e3), then it is

easy to show (by case analysis on whether pr(e2) = pr (e1)) that upr(e1) � upr(e2) < lwr (e3), so

upr(e1) < lwr (e3), as desired.

Given transitivity, to conclude acyclicity, it su�ces to show that there are no cycles of size 2.

We suppose e1
db! e2 and e2

db! e1, and derive a contradiction. If pr(e1) = pr(e2), then the fact that

\occurred before" is a total order on the events of each process yields the desired contradiction. If

pr (e1) 6= pr (e2), then using TS1, the hypothesis e1
db! e2, TS1 again, and �nally the hypothesis

e2
db! e1, we obtain the chain of inequalities lwr (e1) � upr (e1) < lwr (e2) � upr(e2) < lwr(e1),

which implies lwr(e1) < lwr (e1), a contradiction.

In Section 6, ,! is instantiated with the ordering
pb! (\possibly occurred before"), de�ned by

e1
pb! e2

�

= :(e2 db! e1): (7)

As discussed in Section 6,
pb! is not a partial ordering, so we detect modalities based on

pb! by

relating them to a modality based on
db!.

Another interesting possibility, mentioned in Section 2 but not further pursued in this paper,

is to instantiate ,! with
db! [ hb!.

5 Detection Based on a Strong Event Ordering: Poss
db
! and Def

db
!

By the discussion in Section 4,
db! induces a notion CGS

db
! of CGSs. If g 2 CGS

db
!(c), then the local

states in g possibly overlapped in time. For example, Figure 1 shows a computation c1 and the

lattice hCGS db
!(c1));�i. The pair of arcs enclosing each event show the endpoints of the interval
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timestamp. In the lattice, a node labeled i; j represents the global state in which process 1 is local

state s1i and process 2 is in local state s2j .
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Figure 1: Left: A computation c1. Right: The lattice hCGS
db
!(c1);�i.

We consider in this paper only detection algorithms with a passive monitor. Each process in

the original system sends its timestamped local states to a new process, called the monitor. More

speci�cally, when a process executes an event, thereby terminating its current local state s, the

process sends to the monitor a message containing s and the timestamps its(S(s)) and its(T (s)).8
We consider only on-line detection, in which the monitor detects the property as soon as

possible. Algorithms for o�-line detection, in which the monitor waits until the computation has

terminated before checking whether a property holds, can be obtained as special cases. We consider

�rst algorithms for detecting Poss
db
! for a restricted class of predicates and then consider general

algorithms for detecting Poss
db
! and Def

db
!.

5.1 Algorithms for Poss
db
! and Def

db
! for Conjunctive Predicates

A predicate is conjunctive if it is a conjunction of predicates, each of which depends on the local

state of at most one process. For example, if xi is a local variable of process i, then the predicate

x1 > 0 ^ x2 < 0 is conjunctive, and the predicate x1 > x2 is not conjunctive. Garg and Waldecker

[13] and Hur�n et al. [16] developed e�cient algorithms for detecting Poss
hb
!� for conjunctive

predicates �. Garg and Waldecker also developed an e�cient algorithm for detecting Def
hb
! for

such predicates [14]. Garg and Waldecker's algorithms can be adapted in a straightforward way

to detect Poss
db
! and Def

db
! for such predicates, by (roughly) replacing comparisons based on

happened-before with comparisons based on
db!. This yields detection algorithms with worst-case

time complexity O(N2E), where E is the maximum number of events executed by any process.

The worst-case time complexity of both algorithms can be reduced to O((N logN)E) by exploiting

the total ordering on numbers.

We start by reviewing Garg and Waldecker's algorithm for detecting Poss
hb
!� for conjunctive

predicates. Suppose the predicate of interest is � =
VN
i=1 �i, where �i depends on the local state of

8Several straightforward optimizations are possible. For example, each message might describe only the di�erences
between consecutive reported local states, rather than repeating the entire local state. Also, except for the initial
local state, it su�ces to include with local state s only the timestamp its(T (s)), since its(S(s)) was sent in the
previous message to the monitor. Also, for a given predicate �, events that cannot possibly truthify or falsify � can
be ignored.
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process i. Each process i sends to the monitor timestamped local states satisfying �i; local states

not satisfying �i are not reported. For each process i, the monitor maintains a queue qi and adds

each timestamped local state received from process i to the end of qi. Let head(q) denote the head

of a non-empty queue q. If for some i and j, head(qi)
hb! head(qj), then head(qi) is removed from

qi. The heads of the queues are repeatedly compared and sometimes removed in this way, until the

heads of the non-empty queues are pairwise concurrent. At that point, if all the queues are non-

empty, then the heads of the queues form a CGS satisfying �, so the algorithm returns that CGS

(thereby indicating that Poss
hb
!� holds); if some queue is empty, then the monitor waits to receive

more local states and then repeats the procedure just described. The worst-case time complexity

is O(N2E), because there are O(NE) local states, and each time a local state is removed from qi,

the new head of qi is compared with the heads of the other O(N) queues.

