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As computers are integrated into systems that have stringent fault-tolerance requirements,

there is a growing need for techniques to establish that these systems actually satisfy those

requirements. Informal arguments do not supply the desired level of assurance for criti-

cal systems. This dissertation presents a rigorous, automated approach to analyzing dis-

tributed systems, with a focus on checking fault-tolerance requirements, and describes a

prototype implementation of the analysis. The analysis is a novel hybrid of ideas from

stream-processing semantics of networks of processes, abstract interpretation of programs,

and symbolic computation. The underlying principles of the analysis method are general,

but specialized techniques|such as the use of perturbations to represent changes to normal

behavior caused by failures|are developed to deal e�ciently with the types of systems and

requirements that arise in establishing fault-tolerance. The method is illustrated with three

examples: the Oral Messages algorithm for Byzantine Agreement, due to Lamport, Shostak

and Pease, a standard protocol for FIFO reliable broadcast, and a (subtly) 
awed protocol

for fault-tolerant moving agents.
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Chapter 1

Introduction

As computers are integrated into systems that have stringent fault-tolerance requirements,

there is a growing need for techniques to establish that these systems actually satisfy those re-

quirements. These systems include safety-critical systems, from digital 
ight control systems

to factory automation systems, and business-critical systems, from traditional applications,

like distributed databases, to nascent ones, like systems for electronic commerce. Moreover,

as networks of workstations (NoWs) become an increasingly popular platform for large-scale

computations of all kinds, fault-tolerance is becoming an issue for general-purpose comput-

ing.

Establishing fault-tolerance of a system involves three major steps: (1) identifying pos-

sible failures of each component, (2) determining requirements on system behavior for each

combination of component failures, and (3) checking whether system behavior actually sat-

is�es these requirements. Step 3 is sometimes tackled with informal arguments. However,

informal arguments do not supply the desired level of assurance for critical systems. This

thesis presents a rigorous, automated approach to analyzing distributed systems, with a focus

on checking fault-tolerance requirements. The underlying principles of the analysis method

are general, but specialized techniques are developed to deal e�ciently with the types of

systems and requirements that arise in establishing fault-tolerance.

1.1 Establishing Fault-Tolerance

The �rst step in establishing fault-tolerance of a system is to identify possible failures of each

component. Each failure corresponds to one way in which a component's actual behavior

might diverge from its normal (speci�ed) behavior. For example, one commonly-considered

1
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failure of processors is the crash failure, which causes the processor to halt. A more severe

failure is the Byzantine failure, which causes the processor to execute an arbitrary sequence

of instructions, unrelated to the program it would have executed in the absence of the failure.

Combinations of failures that might occur in a system are called failure scenarios; thus, a

failure scenario for a system is simply an assignment of a failure to each component of that

system. Since components sometimes (hopefully most of the time!) do not fail, we introduce

a special failure called OK , corresponding to absence of failure; in other words, OK indicates

that the divergence from normal behavior is nothing (or \zero").

The second step is to determine requirements on system behavior in the failure scenarios.

Fault-tolerance requirements can be expressed as a function b such that, for each failure

scenario fs of the system, b(fs) is a condition that the system's behavior should satisfy in

that failure scenario. For example, an aircraft control system might be required to provide

normal service despite the Byzantine failure of any one component. More precisely, for every

failure scenario in which at most one component is faulty, the signals sent by the control

system to the actuators should be the same as if no failures had occurred.

The third step is to check whether a system will satisfy its fault-tolerance requirements.

Experience has shown that informal arguments about fault-tolerance are error-prone and do

not supply the desired level of assurance for critical systems [ORSvH95]. For example, one

might guess that replication and voting is an easy (albeit expensive) way to achieve fault-

tolerance. However, the extensive literature on Byzantine agreement, and errors like the one

described in [LR93], show that e�ciently coordinating non-faulty replicas in the presence of

arbitrary behavior by faulty replicas is a di�cult problem.

The di�culty of analyzing fault-tolerance by informal methods has inspired the devel-

opment and application of rigorous methods. One approach is to apply general-purpose

proof-based veri�cation techniques. Work on SIFT [W+78], an aircraft control computer, is

a classic example; indeed, this is one of the earliest applications of any rigorous approach

to fault-tolerance. Mechanized support, in the form of a theorem-proving system, typically

helps to manage the large and complex proofs. The use of these general-purpose veri�ca-

tion tools o�ers an attractive conceptual economy. However, most people who design and

validate fault-tolerant systems are not experts in mathematical logic or formal veri�cation,

so methods that require them to construct large proofs (even with support from a theorem-

proving system) are problematic. Proof techniques designed speci�cally for veri�cation of

fault-tolerance have been proposed [CdR93,Web93,PJ94,Sch94]. These techniques do facili-

tate proofs of fault-tolerance, but still require considerable logical expertise of the user.



3

Automated veri�cation techniques have received increasing attention in recent years,

largely as a result of advances in temporal-logic model-checking [CGL94] and automata-

and process-based veri�cation techniques [Hol91,Kur94,CS96]. The techniques are largely

based on exhaustive exploration of �nite state spaces. They are particularly well-suited to

hardware veri�cation and have been applied predominantly thereto. Relatively little work

has been done on automated analysis of fault-tolerant systems, partly because the protocols

of interest are more typical of software than hardware, and exhaustive search of the state

space of interesting software systems is often infeasible.

1.2 Overview of this Work

This thesis explores a specialized approach to analysis of distributed systems, focusing on

fault-tolerance properties. Our approach is not based on exhaustive state-space exploration.

Instead, it is a novel hybrid of ideas from stream-processing (or data-
ow) semantics of net-

works of processes [Kah74,Bro87,Bro90], abstract interpretation of programs [AH87], and

symbolic computation. An important feature of our approach is that 
exible and power-

ful abstraction mechanisms are incorporated directly into the framework.1 Having these

mechanisms plays a crucial role in making fault-tolerance analysis tractable.

Our use of abstraction aims to exploit separation of concerns: analysis of failures is

separated as much as possible from other aspects of system analysis. To facilitate this

separation of concerns, the analysis is parameterized by possible occurrences of failures, and

system behavior is analyzed separately for di�erent failure scenarios. A di�erent and more

common (e.g., [LJ92,CdR93,Web93,PJ94,LM94]) approach is to model failures as events

that occur non-deterministically during a computation; however, this makes it di�cult to

separate the e�ects of failures from other aspects of system behavior and hence to model the

former more �nely than the latter.

Our analysis methods rest on a separation of concerns in speci�cations: fault-tolerance

requirements are separated as much as possible from other correctness requirements. This

separation allows the analysis to ignore aspects of the system that do not directly impact

its fault-tolerance. For example, in a system with replicated processors, detailed analysis of

how the results from di�erent replicas are combined (e.g., voted) may be needed, but other

aspects of the processing (e.g., the particular state machine implemented by each replica)

1Following literature on abstract interpretation (e.g., [AH87]) and program re�nement (e.g., [KMP94]),
we use \abstraction" in the sense of \approximation". This has little to do with the meaning of \abstraction"
in the theory of functional programming languages (e.g., [Rea89]) or abstract data types.
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are treated in our approach by coarse approximations. Such abstraction is crucial for making

the analysis tractable.

Our analysis uses a �xed-point calculation to determine three kinds of information that,

together, characterize system behavior:

Values: The data sent in messages.

Multiplicities: The number of times each value is sent.

Orderings: The order in which values are sent.

Values and their multiplicities are approximated using abstract values, each representing a set

of possible values, as in abstract interpretation [AH87]. We also use symbolic values, which

are expressions composed of constants and variables, to capture additional relationships

between values. Orderings are approximated by allowing partial orders, rather than just total

orders. This support for approximation of all three kinds of information allows irrelevant

aspects of a system to be suppressed and allows compact representation of the highly non-

deterministic behavior that failures can cause.

For example, suppose one process of a system sends to another process a message con-

taining a number, then possibly sends a second message containing the same number. The

data in the �rst message could be represented using abstract value N, representing the nat-

ural numbers, and symbolic value X, where X is a variable that denotes the actual value

sent. The multiplicity of the �rst message is 1, which is (overloaded as) an abstract value

that represents only the number one; since this abstract multiplicity determines the multi-

plicity uniquely, it doesn't matter what symbolic multiplicity is used. The second message

message would be represented using the same abstract value N and, to show that the values

in the two messages are equal, the same symbolic value X. The multiplicity of the second

message is ?, which is an abstract value that we de�ne to represent zero or one; the symbolic

multiplicity might be a di�erent variable.

We require that all approximations used in modeling a component be conservative, i.e.,

they must over-estimate, rather than under-estimate, the component's possible behaviors.

The use of conservative approximations ensures that the information (values, multiplicities,

and orderings) determined by the analysis includes all possible behaviors of the system

being analyzed. But because approximations are being used, the values, multiplicities, and

orderings may represent other behaviors as well. Thus, analyzing the approximation|rather

than the system it approximates|never gives false positives but may give false negatives. In
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other words, the analysis may fail to show that all of a system's possible behaviors satisfy a

fault-tolerance requirement, even if they do. The possibility of false negatives is an inevitable

consequence of the approximations that enable e�cient and automated analysis of systems

with intractably large state spaces.

To support e�cient and convenient fault-tolerance analysis, we extend the analysis frame-

work sketched above|hereafter called the non-perturbational framework|to obtain the per-

turbational framework, in which perturbations (changes) due to failures are made explicit.

Here, the e�ects of a failure are represented as changes to the original outputs of the faulty

component. Changes to the outputs of a component change the inputs to components that

use those outputs, and changes to a component's inputs generally cause changes to its out-

puts. Each component is characterized, in part, by how it propagates changes. For example,

one might normally describe the behavior of a majority-voter as follows: if a majority of

its inputs are equal, then its output is the majority value among its inputs. Intuitively,

the justi�cation for using a majority-voter to mask the e�ects of failures corresponds more

directly to the fact that a majority-voter propagates changes to its inputs consistently with

the rule: if the inputs are originally equal and at most a minority of them change, then the

output is unchanged.

For example, consider the graph in Figure 1.1, which we use to represent the behavior

of a two-stage replicated pipeline having one faulty component F1. The meaning of such

graphs is de�ned formally in Chapter 3; here we give only an informal explanation. The

nodes of the graph correspond to components. Edge hx; yi is labeled with a representation

of messages sent from x to y. The graph represents both the failure-free behavior of the

system and the behavior in a speci�ed failure scenario|here, the failure scenario in which

F1 su�ers a Byzantine failure, and the other components do not fail. In �gures, dots on the

circumference of a node indicate a failure other than OK for that component; the speci�c

failure is identi�ed in the text (as in the previous sentence).

Edges are labeled with ms-atoms, which represent sets of messages. There are two kinds

of ms-atoms: perturbed ms-atoms, which contain square brackets, and new ms-atoms, which

do not. Each perturbed ms-atom contains two parts: an original part (preceding the square

brackets) and a perturbation (enclosed in square brackets). In this �gure, the edge from

F1 to S has a new ms-atom; the other edges all have perturbed ms-atoms. The failure-free

behavior of the system is represented by the original parts of the perturbed ms-atoms. Thus,

we see that the source S sends a natural number, represented by the symbolic value X, to

processors F1{F3. Each of these processors applies a function, represented by the symbol
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F , to its input and sends the result to the corresponding processor in the next stage of the

pipeline. Processors G1{G3 apply a function represented by G to their input and send the

result, namely G(F (X)), to a 3-input voter V , which selects the majority of its inputs and

sends the result to actuator A.

S F2

F3

G2

G3

V A

G1F1

F (X) :N[]

F (X) :N[]

F (X) :N[>�V
�� ]

G(F (X)) :N[]

G(F (X)) :N[]G(F (X)) :N[]X :N[]

X :N[]
>V

�

X :N[]

G(F (X)) :N[>�V
�� ]

Figure 1.1: Example of graphical representation of system behavior.

The changes to this behavior caused by failure of F1 are represented by the perturbations

in the perturbed ms-atoms as well as by the new ms-atoms, which represent messages having

no analogue in the failure-free behavior of the system. Thus, the graph represents the case

where F1 fails by sending perturbed messages to G1 and new messages to S. The symbol

>�V in a ms-atom denotes an arbitrary change to the data sent in the message, and the

superscript �� denotes an arbitrary change to the multiplicity. Thus, the graph of Figure 1.1

re
ects that when F1 fails, it might send an arbitrary number of arbitrary messages to G1.

The abstract value >V represents all concrete values; thus, when F1 fails, it might also send

an arbitrary number of arbitrary messages to S. Since G1's input is perturbed arbitrarily, so

its output is function G applied to an arbitrary value. Without speci�c information about

function G, the result of the application is itself just an arbitrary value, so the output of G

is also perturbed arbitrarily. As before, symbol >�V represents an arbitrary perturbation.

The output of the voter is not perturbed|empty square brackets in a perturbed ms-atom

are used to denote \no change". So, if the fault-tolerance requirement for this system is that

the input to the actuator is unchanged in this failure scenario, then this graph states that

the system satis�es this requirement.

Including perturbations in ms-atoms allows the sensitivity of a component to perturba-

tions of its inputs to be expressed directly. Without this notation, this information sometimes

would have to be encoded awkwardly in the values and multiplicities, and sometimes would

not be expressible at all. For example, consider again the system shown in Figure 1.1. In a
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framework without explicit perturbations, there is no way to express whether or not the new

messages sent from F1 to S confuse the source and cause changes to the data that S sends

to F2 and F3. The problem is that even if the data sent by S changes, it is still represented

by the symbolic value X. In the graph in Figure 1.1, the square brackets on the source's

outputs are empty; this states that outputs from S are indeed unchanged by the additional

messages sent from F1 to S.

The use of explicit perturbations also allows fault-tolerance requirements to be conve-

niently expressed as constraints on the acceptable perturbations to system behavior. Recall

that in the non-perturbational framework, the condition associated with a failure scenario

is simply a predicate that the system behavior in that failure scenario must satisfy. In the

perturbational framework, the condition associated with a failure scenario is allowed to be a

relation that must hold between the system's failure-free behavior and its behavior in that

failure scenario. For example, a typical fault-tolerance requirement is that inputs to certain

components are unchanged in certain failure scenarios; a weaker requirement is that inputs

to those components be either unchanged or absent.

Explicit perturbations may be unfamiliar in fault-tolerance analysis, but they are analo-

gous to familiar techniques for analysis of numerical error [Sca62]. Error analysis focuses on

how numerical errors introduced in one part of the computation are propagated by subse-

quent computation. Analogously, fault-tolerance analysis with explicit perturbations focuses

on how perturbations introduced by failures are propagated during subsequent execution of

the system. Note that the separation of error analysis from other aspects of correctness of

a numerical computation is analogous to separation of fault-tolerance analysis from other

correctness concerns.

Feasibility of the Approach. The computational complexity of our analysis method

depends on the number of failure scenarios for which the analysis must be performed and

on the cost of the analysis for each failure scenario. The number of failure scenarios some-

times can be reduced by use of symmetry arguments (if one failure-scenario is a symmetric

variant of another) and by abstracting from the timing of failures (making each failure

scenario specify less precisely when the failure occurs). The cost of the analysis for one

failure scenario depends largely on the complexity of the fault-tolerance mechanisms|since

their behavior must be analyzed|and on the extent to which separation of concerns can

be achieved, i.e., the extent to which other mechanisms in the system can be ignored in

the analysis. Complex fault-tolerance mechanisms|for example, protocols involving many
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rounds of communication|will take longer to analyze than simpler ones, but this seems

inevitable. Separation of concerns is a design principle underlying many fault-tolerant sys-

tems, so achieving a similar separation of concerns in the analysis is a natural goal. The

key is to �nd approximations that are coarse enough for tractability and precise enough to

validate interesting systems (i.e., precise enough not to yield false negatives).

The practical utility of our (or any) approach to fault-tolerance analysis can be deter-

mined only by trying it on a wide range of fault-tolerant systems. Therefore, not only does

this thesis introduce an approach, but it examines the applicability of that approach to some

important classes of fault-tolerant systems. Classic algorithms for Byzantine agreement and

reliable broadcast are analyzed. New protocols for fault-tolerant computation with moving

agents are also analyzed. These analyses were performed using a prototype tool, described

in Appendix B, that implements the analysis and provides a graphical interface to it.

1.3 Outline of the Dissertation

Chapter 2 presents a framework that incorporates abstraction mechanisms but ignores fail-

ures. Chapter 3 extends that framework for fault-tolerance analysis. First, a non-perturbational

framework is described, in which each component is parameterized by its possible failures,

allowing the component's behavior to be described separately for each possible failure. Limi-

tations of this approach are discussed, motivating the introduction of explicit perturbations,

which enable expression of additional correlations between the failure-free and faulty behav-

iors of a component.

Chapter 4 analyzes algorithms for two classic problems in fault-tolerance: Byzantine

agreement [LSP82] and reliable broadcast [HT94]. These examples illustrate analysis of

systems subject to Byzantine failures and crash failures, respectively. Chapter 5 applies our

framework to fault-tolerant moving agents, a more recent concern. This illustrates how our

analysis methods can be applied to protocols that employ cryptographic techniques.

Chapter 6 discusses related work and presents several ideas for future work. Appendix A

contains an index of symbols. Appendix B describes our prototype implementation of and

graphical interface for the analysis.



Chapter 2

Analyzing Systems that Never Fail

Our system model is based on Gilles Kahn's stream-processing model of parallel and dis-

tributed systems [Kah74]. For concreteness, we, like Kahn, consider systems of components

that communicate through asynchronous FIFO channels. However, this assumption is not

essential to our approach.

The system model presented in this chapter di�ers from other descendants of Kahn's

model mainly by having mechanisms that allow approximation of system behavior. The

traditional purpose of stream-processing models is to provide compositional semantics for

networks of communicating processes, thereby serving as the foundation of compositional

frameworks for (manually) proving properties. In contrast, our goal is to develop a foundation

for automated analysis. Approximations are necessary to make this analysis tractable. The

approximations we use abstract from aspects of a system that do not directly impact fault-

tolerance.

Section 2.1 presents a model of concrete processes. Section 2.2 describes abstraction

mechanisms used to approximate a system's behavior. Section 2.3 discusses the abstract

representation of processes and de�nes the �xed-point analysis of system behavior. Section

2.4 relates the two models. It shows soundness of the �xed-point analysis: if an appropriate

�xed-point exists at the abstract level, then that �xed-point represents all possible behaviors

of the system of processes. Finally, Section 2.5 discusses conditions under which a �xed-point

is guaranteed to exist and under which iterative calculation of the �xed-point is guaranteed

to terminate.

9
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2.1 Concrete Model

Kahn's original model [Kah74] handles only determinate systems, systems in which each

component is:

Deterministic: For each possible sequence of inputs, the component has exactly one

possible sequence of outputs.

Strict: The input (\receive") primitives are restricted so that at any time, a component

can be waiting to receive a message from at most one component. This ensures that

components are insensitive to non-determinism in message reception order caused by

an asynchronous FIFO network.

After summarizing Kahn's model, we present an extension based on [Bro87,Bro90] that

eliminates these restrictions.

2.1.1 Kahn's Model of Determinate Systems

A system is a collection of communicating components. Each component is represented by a

function describing its input-output behavior. An input-output function takes as argument

the sequences of messages received by a component (during some computation) and returns

the sequences of messages sent by that component as a result of receiving those messages.

An input-output function is sometimes called a stream-processing function [BD92], stream

transformer [DS89], or history function [BA81], because it maps a stream of input messages

(the input history) to a stream of output messages (the output history).

If we depict the behavior of a system by a graph in which each node corresponds to a

component and each edge is labeled with the sequence of messages sent from the source to

the target, then an input-output function for a component takes as argument the sequences

of messages labeling the inedges of the node corresponding to that component and returns

the sequences of messages labeling the outedges of that node. Figure 2.1 shows such a graph.

Note that double angle brackets (hh�ii) construct sequences. Component C receives inputs

from components A and B. Applying the input-output function associated with C to those

input sequences yields the sequences shown on the edges from C to D and E. In this case,

the input-output function associated with C happens to forward messages from A to D and

from B to E.

These ideas are formalized as follows. A system comprises a set of named components.

The names serve as addresses for specifying the recipient of a message. Let Name denote
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B

A

hh10; 6; 4ii

hh27; 35ii hh27; 35ii

hh10; 6; 4ii

C

D

E

Figure 2.1: Example of graphical representation of system behavior.

the names of the system components. For example, for the system pictured in Figure 2.1,

Name = fA;B;C;D;Eg. Let CVal (mnemonic for \Concrete Values") be the set of values

that can be transmitted in messages. A (concrete) history (of the messages sent along a

channel) has signature

CHist
�

= Name ! Seq(CVal); (2.1)

where
�

= means \equal by de�nition", and for any set S, Seq(S) is the set of �nite and

in�nite sequences of elements of S (with zero-based indexing). Also, for any sets S and T , a

function of signature S ! T is a total function from S to T . When a history ch is regarded

as the input to a component x, ch(y) is the sequence of messages sent by y to x; when ch is

regarded as the output of a component x, ch(y) is the sequence of messages sent by x to y.

For example, in Figure 2.1, the input history of component C is

ch0 = (�x :Name: if x = A then hh27; 35ii

else if x = B then hh10; 6; 4ii

else ");

(2.2)

where " is the empty sequence, and the output history of component C is

(�x :Name: if x = D then hh27; 35ii

else if x = E then hh10; 6; 4ii

else "):

Partial ordering �CHist on CHist is the pointwise extension of the pre�x ordering �Seq

on sequences. More explicitly,

ch1 �CHist ch2
�

= (8x 2 Name : ch1(x) �Seq ch2(x)): (2.3)
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Each component of a system|whether a piece of hardware, a process (in the usual sense),

a moving agent, etc.|is represented as a process. A determinate process is a function with

signature

DProcess
�

= CHist!!CHist ; (2.4)

where the two-headed arrow indicates a restriction to monotonic and continuous functions.

The argument of the function contains the input sequences, and the result contains the

corresponding output sequences. Informally, the restriction to monotonic functions ensures

that providing additional inputs to a component can't cause the component to produce

fewer outputs (i.e., the component can't \take back" outputs it already emitted). Continuity

ensures that a component can't produce outputs only after receiving an in�nite sequence of

inputs.

A system is represented by a function np 2 Name ! DProcess (np is mnemonic for

\name ! process"), which describes how each component of the system behaves. And, a

run of a system is represented by a function with signature

CRun
�

= Name ! CHist : (2.5)

For cr 2 CRun, we adopt the convention that cr(x) is the input history of component x in

the run, i.e., cr(x)(y) is the sequence of messages sent to x by y. For example, the graph in

Figure 2.1 corresponds to the run

(�x :Name: if x = C then ch0

else if x = D then (�y :Name: if y = C then hh27; 35ii else ")

else if x = E then (�y :Name: if y = C then hh10; 6; 4ii else ")

else (�y :Name: "));

where ch0 is de�ned by (2.2).

The run representing the behavior of a system np of determinate processes is de�ned

as follows. For a run cr 2 CRun, the input history of component x is cr(x). The output

history of x on those inputs is np(x)(cr(x)). Taken together, these new output histories for

each component de�ne new input histories for each component; speci�cally, these new input

histories form the run

step(np)(cr)
�

= (�y :Name: (�x :Name: np(x)(cr(x))(y))): (2.6)

For a run cr that represents a complete execution of the system, this new run must equal

the run cr that we started with, since the output histories de�ned by cr must already re
ect
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processing of all messages in the input histories de�ned by cr . Thus, the behavior of the

system is represented by a run cr satisfying

(8x 2 Name : (8y 2 Name : cr(y)(x) = np(x)(cr(x))(y))); (2.7)

more precisely, it is represented by the least such run, where the ordering �CRun on CRun is

the pointwise extension of the ordering �CHist on concrete histories [Kah74]. Equivalently,

this run can be characterized as the least �xed-point of step(np) 2 CRun ! CRun.1 Thus,

the run representing the behavior of system np is

crun(np)
�

= lfp(step(np)): (2.8)

This model has two main attractions for us, besides its elegance. First, input-output

functions provide abstraction. Just as an abstract data type hides internal details of objects,

an input-output function hides the local state and internal computations used to implement

the component, describing only the externally visible behavior of the component. In our

framework, this abstraction provides a convenient separation of local and global analyses.

Local analysis is done on each component to determine an input-output function that rep-

resents its behavior. The global analysis, embodied as a �xed-point calculation, determines

the entire system's behavior|the possible histories of messages.

Second, de�ning a system's behavior as a �xed-point facilitates veri�cation and simula-

tion. It facilitates veri�cation by allowing powerful induction rules in proving properties of

the �xed-point. It facilitates simulation by providing a simple and e�ective procedure for

computing (�nite pre�xes of) the system's behavior.

The computation of least �xed-points is based on the following de�nitions and classic

theorem.

Basic Fixed-Point Theory. The upper-closure of an element x of a partial order hS;�Si

is fy 2 S j x �S yg. Note that single angle brackets (h�i) construct tuples. We often omit

the ordering �S when it is obvious from context. A chain of a partial order hS;�Si is an

increasing sequence of elements of S; thus, the set of chains of a partial order is given by

Chain(hS;�Si) = f� 2 Seq(S) j (8i 2 (dom(�) n f0g) : �[i� 1] �S �[i])g: (2.9)

where for a sequence �, j�j is the length of � and dom(�) is the index set of �, i.e., dom(�) =

fi 2 N j i < j�jg. An !-chain is a chain of length !. Let hhg(i)iii2N denote the sequence

hhg(0); g(1); g(2); : : :ii;

1As discussed below, existence of this �xed-point follows from Theorem 2.1.
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where N denotes the natural numbers. An !-complete partial order (abbreviated !-cpo) is a

partial order hS;�Si such that every !-chain � of hS;�Si has a least upper bound, denoted

lub(�). A function f 2 S ! S is continuous if it is (1) monotonic and (2) preserves least

upper bounds of !-chains, i.e., for all !-chains �, f(lub(�)) = lub(hhf(�[i])iii2N). Among the

most celebrated and useful properties of !-cpos is [Gun92, chapter 4]:

Theorem 2.1. Let hS;�Si be an !-cpo. Let f be a continuous function in S ! S, and let

x 2 S be such that x �S f(x). Then f has a �xed-point in the upper-closure of x in S.

Furthermore, the least such �xed-point is lub(hhf i(x)iii2N).

Note that f i(x) denotes f applied i times to x.

Computing Runs. It is easy to check that CRun is an !-cpo with least element

?CRun
�

= (�x :Name: ?CHist); (2.10)

where the least element ?CHist of CHist is

?CHist
�

= (�x :Name: "): (2.11)

Recall that determinate processes are, by de�nition (2.4), monotonic and continuous. It is

easy to check that this restriction on determinate processes implies that for all np 2 Name !

DProcess, step(np) is monotonic and continuous. It follows from Theorem 2.1 that for all

np 2 Name ! DProcess, step(np) has a least �xed-point in CHist , given by

crun(np) = lub(hhstep(np)i(?CRun)iii2N):

Thus, pre�xes of the system's behavior can be calculated by starting with ?CRun and re-

peatedly applying step(np).

2.1.2 Concrete Model of Non-Determinate Systems

Recall that Kahn's model deals only with determinate systems, i.e., systems whose compo-

nents are deterministic and strict. Restriction to determinate systems is a severe limitation,

and approaches to eliminating this restriction have been suggested [BA81,BM82,SN85,Bro87,

Jon89,Bro90,Rus90]. Here, we will adopt a slight variant of an approach due to Broy [Bro87,

Bro90]. Two ideas are involved: one to handle non-determinism, and a second to handle

non-strictness. The idea for handling non-determinism is to represent a non-deterministic

process as a set of determinate processes: each determinate process in the set corresponds
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to one possible behavior of the non-deterministic process. To see why this �rst idea alone

is insu�cient to model non-strictness, consider a non-strict process �rst that waits for an

input from process x1 or x2 then echoes that input on its output. If we try to represent

this process as a set of determinate processes, the obvious candidate is fdp1; dp2g, where dpi

waits for an input from process xi. However, this is not equivalent to �rst , because if the

only input comes from (say) x1, then dp2 blocks forever, producing no output, so fdp1; dp2g

might produce no output on this input; in contrast, �rst de�nitely produces an output. One

solution is to indicate that dp2 represents the behavior of �rst only when the input contains

a message from x2. More generally, we associate with each determinate process dp in the set

an input-restriction, which is the set of inputs for which dp represents a possible behavior of

the component [Bro87,Bro90]. Thus, (non-determinate) processes are in

Process
�

= Set(IRProcess); (2.12)

where input-restricted processes are in

IRProcess
�

= DProcess � Set(CHist): (2.13)

To summarize, for an input-restricted process p, for each hdp; iri 2 p, p can behave like the

determinate process dp, but only on inputs in ir . Thus, the set of possible runs of a system

np 2 Name ! Process of non-determinate processes is

cruns(np)
�

= fcr 2 CRun j

(9h 2 Name ! IRProcess :

^ (8x 2 Name : h(x) 2 np(x))

^ (8x 2 Name : enabled(h(x); hhstep(�1 � h)i(?CRun)(x)iii2N))

^ cr = lfp(step(�1 � h)))g;

(2.14)

where �i projects the ith component of a tuple, � denotes function composition, and an

input-restricted process p 2 IRProcess is enabled for a chain � 2 Chain(CHist) of inputs i�

enabled(p; �)
�

= (� [ flub(�)g) � �2(p): (2.15)

For notational convenience, we sometimes (as here) regard a sequence as the set of its

elements.

The conjunction in (2.14) is written using Lamport's bullet-style notation [Lam93]. In
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this notation, the conjunction b1 ^ b2 ^ � � � ^ bn is written

^ b1

^ b2
...

^ bn

Bullet-style notation can be used for disjunction (_) as well.

2.1.3 A Running Example

To illustrate this model, we return to the two-stage replicated pipeline of Figure 1.1. Here,

we consider a failure-free version of that system; failures will be considered in Chapter 3.

The two stages compute the functions F 2 N! N and G 2 N! N, respectively.2The system

contains a source S, which sends a number i to three processors F1, F2, and F3, which each

compute F (i) then send the result to the next stage in the pipeline. Processors G1, G2, and

G3 in the next stage compute G of their input then send the results to a 3-input voter V . For

convenience, we assume that processors F1{F3 and G1{G3 are well-behaved on unexpected

inputs|speci�cally, that each input not in N is treated as if it were the input \0". Voter V

waits for an input from each Gi, computes the majority of those inputs, and then sends the

result to an actuator A. More precisely, the voter computes a 3-way majority function maj ,

which is any function in N3 ! N such that if any two of its three arguments have the same

value i, then the value of the majority function on those arguments is i.

Source S may contain physical sensors (e.g., a keyboard or an air-speed indicator).

Therefore, we model the source as a non-deterministic process CSrc(fF1; F2; F3g). For

dests 2 Set(Name), CSrc(dests) is a process that non-deterministically selects a natural

number and then sends it to each component named in dests. Non-deterministic process

CSrc(dests) is de�ned in terms of a family of determinate processes: CSrci(dests) is a de-

terminate process that sends the number i to the components named in dests. Note that

CSrc(dests) is trivially strict, since it ignores input messages; thus, the input-restriction

associated with each CSrci(dests) is CHist , which is no restriction at all.

CSrc(dests) =
[
i2N

fhCSrci(dests);CHistig (2.16)

CSrci(dests) = (�h :CHist : (�x :Name: if x 2 dests then hhiii else ")) (2.17)

2 F is overloaded: it is both a symbol in our language of values (de�ned in Section 2.2.2) and the name
of the mathematical function represented by that symbol. Similarly for G and for maj below.
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Processes for F1{F3 and G1{G� 3 are de�ned as instances of CComp(src; dest ; �), which

is a process that receives values from src, computes a function � on those values, and sends

the results to dest :

CComp(src; dest ; �) = fhCComp0(src; dest ; �);CHistig (2.18)

CComp0(src; dest ; �) = (�h :CHist : (�x :Name:

if x = dest then �(h(src)) else "));

(2.19)

where � is a pointwise extension of � to sequences of concrete values, with values not in N

treated as zero. For example, the behavior of F1 is described by the process CComp(S;G1; F ).

The voter V in this system is a process CVoter(G1; G2; G3; A), where for any s1; s2; s3; dest 2

Name, CVoter(s1; s2; s3; dest) waits (i.e., produces no output) until it has received an input

from each of s1, s2, and s3, computes a majority using the �rst input from each of s1, s2,

and s3, and then sends the result to dest .3

CVoter(s1; s2; s3; dest) = fhCVoter 0(srcs; dest);CHistig (2.20)

CVoter 0(s1; s2; s3; dest) = (�h :CHist : (�x :Name:

if x = dest then

if h(s1) = " _ h(s1) = " _ h(s1) = " then "

else hhmaj (h(s1)[0]; h(s2)[0]; h(s3)[0])ii

else "))

(2.21)

It is easy to generalize this de�nition to voters that have an arbitrary number of inputs.

The actuator is the process CAct , which is just a message sink:

CAct = fhCAct 0;CHistig (2.22)

CAct 0 = (�h :CHist : (�x :Name: ")) (2.23)

For this system, Name = fS; F1; F2; F3; G1; G2; G3; V; Ag. Let npre (re is mnemon-

ic for \running example") be the obvious mapping from names to processes: npre(S) =

CSrc(fF1; F2; F3g), etc. It is easy to check that

cruns(npre) =
[
i2N

fcr re(i)g (2.24)

3This de�nes a strict voter. Alternatively, we could have de�ned a non-strict voter, which produces an
output immediately after receiving two equal inputs.
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cr re(i) = (�y :Name: (�x :Name:

if x = S ^ y 2 fF1; F2; F3g then hhiii

else if hx; yi 2 fhF1; G1i; hF2; G2i; hF3; G3ig then hhF (i)ii

else if x 2 fG1; G2; G3g ^ y = V then hhG(F (i))ii

else if x = V ^ y = A then hhG(F (i))ii

else ")):

(2.25)

Each run cr re(i) can be represented by a graph like the one in Figure 2.1 (page 11). To obtain

a �nite graphical representation of the in�nite family of runs given by (2.25), abstractions

(such as those described in the next section) are employed.

2.2 Representation of Runs

Computing the exact set of runs for a system is, in general, infeasible. Thus, the model

described in Section 2.1|hereafter called the concrete model|is inadequate for automated

analysis of systems. This inadequacy motivates the development of a system model that

incorporates approximations. To distinguish our new model from the concrete one we already

discussed, we sometimes refer to the new model as the abstract model.

In the abstract model, a system's behavior is approximated by:

Values: The data sent in messages.

Multiplicities: The number of times each value is sent.

Orderings: The order in which values are sent.

This section, then, describes how each of these three kinds of information is represented in

our framework.

Recall that in the concrete model, runs are characterized by the sequences of messages

sent between each pair of components. Thus, our abstract model is based on a language for

approximating sequences of messages. Speci�cally, we approximate sequences of messages

by partially-ordered sets of ms-atoms: each ms-atom approximates a set of messages, and

the partial order approximates the order in which those messages appear in the sequences.

Note that this order corresponds to the order in which those messages are sent and, since

channels are assumed to be FIFO, also the order in which they are received. Let L denote

the set of ms-atoms. A particular de�nition of L appears below; for now, it su�ces to say
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that each element of L approximates a set of messages. A strict4 partial order on a set S is

an element of

Order(S)
�

= f�2 S � S j � is acyclic and transitiveg: (2.26)

Note that 2 has lower precedence than all set constructors, such as �. The strictly-partially-

ordered sets (posets for short) over a set T is just a subset of T together with a partial order

on that subset:

POSet(T )
�

= fhS;�i 2 Set(T )� Set(T � T ) j �2 Order(S)g: (2.27)

Informally, a poset hS;�i 2 POSet(L) approximates a sequence � of messages if there exists

a correspondence between elements of S and elements of � such that: (1) each ms-atom

in S approximates the set of corresponding messages, and (2) if `1 � `2, then all messages

corresponding to `1 precede all messages corresponding to `2 (this de�nition is formalized in

Section 2.4.1).

At the concrete level, sequences of messages are aggregated into concrete histories CHist ,

de�ned in (2.1), to represent all the inputs or outputs of a component. Analogously, at the

abstract level, we aggregate posets of ms-atoms into histories:

Hist
�

= Name ! POSet(L); (2.28)

Histories are interpreted using the same conventions as concrete histories: when a history

h 2 Hist is regarded as the input to a component x, h(y) is the sequence of messages sent by

y to x; when h is regarded as the output of a component x, h(y) is the sequence of messages

sent by x to y.

Just as concrete histories are aggregated into concrete runs to represent the overall be-

havior of a system, in the abstract model, we aggregate histories into runs:

Run
�

= Name ! Hist : (2.29)

As in the concrete model, we adopt the convention that, for a run r 2 Run and a component

x, history r(x) represents the inputs to x. Informally, the meanings of histories and runs are

pointwise extensions of the meaning of posets of ms-atoms. Note that a run r 2 Run can be

interpreted as a labeled directed graph with set of nodes Name and with edge hx; yi labeled

with r(y)(x). Since an (abstract) run can approximate many concrete runs, it su�ces to

use a single abstract run to approximate the behavior of a system. Thus, the result of our

analysis is a single run that approximates|or represents|all concrete runs of a system.

4For partial orders, \strict" means \not re
exive". This is unrelated to strictness of processes.
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The remainder of this section de�nes the set L of ms-atoms, illustrates the de�nitions

with an example, and discusses our approximation of message orderings.

2.2.1 ms-atoms

A ms-atom has signature

L
�

= Mul � Val � Tag: (2.30)

The multiplicityMul indicates how many messages are represented by the ms-atom; the value

Val describes the data in those messages. For example, by analogy with regular expressions,

we use a multiplicity of ? to denote zero or one messages, and a multiplicity of � to denote

an arbitrary number of messages. For values, we use, for example, a value of N to indicate

that the data is a natural number. These are all examples of abstract values: each speci�es

a set of possible concrete value. Symbolic values|expressions that represent a single but

sometimes undetermined concrete value|are also used in Val and Mul . The sets Val and

Mul and our treatment of message orderings are discussed in the following subsections. The

tag is a technicality. It allows multiple ms-atoms with the same value and multiplicity to

appear on an edge; an alternative is to use bags (i.e., multisets) of ms-atoms with signature

Mul � Val .

2.2.2 Values

Values are approximated by a set of possibilities. Each of these possibilities is determined

by a symbolic value and an abstract value, rather than (say) a single concrete value. Let

AVal and SVal denote the sets of abstract and symbolic values, respectively. Values have

signature

Val
�

= P�n(SVal � AVal) n f;g; (2.31)

where P�n(S) is the set of �nite subsets of S, and n denotes set di�erence.

Abstract Values

An abstract value characterizes the concrete values that might be transmitted in particular

messages. This idea is familiar from abstract interpretation [AH87]: each element of an

abstract interpretation represents a set of concrete values. For example, one way to abstract

the real numbers is to keep track only of the sign. The corresponding abstract interpretation

is f0;R�;R+;Rg, where 0 represents only itself, R� represents the non-positive real num-

bers, R+ represents the non-negative real numbers, and R represents all real numbers. The
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abstract value R is included, even though it does not determine the sign, in case the sign of

a value is not known.

For generality, we do not �x particular abstract values. The abstract framework is

parameterized by the set AVal of abstract values and their meaning, given by [[]]AVal 2

InterpSet(AVal), where for a set S,

InterpSet(S)
�

= S ! Set(CVal): (2.32)

Symbolic Values

Symbolic values track relationships between values. To motivate the need for this, consider

the two-stage replicated pipeline described in Section 2.1.3 and depicted in Figure 1.1. The

outputs of voter V depend on equality relationships among its inputs. Abstract values

can provide some information about these relationships. However, if two inputs both have

abstract value N, there is no way to tell (from this fact alone) whether they are equal.

Additional relationships can be determined using symbolic values, which are expressions

composed of constants Con and variables Var . We assume the sets Con and Var are disjoint

and do not contain the underscore symbol. Informally, a constant represents the same

value in every run of the system, while a variable represents values that may be di�erent

in di�erent concrete runs of the system.5. Symbolic values are obtained using a form of

symbolic computation, which we will integrate into the input-output functions and hence

into the �xed-point analysis. To continue the pipeline example, note that if multiple inputs

to the voter are represented by the same symbolic value, then they are equal.

Variables. Each variable is associated with a single component; we say the variable is

local to that component. Informally, the value of that variable is determined by the behavior

of that component. Making each variable local to a single component avoids name clashes

that would otherwise cause trouble when components are assembled to form a system. For

example, suppose one component nondeterministically selects and outputs a real number,

representing it by the value fhX;Rig. Note that this value contains a single possibility

hX;Ri, where X is a variable and R is an abstract value. In isolation, this representation

is �ne. But suppose another component in the system also nondeterministically selects and

outputs a real number, representing it by the same value fhX;Rig. Since the two components

may choose di�erent values, there might not be a single interpretation of X that \matches"

5This is made precise by the semantics given in Section 2.4.1
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the overall behavior of the system (i.e., that matches the output of both components). This

problem is avoided if each component uses a local variable to represent its output.

Let Var(x) denote the set of variables local to component x. We require that Var(x) and

Var(y) be disjoint for x 6= y. Var is

Var =
[

x2Name

Var(x) (2.33)

For example, in Figure 1.1, variable X is local to the source S.

Constants. The value of a constant is �xed not by the behavior of one component but by

an interpretation �c 2 Interp(Con), where for any set S,

Interp(S)
�

= S ! CVal (2.34)

For example, a constant min might be interpreted as the function that returns the minimum

of a set of numbers; a constant encrypt might be interpreted as DES encryption. In Fig-

ure 1.1, constants F and G represent the functions computed by the �rst and second stage,

respectively, of the pipeline.

Syntax of Symbolic Values. Symbolic values are expressions built from constants and

variables:

SVal0
�

= Sym [ fs(s1; : : : ; sn) j s 2 Sym ^ s1 2 SVal0 ^ � � � ^ sn 2 SVal0g; (2.35)

where the set Sym of symbols is

Sym
�

= Con [ Var : (2.36)

For example, if the constant min is interpreted as above, then the symbolic value min(X; Y; Z)

represents the minimum of the values represented by X, Y , and Z.

The set of symbolic values is obtained from SVal0 by adding the underscore symbol,

which is used as a wildcard:6

SVal
�

= SVal0 [ f g (2.37)

As in pattern-matching in the programming language ML [MTH90], the wildcard can

represent any value. This is especially signi�cant when the wildcard appears in ms-atoms

6We could allow the wildcard to appear within larger symbolic values, but this slightly complicates the
semantics, and it's not clear whether it is useful.
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that may represent multiple messages. Without the wildcard, a ms-atom containing a value

expressed using n elements of SVal�AVal could represent only sets of messages containing at

most n distinct concrete values; if the value contains a wildcard, the ms-atom could represent

a set of messages containing arbitrarily many distinct concrete values.

Notational Conventions. Since abstract values are analogous to types, we sometimes

write s :a to denote hs; ai 2 SVal � AVal . We often elide the braces around singleton sets;

for example, we might write X :R+ to denote fhX;R+ig 2 Val . We sometimes elide the

wildcard; for example, we might write R+ to denote :R+. These conventions are used in

Figure 1.1; for example, the value in the new ms-atom on edge hF1; Si is actually fh ;>V ig.

Running Example Revisited. The concrete runs (2.25) of the system introduced in

Section 2.1.3 are represented by Figure 2.2. In this example, X 2 Var(S), fF;Gg � Con,

S F2

F3

G2

G3

G(F (X)) :N

F1
G(F (X)) :N

G(F (X)) :N
V A

G1

X :N

X :N

X :N

F (X) :N

F (X) :N

F (X) :N

G(F (X)) :N

Figure 2.2: Run for running example.

and [[N]]AVal = N. When a run is represented using a graph, edges labeled with h;; ;i are

elided. Also, if the poset labeling an edge is a singleton|that is, it contains only a single

ms-atom `|then we display the poset simply as the ms-atom `. For example, the poset

on edge hS; F1i in Figure 2.2 is, when written more explicitly, hfh1; X :N; 0ig; ;i. This is a

singleton poset|i.e., it is a pair whose �rst component is a singleton set, and whose second

component is the empty partial ordering|so it can be displayed as the ms-atom h1; X :N; 0i.

Since the multiplicity in this ms-atom is 1, and since the tag is 0, according to the notational

conventions described in Section 2.2.3, this ms-atom can be written X :N, as it appears in

the �gure.

Note that the voter's inputs in Figure 2.2 are represented by the same symbolic value.

Thus, the voter's inputs are equal, and the voter's output is also represented by that symbolic
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value. Section 2.3 describes how this run is obtained. Section 2.4.1 de�nes the notion of a

run representing a concrete run; informally, it means that for each edge, the messages in the

concrete run can be obtained from the poset of ms-atoms by duplicating each ms-atom some

number of times consistent with its multiplicity, linearizing the copies consistently with the

partial order, then substituting for each variable a concrete value that is consistent with the

abstract values.

2.2.3 Multiplicity

Uncertainty in the number of messages sent during a computation stems from various sources,

including:

Non-determinism of components. Faulty components are often non-deterministic.

Non-determinism of message arrival-order. This may cause uncertainty in the

number of outputs of a component.

Approximation of values. Approximating a component's inputs may cause uncer-

tainty in the number of its outputs.

Approximation of \loops" of communication.When a set of components send

messages back and forth in \loops" of communication, determining whether the compu-

tation terminates is, in general, impossible. Thus, determining the number of messages

is also, in general, impossible.

Uncertainty in the number of messages is handled in the abstract framework by using

multiplicities, which are approximations of numbers of messages. For example, a component

subject to send-omission failures [HT94, Section 2.3], which cause a component to possi-

bly omit the sending of each message normally produced, might emit each output with a

multiplicity of either zero or one.

Since multiplicities approximate numbers (of messages), we can represent them with

elements of

Mul
�

= P�n(SVal � AMul) n f;g; (2.38)

where the set of abstract multiplicities is

AMul = fa 2 AVal j [[a]]AVal 2 (Set(N) n f;; f0gg)g (2.39)
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We exclude f0g from the possible meanings of abstract multiplicities, because ms-atoms are

used to represent messages, and a ms-atom with abstract multiplicity denoting f0g would

represent no messages.

Abstract Multiplicities. Abstract multiplicities are analogous to the superscripts in reg-

ular expressions. Recall, for example, that the regular expression a� represents sequences of

a's of arbitrary length, and the regular expression a? represents sequences of a's of length 0

or 1. To promote the resemblance between ms-atoms and regular expressions, we assume in

examples that AVal contains the following elements with the following meanings:

[[1]]AVal = f1g (2.40)

[[?]]AVal = f0; 1g (2.41)

[[�]]AVal = N (2.42)

[[+]]AVal = N n f0g (2.43)

For example, the outputs of a component subject to send-omission failures might have ab-

stract multiplicity \?".

Symbolic Multiplicities. Symbolic multiplicities track relationships between multiplic-

ities of di�erent messages. They play an important role in the analysis of systems whose

fault-tolerance involves atomicity. Atomicity properties are typically of the form: \All non-

faulty components do action, or none of them do." Such properties correlate multiplicities

of actions (e.g., message receptions) at di�erent sites.

For example, the atomicity requirement in reliable broadcast is: for each broadcast mes-

sage, either every non-faulty process delivers the message, or none do. Since a process may

crash before or after sending a particular message, the transmission and hence delivery of

a message is not guaranteed. This would be re
ected by the abstract multiplicity being ?

instead of 1. If two processes each receive a message with abstract multiplicity \?", however,

we could not determine whether the atomicity requirement is being satis�ed. However, if

two processes each receive a message with multiplicity M :?, where M is a variable, then

we know that either both processes received the message (i.e., M is interpreted as zero), or

neither did (i.e., M is interpreted as one). Reliable broadcast is analyzed in detail in Section

4.1.
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Notational Conventions. The notational conventions for values apply to multiplicities

as well. To foster the resemblance between ms-atoms and regular expressions, we sometimes

write multiplicities as superscripts. This notation is used only if the tag is zero; in other

words, we sometimes write the ms-atom hmul ; val ; 0i as valmul . When writing a ms-atom

as valmul , we usually elide the multiplicity if it is fh ; 1ig 2 Mul . Thus, the ms-atom

hfh ; 1ig; val ; 0i may be written simply as val .

These conventions are used in Figure 2.3, which represents the behavior of the two-

stage replicated pipeline when F1 su�ers a Byzantine failure.
7 For example, the ms-atom on

edge hF1; Si is, when written more explicitly, h�;>V ; 0i; since the tag is zero, this ms-atom is

displayed as >V
�. Note that the multiplicity in this ms-atom is, when written more explicitly,

fh ; �ig, representing an arbitrary number of messages. The multiplicity in the ms-atom on

edge hS; F1i is fh ; 1ig, so it is elided. As another example, in Figure 2.2, the multiplicities

are all fh ; 1ig, and the tags are all zero, so the multiplicities and tags are all elided.

S F2

F3

G2

G3

V A

G1F1

F (X) :N

F (X) :N

>V
�

G(F (X)) :N

G(F (X)) :NG(F (X)) :NX :N

X :N
>V

�

X :N

>V
�

Figure 2.3: Run for two-stage replicated pipeline when F1 su�ers a Byzantine failure.

2.2.4 Tags

Recall that tags are introduced to allow multiple ms-atoms with the same value and mul-

tiplicity to appear on an edge. One might ask: \If the values are the same, why not just

combine those ms-atoms into a single ms-atom with a `larger' multiplicity? This would elim-

inate the need for tags." That approach is indeed possible but sometimes undesirable, since

ordering information may be lost when the ms-atoms are merged. For example, consider the

7Figure 1.1 represents the same system in the same failure scenario. However, Figure 1.1 is based on the
perturbational framework of Chapter 3, while Figure 2.3 uses the non-perturbational framework presented
in this chapter.
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poset containing the three ms-atoms

`0X = h1; X :N; 0i

`Y = h1; Y :N; 0i

`1X = h1; X :N; 1i;

with the ordering `0X � `Y � `1X . Note that `0X and `1X di�er only in their tag. This poset

represents sequences of three messages containing natural numbers and such that the �rst

and last messages in the sequence contain the same number. If we merge the two ms-atoms

containing X into a single ms-atom, such as h2; X :N; 0i, we will not be able to express that

exactly one occurrence of the number represented by X appears before the occurrence of the

number represented by Y .

2.2.5 Message Ordering

The partial ordering in a history (2.28) approximates the orderings between the messages

represented by the ms-atoms in that history. Since a history represents the messages trans-

mitted along a single channel (i.e., between a single pair of components), only orderings

between messages sent on the same channel are re
ected in our representation (2.29) of

runs. As in Kahn's model, orderings between messages on di�erent channels are ignored.

This simpli�es the semantics considerably. The disadvantage is that the behavior of non-

strict components sensitive to inter-channel orderings cannot be speci�ed exactly; the output

ms-atoms of such a component must represent that component's outputs for each possible

interleaving of the inputs from di�erent sources. Some ideas on extending the framework to

include inter-channel orderings are mentioned in Chapter 6.

2.3 Representation of Components

By analogy with de�nition (2.4) of determinate processes, input-output functions have

signature8

IOF
�

= ff 2 Hist ! Hist j tagUniform(f)g; (2.44)

where tagUniform(f) is a sanity condition requiring that renaming of tags in the argument of

f causes no change in the output of f except possibly renaming of tags. This requirement is

sensible because tags are artifacts of the formalism; they don't appear in actual messages. To

8The analogy is not perfect, since (2.44) contains ! , whereas (2.4) contains !! . The reasons for this
are discussed in Section 2.4.4.
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formalize this requirement, we introduce the equality =Hist on Hist . Informally, h1 =Hist h2

means that h1 and h2 are the same up to renaming of tags|in other words, that h1 can be

obtained from h2 by renaming the tags (or vice versa). A \renaming of tags" is a function

in Tag
inj
! Tag, where for any sets S and T , S

inj
! T is the set of injections from S to T . We

extend such a function h 2 Tag
inj
! Tag to a function h 2 L ! L by applying h to the tag

and leaving the value and multiplicity unchanged:

h(hmul ; val ; tagi) = hmul ; val ; h(tag)i:

Now, equality on POSet(L) up to renaming of tags is:

hS1;�1i =POSet(L) hS2;�2i
�

= (9h 2 Tag
inj
! Tag :

^ S1 = (
[
x2S2

fh(x)g)

^ �1= (
[

hx;yi2�2

hh(x); h(y)i)):

Equality =Hist is the pointwise extension of =POSet(L). With the de�nition of =Hist in hand,

the de�nition of tagUniform is easy:

tagUniform(f)
�

= (8in1; in2 2 Hist : in1 =Hist in2 ) f(in1) =Hist f(in2)): (2.45)

System Behavior as a Fixed-Point. As in the concrete case, a system's behavior is

characterized by a �xed-point. For nf 2 Name ! IOF , the system's behavior is represented

by lfp(step(nf )), if this �xed-point exists. We can always look for a �xed-point by repeated

application of step(nf ) starting from ?Run , where

?Run
�

= (�x :Name: ?Hist) (2.46)

?Hist
�

= (�x :Name: h;; ;i): (2.47)

A �xed-point r has been found if step(nf )(r) =Run r, where the equality =Run on Run is the

pointwise extension of the equality =Hist on Hist .

In contrast to the concrete case, this �xed-point might fail to exist. Section 2.5 discusses

the reasons for this and gives additional requirements that ensure existence of a �xed-point.

2.3.1 Notation for Functions

We freely use standard mathematical constructs, such as logical formulas and lambda expres-

sions, in de�nitions of functions. We also use the following constructs from the functional

programming language CAML Light [Ler97], a dialect of Standard ML [MTH90].
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Conditionals. The conditional expression if b then e1 else e2 has the obvious meaning.

Comments. Comments begin with (* and end with *).

Binding. The binding construct is

let var = expr1

in expr2
(2.48)

where var is a variable and expr 1 and expr2 are expressions. The result of evaluating (2.48)

is the result of evaluating expr2 in a context in which var is bound to the result of evaluating

expr1. For example, the Fibonacci function can be written

f = (�i :N: if i = 0 _ i = 1 then 1

else let v1 = f(i� 1)

in let v2 = f(i� 2)

in v1 + v2)

To save horizontal space, we sometimes (as above) do not fully indent sequences of let

expressions.

Pattern matching. The pattern-matching construct is

match expr0 with

j patt1 ! expr1

j patt2 ! expr2
...

j pattn ! exprn

(2.49)

where each expr i is an expression and each patt i is a pattern. A pattern is composed of

data constructors (e.g., tuple or sequence constructors, or any constant) and variables. This

construct evaluates expr 0 and attempts to match the resulting value v against the patterns,

in order of appearance. A match occurs if v can be obtained from the pattern by some

instantiation of the variables in the pattern; as a special case, the wildcard pattern matches

anything.9 If pattern patt i yields the �rst match, then the variables in patt i are bound to

the values that cause patt i to equal v, and the result of evaluating (2.49) is the result of

evaluating expr i in a context augmented with these bindings. For example, the following

9Note that the wildcard symbolic value is , while the wildcard pattern is .
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function accepts a number or pair of numbers, and returns the given number or the sum of

the given pair of numbers, respectively.

f = (�x : (N [ (N�N)):match x with

j hx1; x2i ! x1 + x2

j ! x)

2.3.2 Running Example

To illustrate the abstract model, we give input-output functions that represent the processes

given in Section 2.1.3 for the replicated pipeline example. An input-output function f

represents a process p if, whenever an input history h represents a concrete input history ch,

then the output history f(h) represents each possible concrete output history of p on input

ch. (The notion of an input-output function representing a process is formalized in Section

2.4.1.)

De�nition of Src. Source S is represented by input-output function Src(fF1; F2; F3g), where

Src(dests) = (�h :Hist : (�x :Name: if x 2 dests then hfh1; X :N; 0ig; ;i else h;; ;i)); (2.50)

with X 2 Var(S). We have used some of the notational conventions described in Section

2.2; for example, the multiplicity 1 abbreviates fh ; 1ig, and the value X :N abbreviates

fhX;Nig.

De�nition of Comp. Processors Fi and Gi are represented by appropriate instances of

Comp(src; dest ; op) = (�h :Hist : (�x :Name: if x = dest then apOp(op;N)(h(src))

else h;; ;i));

(2.51)

where for op 2 Sym, aval 2 AVal , and val 2 Val , the value apOp(op; aval)(val) 2 Val is

de�ned as follows:

� If the abstract value associated with s is aval , then apOp(op; aval)(val) is value ob-

tained by applying the operator op to each symbolic value s in val (think of aval as

the domain and range of op).

� Otherwise, we take the result of applying of op to val to be arbitrary; speci�cally,

apOp(op; aval)(val) is >V (or, written out in full, fh ;>V ig), which represents all

concrete values:

[[>V ]]AVal = CVal : (2.52)
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Thus,

apOp(op; aval)(val) =
[

hs;ai2val

fif a = aval then happly(op; hhsii); avali

else h ;>V ig:

(2.53)

For a symbol op 2 Sym and a sequence hhs1; : : : ; snii 2 SVal , apply(op; hhs1; : : : ; snii) returns

the symbolic value op(s1; : : : ; sn) if all the si are in SVal0; otherwise (i.e., if any si is a

wildcard), it returns a wildcard.

apOp(op; aval) is an extension of apOp(op; aval) from values to posets of ms-atoms; it

operates on the values, leaves all multiplicities unchanged, and changes tags if necessary in

order to avoid \collisions". For example, if the poset S contains h1; X :>V ; 0i and h1; Y :

>V ; 0i, then a retagging is needed to avoid a \collision", and we have (e.g.)

apOp(F;N)(hS; ;i) = fh1; :>V ; 0i; h1; :>V ; 1ig:

De�nition of Voter. The voter is de�ned in terms of two auxiliary functions: ballot,

which extracts a vote from a poset of ms-atoms, and tally, which uses ballot to extract a set

of votes from a poset of ms-atoms, then tallies those votes to determine the majority (if any).

Extracted votes and outputs of tally are both elements of Mul � (SVal � AVal), indicating

the multiplicity of the vote and the value voted for. The de�nitions of ballot and tally are

given below. The function representing the voter tests whether it has received some input

from each source. If not, it just \waits", i.e., produces no output (represented by the empty

poset h;; ;i); this corresponds to the then branch of the conditional. If it has received some

input from each source, it calls tally; this corresponds to the else branch of the conditional.

Voter(srcs; dest ; aval) = (�h :Hist : (�x :Name:

if x = dest then

if (9y 2 srcs : �1(h(y)) = ;) then h;; ;i

else let hmul ; vali = tally(ballot ; srcs; aval ; h)

in hfhmul ; fvalg; 0ig; ;i

else h;; ;i)):

(2.54)

De�nition of ballot. Ballot condenses the input S 2 POSet(L) from a component into

a single multiplicity and a single element of SVal � AVal . Roughly, if S contains only a

single element of SVal � AVal (i.e., a single value with cardinality one), then ballot returns

that value and the associated multiplicity. Otherwise, ballot uses a coarse approximation: it

returns a \top" (i.e., an arbitrary multiplicity and value). It would be easy to make ballot
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more precise, by having it extract all the elements of SVal �AVal in S (with the associated

multiplicities) and return them as a set. This additional precision is not needed to analyze the

running example, because non-faulty components do send exactly one value, and it doesn't

matter how coarsely inputs from faulty processes are approximated, since those inputs are

arbitrary anyway. This approximation in ballot re
ects our general style in writing input-

output functions for examples: we write out the \base cases" (which typically correspond

to singleton sets) exactly but don't bother to accumulate sets of possibilities, unless that

is necessary to make the analysis su�ciently precise. Of course, whether an input-output

function is \su�ciently precise" depends on the histories on which that function will be

evaluated and hence on the rest of the system being analyzed.

The de�nition of ballot is, for S 2 POSet(L),

ballot(S) =match �1(S) with

j fhmul ; val ; tagig !match val with

j fs :ag ! hmul ; s :ai

j ! (* approximate *)

hmul ; :>V i

j ! (* approximate *)

hf :�g; :>V i

(2.55)

De�nition of tally. The function tally(ballot ; srcs; aval ; h) extracts and counts ballots

cast in history h 2 Hist by components named in srcs 2 Seq(Name), using the parameter

ballot 2 POSet(L)! (Mul�(SVal�AVal)) to extract the ballots. The remaining parameter

aval 2 AVal is the \type" of values expected by the voter: if all the ballots have abstract

value aval , or if there is a majority of equal ballots with abstract value aval , then the voter's

output has abstract value aval ; otherwise, the voter's output value may be arbitrary. When

the abstract value of the voter's output is aval , the symbolic part is determined as follows.

Generally, the output is just a (symbolic) application of the operator maj to the symbolic

values in the ballots. However, if a majority of those symbolic values are the same, then that

application can be simpli�ed (this is a form of symbolic computation), yielding just that

majority symbolic value. Finally, since we don't allow wildcards inside applications, if the

application can't be simpli�ed and one of the ballots contains a wildcard, tally just returns
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a wildcard. The de�nition of tally is

tally(ballot ; srcs; aval ; h) =

let bllts = (ballot � h)(srcs)

inlet mul = if (8i 2 dom(bllts) : de�nite(�1(bllts[i]))) then fh ; 1ig else fh ; ?ig

inlet val = if at least d(jsrcsj+1)=2e ballots are for some hs; ai2SVal�AVal then

if (s = ) _ (a 6= aval) then h ;>V i else hs; ai

else if �1 � �2(bllts) 2 Seq(SVal0) ^ �2 � �2(bllts) 2 Seq(favalg) then

happly(maj )(�1 � �2(bllts)); avali

else h ;>V i

in hmul ; vali

(2.56)

where the overline denotes pointwise extension (to sequences), a multiplicity is de�nite i� it

can't denote zero, i.e.,

de�nite(mul)
�

= (8x 2 mul : 0 62 [[�2(x)]]AVal); (2.57)

and for a set S, jSj is the size of S. The constant maj has interpretation �c(maj ) = maj .10

This de�nition of tally incorporates some easily removable approximations; for example, it

ignores symbolic multiplicities.

De�nition of Act. The actuator is represented by

Act = (�h :Hist : (�x :Name: h;; ;i)): (2.58)

2.4 Semantics and Soundness

This section relates the system model described in sections 2.2 and 2.3 to the concrete model

presented in Section 2.1. Informally, soundness asserts that a run obtained from the �xed-

point analysis represents all possible concrete runs of the system of interest. Soundness

allows conditions on a concrete system to be re-cast as conditions on that (abstract) run: if

that run satis�es a certain condition, then all concrete runs represented by that run satisfy

a related condition, so all concrete runs of the system satisfy that related condition.

For example, suppose we want to check for the replicated pipeline described in Section

2.1.3 that all of the inputs to the voter V are equal. According to the semantics below, all

concrete runs represented by a run r satisfy that condition if all input ms-atoms of the voter

10As mentioned in Footnote 2, maj is overloaded; that's why it appears on both sides of this equation
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V in run r together contain only a single symbolic value and that symbolic value is not the

wildcard. Thus, the system has this property provided the run r in Figure 2.2 (page 23)

satis�es the predicate

b(r) = (�r :Run: let S = [x2Name�1 � �2(�1(r(V )(x)))

in jSj = 1 ^ 62 S);

which it does.

2.4.1 Semantics

It is convenient to allow partial interpretations in the semantics. For S � Sym, the set of

partial interpretations of S is

interp(S)
�

= S * CVal ; (2.59)

where S * T is the set of partial functions from S to T . For a partial (or total) function f ,

dom(f) is the domain of f . The ordering on partial interpretations is

�1 �interp �2
�

= dom(�1) � dom(�2) ^ (8s 2 dom(�1) : �1(s) = �2(s)): (2.60)

Semantics of Posets of ms-atoms. The semantics of posets of ms-atoms was described

informally just below (2.27):

Informally, a poset hS;�i 2 POSet(L) approximates a sequence � of messages

if there exists a correspondence between elements of S and elements of � such

that: (1) each ms-atom in S approximates the set of corresponding messages,

and (2) if `1 � `2, then all messages corresponding to `1 precede all messages

corresponding to `2.