Our algorithm for detecting Poss
db
!
VN
i=1 �i appears in Figure 2. If the computation satis�es

Poss
db
!�, then the algorithm returns a CGS satisfying �. The �rst line in the body of the while

loop is justi�ed as follows. Expanding the de�nition (4) of consis
db
!(g) yields

(8i; j : i 6= j ) upr(T (g(i))) � lwr (S(g(j)))): (8)

Using the fact that for all i, upr(T (head(g(i)))) � lwr (S(head(g(i)))), which follows from TS1 and

TS2, one can show that (8) is equivalent to

min
i
(upr(T (head(g(i))))) � max

i
(lwr (S(head(g(i))))): (9)

From this, one can show that, if the global state (�i:head(qi)) is not consistent, then in order to

�nd a CGS, some process i such that upr(T (head(qi))) is minimal must be advanced.

On receiving x from process i:
append(qi; x);
if head(qi) = x then

while :(9i : empty(qi)) ^ :consisdb!(�i:head(qi))
choose i such that upr (T (head(qi))) is minimal; (y)
removeHead(qi);

endwhile

if :(9i : empty(qi)) then
return the CGS (�i:head(qi))

endif

endif

Figure 2: Algorithm PossConjAlg(�) for detecting Poss
db
!� for conjunctive predicates. Process i

sends to the monitor only local states satisfying its local predicate.

We now describe some optimizations to the basic algorithm. To evaluate (9) e�ciently, we
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modify the algorithm to maintain two priority queues p1 and p2, whose contents are determined by

the invariants:

I1: For each process i such that qi is non-empty, p1 contains a record with key lwr(S(head(qi)))
and satellite data i. p1 contains no other records.

I2: For each process i such that qi is non-empty, p2 contains a record with key upr (T (head(qi)))
and satellite data hi; ptr i, where ptr is a pointer to the record with satellite data i in p1. p2

contains no other records.

Whenever the head of a queue changes, p1 and p2 are updated in O(logN) time to maintain these

invariants. Recall that the operations on a priority queue p include getMin(p), which returns a

record hk; di with key k and satellite data d such that k is minimal, and extractMin(p), which

removes and returns such a record. We also use priority queues with analogous operations based

on maximal key values. Using I1 and I2, (9) is equivalent to

key(getMin(p2)) � key(getMax(p1)) (10)

where key(hk; di) = k. Thus, in Figure 2, consis
db
!(�i:head(qi)) can be replaced with (10), and line

(y) can be replaced with hk; hi; ptr ii := extractMin(p2).

To evaluate (9i : empty(qi)) e�ciently, we modify the algorithm to maintain a natural number

numEmpty , whose value is determined by the invariant: numEmpty = jfi j empty(qi)gj. Whenever

a queue is modi�ed, numEmpty is updated in constant time to maintain this invariant. In Figure 2,

both occurrences of (9i : empty(qi)) can be replaced with numEmpty > 0.

Let PossConjAlg denote the optimized algorithm. To analyze its time complexity, recall that an

operation on a priority queue containing n records takes O(log n) time. A constant number of such

operations are performed for each local state, so the worst-case time complexity of PossConjAlg is

O(EN logN). Note that the time complexity is independent of the quality of clock synchronization.

The algorithm in [14] for detecting Def
hb
!� for conjunctive � can be adapted in a similar way

to detect Def
db
!� for such predicates.

5.2 General Algorithm for Poss
db
!

We develop an on-line detection algorithm for Poss
db
!� by adapting Alagar and Venkatesan's algo-

rithm for detecting Poss
hb
!� in non-terminating (i.e., in�nite) computations [1]. Their algorithm

is based on their procedure for depth-�rst search of a lattice of CGSs. A depth-�rst exploration of

the lattice of CGSs for an in�nite computation would never backtrack and thus would never visit

some CGSs near the beginning of the lattice. So, in their algorithm, the lattice is divided into a

sequence of sublattices L0; L1; L2; : : :, corresponding to increasing pre�xes of the computation, and

depth-�rst search is used to explore each sublattice Li+1 � Li. The following paragraphs describe

how to adapt their algorithm to on-line detection of Poss
db
!�.
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Finding the initial CGS. In the asynchronous setting, the initial CGS simply contains the

initial local state of each process. In the timed setting, that global state might not be consistent,

since the processes might have been started at di�erent times.

Theorem 4. For every computation c, if CGS ,!(c) is not empty, then hCGS ,!(c);�i contains a
unique minimal element, i.e., c has a unique initial CGS.