The correspondence between the elements of hS;�i and the elements of � is embodied in

a function g 2 dom(�)
onto
�! S, where

onto
�! indicates a restriction to surjective (onto)

functions.11 Informally, g(i) is the ms-atom representing the i'th element of �. We use a

predicate compatPOSet(L) to check that the correspondence g

(1) respects the values and multiplicities of the ms-atoms; more explicitly: (1a) the

concrete value �[i] is represented by the value in g(i), and (1b) the number of elements

of � associated with each ms-atom ` is represented by the multiplicity in `;

11Thus, S
onto
�! T contains the functions f in S ! T that satisfy (8y 2 T : 9x 2 Sf(x) = y).
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(2) respects the ordering on the poset; more explicitly, if `1 � `2 and g(i1) = `1 and

g(i2) = `2, then i1 < i2.

Note that these two conditions correspond to the two conditions in the informal description.

Condition (1) requires formalizing the notion of a concrete value cv being represented

by a value v 2 Val . This involves two conditions: one based on the symbolic part of v, and

one based on the abstract part of v. The condition based on the symbolic part is expressed

by extending a given partial interpretation � 2 interp(Sym) of symbols to work on all non-

wildcard symbolic values. The extension is done by a recursive de�nition of the structure

of the symbolic value, which corresponds (in a sense) to evaluation of the symbolic value.

If, at some point in this \evaluation", an \error" occurs (e.g., the operator in an expression

does not denote a function), the evaluation aborts and returns a dummy value ? (which is

required not to be in CVal). For � 2 interp(Sym), the extension � 2 SVal0 ! (CVal [f?g)

is given by

�(s) =

8<
:
�(s) if s 2 dom(�)

? otherwise

�(s(s1; : : : ; sn)) =

8>>><
>>>:

�(s)(h�(s1); : : : ; �(sn)i) if ^ s 2 dom(�)

^ h�(s1); : : : ; �(sn)i 2 dom0(�(s))

? otherwise

where dom0(f) is the domain of f , if f is a function, and ; otherwise. We use this extension

to de�ne the predicate compatVal , which checks whether a concrete value cv is represented

by a value v 2 Val :

compat�Val(val ; cv)
�

= (9hs; ai 2 val : ^ cv 2 [[a]]AVal

^ s = _ cv = �(s)):

(2.61)

The de�nition of compatPOSet(L) has 3 conjuncts, corresponding to conditions (1a), (1b),

and (2) above. Given a partial interpretation � 2 interp(Sym) of symbols, poset hS;�i 2

POSet(L) represents sequence � 2 Seq(CVal) under correspondence g 2 dom(�)
onto
�! S i�

compat�POSet(L)(S;�; �; g) holds, where

compat�POSet(L)(S;�; �; g)
�

= ^ (8` 2 S : (8i 2 ginv(`) : compat�Val(�2(`); �[i])))

^ (8` 2 S : compat�Val(�1(`); jg
inv(`)j))

^ (8h`1; `2i 2�: ginv(`1) �Set(N) g
inv(`2))

(2.62)

where ginv(y) is the pre-image of y under g, i.e.,

ginv(y)
�

= fx 2 dom(g) j g(x) = yg (2.63)
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and �Set(N) is a strict partial order on sets of natural numbers:

S1 �Set(N) S2
�

= (8i1 2 S1 : (8i2 2 S2 : i1 < i2)): (2.64)

The meaning of a poset hS;�i 2 POSet(L) is the set of sequences of concrete values that

it represents:

[[hS;�i]]�POSet(L)
�

= f� 2 Seq(CVal) j (9g 2 dom(�)
onto
�!S : compat�POSet(L)(S;�; �; g))g; (2.65)

Note that if �(s) = ?, then the condition cv = �(s) in compat�Val cannot hold, so pairs

containing s in a value are e�ectively ignored. Thus, increasing a partial interpretation

� (with respect to �interp) can only increase [[hS;�i]]�POSet(L) (with respect to �); in other

words, [[]]�POSet(L) is monotonic in �.

Recall that tags in ms-atoms are just a technical device to allow multiple ms-atoms with

the same value and multiplicity to appear in a set. Thus, renaming tags should have no e�ect

on the meaning of a poset of ms-atoms. It is easy to check that [[]]POSet(L) is independent of

tags, i.e.,

(8� 2 interp(Sym) : (8S1 2 POSet(L) : (8S2 2 POSet(L) :

S1 =POSet(L) S2 ) [[S1]]
�

POSet(L) = [[S2]]
�

POSet(L)))):

Semantics of Histories. The meaning of histories is a straightforward extension of [[]]POSet(L).

For � 2 interp(Sym),

[[h]]�Hist
�

= fch 2 CHist j (8x 2 Name : ch(x) 2 [[h(x)]]�POSet(L))g: (2.66)

Note that [[]]�Hist is monotonic in �, i.e.,

(8�1; �2 2 interp(Sym) : (8h 2 Hist :

�1 �interp �2 ) [[h]]�1Hist � [[h]]�2Hist)):
(2.67)

Semantics of Input-Output Functions. Informally, an input-output function f rep-

resents a process p if, whenever an input history in 2 Hist represents the concrete input

history of p, then f(in) represents the concrete output history of p. The values of the local

variables lvar of the component can be chosen freely to \match" the concrete values in a

sequence, while the values of other variables may already be constrained. The values cho-

sen for the local variables in f(in) can depend on the inputs to the process. However, to

ensure soundness, this dependence must be monotonic, i.e., additional inputs can't change

the values chosen for those local variables. In other words, as more inputs are received, the
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values of more local variables are determined, and those values are unchanged when yet more

inputs are received. Formally, the dependence of the values of local variables on the concrete

inputs is captured in a monotonic and continuous function g 2 CHist!! interp(lvar). For

p 2 Process, �c 2 Interp(Con), lvar � Var , and f 2 IOF ,

p <�c;lvar
IOF f

�

= (8hdp; iri 2 p : (9g 2 CHist!! interp(lvar) :

(8�e 2 Interp(Var n lvar) : (8in 2 Hist : (8ch 2 ir :

ch 2 [[in]]�c[�e[g(ch)Hist ) dp(ch) 2 [[f(in)]]�c[�e[g(ch)Hist ))))):

(2.68)

Note that we use union to combine functions with disjoint domains (if functions are regarded

as sets of pairs, this does not even require overloading [). If p <�c;lvar
IOF f , we say f represents

p.

Semantics of Systems. An abstract system comprises a mapping nf 2 Name ! IOF

and a partial interpretation �a 2 interp(Con) of constants. The partial interpretation al-

lows the user to specify, for example, that maj represents a majority function, or that

the constant encrypt represents DES encryption. The meaning of systems is essentially a

pointwise extension of the meaning of input-output functions: for np 2 Name ! Process,

nf 2 Name ! IOF , and �a 2 interp(Con),

np <Sys hnf ; �ai
�

= (9�c 2 Interp(Con; �a) : (8x 2 Name : np(x) <
�c;Var(x)
IOF nf (x))); (2.69)

where the extensions of a partial interpretation � 2 interp(S) are

Interp(S; �)
�

= f�1 2 Interp(S) j � �interp �1g: (2.70)

If np <Sys hnf ; �ai, we say the abstract system hnf ; �ai represents the concrete system np.

To reduce clutter, we have left Var implicit in the notation for abstract systems.

Semantics of Runs. For r 2 Run and �a 2 interp(Con),

[[r]]�aRun
�

= fcr 2 CRun j (9�c 2 Interp(Con; �a) : (9�v 2 Interp(Var) :

(8x 2 Name : cr(x) 2 [[r(x)]]�c[�vHist )))g:

(2.71)

The existential quanti�cation over �v re
ects the intuition that the interpretations of the

variables in a run can be chosen freely to \match" the concrete values.
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2.4.2 Soundness

Although �xed-points are not, in general, guaranteed to exist, if iteration of step(nf ) does

lead to a �xed-point r, soundness means that r represents all possible �nite behaviors of the

concrete system, i.e., that cruns�n(np) � [[r]]�aRun , where

cruns�n(np) = fcr 2 cruns(np) j (8x 2 Name : (8y 2 Name : jcr(y)(x)j < !))g; (2.72)

The restriction to �nite behaviors is only for convenience; the framework and semantics can

be extended to deal with in�nite behaviors as well.

Soundness is expressed by the following theorem:

Theorem 2.2. For all np 2 Name ! Process, all nf 2 Name ! IOF , all �a 2 interp(Con),

and all ifp 2 N, if np <Sys hnf ; �ai, and if r = step(nf )ifp(?Run) is a �xed-point of step(nf ),

then all �nite runs of the system are represented by r, i.e., cruns�n(np) � [[r]]�aRun .

Proof : Let �c 2 Interp(Con; �a) witness the existential quanti�cation in np <Sys hnf ; �ai.

Consider any cr 0 2 cruns�n(np). By de�nition (2.14) of cruns, there exists h 2 Name !

IRProcess such that

^ (8x 2 Name : h(x) 2 np(x))

^ (8x 2 Name : enabled(h(x); hhstep(�1 � h)
i(?CRun)(x)iii2N))

^ cr0 = lfp(step(�1 � h)):

Let cr [i] = step(�1 � h)
i(?CRun) and r[i] = step(nf )i(?Run). We show by induction that

(8i 2 N : (8x 2 Name : cr [i](x) 2 [[r[i](x)]]�c[�v[i]Hist )); (2.73)

where �v[i] = [x2Nameg(x)(cr [i](x)), where for all x, g(x) 2 CHist ! interp(Var(x)) is

a witness for the existential quanti�cation in np(x) <
�c;Var(x)
IOF nf (x) when the outermost

universal quanti�cation there is instantiated with hdp; iri = h(x).

Base Case. For i= 0, the claim is that (8x 2 Name : ?CRun(x) 2 [[?Run(x)]]
�c[�v [0]
Hist ), which

follows easily from the de�nitions.

Step Case. Using the induction hypothesis as the antecedent of the implication in de�ni-

tion (2.68) of <
�c;Var(x)
IOF , we get

(8x 2 Name : �1(h(x))(cr [i](x)) 2 [[nf (x)(r[i](x))]]�c[�v[i]Hist ): (2.74)
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Monotonicity of all the �1(h(x)) implies cr [i] �CRun cr [i + 1]. Monotonicity of all the g(x)

then implies �v[i] �interp �v[i + 1]. So, by monotonicity of [[]]�Hist in � (from (2.67)), (2.74)

still holds if �v[i] is replaced with �v[i+ 1]. From the resulting equation and de�nition (2.6)

of step, we get (8x 2 Name : cr [i+ 1](x) 2 [[r[i+ 1](x)]]�c[�v[i+1]
Hist ). This completes the proof

of (2.73).

Finally, we show that (2.73) implies cr 0 2 [[r]]�cRun . Since cr 0 is �nite, there exists i0 2 N

such that (8i � i0 : cr0 = cr [i]). The desired result is obtained by instantiating the universal

quanti�cation in (2.73) with i = max(ifp; i0).

2.4.3 Invariants

In writing and verifying input-output functions, it is sometimes convenient to introduce

assumptions about the values of variables. These assumptions are embodied in an invariant

that has signature

Invar
�

= fI 2 Name ! Set(interp(Var)) j (8x 2 Name : I(x) � interp(Var(x)))g: (2.75)

For I 2 Invar and x 2 Name, I(x) contains the partial interpretations of Var(x) that satisfy

the invariant. Note that this de�nition of Invar excludes correlations between values of

variables local to di�erent components; otherwise, <IOF could not be veri�ed independently

for di�erent components.

To accommodate invariants in the semantics, we just restrict quanti�cations over inter-

pretations of variables to being with respect to the invariant. The changes are as follows. For

Il � interp(lvar) and Ie � Interp(Var n lvar), de�ne p <�c;lvar ;Il;Ie
IOF f as in (2.68), but with

interp(lvar) replaced with Il, and Interp(Var n lvar) replaced with Ie. Extend an abstract

system to include an invariant as the third component of the tuple. For I 2 Invar , de�ne

np <Sys hnf ; �a; Ii as in (2.69), but with <
�c;Var(x)
IOF replaced with <

�c;Var(x);I(x);I#(Namenfxg)
IOF ,

where for S � Name, the restriction of I to S is

I # S = f� 2 Interp([x2SVar(x)) j (8y 2 S : (�v :Var(y): �(v)) 2 I(y))g: (2.76)

For I 2 Invar , de�ne [[r]]�a;IRun as in (2.71), but with Interp(Var) replaced with I #Name.

Modifying the proof of soundness to accommodate invariants is straightforward.

2.4.4 Sanity Conditions for Input-Output Functions

As mentioned in Section 2.1, monotonicity and continuity are typically required of input-

output functions in stream-processing models, in order to eliminate from consideration input-
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output functions that don't represent any process. We discuss these two conditions in turn.

Monotonicity. Monotonicity of input-output functions is de�ned below (see (2.82)). Infor-

mally, a history in Hist represents a set of concrete histories. Moving up in the ordering on

Hist corresponds to either extending some of those concrete histories (i.e., replacing them

with concrete histories that are larger with respect to �CHist) or adding \new" concrete his-

tories (i.e., concrete histories that aren't extensions of old ones). The former aspect of �Hist

corresponds directly to the pre�x orderings typical of stream-processing models. The latter

aspect is analogous to orderings used in abstract interpretation. Typically, it corresponds to

an increase in the set of possible behaviors at some point in the program (e.g., to an increase

in the set of possible values that may be sent by some send statement). It is interesting to

note that this also corresponds (albeit indirectly) to further execution of the system. For

example, consider analysis of a pair of processes that repeatedly reply to each other. As the

system continues to execute, the processes send additional messages to each other, so the

set of possible values in the messages they have exchanged (taken collectively) increases.

Monotonicity of input-output functions can be interpreted as the following two sanity

conditions, corresponding to the two aspects of the ordering:

1. providing additional inputs to a component can't cause the component to produce

fewer outputs;

2. enlarging the set of possible inputs of a component can't cause the set of possible

outputs of the component to shrink.

There is no technical di�culty in augmenting the de�nition of IOF with monotonicity

requirement (2.82), though this does require parameterizing the de�nition of IOF by lvar

and �a. We omit this requirement for two reasons. First, since we assume that the input-

output functions used in an analysis have been shown to represent the appropriate processes,

(other) sanity conditions are otiose. Second, this requirement can complicate input-output

functions by forcing \uniform" use of approximations. An input-output function might fail

to be monotonic simply because �ner approximations are used on larger inputs. Assuming

the �ner approximation is needed on large inputs, a monotonicity requirement would force

�ner approximations to be used on smaller inputs as well. However, assuming the input-

output function represents the process of interest, there is no compelling reason to require

this.
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Continuity. Continuity is de�ned only for functions between !-cpos. As discussed in

Section 2.5.4, Hist and Run are not !-cpos, unless additional conditions are imposed, so in

general, it is not sensible to require continuity of input-output functions. The conditions

in Section 2.5 that ensure existence of �xed-points also trivially ensure continuity of input-

output functions.

2.5 Termination of Fixed-Point Calculations

Since our goal is automated analysis, of interest are conditions under which the �xed-point

can be computed in a �nite number of steps. Of course, when analyzing any particular

system, one can seek a �xed-point without knowing whether one exists, by iterating step(nf )

until either a �xed-point is found (i.e., applying step(nf ) again has no e�ect, except possibly

renaming of tags) or computational resources are exhausted.

It is more satisfying to know before starting the computation whether this iteration will

terminate with a �xed-point. To help state the relevant conditions, we de�ne an ascending

chain of a partial order hS;�Si to be a chain � 2 Chain(hS;�Si) in which no two consecutive

elements are equal, i.e., (8i 2 (dom(�) n f0g) : �[i� 1] 6= �[i]). It follows from antisymmetry

of the partial order that all elements of an ascending chain are distinct. The basic observation

is that in a partial order with no in�nite ascending chains, �xed-points can be computed

in a �nite number of steps. To see this, let S and f be as in Theorem 2.1. If S has no

in�nite ascending chains, then the chain hhf(i)iii2N converges to the least �xed point in a

�nite number of steps.

If we assume that S has no in�nite ascending chains, then some of the other hypotheses

of Theorem 2.1 can be weakened. In a partial order with no in�nite ascending chains,

!-chains trivially have least upper bounds (to see this, note that an !-chain can contain

only a �nite number of distinct elements, so the largest of these is the least upper bound

of the chain). Similarly, monotonic functions are trivially continuous (to see this, note

that, as in the previous remark, lub(�) = xmax , where xmax is the largest element in �, so

f(lub(�)) = f(xmax ); monotonicity of f implies that f(xmax ) is the largest element in the

!-chain f(�), so lub(f(�)) = f(xmax ) = f(lub(�)), as desired). Thus, we have the following

corollary of Theorem 2.1.

Corollary 2.3. Let hS;�Si be a partial order with no in�nite ascending chains. Let f be

a monotonic function in S ! S, and let x 2 S be such that x �S f(x). Then f has a

�xed-point in the upper-closure of x in S. Furthermore, the least such �xed-point is f i(x),
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where i is any natural number satisfying f i(x) = f i+1(x).

In order to apply Corollary 2.3 to ensure termination of the �xed-point calculation for

step(nf ), we de�ne a partial order �Run on Run and �nd conditions under which:

1. step(nf ) is monotonic;

2. ?Run �Run step(nf )(?Run);

3. hRun;�Runi has no in�nite ascending chains.

Since step is de�ned in terms of input-output functions, we discharge the �rst obligation

by de�ning orderings on Hist and showing that monotonicity of input-output functions with

respect to these orderings implies monotonicity of step with respect to �Run . To discharge

the second obligation, we show that ?Run �Run step(nf )(Run) holds given an additional

technical assumption about the input-output functions. To discharge the third obligation,

we give conditions under which Run has no in�nite ascending chains. Finally, we discuss

why Run is not in general !-complete.

2.5.1 Monotonicity of step

The partial ordering on Run is de�ned in terms of partial orderings on Hist , which are, in

turn, de�ned in terms of a partial ordering on POSet(L).

Ordering on Posets of ms-atoms. Roughly, the partial ordering on POSet(L) is: hS1;�1

i is less than hS2;�2i if each sequence in [[hS1;�1i]]POSet(L) is a pre�x of a sequence in

[[hS2;�2i]]POSet(L). To make this precise, we need to quantify appropriately over interpreta-

tions of the variables. When interpreting the output ms-atoms of a component x, the values

of its local variables Var(x) can be chosen freely, while the values of other variables may

already be constrained. So, given an interpretation �c 2 Interp(Con) of constants, and a set

lvar of local variables, we de�ne a pre-order

S1 �
�c;lvar
POSet(L) S2

�

= (8�v 2 Interp(Var) : (9�l 2 Interp(lvar) :

[[S1]]
�c[�v
POSet(L) �Set(Seq) [[S2]]

�c[(�v��l)
POSet(L) ));

(2.77)

where the pre-order �Set(Seq) on sets of sequences is

S1 �Set(Seq) S2
�

= (8�1 2 S1 : (9�2 2 S2 : �1 �Seq �2)); (2.78)
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and where for functions f and g, (f � g) is f updated with g, i.e., (f � g)(x) is g(x) for

x 2 dom(g), and is f(x) otherwise.

It is easy to check that ��c;lvar
POSet(L) is, in fact, a pre-order, i.e., that it is re
exive and

transitive. It is not a partial order because it lacks antisymmetry. This lack of antisymmetry

has two causes: �rst, the pre-order �Set(Seq) is not antisymmetric; second, Run contains

distinct runs with the same meaning, as discussed in Section 2.5.4. We construct a partial

ordering by:

S1 �
�c;lvar
POSet(L) S2

�

= _ (S1 �
�c;lvar
POSet(L) S2) ^ (S2 6�

�c;lvar
POSet(L) S1)

_ S1 =POSet(L) S2:

(2.79)

The �rst disjunct is a strict partial ordering; the second disjunct makes the ordering re
exive.

It is easy to check that ��c;lvar
POSet(L), like [[]]

�

POSet(L), is independent of tags. It is easy to check

that �POSet(L) is a partial order on POSet(L) quotiented by =POSet(L), i.e., on POSet(L) with

elements related by =POSet(L) considered equivalent. Informally, the construction of �POSet(L)

ensures antisymmetry by removing orderings in �POSet(L) between semantically equivalent

posets and between posets whose meanings are related in both directions by �Set(Seq) (e.g.,

if one is the pre�x-closure of the other).

Orderings on Histories. The local variables in a set of ms-atoms are always the variables

associated with the sender, so the ordering on histories depends on whether the histories are

regarded as input histories or output histories. For histories regarded as inputs,

h1 �
�c
InHist h2

�

= (8x 2 Name : h1(x) �
�c;Var(x)
POSet(L) h2(x)): (2.80)

For histories regarded as output of a component with local variables lvar ,

h1 �
�c;lvar
OutHist h2

�

= (8x 2 Name : h1(x) �
�c;lvar
POSet(L) h2(x)): (2.81)

Thus, an input-output function f is de�ned to be monotonic with respect to lvar � Var

(intuitively, these are the local variables of the component f represents) and �a 2 interp(Con)

i�
(8�c 2 Interp(Con; �a) : (8h1 2 Hist : (8h2 2 Hist :

h1 �
�c
InHist h2 ) f(h1) �

�c;lvar
OutHist f(h2)))):

(2.82)

Ordering on Runs. The ordering on runs is just a pointwise extension of the ordering on

histories regarded as inputs:

r1 �
�a
Run r2

�

= (8�c 2 Interp(Con; �a) : (8y 2 Name : r1(y) �
�c
InHist r2(y))): (2.83)
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Monotonicity of step.

Theorem 2.4. For all nf 2 Name ! IOF and all �a 2 interp(Con), if for all x 2 Name,

nf (x) is monotonic with respect to Var(x) and �a, then step(nf ) is monotonic with respect

to ��a
Run .

Proof : Assume r1 �
�a
Run r2. Using monotonicity of nf (x), then expanding the de�nition of

��c;Var(x)
OutHist and recognizing that step(nf )(r)(y)(x) = nf (x)(r(x))(y), we have

(8�c 2 Interp(�a) : (8x 2 Name : (8y 2 Name :

step(nf )(r1)(y)(x) �
�c;Var(x)
POSet(L) step(nf )(r2)(y)(x))));

which is equivalent to step(nf )(r1) �
�a
Run step(nf )(r2).

Semantic Ordering vs. Syntactic Ordering. To obtain the most general orderings on

histories, we have de�ned the orderings directly in terms of the semantics. A more \syntac-

tic" ordering might be more convenient for verifying monotonicity of particular functions.

However, such characterizations are more restrictive, hence not as widely applicable. For

example, it seems di�cult to formulate a general \syntactic" ordering with respect to which

the input-output functions used in analysis of reliable broadcast in Chapter 4 are monotonic,

because they wouldn't be monotonic if max were replaced with min in their de�nitions.

2.5.2 The First Step

To show that the �rst application of step yields a larger run, i.e., that?Run �
�a
Run step(nf )(?Run),

we need an additional assumption about input-output functions. This is necessary because

?Run is not a least element in hRun;�Runi. To see this, note that [[?Run ]]
�a
Run = ?CRun , so

any \meaningless" run (i.e., any run r such that [[r]]�aRun = ;) is less than ?Run .

As in the de�nition of the strict part of �POSet(L), it is necessary here to ensure that

semantically equivalent posets of ms-atoms are not substituted for each other. When we

start the �xed-point calculation with ?CRun represented by ?Run , the empty sequence of

messages on each edge is represented by the empty poset. If, after one step, some edges still

have the empty sequence of messages on them, then we require that those empty sequences

still be represented by the empty poset, rather than some semantically equivalent poset.

More precisely, if a process p has no initial outputs to a component y, then we require

that f(?Hist)(y) = h;; ;i. Formally, we augment the de�nition (2.68) of p <�c
IOF f with the

conjunct

(8y 2 Name : noInitialOut(p; y)) f(?Hist)(y) = h;; ;i); (2.84)
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where

noInitialOut(p; y)
�

= (8hdp; iri 2 p : ?CHist 2 ir ) dp(?CHist)(y) = "): (2.85)

This su�ces to establish the following theorem.

Theorem 2.5. For all np 2 Name ! Process, all nf 2 Name ! IOF , and all �a 2

interp(Con), if np <Sys hnf ; �ai, then ?Run �
�a
Run step(nf )(?Run).

Proof : Expanding the de�nitions of step(nf ) and �Run , we need to show that for all �c 2

Interp(Con; �a),

(8x 2 Name : (8y 2 Name : _ nf (x)(?Hist)(y) =Hist h;; ;i

_ ^ (8�v 2 Interp(Var) : (9�l 2 Interp(Var(x)) :

f"g �Set(Seq) [[nf (x)(?Hist)(y)]]
�c[(�v��l)
POSet(L) ))

^ (9�v 2 Interp(Var) :

[[nf (x)(?Hist)(y)]]
�c[�v
POSet(L) 6�Set(Seq) f"g)

(2.86)

Suppose p might initially send a message to y, i.e., there exists hdp; iri 2 p such that

?Hist 2 ir ^ dp(?CHist)(y) 6= ". Then by de�nition of <
�c;Var(x)
IOF ,

(9�l 2 Interp(Var(x)) : (8�e 2 Interp(Var nVar(x)) :

dp(?CHist)(y) 2 [[nf (x)(?Hist)(y)]]
�c[�e[�l
POSet(L))):

It is easy to check that this implies the second disjunct in (2.86). Otherwise|that is, if p

does not initially send a message to y|the antecedent in (2.84) holds, so the �rst disjunct

in (2.86) holds.

2.5.3 Finite Ascending Chains

We give below a simple set of conditions that ensures Run has no in�nite ascending chains.

We also give corresponding conditions on input-output functions that ensure the necessary

closure property, namely, that application of step(nf ) to a run satisfying those conditions

yields a run that also satis�es those conditions. If the input-output functions for a system

nf satisfy these corresponding conditions, then the �xed-point iteration for that system is

guaranteed to terminate.

The conditions on Run, and hence the corresponding conditions on the input-output

functions, are stronger than necessary. These conditions do hold for the input-output func-

tions used in the running example. For classes of systems for which these conditions are

too restrictive, more 
exible (but probably more complicated) conditions could be used to

establish termination of the �xed-point iteration (provided it does terminate).
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Restrictions on Runs. All ascending chains in Run are �nite i� all ascending chains in

POSet(L) are �nite, so we look at conditions for ensuring the latter. One set of su�cient

conditions is as follows. For each n > 0, let FAC n be the subset of POSet(L) that contains

an element hS;�Si i�

1. the size of S is at most n;

2. the size of each element of Mul and Val occurring in (a ms-atom in) S is at most n.

Note that the size of (say) a multiplicity is its size (cardinality) as a set.

Furthermore, we require that AVal have size at most n. These conditions together ensure

FAC n has only �nite ascending chains. Let Runn = Name ! (Name ! FAC n).

One might think that the following weaker condition on AVal is su�cient: require that

AVal have no in�nite ascending chains with respect to the ordering a1 �AVal a2
�

= [[a1]]AVal �

[[a2]]AVal . However, this condition is too weak; roughly, it deals only with singleton sets

of abstract values, not with larger sets of abstract values. For example, suppose AVal =

[i2Nfx
0
i ; x

1
i g, with the meanings de�ned by recursion on i: for � 2 f0; 1g, [[x�0 ]]AVal = f�g

and
hh
x�i+1

ii
AVal

= x�i [ fmax(x�i ) + 2;max(x�+1 mod 2
i g n fmax(x�i )g. It is easy to show that

AVal has no in�nite ascending chains but POSet(L) does.

Restrictions on Input-Output Functions. To ensure that

r 2 Runn ) step(nf )(r) 2 Runn;

it su�ces to require that each input-output function satisfy:

1. if the size of each input poset is at most n, then the size of each output poset is at

most n;

2. if the size of each Mul and Val in the input is at most n, then the size of each Mul

and Val in the output is at most n.

2.5.4 Run is not an !-cpo

Not all !-chains in Run have a least upper bound. To see this, consider �rst the !-

chain hhh[j�ifh1; val ; jig; ;iiii2N of POSet(L), where val is any value and we have taken

Tag to be N. This !-chain has no least upper bound, because hfh�; val ; tagig; ;i and

hfh?; val ; 0i; h�; val; 0ig; ;i are incomparable upper bounds of it. They are incomparable
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(with respect to ��c
POSet(L)) because they have the same meaning but are not \syntactically"

equal (i.e., are not related by =POSet(L)). By analogous reasoning, the !-chain

hhh(�e :Name � Name: [j�i fh1; val ; jig); ;iiii2N

of Run has no least upper bound.

Intuitively, POSet(L) and Run are not !-cpo's because posets of ms-atoms are not canon-

ical representations of sets of sequences of concrete values; in particular, there are di�erent

posets with the same meaning. Although simple examples like the one above are easily pro-

hibited, a general solution is complicated by abstract values whose meanings overlap and by

algebraic identities among constants.

2.6 Sanity Conditions for ms-atoms

The de�nitions in Section 2.2 could be augmented with numerous sanity conditions. For

example, we could associate an arity with each symbol, and require that all interpretations

assign to each symbol a function of appropriate arity. We could also introduce a type system

to ensure statically that functions are applied only to values in their domain. Although it

is easy to formulate conditions of this nature that ensure that each ms-atom in isolation is

meaningful (i.e., represents some set of messages), it is di�cult to �nd equally powerful sanity

conditions on sets of ms-atoms, because ensuring that a set of ms-atoms represents some set

of messages requires checking satis�ability of the constraints implied by the symbolic values.

Such checks would be feasible only if the framework were specialized to speci�c abstract

values and to constants with speci�c interpretations. Since these sanity conditions are not

needed to ensure soundness of our analysis, we omit them. Constructing specialized versions

of the framework for speci�c application areas may be worthwhile, since it would facilitate use

of the framework for synthesis of fault-tolerant systems, by helping ensure that re�nement

does not lead to an unimplementable design.

To illustrate the di�culty of ensuring that a set of ms-atoms is meaningful, we consider

the set of ms-atoms fX : R+; X+1 : R�g, where the constants + and 1 have their usual

interpretation. Note that the interpretation �c(+) of + as a constant symbol is distinct

from its meaning [[+]]AVal as an abstract value. It should be clear that no set of messages

is represented by this set of ms-atoms, because there is no value for X that satis�es all the

constraints. Using the semantics in Section 2.4.1 and the interpretation of R� and R+ in

Section 2.2.2, this is equivalent to the claim that there is no real number x such that x � 0
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and x + 1 � 0. It follows, again according to the semantics in Section 2.4.1, that an input-

output function that returns such ms-atoms in its output does not represent any process.

Since soundness of the analysis is a meaningful issue only for input-output functions that do

represent processes, omitting these sanity conditions does not cause unsoundness.



Chapter 3

Analyzing Systems that Fail

This chapter describes two methods for doing fault-tolerance analysis. The �rst, presented

in Section 3.1, extends the framework introduced in Chapter 2 to specify how a component

behaves when it fails. Some of the limitations of this approach are discussed in Section 3.2.

The remainder of the chapter then describes an extension to this framework that over-

comes these limitations. We increase the expressiveness of speci�cations in order to capture

non-trivial relationships between values in the failure-free and faulty executions. The e�ects

of failures are represented explicitly as changes (or perturbations) to failure-free behavior.

Section 3.3 extends the concrete model to capture correlations between a component's failure-

free and faulty behaviors. Sections 3.4 and 3.5 then extend the representations of runs and

components, respectively, in the abstract system model.

3.1 Fault-Tolerance Analysis Without Perturbations

Any form of fault-tolerance analysis will require descriptions of possible component failures

and fault-tolerance requirements. For our method, these are dealt with in Sections 3.1.1

and 3.1.2, respectively. Section 3.1.3 illustrates these de�nitions using the running example

introduced in Chapter 2.

3.1.1 Behavior of Failure-Prone Systems

A component's behavior depends on what failures it can su�er. This dependency can be

re
ected by parameterizing each component by its possible failures. Let Fail be the set of

all failures of interest, with distinguished element OK 2 Fail representing absence of failure.