Proof. The existence of minimal elements in the lattice of CGSs follows immediately from non-

emptiness and the absence of in�nite descending chains in � [7, chapter 2]. We prove by contradic-

tion that the lattice of CGSs has a unique minimal element. Suppose CGSs g1 and g2 are minimal

and g1 6= g2. Let ^G denote the meet operation of the lattice of CGSs. Note that g1 6� g2 (by

the assumptions that g2 is minimal and g1 6= g2) and (g1 ^G g2) � g2 (by the de�nition of ^G),
so (g1 ^G g2) 6= g1. By de�nition of ^G, (g1 ^G g2) � g1, which together with (g1 ^G g2) 6= g1

contradicts the assumed minimality of g1.

To �nd the initial CGS, we exploit the fact that for every conjunctive predicate �, if a computation

satis�esPoss
db
!�, then PossConjAlg(�) �nds and returns the unique minimal CGS satisfying �; the

proof of this is closely analogous to the proof of the corresponding property of Garg and Waldecker's

algorithm [14]. A corollary is: if CGS
db
!(c) is not empty, then PossConjAlg(true) returns the initial

CGS (otherwise, PossConjAlg(true) never calls return).9

Choosing the sequence of sublattices. To avoid delays in detection, when the monitor receives

a timestamped local state, it constructs the largest CGS g2 that can be constructed from the local

states it has received so far; this is done by the while loop in Figure 4. This CGS implicitly de�nes

the next sublattice Li+1: Li+1 contains exactly the CGSs g such that g � g2. Let g1 denote the CGS

constructed when the previous local state was received, i.e., the CGS corresponding to sublattice

Li. After constructing g2, the monitor does a depth-�rst search of the sublattice Li+1 � Li, which

(by de�nition) contains CGSs g such that g1 � g � g2.

Exploration of a sublattice. There are two main steps in the exploration of the sublattice of

CGSs between a CGS g1 and a larger CGS g2:

� Use a procedure initStates(g1; g2) to compute the set S of minimal (with respect to �) CGSs
in that sublattice.

� For each CGS g in S, use a procedure depthFirstSearch (g; g1; g2) to do a depth-�rst search

starting from g of a fragment of that sublattice. These searches together explore the entire

sublattice.

Alagar and Venkatesan observed that initStates can be computed e�ciently as follows. For a local

state s, let minstate(s) be the unique minimal CGS containing s, and let succ(s) be the local state

9Strictly speaking, the argument of PossConjAlg should have the form
V
N

i=1
�i. We use PossConjAlg(true) as an

abbreviation for PossConjAlg(
V
N

i=1
true).
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that occurs immediately after s on the same process (if there is no such local state, then succ(s) is

unde�ned). Then initStates(g1; g2) is given by [1]:

procedure initStates(g1; g2)
var i; S;
S := ;
for i := 1 to N

if g1(i) 6= g2(i) ^ :(9g 2 S : g � minstate(succ(g1(i)))) then
insert(S;minstate(succ(g1(i))))

endif

rof ;
return S

(11)

Computing minstate. Our algorithm for computing minstate is similar to our algorithm for

computing the initial CGS. It relies on the following property of PossConjAlg: if PossConjAlg(�)

is started from a global state g (i.e., for all i, local states of process i that occur before g(i) are

ignored), and if the remainder of the computation satis�es Poss
db
!�, then PossConjAlg(�) �nds

the unique minimal CGS greater than g and satisfying �. For a global state g and a local state s,

let g[i 7! s] denote the global state that is the same as g except that the local state of process i is

s. A simple way to compute minstate(s) is to call PossConjAlg(true) starting from the global state

g0[pr (s) 7! s], where g0 is the initial CGS. An optimization is sometimes possible. Consider a call

minstate(s2). If minstate has not previously been called with a local state of pr (s2) as argument,

then the optimization does not apply, and minstate is computed as described above. Otherwise,

let s1 be the argument in the previous call to minstate on a local state of pr (s2). Observe that s1

occurred before s2, because: (1) minstate is called only from initStates , and initStates is called on

a non-decreasing chain of CGSs (this is a property of the algorithm in Figure 4 below), and (2)

(assuming short-circuiting evaluation of ^ in initStates) initStates(g1; g2) callsminstate(succ(g1(i)))

only if g1(i) 6= g2(i). Since s1 occurred before s2, minstate(s1) � minstate(s2). So, we can start

PossConjAlg(true) from global state minstate(s1)[pr (s) 7! s] instead of g0[pr (s) 7! s]. This leads

to the following algorithm. For each i, old (i) contains the result of the previous call to minstate

on a local state of process i; initially, old (i) is set to g0.

procedure minstate(s)
old (pr (s)) := the CGS returned by PossConjAlg(true) started from old (pr (s))[pr (s) 7! s];
return old (pr (s))

Depth-�rst search of fragment of sublattice. Since a CGS may have multiple predecessors

in the lattice of CGSs, the search algorithm needs (for e�ciency) some mechanism to ensure that

each CGS is explored only once. A straightforward approach is to maintain a set containing the

CGSs that have been visited so far. However, this may be expensive in both space and time. Alagar

and Venkatesan [1] proposed the following clever alternative. Introduce a total ordering <idx on

CGSs, de�ned by: g1 <idx g2 if index(g1) is lexicographically smaller than index(g2), where for a
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global state g, index(g) is the tuple hk1; : : : ; kni such that g(i) is the ki'th local state of process i.

During the depth-�rst search, explore a CGS g only from the immediate predecessor (with respect

to �) of g that is maximal (among the immediate predecessors of g) with respect to <idx . This

leads to the algorithm in Figure 3, where for a CGS g, pred(g) is the set of immediate predecessors

of g in the lattice of CGSs. To compute pred(g): for each process i, check whether moving process

i back by one local state yields a CGS, and if so, include the resulting CGS in the set.

procedure depthFirstSearch (g; g1; g2)
if �(g) then

return(true)
else

for i := 1 to n
if g(i) 6= g2(i) then

g0 := g[i 7! succ(g(i))];

if consis
db
!(g0) then

S := fp 2 pred(g0) j g1 � pg;
if g is maximal in hS;<idx i then

if depthFirstSearch (g0; g1; g2) then
return(true)

endif

endif

rof

endif ;
return(false)

Figure 3: Algorithm for depth-�rst search.

Putting these pieces together yields the on-line detection algorithm in Figure 4. All local states

\after" g0 (i.e., local states s such that g0(pr (s)) occurs before s) are handled by the \On receiving

s from process i" statement, even though some of these local states might have been received before

the initial CGS was found.

Recall that a process sends a local state to the monitor when that local state ends. This is

natural (because  
db
! depends on when local states end) but can delay detection. One approach

to bounding and reducing this delay is for a process that has not reported an event to the monitor

recently to send a message to the monitor to report that it is still in the same local state (as if

reporting execution of skip). Another approach, described in [24], requires a bound on message

latency: at each instant, the monitor can use its own local clock and this bound to determine a

lower bound on the ending time of the last local state it received from a process.
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Initialization Phase :
g0 := the CGS returned by PossConjAlg(true); (� g0 is the initial CGS �)
g2 := g0;

For all local states x such that g0(pr (x)) occurs before x:
On receiving x from process i:
append(qi; x);
g1 := g2;

while (9j : :empty(qj) ^ consis
db
!(g2[j 7! head(qj)])) (� construct largest CGS �)

g2(j) := head(qj);
removeHead(qj)

endwhile;
for s in initStates(g1; g2)

if depthFirstSearch (g; g1; g2) then

report Poss
db
!� and exit

endif

rof

Figure 4: Algorithm for detecting Poss
db
!�.

5.2.1 Complexity

To analyze the time complexity, we consider separately the cost of all invocations of minstate and

the cost of all other operations. In e�ect, for each process, the calls to minstate cause PossConjAlg

algorithm to be executed N times (once for each process) on (at worst) the entire computation.

Thus, the total cost of calls to PossConjAlg from minstate , and hence the total cost of calls to

minstate , is O(EN2 logN). The total cost of all executions of the while loop in Figure 4 is

O(EN3), since: (1) evaluating the loop condition takes time O(N2), and the condition is evaluated

at most once for each of the O(NE) local states; (2) the loop body is executed at most once for each

of the O(NE) local states, and each execution takes constant time. The total cost of all executions

of the body of the for loop in Figure 4 is O(jCGS db
!(c)jN2), since the depth-�rst search takes

O(N2) time per CGS, since evaluating pred takes O(N2) time. Each call to initStates takes O(N3)

time (excluding the cost of calls to minstate), because: (1) evaluating � takes O(N) time, and

(2) � may be evaluated O(N2) times, because of the for loop and the existential quanti�er. The

total cost of all calls to initStates is O(N4E), since initStates is called at most once per local state.

Summing these contributions, we conclude that the worst-case time complexity of the algorithm is

O(jCGS db
!(c)jN2 +EN4).

jCGS db
!(c)j depends on the rate at which events occur relative to the error between clocks.

To simplify the complexity analysis, suppose: (1) the interval between consecutive events at a

process is at least � , (2) the error between clocks is known to be at most ", and (3) the interval

timestamp on an event e is given by lwr (e) = t � " and upr (e) = t + ", where t is the value of
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the local clock of machine pr (e) when e occurred. Then, for every event e, upr (e)� lwr (e) = 2".

If � > 2", then each local state is concurrent with at most 3 local states of each other process, so

each local state is in at most O(3N�1) CGSs, so there are O(3NE) CGSs, so the worst-case time

complexity of the algorithm is O(3NEN2). If � � 2", then each local state is concurrent with at

most d(4"+ �)=�e+ 1 local states of each other process, so there are O((d4"=�e + 2)N�1E) CGSs,

so the worst-case time complexity of the algorithm is O((d4"=�e + 2)N�1EN2). In both cases,

the worst-case time complexity of detecting Poss
db
! is linear in E, which is normally much larger

than N ; in contrast, the worst-case time complexity of general algorithms for detecting Poss
hb
! and

Def
hb
! is 
(EN ).