A process is represented by a function p whose domain is the set of possible failures of this

49
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process and such that, for each fail 2 dom(p), p(fail) describes the component's behavior

when that failure is present. This parameterization is used at the concrete and abstract

levels; thus, we have

ProcessF
�

= fp 2 Fail * Process j OK 2 dom(p)g (3.1)

IOFF
�

= ff 2 Fail * IOF j OK 2 dom(f)g (3.2)

For example, we use crash 2 Fail to indicate that a component crashes at some unspeci�ed

time during a computation. Consider a process p 2 ProcessF subject only to crash failures,

i.e., dom(p) = fOK ; crashg. Suppose the output from p to q on a certain input history hin

is F (X)1, i.e., p(OK )(hin)(q) is the singleton poset containing the ms-atom F (X)1. Since

p might crash before or after sending this message, p(crash)(hin)(q) must represent both of

these possiblities; for example, p(crash)(hin)(q) might be the singleton poset containing the

ms-atom F (X)?. Note that in our terminology, a failure|that is, an element of Fail , such

as crash|is not itself an event that occurs during a computation; rather, a failure is simply

a token indicating what (if any) erroneous behavior occurs during a computation.

Recall that a failure scenario associates a failure with each component of a system. This

is true at the concrete and abstract levels. At both levels, a system is represented by a

function with signature Name ! (Fail ! S) for some S (S is either Process or IOF ). For

any function f with such a signature, the set of failure scenarios for f is

FS(f)
�

= ffs 2 Name ! Fail j (8x 2 Name : fs(x) 2 dom(f(x)))g: (3.3)

It is convenient to de�ne

fsOK
�

= (�x :Name: OK ): (3.4)

We say that a component x is non-faulty in failure scenario fs i� fs(x) = OK .

The concrete runs of a concrete system np 2 Name ! ProcessF for a given failure

scenario fs 2 FS (np) are given by

crunsF (np)(fs)
�

= cruns(�x :Name: np(x)(fs(x))): (3.5)

The behavior of an abstract system nf 2 Name ! IOFF for failure scenario fs 2 FS(nf ) is

represented by runF (nf )(fs) = lfp(stepF (nf ; fs)), if it exists, where

stepF (nf ; fs) = step(�x :Name: nf (x)(fs(x))): (3.6)

The meaning of IOFF is given by a slight extension of the de�nition (2.68) of <IOF . For

p 2 ProcessF and f 2 IOFF ,

p <�c;lvar
IOFF

f
�

= dom(p) = dom(f) ^ (8fail 2 dom(p) : p(fail) <�c;lvar
IOF f(fail)): (3.7)
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3.1.2 Fault-Tolerance Requirements

A fault-tolerance requirement imposes conditions on the system's possible behaviors in cer-

tain failure scenarios. Since a system's possible behaviors are approximated as a run, a

fault-tolerance requirement is expressed as a mapping from failure scenarios to predicates on

runs. We use a mapping, rather than just a single predicate on runs, so that requirements

involving graceful degradation, in which stronger requirements are associated with failure

scenarios involving fewer or less catastrophic failures, can be expressed. A predicate on runs

is a function with signature Run ! B, where the booleans are

B = ftrue; falseg: (3.8)

A system nf 2 Name ! IOFF satis�es a fault-tolerance requirement b 2 FS(nf )! (Run !

B) i� for each fs 2 FS(nf ), runF (nf )(fs) exists and satis�es b(fs). The only sanity require-

ment on b is that it be independent of tags, i.e.,

(8fs 2 dom(b) : (8r1; r2 2 Run : r1 =Run r2 ) b(fs)(r1) = b(fs)(r2))): (3.9)

Verifying that a concrete system satis�es its fault-tolerance requirement requires checking

that the processes are represented by the input-output functions of an abstract system nf ,

and for each failure scenario fs 2 FS(nf ), checking that runF (nf )(fs) exists and satis�es

b(fs).

3.1.3 Running Example

We develop concrete and abstract models of a two-stage replicated pipeline in which the

processing components Fi and Gi produce arbitrary values when faulty. These models build

on the de�nitions for the failure-free two-stage replicated pipeline in Sections 2.1.3 and 2.3.2.

Concrete System. Process CCompF (src; dest ; �) describes a processing component that

normally behaves the same as CComp(src; dest ; �), de�ned in (2.18), and that produces

arbitrary values when faulty.

CCompF (src; dest ; �) = (�fail :fOK ; valFailg:

if fail = OK then CComp(src; dest ; �)

else CValFail(src; dest ;CVal));

(3.10)
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where the process CValFail(src; dest ; S) sends an arbitrary value in S � CVal to dest 2

Name whenever it receives a value from src 2 Name:

CValFail(src; dest ; S) =
[

g2dests!Seq(S)

fhCValFailg(src; dest);CHistig (3.11)

CValFailg(src; dest) = (�h :CHist : (�x :Name: if x = dest then

g(x)[0::(jh(src)j � 1)]

else "));

(3.12)

where for any sequence � and any natural numbers i and j, �[i::j] is the contiguous subse-

quence of � from position i to position j (inclusive); as a special case, we de�ne �[0::(�1)] = ".

At this point, we won't consider failures of the source, voter, or actuator, so these com-

ponents correspond to the same processes as before, but with a trivial lambda abstraction

wrapped around; e.g., for the source,

CSrcF (dests) = (�fail :fOKg: CSrc(dests)): (3.13)

Concrete Runs. The concrete runs of this system can be computed using de�nition

(3.5) of crunsF . Let npreF be the obvious mapping from Name to ProcessF : npreF (S) =

CSrcF (fF1; F2; F3g), etc. As an example, consider the failure scenario fs1 in which only F1

fails. It is easy to check that

crunsF (np
re
F )(fs1) =

[
i2N;cv2CVal

cr reF (i; cv);

where cr reF (i; cv) 2 CRun is the same as cr re(i) except that the sequence of concrete values

from F1 to G1 is replaced with hhcvii, and the sequence from G1 to V is replaced with

hh�2(cv)ii.

Abstract System. The input-output functions representing the processors Fi and Gi are

appropriate instances of

CompF (src; dest ; op) = (�fail :fOK ; valFailg:

if fail = OK then Comp(src; dest ; op)

else ValFail(src; dest ;>V ));

(3.14)

where >V is de�ned by (2.52), and ValFail(src; dest ; aval) sends an arbitrary value repre-

sented by aval 2 AVal to dest 2 Name when it receives an input from src 2 Name. The
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de�nition of ValFail is similar in structure to de�nition (2.51) of Comp:

ValFail(src; dest ; aval) = (�h :Hist : (�x :Name:

if x = dest then arbval(aval)(h(src))

else h;; ;i));

(3.15)

where arbval(aval)(val) = fh ; avalig, and arbval(aval) is the pointwise extension of arbval(aval)

from values to posets of ms-atoms; as in the extension of apOp discussed below (2.53), re-

tagging may be needed to avoid collisions.

Again, since we won't consider for now failure of the source, voter, or actuator, the input-

output functions for those components are the same as in Section 2.3.2, but with a trivial

lambda abstraction wrapped around; e.g., for the source,

SrcF (dests) = (�fail :fOKg: Src(dests)): (3.16)

Fault-Tolerance Requirement. Suppose the fault-tolerance requirement for this system

is: if at most one component Fi or Gi fails, then the input to the actuator remains the same

as in the failure-free case. Thus, the fault-tolerance requirement is

bre = (�fs :FS (nf reF ): (�r :Run: jfx 2 Name j fs(x) 6= OKgj � 1) b0(fs; r))) (3.17)

where nf reF is the obvious mapping in Name ! IOFF for this example, and b0 is a predicate

that expresses that the inputs to the actuator are unchanged. Finding a suitable predicate

b0 is slightly tricky. A natural attempt is: b0(fs; r) holds i� the abstract inputs to the

actuator are the same as in the failure-free run, i.e., i� r(A) =Run runF (nf )(fsOK )(A). Note

that runF (nf )(fsOK )(A) is the run in Figure 2.2. Thus, more speci�cally, b0(fs; r) says that

the sole input ms-atom to the actuator is from V and has multiplicity of one and value

G(F (X)) :N.

This speci�cation is both unnecessarily restrictive and too weak. These problems both

result from the tacit assumption that the variable X represents the output of the source

in faulty runs. It is unnecessarily restrictive because in general, the input-output function

for the source could, as a result of inputs received from a faulty component, use a di�erent

variable to represent the source's output, even if the output itself is not really a�ected (at

the concrete level). For example, in Figure 1.1, faulty component F1 sends new inputs to

source S; those new inputs could cause the input-output function for S to use in its output a

di�erent variable than it would have used otherwise. The speci�cation is too weak because,

if the source does receive inputs from a faulty component, those inputs may cause the value
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represented by X to change, in which case this speci�cation does not ensure that the input

value of the actuator is unchanged.

To remedy the weakness of this speci�cation, we take b0(fs; r) to be the conjunction of

two conditions:

1. The poset runF (nf )(fsOK )(A) uniquely determines the inputs to the actuator as a

function of the interpretation of the variables that appear in it. More precisely, we

require that history runF (nf )(fsOK )(A) is unambiguous. A history is unambiguous if

each poset of ms-atoms in it is unambiguous. A poset of ms-atoms is unambiguous if

the ordering is total and each value and multiplicity in each ms-atom is unambiguous.

An element of Val (including elements of Mul) is unambiguous if it is a singleton set

fhs; aig and either s 2 SVal0 or j[[a]]AVal j = 1.

2. The concrete values represented by variables that appear in runF (nf )(fsOK )(A) are

una�ected by failures. More precisely, we require that in each failure scenario fs of

interest, the input history of the actuator A is structurally-una�ected. Structurally-

una�ected is the least predicate satisfying the following recursive de�nition. The input

history of component x of system nf in failure scenario fs is structurally-una�ected

if runF (nf )(fs)(x) =Run runF (nf )(fsOK )(x) and, for each variable Y that appears in

runF (nf )(fs)(x), Y is local to a non-faulty component whose inputs are unambiguous

and structurally-una�ected.

We illustrate these two concepts with some examples. First, we illustrate \unambiguous".

Let � be an interpretation of variables, i.e., � 2 Interp(Var). The value fX : N; Y : Ng

is ambiguous because it can represent either �(X) or �(Y ). On the other hand, the value

X : N (note that we have elided the curly braces around a singleton value, as per the

notational conventions on page 23) is unambiguous, because for a given interpretation �, it

can represent only one �xed concrete value, namely, �(X). The poset hf`0; `1g; ;i, where

`0 = X :N and `1 = X :N (note that we have elided the multiplicity (of one) and the tag (of

zero), as per the notational conventions on page 26), is ambiguous, because it can represent

either hh�(X); �(Y )ii or hh�(Y ); �(X)ii. On the other hand, the poset hf`0; `1g; fh`0; `1igi is

unambiguous, because it can represent only hh�(X); �(Y )ii.

We illustrate \structurally-una�ected" using Figure 2.3 (page 26), which shows the be-

havior of a two-stage replicated pipeline when component F1 su�ers a Byzantine failure.

The input history of source S is not structurally-una�ected, because it is not the same as

the input history of the source in failure scenario fsOK (shown in Figure 2.2). Informally,
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this re
ects the fact that the inputs of S are potentially a�ected by the failure of F1. Since

variable X is local to S, the valued represented by X may depend on the inputs of S. Thus,

the value of X is potentially a�ected by the failure of F1. Since X appears in the input

history of component G2, the input to G2 is also potentially a�ected by this failure. This

explains informally why the input history of G2 in Figure 2.3 is not structurally-una�ected.

The introduction of explicit perturbations in Section 3.4 is motived in part by the awk-

wardness of this speci�cation and the concomitant di�culty of being sure that it has the

intended meaning. In the perturbational framework, the requirement that inputs to the

actuator are unchanged can be expressed concisely as the property that the perturbations

associated with those inputs equal the \identity" perturbation, which denotes unchangedness

(details are in Section 3.5.1).

The reader might wonder whether a history containing unambigous posets should be con-

sidered unambiguous, since in a sense, such a history does not uniquely determine the inputs

to a component as a function of the interpretation of the variables in the history|speci�cally,

the history says nothing about the ordering between inputs from di�erent senders. This is

true, but it is not cause for concern, because in our abstract system models, orderings between

inputs from di�erent senders are always ignored. For example, suppose the fault-tolerance

requirement for some system is that the inputs to a certain component are una�ected by

failures. Consider the input histories of that component in the runs computed for failure

scenario fsOK and for some other failure scenario. Suppose these input histories are equal,

unambiguous, and structurally-una�ected. These input histories may still represent mul-

tiple interleavings of concrete inputs from di�erent senders. Since this \ambiguity" exists

independently of whether component failures are being considered, it has no impact on fault-

tolerance analysis and therefore can be ignored in our de�nition of \unambiguous". In terms

of our example, since each interleaving of concrete inputs represented by the input histories

is a possible input to the component in the absence of failures, each of these interleavings

must also be an acceptable input to the component in the presence of failures.

With the input-output functions and fault-tolerance requirement just given, we can check

whether the system satis�es its fault-tolerance requirement by computing, for each failure sce-

nario fs 2 FS (nf reF ), the �xed-point r = lfp(stepF (nf
re
F )(fs)) and checking whether bre(fs)(r)

is true.1 The outcome in this case is a�rmative. Of course, if it is not already established

that the input-output functions represent the appropriate processes, this must be checked

1An obvious optimization, based on de�nition (3.17) of bre , is to compute the �xed-point only for failure
scenarios in which at most one component is faulty.
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as well. Neither of these two obligations involves verifying properties of the potentially

complicated functions computed by the two stages of the pipeline; for example, verifying

that CCompF is represented by CompF requires little more than checking that CCompF is

deterministic and stateless. Thus, the abstractions introduced so far do allow separation of

concerns in this example.

3.2 Motivation for Changes

This section discusses some limitations of the analysis method just described.

3.2.1 Expressiveness

In systems where the appropriate input histories are unambiguous and structurally-una�ected,

a predicate in the style of (3.17) seems to capture (albeit awkwardly) the intended meaning,

i.e., that the inputs to the actuator are una�ected by failures. However, even when the sys-

tem is fault-tolerant, using input-output functions that make the appropriate input histories

unambiguous might be awkward, and|worse|the appropriate input histories might not be

structurally-una�ected. We discuss these two issues in turn.

Unambiguous

For concrete systems comprising only determinate components, it is always possible to con-

struct an abstract model of the system such that the input-output functions produce only

unambiguous ms-atoms. Roughly, this can be done by introducing constant symbols for

all of the functions computed by the components, including boolean functions used in the

guards of conditionals and loops, as well as functions used to compute output values. For ex-

ample, consider a process that sends �(x) to A1 if the input value x satis�es some condition,

and sends �(x) to A2 otherwise. An input-output function representing this process might

produce on input X an output history in which the messages sent to A1 are represented by

F (X)M1(X):? and the messages sent to A2 are represented by F (X)M2(X):?. This representa-

tion is unambiguous. Note that M1 and M2 represent the predicate in the conditional, and

F represents �. If we \simpli�ed" the input-output function by omitting (say) M1, then the

output to A1 would be simply F (X)?, which is ambiguous.

Abstract systems with unambiguous posets can be constructed even if the system contains

non-determinate components. This requires introducing local variables to represent explicitly

all choices made by the components. For example, consider a process �rst that forwards
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its �rst input to A. Suppose �rst receives X1 from S1 and X2 from S2. A natural but

ambiguous representation of its output to A is the poset hfh1; fF (X1); F (X2)g; 0ig; ;i. One

unambiguous representation is the poset hf`1; `2g; fh`1; `2igi, where `i = F (X1)
Yi:?. Note

that Y1 and Y2 represent the outcome of the non-determinate choice, and �= fY1; Y2g. The

same technique of introducing local variables applies to internal non-determinism as well as

non-strictness.

In summary, constructing input-output functions that produce unambiguous outputs

sometimes requires introducing additional symbols in their outputs. Furthermore, the out-

puts of an input-output function often contain the symbols that appear in its inputs, so when

computing the run for a system, the symbols introduced in the outputs of one input-output

function are often propagated by other input-output functions. Thus, a symbol introduced

to make an output unambiguous may eventually appear in many ms-atoms in a run. In-

troducing and propagating these symbols makes computation of runs more expensive and

clutters the runs, making them harder to read (reading runs is sometimes useful, e.g., to

see why a system does not satisfy its fault-tolerance requirement). Since often we care only

about the sensitivity of values to changes caused by failures, a more concise representation

can be achieved by specifying this information directly, rather than encoding it in additional

symbols.

Structurally-Una�ected

We give two examples of concrete systems for which it is impossible to �nd input-output

functions such that the input histories of the acutuators are structurally-una�ected. Roughly

speaking, such input-output functions do not exist if non-determinate components see any

e�ects of failures. Both examples can be analyzed using the perturbational framework, which

is described in Sections 3.4 and 3.5.

Impossibility Example 1. Consider a system comprising a source S, processing com-

ponents F1{F3 that perform some triplicated computation, a voter V , an unreplicated pro-

cessing component G, which is assumed not to fail, and an actuator A. The output of the

voter is sent to both A and G, and the output of G is sent to A. The failure-free behavior

of the system is represented by the run in Figure 3.1. Variable Y is local to G, allowing

for some non-determinacy or non-strictness of the component. Of course, the physical com-

ponent being modeled by G may really be determinate but with behavior that depends on

aspects of the system that have been abstracted from, such as timing conditions, load, or
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A

G

X :N

X :N

X :N
F (X) :N

F (X) :N

F1

F2

F3

VS

G(F (X); Y ) :N

F (X) :N

F (X) :NF (X) :N

Figure 3.1: Impossibility example 1: failure-free behavior.

physical environment. We model such components as being non-determinate, and we use

local variables to represent the values they produce.

Consider a failure scenario in which F1 su�ers a failure that causes it to send an arbitrary

value to the voter and to G. The behavior of the system in that case is represented by the

run in Figure 3.2. As in Figure 1.1, faulty components are distinguished in �gures by dots on

their circumference. Note that the input history of A is not structurally-una�ected, because

A

G

X :N

X :N

X :N
F (X) :N

F (X) :N

F1

F2

F3

VS

G(F (X); Y ) :N

F (X) :N

F (X) :N

>V

>V

Figure 3.2: Impossibility example 1: faulty run.

it contains variable Y , which is local to G, and the inputs to G have changed. In particular,

if the value represented by Y can be a�ected by the arbitrary input to G from F1, then the

system is not fault-tolerant; if it cannot be a�ected (e.g., because G ignores inputs from all

processes except V ), then the system is fault-tolerant. There is no way to express in this

framework whether or not the value of Y is sensitive to the new input, because there is

no way to express correlations between a component's inputs and non-deterministic choices

made by that component.
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Impossibility Example 2. The above example involves a failure that causes a message

to be sent between components that don't communicate in failure-free executions. This next

example does not involve such communication. Consider a system with a source S that

sends values X1 and X2 along separate channels C1 and C2, respectively, to a component

G, which, for each i, processes values received from Ci and sends the results to actuator

Ai. Note that component G happens to be non-deterministic, as in the previous example;

variables Y1 and Y2 are local to G. The failure-free behavior of the system is represented by

the run in Figure 3.3.

C1

C2

S

A2

A1

G

X1 :N

X2 :N

X1 :N

X2 :N
G(X2; Y2) :N

G(X1; Y1) :N

Figure 3.3: Impossibility example 2: failure-free behavior.

Now, suppose each channel might fail, causing the channel to corrupt transmitted values.

The fault-tolerance requirement is that if C1 fails, then the input of A2 is una�ected, and

likewise for C2 and A1. The run shown in Figure 3.4 represents the behavior of the system

when C1 fails. Note that the input history of A2 is not structurally-una�ected, because it

C1

C2

S

A2

A1

G

X1 :N

X2 :N

>V

X2 :N
G(X2; Y2) :N

>V

Figure 3.4: Impossibility example 2: faulty run.

contains variable Y2, which is local to G, and the inputs to G have changed. If G processes
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inputs from C1 and C2 independently, then the value of Y2 is una�ected by the faulty input

from C1 (and likewise for Y1 and C2), and the system is fault-tolerant; otherwise, it is not.

However, in the framework of Section 3.1, there is no way to indicate whether or not the

value of Y2 is a�ected by the faulty input.

Incidentally, this example can also be used to illustrate that the condition

runF (nf )(fs)(A2) = run(nf )(fsOK )(A2)

is unnecessarily restrictive: when the input-output function for G sees the faulty value

from C1, it could use Y1 instead of Y2 in its output to A2, even if the represented value is

unchanged. In that case, runF (nf )(fs)(A2) 6= run(nf )(fsOK )(A2), so the abstract input to

A2 is not structurally-una�ected.

3.2.2 Non-Trivial Relationships between Original and Perturbed

Values

We now consider a di�erent axis along which the method described in section 3.1 has too

limited expressiveness. If only failures that corrupt values arbitrarily are considered, as in

all of the above examples, then the corresponding perturbations are either \unchanged" or

\arbitrarily changed". This single bit of information can be encoded in symbolic values,

by using the same or di�erent variable names, respectively, to represent those values. The

method described in Section 3.1 uses such an encoding. However, non-trivial relationships

between values in the failure-free and faulty computations cannot be expressed with that

method. We give two examples that involve such relationships.

Example 1: ECC. Error-correcting codes (ECCs) are widely used when transmitting data

over unreliable channels or storing data on unreliable media. Our goal in this example is to

characterize abstractly the fault-tolerance provided by an ECC, so that we can analyze larger

systems that use ECCs together with other fault-tolerance mechanisms. To illustrate the

importance of explicit perturbations for this purpose, we consider a simple system comprising

only a source S, an encoder E, an unreliable channel C, a decoder D, and a receiver R.

Constant function F represents the ECC function. The failure-free behavior of the system is

represented by the run in Figure 3.5. The abstract value W is a set of bit-vectors (\words").

Suppose the channel may fail by corrupting at most k bits of the transmitted value, and

that a k-bit ECC is used. The fault-tolerance property of a k-bit ECC is: if the input value



61

F (X) :W
S D

F (X) :W
E C R

X :W X :W

Figure 3.5: Failure-free behavior of system with ECC.

to the decoder di�ers in at most k bits from the input value to the encoder, then the decoder

outputs the value given to the encoder. The fault-tolerance requirement for this system is

that the input to receiver R is una�ected by failure of channel C.

To analyze this system, we need to �nd an input-output function for channel C that

expresses that at most k bits are corrupted in each output. For concreteness, consider what

the output of that input-output function should be on an input Y . The most accurate

symbolic value is something like corrupt(Y; Z), where Z is a local variable of the channel

(note that the faulty channel is non-deterministic). We would like the abstract value in the

output of C to denote the set of words that di�er from Y in at most k bits; if this set cannot

be expressed, then we will not be able to conclude that the decoder outputs the original

value Y .

Indeed, this set cannot be expressed as an abstract value in the framework of Section

3.1, since it would require an abstract value whose meaning depends on the interpretation

of a variable (namely, Y ). However, this set can be expressed directly in the perturbational

framework that will be introduced in Section 3.4.

The perturbational framework represents one approach to dealing with this and similar

systems. An alternative approach is to extend the de�nition of abstract values to allow

abstract values whose meanings depend on the interpretation of symbolic values. Such

abstract values are considered in Chapter 5.

Example 2: Median. Non-trivial relationships between original and perturbed values

also arise in replicated systems in which di�erent replicas produce approximately equal (but

not necessarily identical) values. For example, consider a system with replicated sensors

that, when non-faulty, produce values that are within " of some physical quantity. Sup-

pose sensors fail by producing arbitrary values. We model this system using a component

E, representing the environment, that sends the actual value X of the measured physical

quantity to components Si, representing the sensors. We take the failure-free behavior of

the system to correspond to the ideal case in which each sensor outputs (actual value) X

to component M . Component M sends the median of its inputs to component F , which
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computes some control function and sends the result to an actuator A. The behavior of this

system is represented by the run in Figure 3.6.

X :N

X :N

X :N
X :N

S1

S2

S3

E

X :N

M F A
X :N X :N F (X) :N

Figure 3.6: Idealized behavior of system with median.

Consider failure scenarios in which a majority of the sensors are non-faulty and produce

values within " of their input value X, but a minority fail by producing arbitrary values. It

is natural to model both of these deviations from the ideal behavior as perturbations. The

analysis would then be based on how the median propagates perturbations: if all the inputs

are originally all equal (to X), and a majority of the inputs change by at most ", then the

output changes by at most ". However, this analysis requires the ability to express that the

perturbed inputs to M are within " of (the concrete value represented by the variable) X.

As in the previous example, there is no way to express this set in the framework of Section

3.1.

3.3 Concrete Model with Failures and Correlations

This section describes the concrete model that is later used in Section 3.5.2 to give a semantics

for our perturbational framework. To see why representation (3.1) of processes is inadequate

for this purpose, consider a component that non-deterministically selects and outputs a single

number. Suppose this component can fail only by crashing. Thus, at worst a failure causes

the component to output nothing; a failure cannot cause the component to output a di�erent

value than in the failure-free computation. De�ning a process p 2 ProcessF that describes

this component and re
ects this fact is problematic. The root of the problem is that the

de�nition of ProcessF forces one to describe completely separately the possible behaviors in

the cases fail = OK and fail = crash. Recall that the interpretation of fail = crash is that

a crash occurs at some unspeci�ed time during a computation; thus, the possible behaviors
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of p(crash) are to: (1) non-deterministically select and output any number and then crash,

or (2) crash (before doing anything else) and output nothing.

If one tries to determine solely from information in p how the component's behavior might

change as a consequence of a crash failure, in the absence of information about correlations

between the behaviors in p(OK ) and p(crash), the only safe (conservative) assumption is that

each possible behavior of p(OK ) may be changed by a crash into any possible behavior of

p(crash). With this conservative approximation, it would appear that a crash could change

the value output by p, while in fact, it cannot.

The root of the innacuracy is that elements of ProcessF do not describe correlations

between the possible behaviors of a component in the presence and absence of failures.

Continuing the above example, we would like to express that a behavior in which the process

outputs a number n is changed by occurrence of a crash only into: (1) a behavior in which

the process outputs n and then crashes, or (2) a behavior in which the process crashes (before

doing anything else) and outputs nothing. So, in this example, the behavior in which the

non-faulty process outputs n is related (by a crash) to the behaviors in which the faulty

process outputs n or outputs nothing but is not related to the behavior in which the faulty

process outputs n0, where n0 6= n.

To re
ect such correlations, we now model a process as a function of type Fail *

Set(IRProcess � IRProcess). The interpretation of hirp; irp 0i 2 p(fail) is that the process

can behave like irp in the absence of failures, and that failure fail can cause p's behavior to

change from that of irp to that of irp 0. We impose two sanity conditions. The �rst condition,

origIndepC , requires that the set of failure-free behaviors of the process be independent of

the failure:

origIndepC(p)
�

= (8fail1; fail2 2 dom(p) : �1(p(fail1)) = �1(p(fail2))); (3.18)

where �1 is the pointwise extension of �1 from tuples to sets of tuples.

An input to a pair hirp; irp 0i 2 p(fail) is a pair h�; �0i of concrete histories, where � is the

input to irp in a failure-free execution of the system, and �0 is the input to irp 0 in a faulty

execution. A pair hirp; irp0i 2 p(fail) of input-restricted processes is enabled only if both

processes are enabled on their respective inputs; this convention is re
ected in the de�nition

of crunsFC below. Thus, to ensure that the set of failure-free behaviors is independent of the

failure-mode, we must require that enabledness of each input-restricted process in �1(p(fail)))

is independent of the component's inputs in the faulty computation. This is ensured by the
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second sanity condition, consistent , de�ned by

consistent(p)
�

= (8fail 2 dom(p) : (8h�; �0i 2 Chain(CHist)� Chain(CHist) :

(8irp 2 �1(p(fail)) : enabled(irp; �)) (9irp 0 2 IRProcess :

hirp; irp 0i 2 p(fail) ^ enabled(irp 0; �0))))):

(3.19)

Thus, processes are elements of

ProcessFC
�

= fp 2 Fail * Set(IRProcess � IRProcess) j ^ origIndepC(p)

^ consistent(p)g:

(3.20)

The possible behaviors of a concrete system np 2 Name ! ProcessFC in failure scenario

fs 2 FS(np) are represented by a set crunsFC (np)(fs) � CRun �CRun. The interpretation

of hcr ; cr 0i 2 crunsFC (np)(fs) is that cr is a possible failure-free run of the system and that

the failures in fs can cause the system's behavior to change from cr to cr 0. Formally,

crunsFC (np)(fs)
�

= fhcr1; cr2i 2 CRun � CRun j

(9h 2 Name ! IRProcess � IRProcess : (8x 2 Name :

^ h(x) 2 np(x)(fs)

^ (8� 2 f1; 2g : cr� 2 cruns(�x :Name: f��(h(x))g))g:

(3.21)

The set of failure-free runs of the system is given by �1(crunsFC (np)(fs)). Conditions

origIndepC and consistent together ensure that the set of failure-free runs is independent of

the failure scenario:

(8np 2 Name ! ProcessFC : (8fs1; fs2 2 FS (np) :

�1(crunsFC (np)(fs1)) = �1(crunsFC (np)(fs2)))):
(3.22)

3.3.1 Running Example

De�nitions of CSrcFC , CVoterFC , and CActFC . We do not consider failures of the source

S, voter V , or actuator A, so the elements of ProcessFC that describe those components are

closely related to the processes CSrc;CVoter ;CAct 2 Process de�ned in Section 2.1.3. The

function nonfaultyFC 2 Process ! ProcessFC converts an element of Process into a failure-

free element of ProcessFC :

nonfaultyFC (p)
�

= (�fail :fOKg:
[

irp2p

fhirp; irpig): (3.23)
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So, for dests; srcs 2 Set(Name) and dest 2 Name,

CSrcFC (dests) = nonfaultyFC (CSrc(dests)) (3.24)

CVoterFC (srcs; dest) = nonfaultyFC (CVoter(srcs; dest)) (3.25)

CActFC = nonfaultyFC (CAct); (3.26)

(3.27)

De�nition of CCompFC . For processors F1{F3 and G1{G3, we assume the same failure

modes as in Section 3.1.3. These components are represented by appropriate instances of

CCompFC , where for src; dest 2 Name and � 2 N! N,

CCompFC (src; dest ; �) = (�fail :fOK ; valFailg:

if fail = OK then

CComp(src; dest ; �)� CComp(src; dest ; �)

else CComp(src; dest ; �)� CValFail(CVal ; fdestg));

(3.28)

where CComp and CValFail are de�ned by (2.18) and (3.11), respectively. The clause for

fail = OK has been simpli�ed using the fact that CComp(src; dest ; �) is a singleton set, so

there is no need to explicitly restrict to pairs hcr ; cr 0i such that cr = cr 0.

The concrete runs of this system can be computed using crunsFC . Let npreFC be the

obvious mapping from Name to ProcessFC : np
re
FC (S) = CSrcFC (fF1; F2; F3g), etc. As before,

let fs1 be the failure scenario in which only F1 fails. It is easy to check that

crunsFC (np
re
FC )(fsOK ) =

[
i2N

hcr re(i); cr re(i)i

crunsFC (np
re
FC )(fs1) =

[
i2N;cv2CVal

hcr re(i); cr reF (i; cv)i:

3.4 Perturbational Framework: Representation of

Runs

The set of possible behaviors of a system in a particular failure-scenario is represented by

a single run. That run represents the system's failure-free behaviors as well as its possible

behaviors in the given failure scenario. For example, in Figure 1.1, the failure-free behavior

is described by the original parts of the perturbed ms-atoms, while the new ms-atoms and

the perturbations in the perturbed ms-atoms together indicate how the failure-free behavior

is changed by failures.
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More generally, we introduce in this section a new set RunFC of runs extended with

perturbations and new ms-atoms. The meaning of an element of RunFC is a set of pairs of

concrete runs. For a run r computed for a system in failure scenario fs, the interpretation

of a pair hcr ; cr 0i in the meaning of r is that the system's behavior may change from cr to

cr 0 as a consequence of the failures in fs.

The de�nition of RunFC is analogous to de�nition (2.29) of Run, except that the under-

lying set of ms-atoms is extended with perturbations and new ms-atoms. The extended set

of ms-atoms is

LFC
�

= Lper [ Lnew ; (3.29)

where the sets Lper of perturbed ms-atoms and Lnew of new ms-atoms are de�ned by

Lper
�

= Mul � Val ��Mul ��Val � Tag (3.30)

Lnew
�

= Mul � Val � Tag; (3.31)

where �Mul and �Val are perturbations to the multiplicity and value, respectively. Pertur-

bations are represented similarly to values: an abstract part describing the possible changes

in value, and a symbolic part representing the perturbed value itself, i.e., the concrete value

in the faulty execution. Possible changes are described by binary relations over CVal ; if the

relation relates cv to cv 0, then the concrete value can change from cv to cv 0. Thus, possible

changes in value are represented by elements of a new set �AVal , and each element of �AVal

is interpreted as a binary relation over CVal . Formally, the interpretation of �AVal is given

by a function [[]]�AVal 2 �AVal ! Set(CVal � CVal).

For convenience, we assume that id 2 �AVal denotes the identity relation:

[[id ]]�AVal = fhx; x0i 2 CVal � CVal j x = x0g (3.32)

and that the \top" element >�V 2 �AVal denotes an arbitrary change:

[[>�V ]]�AVal = CVal � CVal : (3.33)

For any a 2 AVal , we de�ne a� 2 �AVal by

[[a�]]�AVal = [[a]]AVal � [[a]]AVal : (3.34)

The notational conventions introduced for Val are also used for �Val ; for example, we might

write >�V to denote fh ;>�V ig 2 �Val . In the ms-atom on edge hF1; G1i in Figure 1.1, the

perturbation >�V indicates that the data sent from F1 to G1 may change arbitrarily when

F1 fails.
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By analogy with de�nition (2.39) of AMul , we take �AMul to be an appropriate subset

of �AVal , namely, elements that relate natural numbers only to natural numbers:

�AMul = f�a 2 �AVal j (8hx; yi 2 [[�a]]�AVal : x 2 N) y 2 N)g: (3.35)

Here, �a is just a bound variable, like a in (2.39); we include � in the name only as a reminder

that this variable ranges over some set of perturbations. Note that for a 2 AMul , a� (de�ned

by (3.34)) is in �AMul . For example, in the ms-atom on edge hF1; G1i in Figure 1.1, the

superscript �� 2 �AMul indicates that the number of messages sent from F1 to G1 may

change arbitrarily when F1 fails.

The symbolic and abstract parts of a perturbation are aggregated in the same way as the

symbolic and abstract parts of a value: by analogy with de�nitions (2.31) and (2.38) of Val

and Mul , respectively, we de�ne

�Val
�

= P�n(SVal ��AVal) n f;g (3.36)

�Mul
�

= P�n(SVal ��AMul ) n f;g: (3.37)

Histories and runs are de�ned as before, except over LFC instead of L:

HistFC
�

= Name ! POSet(LFC ) (3.38)

RunFC
�

= Name ! HistFC : (3.39)

Notational Conventions. We sometimes write a ms-atom hmul ; val ; 0i 2 Lnew as valmul .

Similarly, we sometimes write a ms-atom hval ;mul ; �mul ; �val ; 0i 2 Lper as val
mul [�val �mul ].

We sometimes elide a change of h ; idi; for example, the ms-atom hval ;mul ; id ; id ; 0i 2 Lper

may be written valmul []. The empty brackets are retained to distinguish this from the

shorthand for ms-atoms in Lnew .

To illustrate these de�nitions, consider the perturbed ms-atom (X :N)�[(X : id)id ]. The

original part of this ms-atom represents an arbitrary sequence of messages all containing the

same number, represented by X. In the perturbed behavior, the same number of messages

are sent|because the change in multiplicity is the identity relation id|and the messages

all contain the original value|because the perturbation contains the same variable X, and

because the change in value is the identity relation id . In short, the messages represented by

this ms-atom are unchanged. Note that the ms-atom (X :N)�[id id ] has the same meaning.

As another example, consider the ms-atom X :N[Y :>�V ]. The original part of this ms-

atom represents a single message containing a number, represented by X. In the perturbed
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behavior, the multiplicity is unchanged|because the change in multiplicity is the identity

relation id , which is elided|but the value changes arbitrarily and is now represented by Y .

As a variation on this, consider the ms-atom X :N[X :>�V ]. Although the abstract part of

the perturbation to the value allows an arbitrary change, the symbolic part shows that the

value is still represented by X, so this ms-atom has the same meaning as X :N[X : id ].

As a �nal example, consider the ms-atom N[id ?�]. The original part of this ms-atom

represents a single message containing a number. When failures occur, the data in the

message is unchanged|because the change in value is the identity relation id|but the

number of messages might change to zero or remain at one, since [[?�]]�AVal contains the

pairs h1; 0i and h1; 1i. In short, there is a possibility that the original behavior is unchanged,

but there is also a possibility that no message is sent.

3.4.1 Running Example

The replicated pipeline's behavior in failure scenario fsOK (recall that fsOK is de�ned on

page 50) is represented by almost the same run as in Figure 2.2; the only di�erence is that

each ms-atom valmul is replaced with valmul []. In other words, all of the perturbations are

the identity perturbation.

The system's behavior in failure scenario fs1 is represented by the run in Figure 3.7.

S F2

F3

G2

G3

V A

G1F1

F (X) :N[]

F (X) :N[]
X :N[]

X :N[]

X :N[]

F (X) :N[>�V ]

G(F (X)) :N[>�V ]

G(F (X)) :N[]

G(F (X)) :N[]G(F (X)) :N[]

Figure 3.7: Run for running example when component F1 fails.

3.5 Perturbational Framework: Representation of

Components

Components are represented by input-output functions over the extended type LFC of ms-

atoms. In addition to the familiar sanity requirement of tag-uniformity, we impose a sanity
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requirement analogous to origIndepC in the de�nition (3.20) of processes. Thus,

IOFFC
�

= ff 2 Fail * (HistFC ! HistFC ) j ^ tagUniformFC (f)

^ origIndep(f)g;

(3.40)

where tagUniformFC (f) ensures that renaming of tags in the argument of f causes no change

in the output of f except possibly renaming of tags, and origIndep ensures that for all

fail 2 dom(f), the original part of f(fail)'s output (i.e., the part ignoring changes and new

outputs) depends only on the original part of f(fail)'s input. Note that no analogue of

consistent is needed, because input-output functions are not input-restricted: they are total

functions. Formally, the de�nition of tagUniformFC is de�nition (2.45) of tagUniform with

Hist replaced with HistFC :

tagUniformFC (f)
�

= (8in1; in2 2 HistFC : in1 =HistFC in2 ) f(in1) =HistFC f(in2)); (3.41)

where =HistFC denotes equality of histories up to renaming of tags; the de�nition of =HistFC

is similar to the de�nition of =Hist .

The de�nition of origIndep uses a function orig 2 Set(LFC ) ! Set(L) that projects the

original part of a set of ms-atoms. Roughly, orig(S) is obtained from S by eliminating the

perturbations from the perturbed ms-atoms and dropping the new ms-atoms entirely. The

only technicality is that retagging may be necessary to avoid \collisions". This is similar to

the retagging needed in the de�nition of apOp in Section 2.3.2. Here, a collision occurs if the

set S of ms-atoms contains two elements that di�er only in their perturbations; eliminating

the perturbations would cause those two elements to appear identical. To avoid this collision

of identities, we would change the tag in one of those ms-atoms. Using orig, the de�nition

of origIndep is straightforward:

origIndep(f)
�

= (8fail 2 dom(f) : (8in1; in2 2 HistFC :

orig(in1) =Hist orig(in2)

) orig(f(fail)(in1)) =Hist orig(f(fail)(in2))));

(3.42)

where orig 2 HistFC ! Hist is the extension of orig from Set(LFC ) to HistFC .

For future reference, we remark that there is a family of bijections naturally associated

with orig . In particular, for S 2 Set(LFC ), borig(S) is a bijection from S \ Lper to orig(S)

that preserves values and multiplicities; in other words, borig(S) satis�es

^ borig(S) 2 (S \ Lper )
biject
�! orig(S)

^ (8` 2 S \ Lper : �1(borig(S)(`)) = �1(`) ^ �2(borig(S)(`)) = �2(`));
(3.43)
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where for sets S and T , S
biject
�! T is the set of bijections from S to T . This family of bijections

will be convenient for formulating the semantics in Section 3.5.2.

The behavior of a system nf 2 Name ! ProcessFC is represented by the run runFC (nf )(fs) =

lfp(stepF (nf ; fs)), if it exists. The equality =RunFC on RunFC is the pointwise extension of

the equality =HistFC on HistFC . Thus, a �xed-point of stepF (nf ; fs) is an element r of RunFC

satisfying stepF (nf ; fs)(r) =RunFC r.

3.5.1 Running Example.

The fault-tolerance requirement for the replicated pipeline is the same as in Section 3.1.3.

In the perturbational model, the fault-tolerance requirement still has the form (3.17), but

b0 is de�ned in terms of perturbations. In particular, b0(fs; r) = unchanged(r(A)), where

the predicate unchanged on histories is the pointwise extension of the predicate unchanged

on posets of ms-atoms. Roughly, the predicate unchanged on posets of ms-atoms asserts

that the poset is totally-ordered and contains no new ms-atoms, and that the perturbations

to the value and multiplicity in each perturbed ms-atom in the history are unchanged. A

perturbation is unchanged if the abstract part of the perturbation is id and the symbolic

part of the perturbation does not \force" the value to change, i.e., the symbolic value either

contains a wildcard or contains all of the symbolic values in the original value. The condition

that the poset be totally ordered assures that messages occur in the same order in the original

and perturbed computations. Formally,

unchanged(hS;�i)
�

= ^ totalOrd(hS;�i)

^ (S \ Lnew ) = ;

^ (8hmul ; val ; �mul ; �val ; tagi 2 (S \ Lper ) :

unchangedVal(val ; �val) ^ unchangedVal(mul ; �mul))

(3.44)

where

totalOrd(hS;�i)
�

= (8x; y 2 S : x = y _ x � y _ y � x) (3.45)

and for val 2 Val and �val 2 �Val ,

unchangedVal(val ; �val)
�

= ^ �2(�val) = fidg

^ _ 2 �1(�val)

_ �1(val) � �1(�val):

(3.46)

The meaning of unchanged is discussed further in Section 3.5.2.
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De�nitions of SrcFC and ActFC . Source S ignores its inputs and doesn't fail, so the

input-output function for it is nearly the same as (2.50); the only modi�cation to the source's

outputs is that they now contain id , indicating that they are unchanged:

SrcFC (dests) = (�fail :fOKg: (�h :HistFC : (�x :Name:

if x 2 dests then hfh1; X :N; : id ; : id ; 0ig; ;i

else h;; ;i))):

(3.47)

Actuator A produces no outputs, so the input-output function for it is simply

ActFC = (�fail :fOKg: (�h :HistFC : (�x :Name: h;; ;i))): (3.48)

De�nition of CompFC . Processors F1{F3 and G1{G3 are represented by appropriate in-

stances of CompFC . Informally, for src; dest 2 Name and op 2 Sym, CompFC (src; dest ; op)

normally applies operator op to each input from src and sends the results to dest . If a \value

failure" occurs (i.e., fail = valFail), then the perturbations to those outputs are >�V .

The application of an operator to a perturbed or new value is handled by the function

apOpF . A \perturbed or new value" is represented by an element of (Val � �Val) [ Val ;

elements of Val � �Val correspond to values in perturbed ms-atoms, and elements of Val

to values in new ms-atoms. For op 2 Sym, aval 2 AVal , and x 2 Val [ Val � �Val ,

apOpF (OK )(op; aval)(x) is the result of applying the operator op to each symbolic value in

x, provided the associated abstract value is aval ; as in de�nition (2.53) of apOp, aval can be

thought of as representing the domain and range of op. Formally, apOpF (OK ) is de�ned by

apOpF (OK )(op; aval)(x)
�

= (3.49)

match x with

j hval ; �vali ! hapOp(op; aval)(val); apOp�(op; aval)(val ; �val)i

j val ! apOp(op; aval)(val)

where apOp(op; aval) is de�ned in (2.53), and apOp� is de�ned similarly by

apOp�(op; aval)(val ; �val) =
[

hs;�ai2�val

fif �2(val) = favalg ^ �a = id then

if s = then h ; idi else hop(s); idi

else h ;>�V ig:

(3.50)

Behavior of processors that su�er value failures is described using apOpF (valFail) rather

than apOpF (OK ). For op 2 Sym, aval 2 AVal , and x 2 Val [ (Val ��Val),

apOpF (valFail)(op; aval)(x)
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is the result of applying the operator op to each symbolic value in the \original part" of x,

(i.e., the �rst component of a perturbed value, and no part of a new value) to obtain the

original part of the output. The perturbation or new value in the output is simply \top",

representing arbitrary values. Formally,

apOpF (valFail)(op; aval)(x)
�

=match x with

j hval ; �vali ! hapOp(op; aval)(val); fh ;>�V igi

j val ! fh ;>V ig:

(3.51)

Given the de�nition of apOpF , the de�nition of CompFC is simple:

CompFC (src; dest ; op) = (�fail :fOK ; valFailg: (�h :HistFC : (�x :Name:

if x = dest then apOpF (fail)(op;N)(h(src))

else h;; ;i)));

(3.52)

where apOpF (fail)(op; aval) is the extension of apOpF (fail)(op; aval) to posets of ms-atoms:

the extension is done by letting apOpF operate on the value and perturbation in each per-

turbed ms-atom and on the value in each new ms-atom. Retagging may be necessary in the

extension to avoid \collisions".

De�nition of VoterFC . The voter is represented by an input-output function that tallies

the original ballots (i.e., ignoring changes and new ms-atoms) to obtain an original result

to, then tallies the changed and new ballots to obtain a perturbed result tp, then compares

these two results to determine the perturbation in its output. The function tally de�ned in

(2.56) is used in both cases to tally the ballots. Recall that the �rst argument of tally is a

function used to extract ballots from a poset of ms-atoms. Ballots based on the original parts

of the input ms-atoms are extracted with the function balloto = ballot � orig, where ballot

is de�ned in (2.55) and orig is de�ned following (3.42). Ballots re
ecting perturbations and

new ms-atoms in the input are extracted with the function ballotp de�ned in Figure 3.8. As

in de�nition (2.55) of ballot , we approximate rather than accumulate sets of possibilities in

the de�nition of ballotp.

The de�nition of VoterFC appears in Figure 3.9. If the input history contains no per-

turbed ms-atom from some component in src, then there is no point in tallying the original

ballots, so we simply let to equal ?. Similarly, if the input history contains no perturbed

or new ms-atom from some component in src, then there is no point in tallying the per-

turbed/new ballots, so we simply let tp equal ?. It follows from these comments (and the

fact that tally never returns ?) that if tp = ?, then to = ?; this justi�es the comment \this

can't happen" in the de�nition of VoterFC .
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ballotp(hS;�Si) =match S with

j fhmul ; val ; �mul ; �val ; tagig !

let mul 0 = if �2(�mul) = fidg then mul else fh ; �ig

in match �val with

j fs :�ag! if �2(val)=favalg ^ �a= id thenhmul 0; s :avali

else hmul 0; s :>V i

j ! (* approximate *)

hmul 0; :>V i

j fhmul ; val ; tagig !match val with

j fs :ag ! hmul ; s :ai

j ! (* approximate *)

hmul ; :>V i

j ! (* approximate *)

hf :�g; :>V i

Figure 3.8: De�nition of ballotp.
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VoterFC (srcs; dest ; aval) = (3.53)

(�fail :fOKg: (�h :HistFC : (�x :Name:

if x 6= dest then h;; ;i

else let to = if (9src 2 srcs : (�1(h(src)) \ Lper ) = ;) then ?

else tally(balloto; srcs; aval ; h)

in let tp = if (9src 2 srcs : �1(h(src)) = ;) then ?

else tally(ballotp; srcs; aval ; h)

in matchhto; tpi with

j h?;?i ! h;; ;i

j hhmul ; vali;?i ! (* this can't happen *)

h;; ;i

j h?; hmul ; valii ! hfhmul ; fvalg; 0ig; ;i

j hhmul ; vali; hmul 0; val 0ii !

let �val = if �1(val) = �1(val
0) ^ �1(val) 6= then h�1(val); idi

else h ;>�V i

in let �mul = if de�nite(mul) ^ de�nite(mul 0) then h ; idi else h ; ?�i

in hfhmul ; fvalg; f�mulg; f�valg; 0ig; ;i)));

Figure 3.9: De�nition of VoterFC .
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3.5.2 Semantics

Semantics of Posets of ms-atoms. The de�nition of [[]]POSet(LFC ) is a straightforward

extension of de�nition (2.65) of [[]]POSet(L). For � 2 interp(Sym),

[[hS;�i]]�POSet(LFC )
�

= f� 2 Seq(CVal)� Seq(CVal) j

(9g 2 dom(�)
onto
�! S \ Lper : (9g0 2 dom(�0)

onto
�! S :

compat�POSet(LFC )(S;�; �; �
0; g; g0)g;

(3.54)

where the correspondences g and g0 must satisfy conditions related to the original part of

S, the new part of S, the perturbations in S, and the ordering �; these four conditions are

formalized as the four conjuncts, respectively, in

compat�POSet(LFC )(S;�; �; �
0; g; g0)

�

= (3.55)

^ compat�POSet(L)(orig(S); borig(S)(� \(Lper � Lper )); �; borig(S) � g)

^ compat�POSet(L)(S \ Lnew ;� \(Lnew � Lnew); �
0; g0)

^ (8` 2 S \ Lper : ^ (8i 2 ginv(`) : (8i0 2 g0 inv(`) : compat��Val(�4(`); �[i]; �
0[i0])))

^ compat��Val(�3(`); jg
inv(`)j; jg0inv(`)j))

^ (8h`1; `2i 2�: g
0inv(`1) �Set(N) g

0inv(`2));

where borig(S) is de�ned by (3.43) and borig(S) is the pointwise extension of borig(S) from

S \ Lper to Order(S \ Lper ), and the predicate used in the third conjunct to check that the

perturbations in each ms-atom relate the original values in � to the perturbed values in �0 is

compat��Val(�val ; cv ; cv
0)

�

= (9hs; �ai 2 �val : ^ hcv ; cv 0i 2 [[�a]]�AVal

^ s = _ cv 0 = �(s));

(3.56)

where � is de�ned by (2.61). It is easy to check that [[]]POSet(LFC ) is independent of tags.

Semantics of Histories. The meaning of histories is a straightforward extension of the

meaning of posets of ms-atoms. For � 2 interp(Sym),

[[h]]�HistFC
�

= fhch; ch 0i 2 CHist � CHist j

(8x 2 Name : hch(x); ch 0(x)i 2 [[h(x)]]�POSet(LFC ))g:

(3.57)

Note that [[]]�HistFC is monotonic in �, i.e.,

(8�1; �2 2 interp(Sym) : (8h 2 HistFC :

�1 �interp �2 ) [[h]]�1HistFC � [[h]]�2HistFC ))):
(3.58)
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Semantics of Input-Output Functions. By analogy with de�nition (2.68) of <IOF , we

de�ne for p 2 ProcessFC , f 2 IOFFC , �c 2 Interp(Con), and lvar � Var ,

p <�c;lvar
IOFFC

f
�

= (3.59)

^ dom(p) = dom(f)

^ (8fail 2 dom(p) : (8hhdp; iri; hdp0; ir 0ii 2 p(fail) :

(9g 2 (CHist � CHist)!! interp(lvar) : (8�e 2 Interp(Var n lvar) :

(8in 2 HistFC : (8pch 2 ir � ir 0 : pch 2 [[in]]�c[�e[g(pch)HistFC

) hdp(�1(pch)); dp
0(�2(pch))i 2 [[f(fail)(in)]]�c[�e[g(pch)HistFC

)))))):

Semantics of Systems. For nf 2 Name ! ProcessFC and �a 2 interp(Con), the se-

mantics of the abstract system hnf ; �ai is given by <SysFC
, whose de�nition is the same as

de�nition (2.69) of <Sys , except with <IOF replaced with <IOFFC .

Semantics of Runs. By analogy with de�nition (2.71) of [[]]Run , we de�ne for �a 2

interp(Con),

[[r]]�aRunFC
�

= fhcr 1; cr2i 2 CRun � CRun j

(9�c 2 Interp(Con; �a) : (9�v 2 Interp(Var) :

(8x 2 Name : hcr1(x); cr2(x)i 2 [[r(x)]]�c[�vHistFC
)))g:

(3.60)

Semantics of unchanged. Recall that for h 2 HistFC , unchanged(h) means that the con-

crete behavior represented by h does not change, i.e., is the same in the failure-free and

faulty executions. This idea is formalized by the theorem

(8h 2 HistFC : (8� 2 interp(Sym) :

unchanged(h)) [[h]]�HistFC = [
�2[[orig(S)]]

�

Hist

fh�; �ig):
(3.61)

As mentioned in Section 3.1.3, unchanged says nothing about the relative order of messages

on di�erent channels; indeed, it couldn't possibly say anything about inter-channel orderings,

since HistFC and CHist do not.

3.5.3 Soundness

Soundness plays the same role for the perturbational framework as for the framework of

Chapter 2 (see the comments in the beginning of Section 2.4). The development here is

closely analogous to the development in Section 2.4.2.
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For convenience, we again consider only �nite runs. Let cruns�nFC (np)(fs) contain the

pairs of �nite runs in crunsFC (np)(fs). Soundness is established by the following theorem,

whose proof is almost identical to the proof of Theorem 2.2.

Theorem 3.1. For all np 2 Name ! ProcessFC , all nf 2 Name ! IOFFC , all �a 2

interp(Con), all fs 2 FS(np), and all ifp 2 N, if np <SysFC
hnf ; �ai, and if r = stepF (nf ; fs)

ifp (?Run)

is a �xed-point of stepF (nf ; fs), then cruns�nFC (np) � [[r]]�aRunFC .

Proof : Let �c 2 Interp(Con; �a) witness the existential quanti�cation in np(x) <SysFC

hnf ; �ai. Consider any fs 2 FS (np). The de�nition of <IOFFC ensures fs 2 FS(nf ). Con-

sider any pcr0 2 cruns�nFC (np). By de�nition (3.21) of crunsFC , there exists h 2 Name !

IRProcess such that

^ (8x 2 Name : h(x) 2 np(x)(fs(x)))

^ (8� 2 f1; 2g : ��(pcr 0) 2 cruns(�x :Name: f��(h(x))g)):

Let

pcr [i] = hstep(�1 � �1 � h)
i(?CRun); step(�1 � �2 � h)

i(?CRun)i

and r[i] = stepF (nf ; fs)
i(?Run). We show by induction that

(8i 2 N : (8x 2 Name : pcr [i](x) 2 [[r[i](x)]]�c[�v[i]HistFC
)); (3.62)

where pcr [i](x) denotes the pointwise application of pcr [i] to x, and

�v[i] = [x2Nameg(x)(pcr [i](x));

where for all x, g(x) 2 CHist � CHist ! interp(Var(x)) is a witness for the existential

quanti�cation in np(x) <
�c;Var(x)
IOF nf (x) when the universal quanti�cation over dom(p) is

instantiated with fs(x) and the universal quanti�cation over p(fail) is instantiated with

h(x).

Base Case. For i = 0, the claim is that (8x 2Name : ?CRun(x) 2 [[?Run(x)]]
�c[�v[0]
Hist ), which

follows easily from the de�nitions.

Step Case. Using the induction hypothesis and the de�nition (3.59) of <
�c;Var(x)
IOFFC

, then

simplifying using the de�nition (2.6) of step, we get

(8x 2 Name : pcr [i+ 1](x) 2 [[nf (x)(fs(x))(r[i](x))]]�c[�v[i]HistFC
): (3.63)
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Monotonicity of all the �1(�1(h(x))) and all the �1(�2(h(x))) imply

�1(pcr [i]) �CRun �1(pcr [i + 1]) ^ �2(pcr [i]) �CRun �2(pcr [i + 1]):

Monotonicity of all the g(x) then implies �v[i] �interp �v[i + 1]. So, by monotonicity of

[[]]�HistFC in � (from (3.58)), (3.63) still holds if �v[i] is replaced with �v[i + 1]. From the

resulting equation and de�nition (3.6) of stepF , we get (8x 2 Name : pcr [i + 1](x) 2

[[r[i+ 1](x)]]�c[�v[i+1]
HistFC

). This completes the proof of (3.62).

Finally, we show that (3.62) implies pcr 0 2 [[r]]�cRun . Since both runs in pcr0 are �nite,

there exists i0 2 N such that (8i � i0 : pcr0 = pcr [i]). The desired result is obtained by

instantiating the universal quanti�cation in (3.62) with i = max(ifp ; i0).

3.5.4 Termination of Fixed-Point Calculations

The development here is closely analogous to the development in Section 2.4.2.

Orderings. The orderings are de�ned in exactly the same way as in Chapter 2, except that

they are built on an ordering �Set(Seq2) on sets of pairs of sequences, instead of an ordering

�Set(Seq) on sets of sequences. Thus, the pre-order on posets of ms-atoms is

S1 �
�c;lvar
POSet(LFC ) S2

�

= (8�v 2 Interp(Var) : (9�l 2 Interp(lvar) :

[[S1]]
�c[�v
POSet(LFC ) �Set(Seq2) [[S2]]

�c[(�v��l)
POSet(LFC ))):

(3.64)

where �Set(Seq2) is de�ned by

S �Set(Seq2) S
0 �

= (8x 2 S1 : (9x
0 2 S2 : �1(x) �Seq �1(x

0) ^ �2(x) �Seq �2(x
0))): (3.65)

The de�nitions of ��c;lvar
POSet(LFC ), �

�c
InHistFC

, ��c
OutHistFC

, and ��a
RunFC

are exactly analogous to

(2.79), (2.80), (2.81), and (2.83), respectively, with the obvious substitutions: replace L

with LFC , Hist with HistFC , etc. The de�nition of monotonicity for elements of IOFFC is

obtained from the de�nition (2.82) of monotonicity for IOF by quantifying over failures and

applying the above substitutions; thus f 2 IOFFC is monotonic with respect to lvar � Var

and �a 2 interp(Con) i�

(8fail 2 dom(f) : (8�c 2 Interp(Con; �a) : (8h1 2 HistFC : (8h2 2 HistFC :

h1 �
�c
InHistFC

h2 ) f(fail)(h1) �
�c;lvar
OutHistFC

f(fail)(h2))))):
(3.66)
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Monotonicity of stepF . As in Section 2.5.1, monotonicity of the \step" function follows

from monotonicity of the input-output functions. This is expressed by the following theorem.

Theorem 3.2. For all nf 2 Name ! IOFFC and all �a 2 interp(Con), if for all x 2 Name,

nf (x) is monotonic with respect to Var(x) and �a, then for all fs 2 FS(nf ), stepF (nf ; fs) is

monotonic with respect to ��a
RunFC

.

The proof is almost identical to the proof of Theorem 2.4.

The First Step. As in Section 2.5.2, a conjunct must be added to the de�nition of input-

output functions to ensure that ?Run �
�a
RunFC

stepF (nf ; fs)(?Run). By analogy with (2.84),

the conjunct that must be added to de�nition (3.59) of p <�c
IOFFC

f is

(8fail 2 dom(p) : (8y 2 Name :

noInitialOutFC (p(fail); y)) f(fail)(?Hist)(y) = h;; ;i));
(3.67)

where

noInitialOutFC (p; y)
�

= (8hhdp; iri; hdp0; ir 0ii 2 p : ?CHist 2 ir ^ ?CHist 2 ir 0

) dp(?CHist)(y) = " ^ dp 0(?CHist)(y) = "):

(3.68)

This su�ces to establish the following theorem.

Theorem 3.3. For all np 2 Name ! ProcessFC , all nf 2 Name ! IOFFC , and all �a 2

interp(Con), if np <SysFC
hnf ; �ai, then for all fs 2 FS (nf ), ?Run �

�a
Run stepF (nf ; fs)(?Run).

The proof is similar to the proof of Theorem 2.5.

Finite Ascending Chains. The comments in Section 2.5.3 apply here as well. An ana-

logue of FAC n for the perturbational framework is obtained by adding the requirement that

�AVal have size at most n.



Chapter 4

Two Classic Problems in

Fault-Tolerance

We have presented two analysis frameworks: the non-perturbational framework in Section

3.1, and the perturbational framework in Sections 3.4 and 3.5. To illustrate the use of these

two frameworks, we apply each to one classic problem in fault-tolerance.

The non-perturbational framework is applied to a protocol for reliable broadcast that

tolerates patterns of crash failures that don't partition the network [HT94, section 6]. This

example demonstrates the power of symbolic multiplicities for e�cient analysis of systems

subject to crash failures. Showing that the protocol satis�es the basic requirements of va-

lidity, agreement and integrity [HT94, section 3] is straightforward, because these properties

depend mainly on equalities between multiplicities. Showing that the protocol also provides

FIFO message delivery requires analyzing inequalities between multiplicities. Invariants are

useful for this.

Next, the perturbational framework is applied to a protocol for Byzantine Agreement. A

seminal paper by Lamport, Shostak, and Pease de�nes the problem of Byzantine Agreement

and presents two solutions [LSP82]. We analyze the �rst of those, namely, the Oral Messages

algorithm.1 We use the perturbational framework for this problem, because the correctness

requirements are easily expressed in terms of acceptable changes.

One motivation for analyzing a Byzantine Agreement algorithm that has already been

proved correct [LM94] is to allow that algorithm to be used as a benchmark for comparison

of di�erent veri�cation methods. Also, analysis of a Byzantine Agreement algorithm could

1Their second solution, the Signed Messages algorithm, requires digital signatures and can only be ana-
lyzed using the techniques presented in Chapter 5.
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provide a starting point for analysis of more complicated systems, such as digital 
ight

control systems [DBC91], in which a Byzantine Agreement algorithm is only one of the

fault-tolerance mechanisms.

4.1 Reliable Broadcast

Section 4.1.1 introduces a reliable broadcast protocol and its speci�cation; both are adopted

from [HT94]. Section 4.1.2 discusses modeling of crash failures for this protocol and gives an

analysis of relationships between multiplicities. This discussion motivates the fault-tolerance

requirement in Section 4.1.3 and the de�nitions of the input-output functions in Section 4.1.4.

4.1.1 Reliable Broadcast Protocol

Consider a system with clients C1; : : : ;Cn and corresponding servers S1; : : : ; Sn. A function

nbrs 2 Name ! Set(Name) describes the connectivity of the network. We assume each

client can communicate directly only with the corresponding server, so nbrs(Ci) = fSig. A

server can communicate directly with its client and other of the servers, so nbrs(Si) satis�es

fCig � nbrs(Si) � fCig [ fS1; : : : ; Sng n fSig.

Informally, the reliable broadcast protocol in [HT94, section 6.3] is as follows. A client

Ci initiates a broadcast of a message by sending the message to its server Si. When a server

receives a message, it checks whether it has received that message before. If so, it ignores

the message; if not, it sends the message to all of its neighbors. When a client receives a

message from its server, we say it delivers that message.

Following [HT94, section 3.1], we assume:

Known-Sender: Each message contains the name of its sender.

Uniqueness: Clients send each message at most once. This is easily implemented

by including a unique identi�er, such as a sequence number or timestamp, in each

message.

The known-sender assumption is captured by having client x send messages with abstract

value MF (x) (mnemonic for \message from x"). The meaning of MF (x) depends on the

message format. For example, if messages are tuples containing the sender's name, a sequence

number that is an element of N, and data of type D, then

[[MF (x)]]AVal =
[

i2N;d2D

hx; i; di: (4.1)
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There are two approaches to modeling the second assumption: the unique identi�er can

be modeled explicitly or implicitly. As an example of explicit modeling, we could make (say)

sequence numbers explicit by using abstract values of the form MF 0(x; i), where

[[MF 0(x; i)]]AVal =
[
d2D

hx; i; di:

Modeling the unique identi�er implicitly is preferable because it yields a more general model:

it abstracts from particular schemes for generating unique identi�ers. The uniqueness as-

sumption is expressed directly by using a di�erent variable to represent each message and

asserting, as an invariant, that the values of these variables are distinct. For x 2 Name,

let VarM(x) � Var(x) be the variables used to represent messages broadcast by x. The

invariant is

IRB (x) = f� 2 interp(Var(x)) j let S = dom(�) \ VarM(x)

in (8v1 2 S : (8v2 2 S n fv1g : �(v1) 6= �(v2))))g:

(4.2)

For illustration, consider the system with n = 3 and with each server having the other

two servers as neighbors. Suppose client C1 broadcasts a single message X :MF (C1), and

the other clients broadcast no messages. Assuming the clients and servers run the protocol

sketched above, the run in Figure 4.1 represents the failure-free behavior of this system.