A more realistic complexity analysis requires considering distributions of inter-event times,

rather than simply �xing a minimum value. Speci�cally, we consider distributed computations with

inter-event times selected from a normal (i.e., Gaussian) distribution with mean � and standard

deviation
p
� (negative numbers selected from the distribution were ignored). For simplicity, we

continue to assume a �xed bound " on the error between clocks. The number of CGSs then depends

on N , E, and the ratio �=". As in the cases analyzed above, the number of CGSs scales linearly

with E; this is illustrated by the graph in Figure 5. Figure 6 plots the number of CGSs vs. �="

and N . One can see that when �=" is large, the number of CGSs increases slowly (roughly linearly)

with N ; when �=" is small, the number of CGSs increases exponentially with N .
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Figure 5: Number of CGSs vs. E, for �=" = 10 and N = 4.
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Figure 6: Left: Number of CGSs vs. �=" and N , for E = 100, with �=" ranging from 6 to 50.
Right: Number of CGSs vs. �=" and N , for E = 100, with �=" from 2 to 50. Note that the vertical
scales in these two graphs are very di�erent.

5.3 General Algorithm for Def
db
!

The detection algorithm for Def
hb
!� in [6, 24] can be adapted to detect Def

db
!� by (roughly)

replacing each condition of the form e1
hb! e2 with e1

db! e2. That algorithm divides the lattice into

levels. The level of a local state in a local computation is the number of local states preceding it

in that computation. The level of a global state g is the sum of the levels of the constituent local

states. Level ` of the lattice of CGSs contains the CGSs with level `. Following [6, 24], we give an

algorithm in which the monitor constructs one level of the lattice of CGSs at a time. Constructing

one level of the lattice at a time is unnecessary and sometimes delays detection of a property; this

construction is used only to simplify the presentation.

The algorithm used by the monitor to detect Def
db
!� is given in Figure 7. The lowest level of

the lattice contains only the initial CGS. The while loop maintains the following invariant: last

contains CGSs that are reachable from the initial CGS without passing through a CGS satisfying

�. In line (y) of the algorithm, the monitor considers each global state g in last and each process

i, and checks whether the local state succ(g(i)) is concurrent with the local states in g of all the

other processes. (The monitor waits for the local states succ(g(1)); : : : ; succ(g(N)), if they have not

already arrived.) If so, the monitor adds g[i 7! succ(g(i))] to current if it is not already in current .

Since � could be false in all CGSs, and because we assume that the cost of evaluating � on

each global state is a constant, the worst-case asymptotic time complexity of this algorithm equals

the worst-case asymptotic time complexity of constructing CGS
db
!. For each CGS, the algorithm

advances each of the N processes and, if the resulting global state g is consistent, the algorithm

checks whether g is already in current . Let Tm denote the total cost of these membership checks;

then constructing CGS
db
!(c) takes �(jCGS db

!(c)jN2 + Tm) time. Tm depends on the data structure
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g := the CGS returned by PossConjAlg(true); (� �nd the initial CGS �)
last := fgg;
remove all CGSs in last that satisfy �;
while last 6= ;

current := CGSs that are immediate successors of CGSs in last ; (y)
remove all CGSs in current that satisfy �;
last := current ;

endwhile;

report Def
db
!�

Figure 7: Algorithm for detecting Def
db
!�.

used to implement current . With a naive array-based implementation, each check has constant

cost, so Tm is �(EN ), due to the cost of initializing the arrays, so the worst-case time complexity

of the algorithm is �(ENN2).10

However, this implementation has a serious disadvantage: the time complexity remains 
(EN )

even if the actual number of CGSs is much smaller than EN , which is typically the case. Thus,

generally preferable alternatives are to implement current as a dictionary, using a hash table or

balanced trees. Let W (c) be the width of the lattice CGS
db
!(c), i.e., the maximum size of a level

of that lattice. If balanced trees are used, each membership check has cost O(logW (c)), so the

worst-case time complexity is O(jCGS db
!(c)j(N2 +N logW (c))).

Both jCGS db
!(c)j and W (c) depend on the rate at which events occur relative to the error

between clocks. To simplify the complexity analysis, we introduce � and ", with the same meanings

as in Section 5.2.1. If � > 2", then there are O(3NE) CGSs (as above), and W (c) is O(3N ),

so the worst-case time complexity of the algorithm is O(3NEN2). If � � 2", then there are

O((d4"=�e + 2)N�1E) CGSs (as above), and W (c) is O((d4"=�e + 2)N�1), so the worst-case time

complexity is O((d4"=�e+2)N�1EN2 log(d4"=�e+2)). In both cases, the worst-case time complexity
of detecting Def

db
! is linear in E; in contrast, the worst-case time complexity of general algorithms

for detecting Def
hb
! is 
(EN ).