Since multiplicities play a central role in analysis of reliable broadcast, we do not elide any

multiplicities in �gures in Section 4.1.

Speci�cation. The de�ning properties of reliable broadcast are [HT94, section 3]:

Validity: If a client Ci broadcasts a message m and corresponding server Si is non-

faulty, then Ci eventually delivers m.

Integrity: For each message m 2 [[MF (x)]]AVal , each client having a non-faulty server

delivers m at most once and only if m was previously broadcast by x.

Agreement: If a client having a non-faulty server delivers a messagem, then all clients

of non-faulty servers eventually deliver m.

FIFO reliable broadcast must also satisfy

FIFO Order: If a client broadcasts a message m before it broadcasts a message m0,

then no client of a non-faulty server delivers m0 unless it has previously delivered m.
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Figure 4.1: Failure-free behavior of the reliable broadcast protocol.

These properties are required to hold in failure scenarios in which servers crash, provided

the network remains connected. The network is connected in failure scenario fs if for each

pair hx; yi of servers that are non-faulty in fs, there is a sequence � 2 Seq(Name) that starts

with x, ends with y, and satis�es

(8i 2 dom(�) n f0g : fs(�[i]) = OK ^ �[i] 2 nbrs(�[i� 1])): (4.3)

Section 4.1.3 formalizes this speci�cation in our framework.

4.1.2 Relationships Between Multiplicities

When analyzing systems that experience crash failures, there is a spectrum of alternatives for

the set Fail , corresponding to the inclusion of di�erent amounts of timing information. At

one end of the spectrum, the timing of the crash can be abstracted completely: crash 2 Fail

indicates that the component crashes at an unspeci�ed time during execution. To include

timing information, a family [ifcrashig of crash failures may be used, where crashi denotes

a crash that occurs at (logical) time i. For example, one might take crashi to denote a crash

that occurs after the component sends i messages. Or, if a synchronous system is being
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modeled using a distinguished value| called \tick"|to model the passage of time [Bro90,

BD92], one might take crashi to denote a crash that occurs after i ticks.

Abstracting from timing of failures reduces the number of failure scenarios that need to be

analyzed and thereby makes the analysis more e�cient. Thus, if the resulting approximations

are not too coarse (and if the system really is fault-tolerant), then the analysis based on

Fail = fOK ; crashg more e�ciently establishes that the system satis�es its fault-tolerance

requirement. The analysis of reliable broadcast in this section illustrates the importance of

tracking relationships between multiplicities in order to avoid false negatives. We start by

sketching an analysis that tracks equalities between multiplicities. That analysis su�ces to

show that the protocol provides reliable broadcast but does not show that it provides FIFO

reliable broadcast. To show that FIFO delivery is provided, the analysis must also track

inequalities between multiplicities. We describe two ways of modifying the analysis to do so.

Tracking Equalities Between Multiplicities

Suppose the input-output function representing a server propagates only abstract multiplic-

ities, using the wildcard for all symbolic multiplicities. The e�ect of a crash is expressed

using an abstract multiplicity of ? instead of 1 in the server's outputs, to re
ect the possibil-

ity of the server crashing before sending the message. More concretely, consider the system

with n = 3 described above. Consider the failure scenario fs1 in which only S1 is faulty

(i.e., fs(S1) = crash). Since S1 might crash at any time, all messages it sends have abstract

multiplicity ? instead of 1. The inputs to the non-faulty servers have inde�nite multiplicities

(i.e., multiplicities not satisfying de�nite, de�ned by (2.57)), so the outputs of those servers

also have inde�nite multiplicities. Thus, the result of the analysis is a run just like the one

in Figure 4.1, except that on every edge except hC1; S1i, the multiplicity in the ms-atom is

? rather than 1. This is too coarse an approximation of the system's behavior, because this

run has interpretations in which C2 delivers X and C3 does not (and vice versa), and such

concrete runs do not satisfy Agreement.

One solution is for the input-output function representing a server to introduce and

propagate symbolic multiplicities: ifC2 and C3 receiveX with the same symbolic multiplicity,

then Agreement is ensured. An input-output function server that does this works roughly

as follows (see Section 4.1.4 for details). Let srcv 2 SVal be the \symbolic maximum" of

the multiplicities with which the server received a message m; for example, if a message is

received with multiplicityX :? from one source and with multiplicity Y :? from another, then

srcv is the symbolic value max(X; Y ). If fail = OK , server outputs message m with symbolic
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multiplicity srcv . If fail = crash, server introduces for message m a variable v whose value

indicates whether that server crashed before outputting that message; m is output with

symbolic multiplicity min(v; srcv), since a server outputs a message if it receives the message

and does not crash too soon. Input-output function server uses the following naming scheme

for the variables denoted above by v: the value (zero or one) of c:i:x:y 2 Var(x) indicates

whether server x crashes before it can relay to component y the i'th message broadcast by

client c. We use 0-based indexing, so the �rst message broadcast by a client corresponds to

i = 0.

We illustrate the analysis for this method of modeling the system by using the same

system and same failure scenario as above. Let nfRB be the mapping from Name to ProcessF

for this system, using the input-output functions in Section 4.1.4. Figure 4.2 shows the run

stepF (nfRB ; fs1)
3(?Run), corresponding to a partial execution of the protocol; in other words,

the �xed-point has not yet been reached. We see in this �gure that S1 has received message

X with multiplicity 1 and sent X to each of its neighbors y with symbolic multiplicity

min(C1:0:S1:y;max(1)). Since C1:0:S1:y is zero or one, this symbolic multiplicity simpli�es

to C1:0:S1:y, as shown in the �gure. Servers S2 and S3 have received messages from S1 and

forwarded them to their neighbors. In the next step, S2 and S3 would each output X with

the maximum of the two symbolic multiplicities with which they received it.2 That step

yields the �xed-point, which is shown in Figure 4.3. Clients C2 and C3 of the non-faulty

servers deliver X with the same symbolic multiplicity, so Agreement is satis�ed.

Tracking Inequalities Between Multiplicities

The analysis just described su�ces to show that the protocol sketched in Section 4.1.1

provides reliable broadcast.3 However, the analysis is too weak to show that the protocol

provides FIFO delivery, even though it does. For example, suppose C1 sends two messages

X0 and X1, in that order. The input-output function described above for servers handles

each broadcast message independently, so the result of the analysis is a run similar to the

one in Figure 4.3, except that on each edge, the singleton poset h`; ;i is replaced with the

poset hf`0; `1g; ;i, where `i is ` with X replaced with Xi and with C1:0:S1:y replaced with

2Note that the output of S1 does not change as a result of receiving the messages from S2 and S3, because
min(C1:0:S1:y;max(1;C1:0:S1:S2;C1:0:S1:S3)) simpli�es to C1:0:S1:y. This simpli�cation relies on the fact
that all of the variables in the former expression represent values in f0; 1g.

3Although only the Agreement requirement was discussed, it is easy to see that Validity and Integrity
also follow from the results of the analysis.
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Figure 4.2: Initial behavior of the reliable broadcast protocol when S1 crashes; more precisely,

the run stepF (nfRB ; fs1)
3(?Run). In the �gure, x:y abbreviates C1:0:x:y.

C1:i:S1:y. For example, the input to C2 and C3 (from S2 and S3, respectively) is

hfX0 :MF (C1)
max(C1:0:S1:S2;C1:0:S1:S3):?; X1 :MF (C1)

max(C1:1:S1:S2;C1:1:S1:S3):?g; ;i: (4.4)

This run satis�es validity, integrity, and agreement, but it represents concrete runs that do

not satisfy FIFO Order. For example, for an interpretation �so such that

�so(C1:0:S1:S2) = 0

�so(C1:0:S1:S3) = 0

�so(C1:1:S1:S2) = 1;

clients C2 and C3 both appear to deliver X1 but not X0.

The imprecision in this particular analysis stems from an imprecision in modeling crash

failures. No constraints are given between the values of variables used in symbolic multiplic-

ities of di�erent messages, so the output ms-atoms of a faulty server represent executions in

which that server fails to send an arbitrary subset of its original outputs. In other words, the

input-output function sketched above actually represents servers subject to send-omission
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Figure 4.3: Behavior of the reliable broadcast protocol when S1 crashes, i.e., the run

runF (nfRB)(fs1). In the �gure, x:y abbreviates C1:0:x:y.

failures; recall from Section 2.2.3 that send-omission failures cause a component to possibly

omit the sending of each message normally produced [HT94, Section 2.3]. Thus, the analysis

sketched above shows that the protocol provides reliable broadcast despite send-omission

failures. (Crash failures can be regarded as a special case of send-omission failures.)

To establish that the protocol provides FIFO delivery even in the event of crash failures,

the analysis must re
ect the pre�x property of crashes: a component that crashes sends only

a pre�x of its original outputs (in other words, fails to send an arbitrary su�x of its original

outputs). This implies that later messages are sent with multiplicities less than or equal to

the multiplicities of earlier messages. There are two ways of expressing these inequalities:

encode them using combinations of max and min, or express them in an invariant. We

discuss each of these two approaches in turn.

Tracking Inequalities using Max and Min. This approach requires changing the mean-

ing of c:i:x:y slightly, so that the value of min([j�ifc:j:x:yg) indicates whether server x

crashes before it can relay to component y the i'th message broadcast by client c. To con-
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tinue the example in which client C1 broadcasts X0 and X1, the analysis based on this

approach yields as the input to C2 and C3 the totally-ordered poset (written as a sequence)

hhX0 :MF (C1)
max(C1:0:S1:S2;C1:0:S1:S3):?;

X1 :MF (C1)
max(min(C1:0:S1:S2;C1:1:S1:S2)min(C1:0:S1:S3;C1:1:S1:S3)):?ii

(4.5)

instead of yielding (4.4). The more precise symbolic multiplicities in the input of S2 and

S3 have allowed more precise symbolic multiplicities in their outputs and a more precise

ordering on the poset. Roughly, these strengthenings are justi�ed by the fact that, for all

interpretations of the variables, the multiplicity of X0 is less than or equal to the multiplic-

ity of X1; this fact follows easily from monotonicity of max and from the arithmetic fact

min(i0; i1) � i0. We omit details of this approach, since the approach based on invariants is

more elegant and e�cient.

Tracking Inequalities using Invariants. This approach retains the original meaning of

c:i:x:y and simply asserts that for i � j, �(c:j:x:y) � �(c:i:x:y). This prohibits interpretations

like �so. Thus, we strengthen invariant IRB (x) from (4.2) with the conjunct

(8c 2 Client : (8i; j 2 N : (8y 2 nbrs(x) :

fc:i:x:y; c:j:x:yg � dom(�) ^ i � j ) ^ �(c:i:x:y) 2 f0; 1g

^ �(c:j:x:y) � �(c:i:x:y))));

(4.6)

where the set of clients is Client = fC1; : : : ;Cng. To continue again the example in which

client C1 broadcasts X0 and X1, this analysis yields the run in Figure 4.4. The inputs

to C2 and C3 are the same as in (4.4), except that the poset is totally-ordered and the

interpretations of the variables are restricted by the invariant (4.6). Details of this approach

appear in Section 4.1.4.

4.1.3 Fault-Tolerance Requirement

The fault-tolerance requirement for FIFO reliable broadcast is

b(fs)(r) = (the network is connected in fs)) b0(fs; r);

where b0(fs; r) is the conjunction of the following �ve predicates, which together express the

assumptions (namely, Known-Sender and Uniqueness) and requirements described in Sec-

tion 4.1.1. Predicates formalizing the assumptions are included here because the predicates

formalizing the requirements depend on the assumptions; speci�cally, if the assumptions did
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Figure 4.4: Behavior of the reliable broadcast protocol when S1 crashes. In the �gure,

totally-ordered posets are written as sequences, the abstract value MF (C1) is elided, and

`i = Xi :MF (C1)
max(C1:i:S1:S2;C1:i:S1:S3):?.

not hold, the other predicates would not have the intended meaning. For each predicate,

we indicate in parentheses the conditions from Section 4.1.1 to which that predicate roughly

corresponds.

1. (Known-Sender) For each client Ci, every output ms-atom of Ci contains a value of

the form fv :MF (Ci)g for some v 2 VarM(Ci).

2. (Uniqueness) For each client Ci and each v 2 VarM(Ci), v appears in at most one

output ms-atom of Ci, and that ms-atom has multiplicity fs :1g for some s 2 SVal .

3. (Integrity) Every input ms-atom of every client contains a value that occurs in some

client's output.

4. (Agreement, Validity) For each client Ci and each v 2 VarM(Ci) that appears in Ci's

output:
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(a) If fs(Si) = OK , then for each client Cj such that fs(Sj) = OK , Cj delivers v

exactly once, i.e., Cj's input contains exactly one ms-atom containing v, and that

ms-atom is of the form v :MF (Ci)
s:1 for some s 2 SVal .

(b) If fs(Si) = crash, then there exists s 2 SVal0 such that for each client Cj such

that fs(Sj) = OK , Cj's input contains exactly one ms-atom containing v, and

that ms-atom is of the form v :MF (Ci)
s:?.

5. (FIFO Order) For each client Ci, each h`0; `1i 2 �2(r(Si)(Ci)), and each client Cj

such that fs(Sj) = OK , Cj does not deliver the message represented by `1 unless it

has previously delivered the message represented by `0. More precisely, let `00 be the

unique ms-atom in r(Cj)(Sj) containing the same variable as `0, and similarly for `01.
4

We require that h`00; `
0
1i 2 �2(r(Cj)(Sj)) and that the symbolic multiplicities s0 and s1

in `00 and `
0
1, respectively, satisfy s1 �SV s0, where the relation �SV on symbolic values

captures the inequalities implied by the invariant (4.6) and by the meaning of min and

max:

s �SV s0 = match hs; s0i with

j hc:i:x:y; c0:i0:x0:y0i ! c0 = c ^ i0 � i ^ x0 = x ^ y0 = y

j hmax(S);max(S 0)i ! (8s 2 S : (9s0 2 S 0 : s �SV s0))

j hmin(S);min(S 0)i ! (8s0 2 S 0 : (9s 2 S : s �SV s0))

j ! false

(4.7)

4.1.4 Input-Output Functions

With the invariant de�ned by (4.2) and (4.6), server Si is represented by the input-output

function server(Si; nbrs(Si)), where for me 2 Name and nbrs � Name, server(me; nbrs),

de�ned in Figure 4.5, works as follows. If the destination x is not a neighbor, then the server

sends no messages to x. Predicate noRepeats (de�ned below) checks, roughly, whether the

input satis�es the known-sender and uniqueness assumptions. If not, server just \gives

up" and returns a poset representing arbitrary outputs. Otherwise, the server's outputs are

computed as follows. For n 2 nbrs, mf (n) is just the set of \messages" (more precisely,

values representing messages) received from n. Set msgs is the set of all messages received

by this server. Since the server relays every message, msgs is also the set of messages that

will appear in the server's outputs. Thus, the set O of output ms-atoms is given by a union

4Existence of `00 and `
0

1 is guaranteed by the previous requirement.
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over msgs. In this union, function mulRB (de�ned below) is used to compute the multiplicity

associated with each output message; this is done in the manner sketched in Section 4.1.2.

Next, the order � in which the server outputs the messages is computed using the following

rule: if every neighbor that sent v2 sent v1 �rst (in other words, if v1 precedes v2 in the poset

representing the input from that neighbor), then this server de�nitely receives v1 before v2,

so v1 � v2. Predicate precede(S; v1; v2) (de�ned below) checks whether value v1 precedes

value v2 in poset S. Finally, the output poset is computed from O and �. The following

paragraphs give details of the auxiliary functions used in the de�nition of server .

server(me; nbrs) =

(�fail :fOK ; crashg: (�h :HistFC : (�x :Name:

if x 62 nbrs then h;; ;i

else if :(8n 2 nbrs : noRepeats(�1(h(n)))) then hfh :�; :>V ; 0ig; ;i

else let mf = (�n :nbrs: �2(�1(h(n))))

in let msgs = [n2nbrsmf (n)

in let �= fhv1; v2i 2 msgs �msgs j

(8n 2 nbrs : v2 2 mf (n)) ^ v1 2 mf (n)

^ precede(h(n); v1; v2))g

in let O = [v2msgsfhmulRB(nbrs; h; fail ; v;me; x;msgs;�); v; 0ig

in hO; f`1; `2 2 O � O j �2(`1) � �2(`2)gi)))

Figure 4.5: De�nition of server .

Predicate noRepeats(S) checks that each message in S 2 POSet(L) has the required

format and is sent at most once:

noRepeats(S) = (8` 2 S : (9c 2 Name : (9v 2 VarM(c) :

^ �2(`) = fv :MF (c)g ^ �2(�1(`)) � f1; ?g

^ (8`0 2 S n f`g : v 62 �1(�2(`
0)))))):

(4.8)

Predicate precede(S; v1; v2) checks whether v1 2 Val is de�nitely sent (and hence received)

before v2 2 Val in the sequences of messages represented by S 2 POSet(L):

precede(S; v1; v2) =

(8`1; `2 2 �1(S) : (�2(`1) = v1 ^ �2(`2) = v2)) ^ h`1; `2i 2 �2(S)

^ �1(�1(`2)) �Set(SV ) �1(�1(`1)));

(4.9)
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where the extension of �SV to sets of symbolic values is

S �Set(SV ) S
0 = (8s 2 S : (8s0 2 S 0 : s �SV s0)): (4.10)

Multiplicity mulRB(nbrs; h; fail ; v;me; x;msgs;�), de�ned in Figure 4.6, is the multiplic-

ity with which server me 2 Name with neighbors nbrs � Name sends message v 2 Val

to neighbor x 2 Name, given inputs h 2 Hist and failure fail 2 fOK ; crashg, and with

msgs and � as in the de�nition of server . It is computed as follows. First, the multiplicity

with which the server received value v is computed; the abstract and symbolic parts of this

multiplicity are arcv and srcv , respectively. If fail = OK , then the multiplicity with which v

is received is also the multiplicity with which v is relayed by the server. Otherwise (i.e., if

the server crashes), the symbolic multiplicity with which v is relayed is the minimum of srcv

and a variable that indicates whether the server crashed before sending v. If the inputs from

c are totally ordered, then a variable of the form c:i:me:x is used, as described in Section

4.1.2; otherwise, there is no easy way to associate an index i with the message,5 a \fresh"

variable|in particular, a variable not of that form, whose value is therefore not constrained

by (4.6)|is used instead. Function freshvar(c; v;me; x) 2 Var(me) is assumed to return

such a variable.

Other functions used in the de�nition of mulRB are as follows. Recall that apply was

de�ned following (2.53). For a poset p, linearize(p) returns a sequence that is some lin-

earization of p; in the de�nition of mulRB , it doesn't matter which linearization is returned,

because max is commutative. For a value v, getClnt(v) is c if �2(v) = fMF (c)g and is unde-

�ned otherwise. Note that the check of noRepeats in server ensures that the application of

getClnt in mulRB will be de�ned. Similarly, getSym(v) is s if �1(v) = fsg and is unde�ned

otherwise. For a totally-ordered poset p, getIndex(x; p) returns the least i 2 N such that

p[i] = x (where p is regarded as a sequence), if it exists, and is unde�ned otherwise.

A simpli�cation routine simplify 2 SVal ! SVal is used to simplify expressions involving

max and min. The invariant (4.6) justi�es assuming during the simpli�cation that each

variable of the form c:i:x:y represents a value in f0; 1g. Thus, powerful Boolean simpli�cation

procedures can be used. In particular, putting the expressions in some canonical form (e.g.,

disjunctive normal form, or ordered binary decision diagrams) helps ensure termination of

the �xed-point iteration. For examples with single failures, the analysis terminates even if

5The index set could be generalized to be some partial order hS;�Si, instead of the natural numbers. The
invariant could be extended to require that variables of the form c:s:x:y, where s 2 S, satisfy inequalities
corresponding to the partial ordering �S . This would give a more precise analysis in cases where the output
posets of clients are not totally-ordered.
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mulRB(nbrs; h; fail ; v;me; x;msgs;�) =

let arcv = if (9n 2 nbrs : (9` 2 �1(h(n)) : �2(`) = v ^ 1 2 �2(�1(`)))) then 1

else ?

in let srcv = let S = [n2nbrs let S1 = f` 2 �1(h(n)) j �2(`) = vg

in [`2S1 �1(�1(`))

in apply(max; linearize(hS; ;i))

in if fail = OK then fhsimplify(srcv); arcvig

else let c = getClnt(v)

in let p = hfv0 2 msgs j �2(v
0) = fMF (c)gg;�i

in let sF = if totalOrd(p) then

let i = getIndex(v; p)

in c:i:me:x

else freshvar(c; v;me; x)

in fhsimplify(apply(min; hhsF ; srcvii)); ?ig

Figure 4.6: De�nition of mulRB .

simplify does only trivial simpli�cations (e.g., simplify(max(max(m;n); m)) = max(m;n)).

Additional simpli�cations are needed to analyze failure scenarios involving multiple crashes,

because the symbolic multiplicities have a more complicated structure. In particular, for

single crashes, they have the form max(� � �), as in Figure 4.3; for double crashes, they have

the form min(� � � ;max(� � �); � � �), as in Figure 4.7; for triple crashes, they have the form

min(� � � ;max(� � � ;min(� � �); � � �); � � �); and so on. Thus, simpli�cations involving combinations

of min and max are needed.

In principle, this input-output function server representing a server can be used with any

input-output function representing a client, though for the analysis to be useful, the latter

should produce outputs satisfying the Known-Sender and Uniqueness conditions.

4.1.5 Examples

An example of the analysis for a failure scenario involving a single crash appears in Figure

4.4.

For an example involving two crashes, consider a system with n = 4, and consider the

failure scenario in which S1 and S2 crash. The result of the analysis is shown in Figure 4.7.
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Note that this run satis�es the fault-tolerance requirement.
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Figure 4.7: Behavior of the reliable broadcast protocol when S1 and S2 crash. In the �gure,

` = X :MF (C1)
max(S1:S4;min(S2:S3;S1:S2)):?.

4.2 Byzantine Agreement

Now consider a system comprising a commander C, lieutenants L1; : : : ; Ln, and armies

A1; : : : ; An. The goal of a Byzantine Agreement protocol is for the commander to dissemi-

nate a command to the lieutenants, so they can then act on this command. A lieutenant Li

acts on (or \decides on", in the terminology of [LSP82]) a command by sending a message

containing that command to its army Ai. Thus, the set of components in the system is

Name = fCg [ Ltnts [ (
[

i2[1::n]

fAig) (4.11)
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where

Ltnts =
[

i2[1::n]

fLig

[i::j]
�

= fk 2 N j i � k � jg:

The Oral Messages algorithm of [LSP82] to solve this problem works under the following

assumptions about the underlying communication mechanism:

Integrity: Every message that is sent is delivered correctly.

Known-Sender: The receiver of a message knows who sent it.

Missing-Message-Detection: The absence of a message can be detected.

The �rst two assumptions are built into our framework: Integrity, because our de�nition

of step never removes messages from a run; Known-Sender, because histories classify mes-

sages by sender, and input-output functions take histories as arguments. Missing-Message-

Detection is not satis�ed by our framework but can be encoded using standard techniques

[Bro90,BD92]. In particular, we adopt the following convention: when a component in re-

ality omits to send a message, this omission is modeled by sending a distinguished value

tmout (\timeout"). By this convention, receiving tmout corresponds to detecting absence

of a message. This convention is used at both the concrete and abstract levels, so we treat

timeout as both a concrete value and an abstract value, with [[tmout ]]AVal = ftmoutg.

The basic Oral Messages algorithm of [LSP82] further assumes that the commander and

lieutenants can communicate with each other directly. We associate with each component

x 2 Name the set nbrs(x) � Name of its neighbors, i.e., the set of components with which

it can communicate directly. We take:

nbrs(C) = Ltnts

nbrs(Li) = fC;Aig [ Ltnts n fLig

nbrs(Ai) = fLig:

Fault-Tolerance Requirement. We consider Byzantine failures of the commander and

lieutenants. A Byzantine-faulty component may send an arbitrary number of arbitrary values

to each of its neighbors. A Byzantine failure is represented by failure ByzFail 2 Fail . The

fault-tolerance requirement is

b(fs)(r) = jfx 2 Name j fs(x) 6= OKgj � bn=3c ) b0(fs; r);
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where b0(fs; r) is the conjunction of the following conditions:

1. If the commander is non-faulty (i.e., fs(C) = OK ), then the inputs of the armies asso-

ciated with non-faulty lieutenants are unchanged compared to the failure-free behavior,

i.e., for each such army A, unchanged(r(A)).

2. If the commander is faulty (i.e., fs(C) = ByzFail), then all armies associated with non-

faulty lieutenants receive the same value, i.e., for some s 2 SVal0, for each such army

A, r(A) is a singleton poset f`g, and ` has original multiplicity \one", unperturbed

multiplicity, and perturbed value s:

^ �2(�1(`)) = f1g ^ unchangedVal(�1(`); �3(`)) ^ �1(�4(`)) = fsg: (4.12)

This speci�cation has a pleasant locality property: it refers only to the inputs of the armies.

In a framework without explicit perturbations, the speci�cation would have to involve the

commander's inputs and outputs as well.

The Oral Messages algorithm of [LSP82] is essentially a recursive application of majority

voting. The interesting aspects of its behavior can already be seen in the case n = 3, which

exhibits a single level of recursion plus the base case. So, we take n = 3 in the detailed part

of the exposition and then sketch the extension to arbitrary n. The algorithm is described

in Section 4.2.1. Section 4.2.2 shows the results of the analysis.

4.2.1 Oral Messages Algorithm

We describe the algorithm informally before formalizing it as input-output functions. The

commander sends a command, represented by variable X 2 Var(C), to each lieutenant.

Each lieutenant forwards the value it receives from the commander to the other lieutenants.

When a lieutenant has received values from the commander and all of the other lieutenants,

it takes the majority of those values using a majority function �maj (cf. Section 2.1.3) and

sends the result to its army. More precisely, Li computes �maj (cv 1; cv2; cv3), where cv i is

the value that Li received from the commander and for j 6= i, cv j is the value received from

Lj. If any of the received values is tmout , then some default value is used in its place. The

run in Figure 4.8 represents the failure-free behavior of this algorithm.
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Figure 4.8: Failure-free behavior of the Oral Messages algorithm.

De�nition of Cmdr. The input-output function representing the commander isCmdr(Ltnts),

where for dests 2 Set(Name),

Cmdr(dests) = (�fail :fOK ;ByzFailg: (�h :Hist : (�x :Name:

if x 62 dests then h;; ;i

else if fail = OK then h1; X :N; id ; id ; 0i

else h1; X :N; :>�V ; :+�; 0i)));

(4.13)

The use of +� rather than �� is justi�ed by the convention for modeling Missing-Message-

Detection: even a faulty process must send at least a timeout.

De�nition of Ltnt. The input-output function representing a lieutenant is composed of

two main pieces: one that relays the value received from the commander, and one that

handles voting.

Relaying is captured by the function relay de�ned in Figure 4.9, where

arbnew = hf>V
�g; ;i (4.14)
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For fail 2 fOK ;ByzFailg, S 2 POSet(LFC ), var 2 Var , and aval 2 AVal , the original part

of the output of relay(fail ; S; var ; aval) is determined as follows. If there are no inputs, then

there are no outputs. If S is a singleton containing a value of the form fs :avalg, then that

value is relayed (i.e., included in the output). If neither of those cases applies, then the

output is fvar : avalg. At the concrete level, this third case may correspond to receiving a

timeout (or other value not in aval) and relaying some default value, or to receiving multiple

values in aval from the (faulty) commander and relaying the �rst of them. We don't need

to distinguish these two possibilities at the abstract level, because they both arise only if

the commander is faulty, in which case it doesn't matter what value is relayed, provided the

same value is relayed to all of the other lieutenants. The equality of the values relayed to

di�erent lieutenants is re
ected by using a local variable var (instead of just a wildcard) to

represent the relayed value.

Perturbations to the relayed output are determined by the parameter fail and by per-

turbations and new ms-atoms in the input S. For fail = OK , then the perturbation to the

output is determined roughly as follows: if the inputs are unchanged (i.e., the perturbation

is id), then so are the outputs; if the inputs do change, then we conservatively assume the

relayed value may change to any other value in aval , so we take the perturbation to the

output to be aval�, whose meaning is given by (3.34).

For fail = ByzFail , perturbations to the output and new outputs are determined as fol-

lows. Arbitrary new outputs may be sent before the original output; these are represented

by arbnew . The original output value may change arbitrarily, so we take the perturbation

to be >�V . Perturbations to the multiplicities are determined by rly�Mul(fail ; S), whose

de�nition re
ects the convention for modeling Missing-Message-Detection: if the lieutenant

de�nitely receives a message from the commander, then it de�nitely relays some value (pos-

sibly just tmout). This is a special case of Broy and Dendorfer's time progress property

[BD92].

For cmdr 2 Name, ltnts 2 Seq(Name), me 2 Name, var 2 Var , and army 2 Name,

input-output function Ltnt(cmdr; ltnts;me; var; army) represents a lieutenant named me

with army A in a system in which the commander is cmdr and the sequence of lieutenants

is ltnts ; also, when this lieutenant's input from the commander contains multiple symbolic

values, this lieutenant uses var to represent the value received from the commander and

relayed to the other lieutenants. This input-output function works as follows. Function

relay is used to determine the value received from the commander and relayed to the other

lieutenants; this value is contained in the ms-atom in the singleton poset returned by relay .
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relay(fail ; S; var ; aval) =

match �1(S) \ Lper with

j ; ! if fail = OK ^ (�1(S) \ Lnew ) = ; then h;; ;i

else arbnew

j fhmul ; val ; �mul ; �val ; tagig !

let val1 =match val with

j fs :ag ! if a = aval ^ s 6= then s :a else var :aval

j ! var :aval

in let �val1 = if fail = OK then

if (�1(S) \ Lnew ) = ; ^ �2(�val) = fidg then

f�1(val1) : idg

else f :aval�g

else f :>�V g

in hfhrlyMul(S); fval1g; rly�Mul(fail ; S); �val1; tagig; ;i

j ! let �val = if fail = OK then aval� else >�V

in hfhrlyMul(S); var :aval ; rly�Mul(fail ; S); �val ; 0ig; ;i

rlyMul(S) = if (9` 2 �1(S) : de�nite(�1(`))) then f :1g else f :?g

rly�Mul(fail ; S) = if (9` 2 �1(S) : de�nite(�1(`)) ^ �2(�3(`)) � fid ;+�g) then

if fail = OK then f : idg else f :+�g

else if fail = OK then f : ?�g else f :��g

Figure 4.9: De�nition of relay , with two auxiliary functions.
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Input-output function VoterFC , de�ned by (3.53), is used to handle voting, with the result

of relay (representing the value received from the commander) being used as the vote of this

lieutenant. The output is then determined by considering the destination. If the lieutenant

is non-faulty, it sends its decision|that is, the outcome of the vote|to its army. To other

lieutenants, the result of relay is always sent. A non-faulty lieutenant sends nothing to the

commander, but a faulty lieutenant sends arbitrary messages to the commander.

The input-output function for lieutenant Li is Ltnt(C; hhLiiii2[1::n]; Li; Xi; Ai), where Xi 2

Var(Li) and

Ltnt(cmdr ; ltnts;me; var ; army) =

(�fail :fOK ;ByzFailg: (�h :Hist : (�x :Name:

let relay0 = relay(fail ; h(cmdr); var ;N)

in let decis = VoterFC (ltnts; army ;N)(OK )(h� (�x :fmeg: relay0))(army)

in if x = army then

if fail = OK then decis

else if �1(decis) = ; then arbnew

else arbchng(decis)

else if x 2 ltnts n fmeg then relay0

else if x = cmdr ^ fail 6= OK then arbnew

else h;; ;i)));

(4.15)

where for ` 2 LFC ,

arbchng(`) =match ` with

j hmul ; val ; tagi ! h�;>V ; tagi

j hmul ; val ; �mul ; �val ; tagi ! hmul ; val ;>�V ;+�; tagi

(4.16)

and arbchng is the pointwise extension of arbchng from ms-atoms to POSet(LFC ) (as usual,

retagging may be needed in the extension). Recall that � is de�ned following (2.78).

De�nition of Army. The input-output function Army for an army is equal to ActFC ,

de�ned in (3.48).

Extending the De�nitions to Arbitrary n. For n > 3, the Oral Messages algorithm

proceeds by recursion. Byzantine Agreements are performed among smaller and smaller sets

of lieutenants, until a base case (a singleton set) is reached. The results of the recursive

invocations of Byzantine Agreement are repeatedly combined using majority functions (of
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appropriate arity) to determine the result of the top-level Byzantine Agreement. To prevent

confusion between messages generated by di�erent recursive calls to the Byzantine Agreement

protocol, each message is tagged with an identi�er indicating which invocation of the protocol

it belongs to. A simple scheme for choosing these identi�ers is described in [LSP82].

Extending the de�nitions in this section to arbitrary n involves little more than the

additional bookkeeping needed to keep track of these identi�ers. There is one caveat: if a

message with uncertain identi�er is received from a lieutenant (e.g., if the value is >V ), then

as a conservative approximation, we assume this might confuse determination of the values

received from that lieutenant in all invocations of the protocol, so we use >V for all those

values.

4.2.2 Analysis of Perturbed Behavior

For n = 3, the algorithm is required to tolerate a Byzantine failure of any one component. We

consider �rst the e�ects of a lieutenant failure and then turn to the e�ects of a commander

failure.

Lieutenant Failure. Let nfBA be the obvious mapping from Name to ProcessFC for this

example. Let fsL be the failure scenario in which only L2 is faulty. Figure 4.10 shows the

run runFC (nfBA)(fsL). To reduce clutter, where the posets on the edges in both directions

between a pair of components are non-empty (e.g., for components L1 and L2), those two

edges together are drawn as a single two-headed arrow, and each poset is positioned closer

to its source (e.g., X : N[] is on edge hL1; L2i). The non-faulty lieutenants receive two

unchanged values and one changed value. Voting masks the changed input, leaving the

non-faulty lieutenants' outputs unchanged. It is easy to check that this run satis�es the

fault-tolerance requirement. The analysis of failure of L1 or L3 is a symmetric variant of this

analysis.

Comments on the De�nition of Ltnt. A faulty lieutenant may send arbitrary values

at any time, even before it receives or sends messages in the non-faulty execution. In the

run stepF (nfBA; fsL)(?Run) shown in Figure 4.11, the ms-atoms on the outgoing edges of L2

represent those outputs; note that these ms-atoms are equal to arbnew , de�ned by (4.14).

In the �xed-point shown in Figure 4.10, some of these ms-atoms have been \replaced" by

ms-atoms in Lper containing arbitrary changes; in other words, messages once represented by

the former are later represented by the latter. The omission of those occurrences of arbnew



102

X
:N
[]

X
:N
[]

X :N[]

X
:N
[]

X
:N
[]

X
:N
[]

L3

L1

A3

A2

A1

C L2

X :N[]

X :N[]

X :N[>�V
+� ]

X
:N
[]

>V
�

X
:N
[>
�
V +

�

]

X
:N
[>
�
V
+�
]

Figure 4.10: Behavior of the Oral Messages Algorithm when L2 is faulty.
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when the lieutenant receives inputs is a design decision; it would also have been correct

to de�ne relay so it retains those ms-atoms. The freedom to do either (and still have a

monotonic input-output function) re
ects the 
exibility of our de�nition of �HistFC : it does

not introduce an arti�cial separation between perturbed behavior and new behavior. It is

easy to check that the run in Figure 4.10 satis�es the fault-tolerance requirement.
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Figure 4.11: The run stepF (nfBA; fsL)(?Run).

Commander Failure. Let fsC be the failure scenario in which only the commander is

faulty. Figure 4.12 shows the run runFC (nfBA)(fsC). Since each lieutenant Li relays the

same value Xi to the other two lieutenants, all three lieutenants apply the majority function

to the same sequence of values when they compute their output. It is easy to check that the

run in Figure 4.12 satis�es the fault-tolerance requirement.
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Figure 4.12: Behavior of the Oral Messages Algorithm when C is faulty.



Chapter 5

Fault-Tolerance for Moving Agents

An interesting paradigm for programming distributed systems is moving agents. In this

paradigm, an agent is not tied to a particular site but rather moves from site to site in a

network. For example, an agent that starts at site S might move to site S1 in order to access

some service (e.g., a database) available there. The agent might then determine that it needs

to access a service located at site S2 and move there. If the agent has gathered all of the

information it needs, it might �nish by moving to a �nal site A to deliver the result of the

computation (A may be the same as S).

For our current purposes, it does not matter whether code is shipped from site to site; the

essential points are that the thread of control moves from site to site, and that the sequence

of services used by a moving agent is generally not known when the computation starts,

since it may depend on information obtained as the computation proceeds.

There are two fault-tolerance issues: protecting moving agents from faulty servers and

protecting servers from faulty moving agents. This chapter examines protocols for protecting

moving agents from servers that may su�er Byzantine failures.

5.1 Fault-tolerance for Moving Agents

To illustrate new problems that arise with moving agents, we consider a two-stage moving

agent, analogous to the two-stage pipeline discussed in Chapters 2 and 3. By analogy with

the replicated pipeline, one might try to make a two-stage moving agent fault-tolerant by

having it access multiple replicas of each service, with a majority vote on the results after

the �nal stage. This coresponds to the moving agent shown in Figure 5.1: it starts at a

source S, accesses service F , which is replicated at sites F1; F2; F3, then accesses service

105
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G, which is replicated at sites G1; G2; G3.
1 Since G is the last service it needs, the agent

moves to a consolidator B, which is responsible for delivering the result of the computation

to the \actuator" A. Like a voter, the consolidator computes the majority of the values it

receives and sends the result to the actuator; in addition, as discussed in detail below, the

consolidator uses an authentication mechanism to determine which values are invalid and

should be excluded from the vote.

H1

H2

H3

S G2

G3

G(F (X)) :N

G(F (X)) :N

G(F (X)) :N
B A

G1

X :N

X :N

X :N

F (X) :N

F (X) :N

F (X) :N

G(F (X)) :N
F2

F3

F1

Figure 5.1: Run of replicated two-stage moving agent.

A typical moving agent accesses only some of the available services. To re
ect this,

the system shown in Figure 5.1 includes a service H comprising replicas H1{H3 not used

by this particular agent. The fault-tolerance requirement for this system is that inputs to

the actuator should be una�ected by Byzantine failure of a minority of the replicas of each

service used by the moving agent and by Byzantine failure of all replicas of each service not

used by the moving agent.

Faulty components can spoof (i.e., send messages that appear to be from other compo-

nents) and eavesdrop (i.e., obtain copies of messages sent to other components). From the

perspective of the recipient of a message, the possibility of spoo�ng causes uncertainty about

the identity of the sender of the message, since the message might not be from the purported

1Of course, S, F1, etc, here name denote di�erent components than in previous examples: the mapping
from names to input-output functions is di�erent.
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sender. This uncertainty is modeled in our framework by using input-output functions that

are independent of the purported names of the senders in the input history. A simple way

to ensure this is to use only input-output functions of the form

(�fail :S: (�h :Hist : f(fail ;[x2Name�1(h(x))));

where S � Fail and f 2 (S � Set(L))! Hist . Since we hide the information that identi�es

the sender of each message, the accuracy of this information is irrelevant.

Eavesdropping is modeled in a similar manner to Missing-Message-Detection in Section

4.2. A faulty component (the \eavesdropper") can send a special value evsdrp. The output

of a component that receives this value must contain a possibility of sending copies of all

subsequent outputs to the easvesdropper.2 In examples, we assume a server is able to eaves-

drop on all components except actuators; actuators communicate only with consolidators.

This convention is used at both the concrete and abstract levels, so we treat evsdrp as both

a concrete value and an abstract value, with [[evsdrp]]AVal = fevsdrpg.

Consider the consolidator B in Figure 5.1. How does it decide which inputs are valid (i.e.,

should be included in majority votes)? One might be tempted to say that the consolidator

should treat messages from G1, G2, and G3 as valid and messages from other components as

invalid. This proposal is inappropriate for moving agents, because it assumes the consolidator

knows in advance that the last service visited by the moving agent will be service G|the

sequence of services visited by a moving agent is generally not known in advance.

At the other extreme, suppose the consolidator considers all inputs valid. Whenever

the consolidator receives the same value from a majority of the replicas of some service, it

sends that value to the actuator. Due to the possibility of spoo�ng, checking that a value

was received from di�erent replicas of the same service requires cryptographic techniques,

as discussed below. This scheme tolerates some failure scenarios but not those involving the

failure of services not used by the moving agent. For example, if H1 alone fails, then with

this scheme, the consolidator would ignore any incorrect values that H1 sends, since none of

the other replicas of service H would send incorrect values. If H1, H2, and H3 all fail and

send the same incorrect value to the consolidator, then with this scheme, the consolidator

would send that incorrect value to the actuator.

There are various ways to �x this problem. Informally, in a computation with failures,

a message is considered valid if it has visited the same sequence of services as a message

2For this purpose, we allow an exception to the rule in the previous paragraph; since evsdrp is not really
sent in messages, spoo�ng is irrelevant.
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in the failure-free computation. We consider a protocol in which digital signatures [RSA78]

are used by the consolidator to reliably determine this.3 We assume digital signatures are

implemented using public-key cryptography and that each component knows its own private

key and the public key of every other component. We also assume each component knows

which service is provided by each component.

Each message is signed|to foil spoo�ng by faulty components|and augmented with

information about the sequence of services that should have been visited and about the

sequence of services actually visited. For the former, each source and server include in each

outgoing message the next service to be visited by that moving agent. More speci�cally, a

source includes in outgoing messages the �rst service (or consolidator, if no services are being

used) to be visited by the moving agent, and a server includes in each outgoing message the

service (or consolidator) to be visited next by the moving agent embodied in that message.

The consolidator will need to verify the entire \history" of the moving agent (i.e., the entire

sequence of visited services), so a server x also includes in the outgoing message one of the

incoming messages that embodied the arrival of that moving agent at x; by induction, that

incoming message contains the history of the moving agent up to the arrival of the moving

agent at x.

Recall that sources and servers sign every outgoing message. The signatures both prevent

lying about the sequence of services that should have been visited (e.g., prevent tampering

with the input message included in the output message) and document the sequence of

services actually visited. The consolidator tests validity of a message by checking that it

was originated by a source, that the consolidator itself is the declared destination of the

message, and that the sequence of declared destinations in the message is consistent with

the signatures. Of course, the consolidator also checks each of the signatures and considers

the message invalid if any of those checks fail. We say a set of messages is valid if each

message is valid, all the messages visited the same sequence of services and contain the same

data value, and the messages collectively are last signed by a majority of the replicas of some

service. When the consolidator receives a valid set of messages, it forwards the common data

value to the actuator.

We now describe this protocol in more detail. A message sent by a source with private

key k has the form

sign(hdata; desti; k) (5.1)

3A protocol based on shared secrets is described in [MvRSS96].
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where data is the data carried by the message, dest is the �rst service or consolidator to be

visited, and sign(x; k) represents x digitally signed with key k. For convenience, we assume

each source initiates at most one moving agent; this restriction is easily removed by including

(say) a sequence number in data of (5.1). A message received, processed, and forwarded by

a server x with private key k has the form

sign(hdata; dest ; mi; k) (5.2)

where data and dest are as before, and m is the original message received by x that caused

it to send this message.

To conveniently describe protocols that send messages of these forms in our framework,

we introduce some notation. Let Data 2 AVal represent the data values carried by moving

agents, and let Key � CVal represent the cryptographic keys used for digital signatures. For

cv 2 CVal and k 2 Key , the concrete value sign(cv ; k) is cv signed with key k.

Let Src � Name be the set of sources, i.e., the unreplicated components trusted to

initiate moving agents. Let Svc � Con be the set of (names of) services. We require that

di�erent elements of Svc denote di�erent services at the concrete level; this is similar to

the Uniqueness requirement for messages in the reliable broadcast example in Section 4.1.1.

Formally, this requirement means that we consider only partial interpretation of constants

satisfying

(8svc; svc0 2 Svc : svc 6= svc0 ) �a(svc) 6= �a(svc
0)): (5.3)

For convenience, we assume each server o�ers a single service. Thus, there is a function

provides 2 Name ! (Svc [ f?g) that returns the service provided by a component; it

returns ? for components (such as sources and actuators) that don't provide a service.

Each consolidator o�ers its own unique consolidating service; that is, associated with each

consolidator x is some service provided only by x.

Messages of the forms (5.1) and (5.2) are represented by an abstract value Msg 2 AVal ,

whose meaning is the smallest set satisfying

[[Msg ]]AVal = let S0 = [[Data]]AVal � Svc

in let S = [[Data]]AVal � Svc � [[Msg ]]AVal

in
S
k2Key sign(S0 [ S; k);

(5.4)

where sign is the pointwise extension of sign with respect to its �rst argument. To construct

messages of the forms (5.1) and (5.2), we introduce constants msg0 2 Con and msg 2 Con,



110

respectively, with interpretations

�a(msg0) = (�hk; data; desti :Key � [[Data]]AVal � Svc:

sign(hdata; desti; k))

�a(msg) = (�hk; data; dest ;msgi :Key � [[Data]]AVal � Svc � [[Msg ]]AVal :

sign(hdata; dest ;msgi; k))

A set KC � Con of key constants is used to represent the keys in Key . We adopt the

following convention: for x 2 Name, Kx 2 KC represents x's private key. Since these are

the only keys we are interested in, we take KC =
S
x2Name Kx. We require that private keys

be distinct. Thus, we assume the partial interpretation �a of constants satis�es

^(8kc 2 KC : �a(kc) 2 Key)

^(8kc1 2 KC : (8kc2 2 KC : kc1 6= kc2 ) �a(kc1) 6= �a(kc2)))
(5.5)

De�ne prin 2 KC ! Name (short for \principal") by prin(Kx) = x.

The processing done by a service svc 2 Svc is represented by an operator gsvc 2 Con.

For example, if a moving agent carrying symbolic data value v visits service F , the moving

agent will leave carrying symbolic data value eF (v).
The behavior of this protocol for the two-stage moving agent considered above is shown

in Figure 5.2, where

m0 = msg0(KS; X; F ) (5.6)

m1
i = msg(KFi;

eF (X); G;m0) (5.7)

m2
i = msg(KGi

; eG( eF (X)); B;m1
i ) (5.8)

where X 2 Var(S) represents the data sent by the source S. To see that this protocol

prevents spoo�ng by faulty replicas of service H, consider, for example, the case where

those faulty components obtain a copy of message m0 by eavesdropping, and then send

the consolidator messages containing m0. The consolidator will �nd these messages invalid,

because they are not signed by providers of the declared destination of m0 (namely, service

F ). Of course, attempts by the faulty replicas of service H to change the declared destination

of m0 will cause the consolidator's check of the source's signature to fail.

5.1.1 Voting After Each Stage

This protocol provides some fault-tolerance but does not satisfy the fault-tolerance require-

ment on page 106, namely, that a moving agent tolerate simultaneous Byzantine failure of a
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Figure 5.2: Run of replicated two-stage moving agent, with authentication.

minority of replicas of each service it uses. A protocol that uses only the sparse pattern of

communication shown in Figure 5.1 or Figure 5.2 cannot satisfy this requirement, because

the e�ects of failures in di�erent stages are cumulative. For example, the above protocol

does not tolerate simultaneous failure of F1 and G2, because then two of the consolidator's

three inputs might be corrupted by the failures. Incidentally, the same argument applies to

the two-stage pipeline of chapter 3.

To make computation more robust, each server can send its outgoing messages to all

replicas of the next service, instead of just one, and validity tests and voting are incorporated

into each stage of the computation after the �rst.4 The validity test and voting are just as

described for consolidators.

This change to the protocol requires one clari�cation. Recall that a server included in

each outgoing message the unique incoming message that caused it to send that message.

Now, a server sends messages only after receiving valid messages with the same value from

a majority of the replicas of some service; so, we add that the server may include in the

outgoing messages any one of these incoming messages.5

4Intermediate levels of fault-tolerance can be achieved by voting after every few stages, rather than after
every stage.

5The reader who wonders whether more than one incoming message should be included in the outgoing
message is referred to the comments below.
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Note that the only remaining di�erence between a server and a consolidator is that

a consolidator does not perform application-speci�c computation (i.e., does not apply an

operator) and does not include authentication information in its outputs (it sends unadorned

data values to the actuator).

The resulting pattern of communication is shown in Figure 5.3. Each Gj might include

any one of its three input messages in its output, so the value it outputs is msj � fMsgg,

where

msj = fm2
1;j; m

2
2;j; m

2
3;jg; (5.9)

where m2
i;j is a message signed by Fi then Gj:

m2
i;j = msg(KGj

; eG( eF (X)); B;m1
i ): (5.10)

B A
eG( eF (X)) :Data

H1
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H2

S G2

G1

F2
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F1

m0 :Msg

m
1 1
:M
sg

m0 :Msg

m0 :Msg

m
1 2
:M
sg

m
13 :M
sg G3

ms2 � fMsgg

ms3 � fMsgg

ms1 � fMsgg

Figure 5.3: Run of replicated two-stage moving agent, with authentication and with voting

after each stage. Each skewed ms-atom labels each of the three edges it crosses.

Comments on the protocol. Before proceeding with the modeling and analysis of the

protocol sketched above, we observe that the protocol does not satisfy the fault-tolerance

requirement on 106. Modifying the protocol to satisfy this fault-tolerance requirement is

straightforward (see Section 5.3.3). We choose to analyze this protocol|rather than a more
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robust one|for two reasons. First, it seems appropriate to \test" the analysis on an incor-

rect protocol. The analysis of this protocol then demonstrates both positive and negative

results; speci�cally, the analysis shows that the protocol enables a moving agent to tolerate

Byzantine failure of a minority of the replicas of each service used by the moving agent or

Byzantine failure of all replicas of each service not used by the moving agent, but not both

simultaneously. Second, this development re
ects our original expectations: the protocol

was developed and analyzed with the idea that it would satisfy the original fault-tolerance

requirement, but the analysis proved our expectations incorrect.

5.1.2 The E�ects of Byzantine Failures

In the analysis of Byzantine agreement in Section 4.2, we assumed a Byzantine-faulty com-

ponent could output any value. This behavior was modeled using the abstract value >V .

This model of Byzantine-faulty components is too coarse when cryptography-based proto-

cols are being analyzed. A fundamental assumption of cryptography is the infeasibility of

malicious entities to randomly guess certain kinds of information, such as cryptographic keys

or signed messages. Of course, >V represents all concrete values, including keys and signed

messages. To re
ect the infeasibility of malicious entities to randomly guess certain values,

we need to use in the outputs of Byzantine-faulty components abstract values that represent

all concrete values that can be generated from speci�ed sets of cryptographic information.

The cryptographic information known by a faulty component is speci�ed by a set of keys,

represented by key constants, and a set of signed messages, represented by elements of SMsg ,

which is the smallest set satisfying

SMsg
�

= SMsg0 [
[

kc2KC ;data2SVal0;dest2Svc;m2SMsg

fmsg(kc; data; dest ; m)g; (5.11)

where

SMsg0
�

=
[

kc2KC ;data2SVal0;dest2Svc

fmsg0(kc; data; dest)g: (5.12)

For kcs � KC and ms � SMsg , the abstract value Arb(kcs;ms) represents all concrete

values that can be generated from the speci�ed cryptographic information. To formalize

this, we �rst consider the meanings of elements of KC and SMsg.

For elements of KC , we assume the meanings are given by a partial interpretation of

constants satisfying (5.5). When giving the meaning of Arb(kcs;ms), we must consider

not only keys (i.e., elements of Key) that are represented by key constants but also keys

that are not represented by any key constant. To show soundness of a protocol, it su�ces to
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assume that Byzantine-faulty components cannot randomly guess cryptographic information

generated from keys being used by non-faulty components. Of course, those keys are all

represented by key constants. Thus, it does not matter for our purposes whether keys

not represented by key constants can be guessed by faulty components. For generality, we

assume they can be. Accordingly, we take Arb(kcs;ms) to represent concrete values that

can be generated using keys explicitly represented in kcs and keys not represented by any

key constant.

For elements of SMsg, the only subtlety involves the symbolic value data, which may

contain variables. In Chapter 3, the meaning of an abstract value is independent of the

interpretation of variables. This restriction forces an overly coarse approximation here, since

it implies (for example) that Arb(kcs; fmsg0(S;X; F )g) must represent messages from source

S to service F containing an arbitrary data value. Thus, in this approximation, if Arb is used

to represent the outputs of faulty components, those components would appear to be able

to change the data in a message without invalidating the signature. To avoid this problem,

we allow the meaning of abstract values to depend on the interpretation of variables.

This requires only minor changes to the framework described in Section 3.1. We parame-

terize [[]]AVal by a partial interpretation of symbols; thus, instead of [[]]AVal 2 InterpSet(AVal),

we have [[]]AVal 2 interp(Sym)!! InterpSet(AVal), where the ordering on InterpSet(AVal) is

�1 �InterpSet (S) �2
�

= (8s 2 S : �1(s) 6= ; ) �1(s) = �2(s)): (5.13)

Since � is a partial interpretation, it might not give values for all of the symbols on which

the meaning of an abstract value a depends. For technical convenience, instead of using a

partial function, we encode this unde�nedness by taking [[a]]�AVal = ; in those cases. Note

that with this correspondence in mind (namely, �1(s) = ; corresponds to s 62 dom(�), (5.13)

is essentially the same as (2.60). The monotonicity and continuity requirements for [[]]AVal

ensure that the meaning of an abstract value a, once \de�ned" (i.e., non-empty), is not

changed by extending �.

To check that these changes are reasonable, we also give the revised de�nition of the

meanings of posets of ms-atoms, etc. The de�nitions in Section 2.4.1 are mostly unchanged,

the sole exception being the de�nition of compatVal in (2.61), to which we add a �:

compat�Val(val ; cv)
�

= (9hs; ai 2 val : ^ cv 2 [[a]]�AVal

^ s = _ cv = �(s)):

(5.14)

Now, note that for an abstract value a with [[a]]�AVal = ;, the condition cv 2 [[a]]�AVal does

not hold, so such abstract values are e�ectively ignored when determining the meaning of
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a poset of ms-atoms, just as uninterpreted symbols are e�ectively ignored. Monotonicity of

[[]]�AVal with respect to � ensures that [[]]�POSet(L) and [[]]�Hist are still monotonic with respect to

�. With this observation, the proof of soundness goes through just as before.

Returning to the meaning of messages and Arb, we parameterize both by a partial in-

terpretation � 2 interp(Sym) whose interpretation of constants is expected to satisfy (5.5),

(5.5), and (5.5). We de�ne

[[msg0(kc; data; dest)]]
�

SMsg = if �(d) 62 Data then ;

else f�(msg0)(�(kc); �(d); dest)g

(5.15)

[[msg(kc; data; dest ; m)]]�SMsg = if �(d) 62 Data then ;

else
S
cv2[[m]]SMsg

f�(msg)(�(kc); �(d); dest; cv)g

(5.16)

where � is given by (2.61).

It is convenient to extend [[]]SMsg to all symbolic values, by de�ning, for s 2 SVal n SMsg ,

[[s]]SMsg = [[Msg ]]AVal : (5.17)

This is a conservative approximation: symbolic values not in SMsg are treated as a com-

pletely arbitrary messages. Note that we have elided the � in [[Msg]]�AVal , since the meaning

of Msg is independent of �; we use this notation for other abstract values as well.

Finally, for kcs � KC and ms � SVal , the meaning of Arb(kcs;ms) is the least set

satisfying

[[Arb(kcs;ms)]]�AVal = let keys = (
S
kc2kcsf�(kc)g) [ (Key n

S
kc2kcsf�(kc)g)

in Name [ [[Data]]AVal [ Svc [ keys [ ([m2ms [[m]]SMsg)

[ ([k2keys;x2[[Arb(kcs;ms)]]�
AVal

fsign(x; k)g):

(5.18)

Thus, the abstract values used in this analysis are

AVal = fData;Msgg [ Arbs [ AMul (5.19)

where

Arbs =
[

kcs�KC ;ms�SVal

fArb(kcs;ms)g (5.20)

AMul = f?; 1; �g (5.21)
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5.2 Input-Output Functions

5.2.1 Input-Output Function for Servers

The input-output function server(kc; svc; n; next ; nbrs) represents a server with a private

key represented by kc 2 KC and that provides service svc 2 Svc. Parameter n 2 N is

the (minimum) number of replicas of each service in the system: the server looks for a

valid set of inputs of size d(n + 1)=2e before processing a moving agent. To partially re
ect

the dependence of the remaining path of a moving agent on information stored by servers,

the description of a server also speci�es the next service next 2 Svc normally visited by

moving agents that visit that server.6 To further re
ect this dependence and the possibility

that messages from faulty components might \confuse" a server, if there is no (symbolic)

majority among the input values corresponding to a moving agent, then we assume that the

next destination for this moving agent might be any component in nbrs � Name. If the

server is faulty, it sends arbitrary messages to and eavesdrops on the components in nbrs.

Inputs corresponding to moving agents initiated by di�erent sources can be processed

separately, so we write the input-output function for a server as

server(kc; svc; n; next ; nbrs) =

(�fail :fOK ;ByzFailg: (�h :Hist : (�x :Name:

let lbls =
S
y2Name �1(h(y))

in let evsdrprs = fx 2 Name j evsdrp 2
S
v2�2(�1(h(x))) �2(v)g

in if fail=OK then h
S
src2Src server 1(kc; svc; n; next ; src; lbls; x; evsdrprs); ;i

else if x 2 (evsdrprs n nbrs) then hfh�;mkArb(fkcg; �2(lbls)); 0ig; ;i

else if x 2 nbrs then hfh�; fevsdrp;mkArb(fkcg; �2(lbls))g; 0ig; ;i

else h;; ;i)))

(5.22)

where server1(kc; svc; n; next ; src; lbls; x; evsdrprs) 2 Set(L) is the set of output ms-atoms

to component x 2 Name that represent moving agents initiated by source src 2 Src, where

evsdrprs � Name is the set of eavesdroppers, lbls � L is the set of input ms-atoms, and the

�rst four parameters are as for server . The de�nition of server1 appears in Figure 5.4 and

is discussed in the following subsections. The function mkArb 2 Set(KC )� Set(Val)! Val

returns an element of Arbs that represents all concrete values that can be generated from

6It is straightforward to let the next service normally visited depend on information carried by the moving
agent, though abstracting from the identity of that service is di�cult, as discussed in section 5.4.
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the concrete values represented by the speci�ed key constants and values:

mkArb(kcs; vs) = let arbs =
S
v2vs �2(v) \ Arbs

in let kcs1 = kcs [ (
S
v2vs �1(v) \ KC ) [ (

S
Arb(kcs 0;ms)2arbs kcs

0)

in let ms = (
S
Arb(kcs 0;ms)2arbs ms) [ (

S
v2vs �1(v) \ SMsg)

in f :Arb(kcs1; unpack(ms))g;

(5.23)

where unpack 2 SMsg ! Set(SMsg) is

unpack(m) =match m with

jmsg( ; ; ; m0)! fmg [ unpack(m0)

j ! fmg;

(5.24)

and where unpack 2 Set(SMsg)! Set(SMsg) is de�ned by

unpack(S) = [m2Sunpack(S): (5.25)

The use of unpack re
ects a faulty component's ability to extract pieces of messages and

incorporate them in its outputs.

Determining Set of Inputs that Contribute to the Output

In the de�nition of server 1, the value of mmes (mnemonic for \hmultiplicity, hmessage,

extensionii's") summarizes the sets of input messages that can contribute to the output of

the server. Roughly, each element hmul ;mesi of mmes corresponds to a possible quorum,

i.e., a valid set of input messages of appropriate size. The �rst component, mul , is 1 if the

inputs described by mes de�nitely represent a quorum (hence de�nitely cause an output)

and is ? otherwise. Our de�nition of mmes has the property that if h1;mesi 2 mmes, then

also h?;mesi 2 mmes; this is not necessary for correctness of the subsequent de�nitions, but

it does no harm.

Second component mes describes a set of messages that might have been received by the

server. If an input ms-atom contains Arb(kcs;ms), a message in ms may be extended with

signatures by keys in kcs. Such an extended message is represented by a pair hm; exti, where

m 2 SMsg and where the extension ext 2 Seq(Name) is the additional sequence of sites by

which m has been signed. As a special case, since a faulty source can generate valid messages

from scratch, we allow extended messages of the form h?; exti with �rst(ext) 2 Src. It does

no harm to allow extended messages of the form h?; exti for arbitrary ext 2 Seq(Name),

since they will not satisfy the test for validity (see the de�nition of validM below). Thus, we
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server1(kc; svc; n; next ; src; lbls; x; evsdrprs) =

let n = 1 +max(
S
v2�2(lbls)

S
ma2getMsgArb(v)

S
m2getMsgs(ma)fj�1(getPath(m))jg)

in let mmes = fhmul ;mesi 2 f?; 1g � Set(MsgExt(n)) j

(9S � lbls : (9h 2 mes
onto
�! S :

^ _ jmesj = d(n + 1)=2e ^ getSigner(mes) \ Src = ;

_ jmesj = 1 ^ getSigner(mes) \ Src 6= ;

^ (8me 2 mes : (9ma 2 getMsgArb(�2(h(me))) :

^ �1(me) 2 getMsgs(ma)

^ �2(me) 2 Seq(prin(getKeys(ma)))

^ma 2 Arbs ) mul =?))

^ (8` 2 S : � 62 �2(�1(`))) jhinv(`)j = 1)

^ f?; �g \ �2(�1(S)) 6= ; ) mul =?))

^ validM(src; svc)(mes)g

in if mmes = ; then ;

else let ds =
S
mes2�2(mmes) if " 62 �2(mes) then f?g

else getData(�1(fhm; exti 2 mes j ext = "g))

in if jdsj = 1 ^ ? 62 ds then

let d = the element of ds

in let msin =
S
mes2�2(mmes)MEtoMsg(next ;mes)

in let ms =
S
m2 msin

fapply(msg; hhkc; apply(gsvc; hhdii); next; mii)g
in let mul = if 1 2 �1(mmes) ^ provides(x) = next then 1 else ?

in let ` = hmul ; ms� fMsgg; 0i

in if provides(x) = next _ x 2 evsdrprs then f`g else ;

else (* symbolic output value not unique; approximate *)

if x 2 nbrs [ evsdrprs then

h?;mkArb(fkcg; �2(lbls)); tagOfSrc(src)i

else ;

Figure 5.4: De�nition of server1.
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take mes to be a subset of

MsgExt = ((SMsg [ f?g)� Seq(Name)) n fh?; "ig; (5.26)

As argued below, it su�ces to consider only extensions of at most a certain length n, so in

Figure 5.4, we take mes to be a subset of

MsgExt(n) = ((SMsg [ f?g)� Seq(Name; n)) n fh?; "ig; (5.27)

where Seq(S; n)
�

= f� 2 Seq(S) j j�j � ng.

Inclusion of hmul ;mesi in mmes is justi�ed by the existence of a set S � lbls and a

correspondence h between mes and S that together satisfy the following �ve conditions,

corresponding to the �ve conjuncts in the de�nition of mmes.

First Condition. The �rst condition is:

_ jmesj = d(n+ 1)=2e ^ getSigner(mes) \ Src = ;

_ jmesj = 1 ^ getSigner(mes) \ Src 6= ;:

(5.28)

This constrains the size of mes. There are two cases. A quorum comprising messages not

from sources must be of size d(n + 1)=2e; this corresponds to the �rst disjunct. Sources are

not replicated, so a single message signed by a source su�ces. This corresponds to the second

disjunct; it is formalized using getSigner 2 MsgExt ! Name, which returns the name of the

(last) signer of an extended message:

getSigner(hm; exti) = if ext 6= " then last(ext)

else match m with

jmsg0(kc; ; )! prin(kc)

jmsg(kc; ; ; )! prin(kc)

(5.29)

where last returns the last element of a sequence. getSigner is the pointwise extension of

getSigner to sets of extended messages.