For a more realistic complexity analysis, we consider the same distribution of inter-event times

and the same bound on error between clocks as in the last paragraph of Section 5.2. Of course,

the number of CGSs is still characterized by Figures 5 and 6. It is easy to argue that under these

assumptions, the expected size of each level is independent of E and depends in the same fashion

as the number of CGSs on �=" and N . Thus, graphs showing the dependence of W (c) on �=" and

N would have the same shape as the graphs in Figure 6.

10In on-line detection, E is not known in advance, so the arrays may need to be resized (e.g., doubled) occasionally.
This does not change the asymptotic time complexity.
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Figure 8: The lattice hCGS pb
!(c1);�i.

6 Detection Based on a Weak Event Ordering: Inst

Using (3),
pb!, de�ned in (7), induces a relation 

pb
! on local states, with the interpretation: s 

pb
! s0

if s possibly ended before s0 started. Two local states are strongly concurrent if they are not related

by 
pb
!; such local states must overlap in time. We call elements of CGS

pb
! strongly consistent global

states (SCGSs).11 For example, Figure 8 shows hCGS pb
!(c1);�i; recall that computation c1 is shown

in Figure 1. Note that hCGS pb
!(c1);�i is a total order. More generally, we can show:

Theorem 5. For all computations c, hCGS pb
!(c);�i is a total order and therefore a lattice.

Proof. Suppose not, i.e., suppose there exist a computation c, two global states g; g0 2 CGS
pb
!(c),

and two processes i and j such that g(i)  
pb
! g0(i) and g0(j)  

pb
! g(j). By de�nition of CGS

pb
!(c),

:(g(i) pb
! g(j)), so upr(S(g(j))) < lwr (T (g(i))). By hypothesis, g(i) 

pb
! g0(i), so lwr (T (g(i))) �

upr(S(g0(i))), so by transitivity, upr (S(g(j))) < upr (S(g0(i))). By de�nition of CGS pb
!(c), :(g0(j) pb

!

g0(i)), so upr(S(g0(i))) < lwr (T (g0(j))), so by transitivity, upr (S(g(j))) < lwr (T (g0(j))). By

hypothesis, g0(j)  
pb
! g(j), so lwr (T (g0(j))) � upr(S(g(j))), so by transitivity, upr (S(g(j))) <

upr(S(g(j))), which is a contradiction.

It follows that Poss
pb
! and Def

pb
! are equivalent, i.e., for all computations c and predicates

�, c satis�es Poss
pb
!� i� c satis�es Def

pb
!�. We de�ne Inst (\instantaneously") to denote this

modality (i.e., Poss
pb
! and Def

pb
!). Informally, a computation satis�es Inst� if there is a global

state g satisfying � and such that the system de�nitely passes through g during the computation.

Theorem 1 does not apply to
pb!, because:

Lemma 6.
pb! is not a partial ordering.

Proof. Consider the computation in Figure 9. The actual orderings between e22 and e12 and between

e22 and e13 cannot be determined from the interval timestamps, so e13
pb! e22 and e22

pb! e12. Since also

e12
pb! e13,

pb! contains a cycle.

In light of this, it is not surprising that a minimal increase in hCGS pb
!(c);�i does not necessarily

correspond to advancing one process by one event. For example, consider the computation c1 in

Figure 1. As shown in Figure 8, two processes advance between the second and third SCGSs of c1.

In some computations, a minimal increase hCGS pb
!(c);�i corresponds to an advance of multiple

11Fromentin and Raynal call elements of CGS
hb
! inevitable global states [10].
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events per process. Such a computation c2 is shown in Figure 9. There is no local state of process

2 with which s12 de�nitely overlaps, so s12 is not part of any SCGS, and process 1 advances by two

events between consecutive SCGSs of c2. Computation c2 has only two SCGSs: hs11; s21i and hs13; s22i.
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Figure 9: A computation c2.

Since a minimal increase in hCGS pb
!(c);�i does not necessarily correspond to advancing one

process by one event, the algorithms in Section 5 cannot be adapted easily to detect Inst. Our

algorithm for detecting Inst is based on Fromentin and Raynal's algorithm for detecting Properly

in asynchronous systems [9, 10]. The de�nition of Properly, generalized to an arbitrary ordering

on events, is:

Properly: A computation c satis�es Properly,!� i� there is a global state satisfying � and

contained in every path of hCGS ,!(c);�i.

Theorem 7. Properly
db
! is equivalent to Inst.

Proof. It su�ces to show that a global state g is in CGS
pb
!(c) i� it is contained in every maximal

path of CGS
db
!(c). The proof is based on Theorem SGS of [10], which states that a global state g

is contained in every maximal path of hCGS hb
!(c);�i i�

(8i; j : S(g(i)) hb! T (g(j)) _ g(j) = last(c(j))) _ g(i) = �rst(c(i))

where �rst and last return the �rst and last element, respectively, of a sequence. A closely analogous

proof shows that a global state g is contained in every maximal path of hCGS db
!(c);�i i� (8i; j :

S(g(i)) db! T (g(j))), which by de�nition of
db! is equivalent to

(8i; j : i 6= j ) upr(S(g(i))) < lwr (T (g(j)))): (12)

The only signi�cant di�erence involves the �rst and last local states of each process. Informally,

the disjuncts g(j) = last(c(j)) and g(i) = �rst(c(i)) are needed in Fromentin and Raynal's analysis

because the global state gi containing the �rst local state of each process and the global state gf

containing the last local state of each process both appear in every maximal path of hCGS hb
!(c);�i,

even though the system might not pass through gi or gf in real-time, since the processes might

start and �nish at di�erent times. This peculiarity does not arise when real-time timestamps are

used, so (12) does not need disjuncts dealing specially with the �rst and last local states of each

process. Expanding the de�nition of CGS
pb
!(c) and simplifying yields (12).
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As an example of this equivalence, note that hCGS pb
!(c1);�i in Figure 8 contains exactly the

CGSs that are contained in every path of hCGS db
!(c1);�i in Figure 1.

A straightforward adaptation of Fromentin and Raynal's algorithm for detecting Properly
hb
!

yields an algorithm for detecting Inst. The heart of the algorithm is a procedure makeSC (\make

Strongly Consistent") that loops until the heads of the queues form a SCGS or some queue is empty.

Expanding the de�nition of consis
pb
!(g) yields

(8i; j : i 6= j ) lwr (T (g(i))) > upr(S(g(j)))): (13)

From this, one can show that, if the global state (�i:head(qi)) is not strongly consistent, then in

order to �nd a SCGS, some process i such that lwr(T (head(qi))) is minimal must be advanced.

This leads to the following pseudo-code for makeSC.

procedure makeSC (q1; : : : ; qN)

while :(9i : empty(qi)) ^ :consis
pb
!(�i:head(qi))

choose i such that lwr(T (head(qi))) is minimal; (y)
removeHead(qi);

endwhile

Our algorithm for detecting Inst appears in Figure 10, where head2(q) returns the second

element of a queue q. Variable atSC is true when the heads of the queues form a SCGS. When a

SCGS g is found, if g does not satisfy �, then the algorithm starts searching for the next SCGS by

advancing some process j such that this advance yields a CGS (i.e., an element of CGS
db
!).

We now describe some optimizations to the basic algorithm. The optimizations are very similar

to those used in Section 5.1. To evaluate (13) e�ciently, we modify the algorithm to maintain

priority queues p1 and p2, whose contents are determined by the following invariants:

J1: For each process i such that qi is non-empty, p1 contains a record with key lwr (T (head(qi)))
and satellite data hi; ptr i, where ptr is a pointer to the record with satellite data i in p2. p1

contains no other records.

J2: For each process i such that qi is non-empty, p2 contains a record with key upr(S(head(qi)))
and satellite data i. p2 contains no other records.

Whenever the head of a queue changes, p1 and p2 are updated in O(logN) time to maintain these

invariants. From (13), one can show that consis
pb
!(�i:head(qi)) is equivalent to

key(getMin(p1)) > key(getMax(p2))

_ (�1(data(getMin(p1))) = �1(data(getMax(p2))) ^ countMax(p2)=1)

(14)

where countMax(p) is the number of records containing the maximal value of the key in priority

queue p, and data(hk; di) = d and �1(hi; ptr i) = i. The second disjunct takes into account the

possibility that lwr (T (head(qi))) < upr(S(head(qi))) for some i. In this case, the �rst disjunct is
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On receiving x from process i:
append(qi; x);
if head(qi) = x then try := true
else try := atSC
endif

while try

if atSC and there does not exist j such that consis
db
!(g[j 7! head2(qj)]) (z)

try := false
else

if atSC and there exists j such that consis
db
!(g[j 7! head2(qj)]) (z)

removeHead(qj);
endif

makeSC ();
if (9 i : empty(qi)) then

atSC := false ;
try := false;

else (� found a SCGS �)
g := the global state (�i:head(qi)); (� g is a SCGS �)
if g satis�es � then

return g;
endif

atSC := true
endif

endif

endwhile

Figure 10: Algorithm for detecting Inst�.

false (and the �rst conjunct of the second disjunct is true), but if there is no process j di�erent from

i and with upr (S(head(qj))) = upr (S(head(qi))) (in which case the second conjunct of the second

disjunct is also true), then the global state (�i:head(qi)) is strongly consistent. In the pseudo-code

for makeSC, consis
pb
!(�i:head(qi)) can be replaced with (14), and line (y) can be replaced with

hk; hi; ptr ii := extractMin(p1).

To e�ciently evaluate the lines (z) in Figure 10, observe that, if advancing some process yields

a CGS (i.e., an element of CGS
db
!), then advancing some process j such that lwr (S(head2(qj))) is

minimal yields a CGS; this follows from the de�nitions of CGS
db
! and CGS

pb
!. To e�ciently �nd

such a process j, we modify the algorithm to maintain a priority queue p3 satisfying the invariant:

J3: For each process i such that qi is non-empty, p3 contains a record with key lwr (S(head2(qj)))
and satellite data i. p3 contains no other records.

Whenever a queue changes, p3 is updated in O(logN) time to maintain this invariant. Thus, in

the lines (z) in Figure 10, it su�ces to take j = head(p3). Testing whether g[j 7! head2(qj)] is
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consistent can be done in O(logN) time by temporarily updating all the priority queues as if process

j had been advanced and then using (10); note that the use of (10) requires that the algorithm

maintain two additional priority queues, corresponding to invariants I1 and I2.

To evaluate (9i : empty(qi)) e�ciently, we modify the algorithm to maintain, as in Section

5.1, a natural number numEmpty , whose value is determined by the invariant: numEmpty =

jfi j empty(qi)gj. In Figure 10 and in the code for makeSC, (9i : empty(qi)) can be replaced with

numEmpty > 0.

We analyze the worst-case time complexity of the optimized algorithm by summing the times

spent inside and outside ofmakeSC. Each iteration of thewhile loop inmakeSC takes O(logN) time

(because each operation on priority queues takes O(logN) time) and removes one local state. The

computation contains O(NE) local states, so the total time spent inside makeSC is O((N logN)E).

The total time spent in the code outside makeSC is also O((N logN)E), since there are O(NE)

SCGSs (this is a corollary of Theorem 7), and each local state is considered at most once and at

O(logN) cost. Thus, the worst-case time complexity of the algorithm is O((N logN)E).

7 Sample Applications

7.1 Coherence Protocols

Coherence of shared data is a central issue in many distributed systems, including distributed �le

systems, distributed shared memory, and distributed databases. A typical invariant maintained by

a coherence protocol is:

cohrnt : if one machine has a copy of a data item in write mode, then no other machine has a

valid copy of that data item.

As part of testing and debugging a coherence protocol, a monitor might be used to issue a warning

if Poss
db
! :cohrnt is detected and report an error if Def

db
! :cohrnt is detected. A computationally

cheaper but sometimes less informative alternative is to monitor only Inst:cohrnt and report an

error if it is detected.

A detection algorithm based on happened-before could be used instead, if the system can be

modi�ed to maintain vector clocks (or for some reason maintains them already). However, if the

coherence protocol uses timers, then time acts as a hidden channel [2] (i.e., a means of communica-

tion other than messages), so detection based on happened-before might yield less accurate results.

Passage of time can be used in coherence protocols to:

� obtain a lock, by broadcasting a request for a lock and, if no conicting announcement is

received within an appropriate time interval, granting oneself the lock.

� release a lock, by associating an expiration time with the lock; such a lock is called a lease

[15]. When the lease expires, all processes know (without further communication) that the

lock has been released.
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For example, both of these techniques are used in the resource allocation algorithm in [20, Section

5.1]. Detection based on happened-before is less appropriate for systems that use passage of time

(instead of message transmission) for synchronization. For example, release of a lock by one pro-

cess and acquisition of that lock by another process need not be related by happened-before, so

Poss
hb
! :cohrnt may be detected even when coherence was maintained and Poss

db
! :cohrnt would

not be detected.

Clock-based monitoring is useful even for coherence protocols that provide weaker guarantees

than cohrnt . For example, in the Sun Network File System (NFS) [31, Section 17.6.2], �le informa-

tion is cached. Timers are used to limit staleness: if the cached information is needed again after

the timer expires, the client asks the server whether the cached information is still valid. Since

this lock-free approach does not enforce the one-copy �le-sharing semantics that is traditional in

UNIX, it is useful to monitor the system to detect how often violations of one-copy semantics are

seen by applications. For example, the detection algorithm for Inst can easily be adapted to count

(instead of just detect) SCGSs satisfying the predicate: some process is reading cached information

and some other cache contains a more recent version of that information. In NFS, the lifetime

of cached data is typically tens of seconds, which is three orders of magnitude larger than typical

clock synchronization error in a LAN, so this approach should detect most violations of one-copy

semantics.

7.2 Concurrency Control for Distributed Transactions

Leases can also be used for concurrency control in distributed database systems, to reduce the

number of messages needed to commit read-only transactions, as described in [23, Section 7].

The idea is that a read-only transaction acquires leases as it uses data objects. If the transaction

completes before any of those leases expires, then the coordinator commits the transaction, without

further communication. As part of testing and debugging such a system, one might use a monitor to

detect violations of the invariant: when a transaction commits, it holds locks on all of the objects it

uses. Since commit events and expirations of leases may be unrelated by happened-before, detection

based on Poss
hb
! or Def

hb
! may report violations even when no violation occurred and detection

based on real-time clocks would not report a violation.
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