Second Condition. The second condition is:

(8me 2 mes : (9ma 2 getMsgArb(�2(h(me))) :

^ �1(me) 2 getMsgs(ma)

^ �2(me) 2 Seq(prin(getKeys(ma)))

^ma 2 Arbs ) mul =?)):

(5.30)

This requires that the correspondence h be such that, for each extended message hm; exti 2

mes,



120

(i) The message m appears in the value �2(h(me)), i.e., m appears in some ma 2 MsgArb

that appears in �2(h(me)).

(ii) The extension ext is a sequence of names by which m can be extended. Speci�cally, if

m appears in Arb(kcs;ms), then ext is a sequence of names in prin(kcs); if m does not

appear in an element of Arbs, ext is the empty sequence.

(iii) If m appears in �2(h(me)) in an element of Arb, then mul =?.

To check (i), we start by using the function getMsgArb 2 Val ! Set(MsgArb), which extracts

all elements of MsgArb that appear in a value, after applying the following conversion. If

a value contains the pair s :Msg with s 62 SMsg, we have no information about the signer,

destination, etc, of the message it represents, so that pair is replaced with :Arb(KC ; SMsg0),

which represents a completely arbitrary message. Let unknownToArb 2 Val ! Val denote

this conversion. Then

getMsgArb(v) = (�1(v) \ SMsg) [ (�1(unknownToArb(v)) \ Arbs): (5.31)

After choosing ma 2 getMsgArb(�2(h(me))), conditions (i) and (ii) are checked using the

functions getMsgs 2 MsgArb ! Set(SMsg) and getKeys 2 MsgArb ! Set(KC ), which

extract the messages and key constants, respectively, that appear in an element of MsgArb:

getMsgs(ma) = match ma with

jArb(kcs;ms)! ms

j ! fmag

(5.32)

getKeys(ma) = match ma with

jArb(kcs;ms)! kcs

j ! ;

(5.33)

Third Condition. The third condition is:

(8` 2 S : � 62 �2(�1(`))) jhinv(`)j = 1): (5.34)

This says: if the multiplicity of a ms-atom isn't �, then that ms-atom corresponds to at most

one element of mes.

Fourth Condition. The fourth condition is:

f?; �g \ �2(�1(S)) 6= ; ) mul =?)): (5.35)

This says: if the multiplicity of any ms-atom in S is not de�nite, then mul must be ?.
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Fifth Condition. The �fth condition requires that the set mes of extended messages

satisfy validM(src; svc)(mes), where validM(src; svc) 2 Set(MsgExt)! B. Function validM

uses getPath 2 SMsg ! ((Seq(Name)� Svc) [ f?g) to extract the sequence of components

visited by each message and the service to which the message is destined; while extracting

this path, getPath checks that the signatures match the destinations, and returns ? if they

don't match:

getPath(m)=match m with

jmsg0(kc; data; dest)! hhhprin(kc)ii; desti

jmsg(kc; data; dest ; m)!match getPath(m0)with

j? ! ?

jh�; svci! if svc = provides(prin(kc)) then

h� � hhprin(kc)ii; desti

else ?:

(5.36)

validM(src; svc) checks that the extended messages all (i) started from src, (ii) are destined

for svc, (iii) visited the same sequence of services, and (iv) are signed by di�erent replicas

of the last visited service. For an extended message with a non-empty extension, we drop

condition (ii), corresponding to the conservative approximation that the last destination

contained in the extension may be arbitrary, even if the extension ends with the name

of a non-faulty component. In other words, as mentioned above, although a non-faulty

server ordinarily sends moving agents to next , if the server receives arbitrary inputs, we

allow the possibility that it gets \confused" and sends the moving agent to an arbitrary

service. Instead, for an extended message hm; exti with non-empty extension, condition (ii)

is replaced with the requirement that m is destined for the service provided by the �rst
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element of ext . Thus,

validM(src; svc)(S) =

if (9hm; exti 2 S : m 6= ? ^ getPath(m) = ?) then false

else let path = (�hm; exti :S: if m = ? then ext else �1(getPath(m)) � ext)

in ^ (8x 2 S : �rst(path(x)) = src)

^ (8hm; exti 2 S : ^ ext = ") �2(getPath(m)) = svc

^ ext 6= ") _m = ?

_ �2(getPath(m)) = provides(�rst(ext)))

^ (8x1; x2 2 S : x1 6= x2 )

^ provides(rest(path(x1))) 2 Seq(Svc)

^ provides(rest(path(x1))) = provides(rest(path(x2)))

^ jpath(x1)j > 1) last(path(x1)) 6= last(path(x2)));

(5.37)

where provides is the pointwise extension of provides to sequences of names, rest returns the

\rest" of a sequence (i.e., the sequence with its �rst element, if any, removed), and �rst and

last return the �rst and last element of a sequence, respectively. It doesn't matter here what

�rst and last return on the empty sequence.

Determining the Server's Outputs

The result of server1 is determined from mmes as follows. If mmes is empty, then moving

agents initiated by this source cause no outputs from this server. If mmes is non-empty, then

we gather a set ds of symbolic values corresponding to possible results of the majority vote on

the data values in the inputs from the source. Recall that a server produces outputs only if it

receives the same value from a majority of replicas of a service (one can think of a source as

a service with one replica, so one value already forms a majority); thus, mes 2 Set(MsgExt)

causes an output only if the data values in the concrete messages represented by the extended

messages in mes are equal, in which case we can obtain a symbolic value representing that

common data value by using getData to extract the symbolic data value from any extended

message in mes whose extension is empty. The function getData 2 SMsg ! SVal0 extracts

the symbolic data from a message:

getData(s) =match s with

jmsg0( ; d; )! d

jmsg( ; d; ; )! d

(5.38)
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On the other hand, if all extended messages in mes have non-empty extensions, then the

common data value (if any) could be arbitrary, so ? is added to ds.

If ds contains a single symbolic value d, then d represents the result of the majority

vote. The output message is signed by kc, contains as data the symbolic value gsvc(d), and is

destined for the service next . The set of possibilities for the input message that is included in

the output message is computed by transforming each extended message in
S
mes2�2(mmes)mes

into an element of SMsg using the function MEtoMsg 2 Svc �MsgExt ! SMsg , de�ned by

MEtoMsg(next ; hm; exti) = if ext = " then m

else let svc = provides(last(ext))

in let m1 = MEtoMsg(svc; hm; allbutlast(ext)i)

in letd = apply(gsvc; hhgetData(m1)ii)

in apply(msg; hhKlast(ext); d; next; m1ii);

(5.39)

where for a sequence s, allbutlast(s) is s with the last element removed. Determining the

multiplicity of the outgoing messages is straightforward. Note that, since we are assuming

that each source initiates at most one moving agent, each server sends at most one \burst"

of messages (i.e., a message to each provider of some service) corresponding to each source.

If ds contains contains ? or contains multiple symbolic values, then the result of the

majority vote is not known exactly, so we adopt a coarse approximation, representing the

output by the abstract value mkArb(fkcg; �2(lbls)). tagOfSrc 2 Src ! Tag returns a di�er-

ent tag for each source; this ensures that the ms-atoms produced by di�erent calls to server 1

from a single call to server are distinct. Note that it is safe to use a tag of 0 in case d is

uniquely determined, since then the input message msg in included in the output ms-atom

ensures uniqueness of the output ms-atom.

Finally, we argue that restricting to extensions of length n does not a�ect the result of

server1; thus, the restriction is needed not for soundness but for termination. Informally,

n is 1 more than the length of the longest sequence of signtures on any message that the

server might have received. In the de�nition of n in Figure 5.4, note that max returns the

maximal element of a set of natural numbers, and for convenience, we de�ne �1(?) = ?

and j?j = 0. Suppose hmul ;mesi would be added to mmes if MsgExt(n) were replaced with

MsgExt in the de�nition of mmes. We argue that this would not a�ect the result of server1.

Let S � lbls be some set of ms-atoms that justi�es the inclusion of hmul ;mesi in mmes.

Since hmul ;mesi was not already in mmes, mes must contain an extension of length greater

than n. Let i be the length of the shortest extension in mes. Since validM(src; svc)(mes)
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holds, all elements of mes have the same \path length", i.e., for all me 2 mes, jpath(me)j is

the same. Since a message contributes at most n�1 to the length of path(me), this common

\path length" is at most (n� 1) + i and i � 2.

Let mes 0 be mes with the last i� 1 elements of each extension removed. We claim that

hmul ;mes 0i is in mmes. It is straightforward to show that validM(src; svc)(mes 0) holds, and

that the same set S of ms-atoms can be used to justify inclusion of hmul ;mes 0i in mmes,

provided the extensions in mes 0 are of length at most n. The common \path length" for mes 0

is at most (n� 1) + i� (i� 1), which simpli�es to n, so the length of the longest extension

in mes 0 is at most n. Thus, hmul ;mes 0i is in mmes.

Now consider the result of server1. The length of the shortest extension in mes 0 is

i� (i� 1), so every extension in mes 0 is non-empty, so ds contains ?. So, adding hmul ;mesi

to mmes only provides a redundant justi�cation for the inclusion of ? in ds.

5.2.2 Other Input-Output Functions

De�nition of source. For kc 2 KC , data 2 SVal , and dest 2 Svc, the input-output

function source(kc,data,dest) represents a source with private key kc that initiates a moving

agent by sending a message containing symbolic data value data to the replicas of service

dest :

source(kc; data; dest) =

(�fail :fOKg: (�h :Hist : (�x :Name:

if provides(x) = dest then hfh1;msg0(kc; data; dest) :Msg ; 0ig; ;i

else h;; ;i))):

(5.40)

De�nition of broker . The input-output function for a consolidator is almost the same as

that for a server, except that a consolidator does not apply an operator to the outgoing data

or sign its outgoing messages.

For svc 2 Svc, n 2 N, next 2 Name, and nbrs � Name, broker(svc; n; next ; nbrs) is

given by the right side of (5.22) with server 1(kc; svc; n; next ; src; lbls; x; evsdrprs) replaced

with consolidator1(svc; n; next; src; lbls; x; evsdrprs), and with fkcg replaced with ; in both

occurrences of mkArb.

In turn, consolidator1(n; next ; src; lbls; x; evsdrprs) is given by the right side of the equa-

tion in Figure 5.4 with:

� hmul ; ms� fMsgg; 0i replaced with hmul ; d : Data; 0i,
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� both occurrences of provides(x) = next replaced with x = next (since next here is the

name of the actuator, not a service it provides), and

� mkArb(: : :) replaced with Data (since we assume a \confused" consolidator still sends

only data values in Data to the actuator).

Note that the bindings of S, `in , msg in , and msg are dead code in consolidator1 and can be

eliminated.

5.3 Analysis of Perturbed Behavior

For the system in Figure 5.3, nf is given by

nf (S) = source(KS; X; F )

nf (Fi) = server(KFi; F; 3; G; nbrs n fFig)

nf (Gi) = server(KGi
; G; 3; B; nbrs n fGig)

nf (B) = broker(B; 3; A; nbrs n fBg)

nf (A) = (�fail :fOKg: (�h :HistFC : (�x :Name: h;; ;i))):

where nbrs = fF1; F2; F3; G1; G2; G3; H1; H2; H3; Bg. For that system, provides is given by

provides(Fi) = F

provides(Gi) = G

provides(B) = B:

We take tagOfSrc(S) = 0.

5.3.1 Failure of Visited Services.

Consider the failure scenario in which F1 and G2 fail. A straightforward calculation shows

that the �xed-point is the same as the run in Figure 5.3, except that the outputs of the faulty

components are di�erent, and other components send messages to the faulty components as

a result of eavesdropping. Speci�cally, for x 2 fF1; G2g and y 2 nbrs n fxg, the edge hx; yi

is labeled with

fevsdrp;Arb(fKF1 ; KG2
g; ms1)g

�;

where ms1 = fm0; m1
2; m

1
3; m

2
2;1; m

2
3;1; m

2
2;3; m

2
3;3g. Also, for x 2 fF1; G2g and y 2 nbrs n

fF1; G2g, the edge hy; xi is labeled with all the output ms-atoms of component y in Figure

5.3, but with the multiplicities changed to ?.
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To help the reader verify this calculation, we give the values ofmmes obtained in the eval-

uation of server 1 and consolidator1 when the �xed-point has been reached; values of mmes

in previous iterations of the �xed-point calculation are subsets of these. When evaluating

server1 for F2 and F3, the value of mmes is

[
mul2f?;1g

fhmul ; fhm0; "igig:

Note that the inclusion of fh?; fhm0; "igig in mmes is justi�ed by S = fh1; m0; 0ig and S =

fh�;Arb(fKF1; KG2
g; ms1); 0ig. The latter re
ects the possibility that a faulty component

obtainsm0 by eavesdropping and forwardsm0 to F2 or F3. Since the network is asynchronous,

F2 or F3 might receive this forwarded copy before the original copy sent by the source.

When evaluating server1 for G1 and G3, the value of mmes is

S
mul2f?;1gfhmul ; fhm

1
2; "i; hm

1
3; "igig

[fh?; fhm1
2; "i; hm

0; hhF1iiigi; h?; fhm
1
3; "i; hm

0; hhF1iiigig:

The presence of fhm1
2; "i; hm

0; hhF1iiig re
ects the possibility that the faulty server F1 sends

the correct value to G1 or G3. In particular, if the extended message hm0; hhF1iii contains the

same data value as m1
2 (namely, the value represented by eF (X)), then these two messages

can cause an output; this is why they are included in mmes and thereby used to justify the

inclusion of eF (X) in ds. If hm0; hhF1iii contains a di�erent value than m1
2, then these two

messages do not cause an output, so these two messages do not justify adding any other

data values to ds. The explanation for fhm1
3; "i; hm

0; hhF1iiig is analogous.

When evaluating consolidator1 for B, the value of mmes is

S
mul2f?;1g

S
i;i02f2;3g

S
j2f1;3g

S
j02f1;3gnfjgfhmul ; fhm

2
i;j; "i; hm

2
i0;j0; "igig

[
S
i2f2;3g;j2f1;3gfh?; fhm

2
i;j; "i; hm

0; hhF1; G2iiigig

[
S
i;i02f2;3g;j2f1;3gfh?; fhm

2
i;j; "i; hm

1
i0; hhG2iiigig:

Extended messages with non-empty extensions are present here for analogous reasons.

Note that the voting in each step \heals" the e�ects of failure of a minority of the replicas

in the previous step. For example, failure of F1 no longer perturbs the output of G1, so the

system tolerates failure of F1 and G2.

5.3.2 Failure of Unvisited Services.

Consider the failure scenario in which H1, H2, and H3 fail. A straightforward calculation

shows that the �xed-point is the same as the run in Figure 5.3, except that the outputs
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of the faulty components are di�erent, and other components send messages to the faulty

components as a result of eavesdropping. Speci�cally, for x 2 fH1; H2; H3g and y 2 nbrs n

fxg, the edge hx; yi is labeled with

fevsdrp;Arb(fKH1
; KH2

; KH3
g; ms2)g

�;

where

ms2 = fm0g [ (
[

i2f1;2;3g

fm1
i g) [ (

[
i;j2f1;2;3g

fm2
i;jg):

Also, for x 2 fH1; H2; H3g and y 2 nbrs n fH1; H2; H3g, the edge hy; xi is labeled with all

the output ms-atoms of component y in Figure 5.3, but with the multiplicities changed to ?.

5.3.3 Failure of Visited and Unvisited Services.

Consider the failure scenario in which F1, H1, and H2 fail. As the reader may have suspected,

the protocol described above does not tolerate this failure scenario. To help see why, we trace

the �xed-point calculation. Let faulty = fF1; H1; H2g. Let ri denote the run obtained after

i steps. Thus, r0 = ?Run . Run r1 is the same as r0 except as follows:

x y r1(hx; yi)

fSg fF1; F2; F3g m0

faulty nbrs n fxg fevsdrp;Arb(fKxg; ;)g
�

Run r2 is the same as r1 except as follows:

x y r2(hx; yi)

fF2; F3g fG1; G2; G3g m1
i

fF2; F3g faulty (m1
i )

?

fF1g nbrs n fF1g fevsdrp;Arb(fKF1; KH1
; KH2

g; fm0g)g�

fH1; H2g nbrs n fxg fevsdrp;Arb(fKF1 ; KH1
; KH2

g; ;)g�

Consider the evaluation of server1 for F2 in computing run r3. The value of mmes is

fh1; fhm0; "igi; h?; fhm0; hhF1; H1iii; hm
0; hhF1; H2iiigig. The latter element corresponds to

the possibility that H1 and H2 sent their private keys to F1, which used its own key and

those keys together to fool F2. Thus, ds is fX;?g, so the output of F2, sent to nbrs n fF2g,

is an element of Arbs. The other non-faulty servers and the consolidator are also fooled. For

x 2 fF2; F3; G1; G2; G3g and y 2 nbrs n fxg, r3(hx; yi) = Arb(fKF1; KH1
; KH2

; Kxg; fm
0g)�.

The consolidator sends Data? to the actuator (and to the eavesdroppers), so the fault-

tolerance requirement is already violated. Informally, the protocol breaks down because
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each output message contains only one input message; a \quorum" of input messages should

be included in each output message.

The �xed-point r is given by:

x y r(hx; yi)

fSg fF1; F2; F3g m0

fF2; F3; G1; G2; G3g nbrs n fxg Arb(kcs; fm0g)?

faulty nbrs n fxg fevsdrp;Arb(kcs; fm0g)g�

fBg fAg [ faulty Data?

where kcs =
S
i2f1;2;3gfKFi; KGi

; KHi
g, and where the other edges of r are labeled with the

empty set.

5.4 Discussion

5.4.1 Symbolic vs. Abstract Values

In the above model, we introduced constants to represent names of services. Since symbolic

values are intended primarily for representing relationships between values, one could argue

that it would be more appropriate to use abstract values to represent names of services.

For example, we could distinguish the destination service of a message in the abstract value

instead of the symbolic value, just as the sender of a message is distinguished in the abstract

value in the analysis of reliable broadcast in Section 4.1. We use constants here, instead of

abstract values, only to improve the appearance of the formulas. Symbolic values are needed

to track keys and data, so it is tidier to use symbolic values for all parts of the message,

rather than splitting the information between the symbolic and abstract values. Finally, we

note that this issue may be arti�cial, since it may be possible to construct a more 
exible

version of the framework in which symbolic and abstract values intermingle within terms.

5.4.2 Abstracting from Paths

One limitation of the above analysis is that it does not allow abstraction from the path

traveled by the moving agent. For example, although data values are abstracted (since they

are represented by variables), names are not abstracted, so a graph like the one in Figure

5.3 represents only moving agents that follow one speci�c path through the network. One

way to eliminate this restriction is to introduce a distinction between abstract names and

concrete names, and allow the correspondence to be chosen to \match" the path actually
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traveled by the moving agent. This is in the same spirit as our treatment of key constants:

we require that the interpretation of key constants as keys satisfy some sanity conditions,

but we do not �x the interpretation of key constants as speci�c keys.

However, abstracting from names poses obvious di�culties. In particular, when messages

are sent to abstracted names, it's generally not clear which sets of messages form the input

histories of which components. If the system is very homogeneous (i.e., the components

whose names are abstracted all behave similarly, as do the servers in the previous section)

and the processing of di�erent messages by each component is su�ciently independent, these

uncertainties are manageable, but in general, the di�culties are formidable.

5.4.3 Approximation of Message Extensions

Since elements of Arbs contain a set (not a sequence) of key constants, the analysis does

not keep track of the order in which keys in kcs might appear in message extensions. Some

abstraction from the order of signatures in the extension is essential for the analysis to

terminate, since extensions can be of unbounded length but contain only a �nite number of

di�erent keys.



Chapter 6

Related and Future Work

This chapter puts the work described in this thesis in context. Section 6.1 looks to the past,

discussing related work. Section 6.2 looks to the future, discussing several directions for

future work.

6.1 Related Work

Abstract Interpretation

Abstract interpretation is an extremely general framework for program analysis [AH87]. Our

analysis is distinguished from pure abstract interpretation by the use of symbolic values

to track relationships between values; thus, our �xed-point analysis incorporates symbolic

computation as well as abstract interpretation. To some extent, symbolic values can be

simulated in the context of abstract interpretation, by introducing statically an abstract

value corresponding to each symbolic value that will be needed in the course of the analysis;

this approach and its limitations are discussed further below.

If one ignores for the moment our use of symbolic values, our analysis is a form of abstract

interpretation. However, there is some qualitative di�erence between our analysis and most

traditional uses of abstract interpretation, which typically deal with domains whose structure

mirrors the structure of the program being analyzed. This is the case, for example, for

analyses that infer types for expressions, or computing def-use chains between occurrences of

variables, or determine whether certain expressions are constant. Such analyses are typically

designed to be incorporated into compilers, so low computational cost is essential.

Fault-tolerance analysis focuses on properties of a system's behavior whose veri�cation

may require (in general) high computational complexity. So, the domains tend to be based

130
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less on the structure of the system and more on the structure of its executions. While

there is no sharp distinction here, an example may help illustrate the di�erence. Consider a

restricted form of fault-tolerance analysis that yields, for each pair of components, a single

ms-atom describing the communication between those components. This restricted analysis

has a static 
avor, since the structure of the domains corresponds closely to the structure of

the system, but it is sometimes inadequate. For example, in the analysis of FIFO reliable

broadcast in Section 4.1, it was important to distinguish between the values and multiplicities

of the two messages whose ordering is being checked. The restricted analysis would be too

imprecise.

The abstraction mechanisms in our framework have been designed to provide great 
exi-

bility in the precision with which systems are modeled; for example, when writing an input-

output function, one can choose to use at most one ms-atom in each poset, or one can choose

to use many. In general, the framework supports rather than enforces approximations. With

this 
exibility comes a burden on the user to select appropriate approximations. This bur-

den seems inevitable, since veri�cation of asynchronous systems with channels of unbounded

capacity is undecidable [BZ83].

Failure Propagation and Transformation Notation

In their work on applying HAZOP and FMECA to computer-based systems, McDermid et

al. [FM93,FMNP94,MNPF95] have developed an approach to validation of fault-tolerance

that shares with our work the idea of characterizing each component by how it generates

and propagates \failures" (perturbations). Their approach is embodied in their failure prop-

agation and transformation notation (FPTN). FPTN achieves simplicity at the expense of

generality. One can choose for each system the relevant kinds of perturbations, but each

kind of perturbation must be represented by a single boolean value. For example, one bit

might indicate omission of an output; another bit might indicate arbitrary corruption of an

output value.

Our framework is parameterized by the domains AVal and �AVal , so the representation

can be customized for di�erent application domains. For example, in the analysis of the

cryptography-based protocol in Chapter 5, we introduce Arb and use it to represent (roughly

speaking) the set of cryptographic information known to each faulty component.
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Fault-Tolerance as Self-Similarity

Fault-tolerance as self-similarity [Web93] shares with our work the goals of separating the

speci�cation of fault-tolerance from other correctness requirements and developing special-

ized techniques for veri�cation of fault-tolerance requirements. To achieve this, Weber adopts

a rigid notion of fault-tolerance: he equates fault-tolerance with fault-masking. In other

words, he de�nes a system to be fault-tolerant i� its visible behavior in the presence of faults

is the same as in the absence of faults. This is attractive because fault-masking proper-

ties can be expressed in terms of bisimilarity:1 a system masks a fault i� the fault causes

transitions only between bisimilar states. Thus, this approach allows one to leverage work

on checking bisimilarity [CS96]. This technique is interesting but limited in applicability to

systems in which faults are completely masked.

Abstraction in Model Checking

Abstractions play an important role in our work. Clarke, Grumberg, and Long studied the

use of the abstractions in conjunction with temporal-logic model-checking [CGL92,CGL94].

Their notion of abstraction corresponds roughly to abstract interpretation and to our notion

of abstract values, though in their state-based approach, multiplicities are not explicit, so

abstractions are used only for (data) values. They also propose so-called symbolic abstrac-

tions, which are just abbreviations for �nite families of (non-symbolic) abstractions. Our

symbolic values are closer to the technique they sketch in the last paragraph of [CGL94] for

dealing with in�nite-state systems.

In Kurshan's automata-based veri�cation methodology, approximations are embodied

in reductions between veri�cations [Kur89,Kur94]. A typical use of a reduction is to col-

lapse multiple states of an automaton into a single state of a reduced automaton; this is

analogous to introducing abstract values. Relationships between concrete values can be ex-

pressed in Kurshan's methodology using parameterized families of reductions, reminiscent of

Clarke, Grumberg, and Long's so-called symbolic abstractions. For example, to verify that

a bounded-length queue containing numbers in [1::n] does not drop items, one can use a

family of reductions that collapses the set [1::n] of concrete data values to two abstract data

values: the one being \focused on", speci�ed as a parameter, and \everything else" [Kur94,

Appendix D]. The relationship captured here is equality of each value with the concrete

1Roughly, states s and s0 are bisimilar if the set of visible behaviors possible starting from state s equals
the set of visible behaviors possible starting from state s0. For details, see [Mil89].
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value being focused on.2 The parameter of the reduction corresponds in our framework to

use of a variable representing the focused-on value. For problems involving related values

(e.g., X and F (X)), the reductions must introduce an abstract data value representing each

such value. In e�ect, one must determine in advance all relevant symbolic values (e.g., all

symbolic values that would arise during the �xed-point calculation in our framework) and

introduce an abstract data value for each. Note that the resulting abstractions are not mod-

ular, since they may include abstract values corresponding to symbolic values that contain

variables local to di�erent processes.

In our framework, it is not necessary to require that the items in the queue come from

a �nite set. Using symbolic multiplicities, it is not even necessary to require that the queue

have bounded length. In this case, the input-output function would need to incorporate

non-trivial abstractions, which would need to be veri�ed manually.

An attractive feature of Clarke and Long's work and Kurshan's work is that abstractions

(or reductions) are speci�ed as homomorphisms and applied to programs (or automata)

automatically. We plan to look at mechanized support for applying abstractions in our

framework.

Veri�cation of Byzantine Agreement Algorithms

Our approach to fault-tolerance analysis is similar in spirit to the state-exploration technique

of Gong, Lincoln, and Rushby [GLR95]. In both cases, an automated analysis is used

to compute and evaluate the behavior of the system separately in each failure scenario of

interest. However, the work described in [GLR95] apparently does not include the use of

any form of abstraction.

6.2 Future Work

This section describes some possible extensions of and variations on our work.

Inter-channel orderings. Because our representation of runs contains no inter-channel

orderings, our analysis su�ers (in e�ect) from the merge anomaly [Kel78,Bro88]. Speci�cally,

2Although the method just described is one way to prove that the queue doesn't drop items, it is ap-
parently not the method Kurshan has in mind, since in [Kur94, Appendix D], the reduction is not actually
parameterized: the concrete value being focused on is �xed to be 1. Presumably Kurshan has in mind the
following method. Let Qred i be the reduced automaton obtained from the reduction hi that focuses on the
concrete value i. It su�ces to check that Qred i does not drop items, and that for each i 2 [2::n], Qred i is
isomorphic to Qred1. Note that this method still requires iterating over O(n) reductions.
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when modeling a non-strict component, one is forced to use a conservative approximation.

One way to remedy this is to adopt at the abstract level some analogue of the approach used

at the concrete level. However, this would lead to an ine�cient analysis, since modeling

each component by a set of functions causes an explosion in the number of combinations of

functions that must be considered in the analysis of a system.

A more promising remedy is to add inter-channel orderings to the representation of runs.

This is one of the ideas behind Brock and Ackermann's scenarios [BA81,Bro83] and Pratt's

model of processes [Pra82]. In both of those models, a process is a (potentially in�nite)

set, each element of which represents a complete (and potentially in�nite) behavior. This

contrasts with Kahn's model, in which a process is a function that can be used to determine

the behavior of a system incrementally via a �xed-point calculation. So, neither scenarios nor

Pratt's model is directly suitable as the basis for an e�cient �xed-point analysis. However,

a related approach seems feasible. Roughly, one adds to the representation (2.29) of runs a

partial order on the ms-atoms that appear in the run. For example, a run could be a pair

hr;�i, where r 2 Name ! Hist and �2 Order(
S
hx;yi2Name�Namefhx; yig � r(y)(x)). Input-

output functions must be extended to deal with these inter-channel orderings; in particular,

the domain of input-output functions is extended with a partial order on the input ms-atoms

(from all sources), and the range is extended with orderings between input and outputs (i.e.,

causal dependencies of outputs on inputs) and orderings between outputs. The details of this

approach remain to be worked out (proving soundness of the analysis apparently becomes

much more complicated).

Integrating symbolic and abstract values. As discussed in Section 5.4.1, the separa-

tion between symbolic and abstract values enforced in the current framework is sometimes

awkward. It would be interesting to explore ways of allowing a tighter integration of the two.

For example, we might label each subterm of a symbolic value with an abstract value. We

should also allow the wildcard to appear within an expression. This would allow values like

plus(X :N; :?) :N, which represents the set of numbers f�(X); �(X)+1g. We might want to

refer to this value in other ms-atoms, so we should also allow a variable to be associated with

this expression as a whole; thus, we might use a value of the form (plus(X :N; :?) as Y ) :N,

where Y represents this value as a whole.

Dynamic creation of components. The frameworks described in this thesis cannot

directly represent systems in which components are created dynamically. Such systems
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can be modeled by including a su�cient number of idle components and sending special

messages to activate them when they are actually created. One di�culty with this approach

is that it may be di�cult to determine in advance what is a \su�cient number". Also,

this approach is awkward if the input-output functions associated with new components are

determined dynamically (i.e., when components are created), since our current frameworks

use a �xed mapping nf from names to input-output functions. This dynamic behavior can

be mimicked (albeit awkwardly) using input-output functions that are (in e�ect) interpreters

for the language in which input-output functions are written.

Instead of developing techniques to simulate dynamic component creation in the cur-

rent frameworks, we can extend the frameworks to represent dynamic component creation

directly. One approach is to extend the range of input-output functions to include compo-

nent creation events. A component creation event must contain the input-output function

associated with the new component, so the type of input-output functions is of the form

IOF = InMsgs ! OutMsgs � Set(Name � IOF ):

Making sense of recursive de�nitions of this form requires domain theory, as opposed to the

set theory used in this thesis. An alternative approach is to give an operational semantics,

in the form of a transition system for some speci�c agent language (e.g., lambda calculus

extended with some primitives for agent creation and communication); this is the approach

taken for actors in [AMST93].

Automated support for abstractions. As mentioned in Section 6.1, we plan to look

at mechanized support for applying abstractions in our framework. This would reduce the

burden of proving that input-output functions represent processes. To provide automated

support, speci�c languages must be chosen for expressing processes and input-output func-

tions. For the former, a language like PROMELA could be used [Hol91]; for the latter, a

functional subset of CAML. An abstraction would be embodied as a transformation T that

maps a process P to an input-output function T (p) that represents P (and incorporates the

abstraction). In general, correctness of the transformation would be veri�ed manually; that

is, one would prove that, for all processes P in a certain class, T (P ) represents P . The

bene�ts of expressing an abstraction as a transformation are that the transformation can

be applied automatically and the e�ort of verifying the transformation can be amortized by

applying it to many systems.
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State-based fault-tolerance analysis. The history-based model developed in this thesis

makes multiplicities explicit and makes the entire history of a computation available to the

input-output function at every step. This gives input-output functions �ne control over the

approximations used to represent the contents of the channels. Indeed, this is the primary

bene�t of using histories. On the other hand, a state-based approach would be simpler

in some respects, so it is interesting to consider the possibilities for a state-based fault-

tolerance analysis that can still cope with asynchronous distributed systems with unbounded

communication channels. Naturally, the contents of the channels would be included as part of

the state of the system. In order to represent inde�nite and unbounded multiplicities (e.g., in

the output of Byzantine-faulty components, or in the output of a component that repeatedly

transmits \I'm alive" messages), the contents of channels could be approximated using an

appropriate generalization of regular expressions. To use this state-based approach, one must

still develop representations of the components that deal with this high-level representation of

the contents of channels. Assuming the state of the system includes only the current contents

of channels|not the entire history|less information is available to these representations

of the components, so controlling the use of approximations (especially approximations of

multiplicities) may be more di�cult.

Applications. To test and re�ne the approach|and the tool described in Appendix B|

we must apply them to more problems. Possible applications include e�cient algorithms for

asynchronous Byzantine Agreement [CR93], algorithms for the certi�ed write-all problem

[KMS95,BKRS96], secure protocols for group membership and reliable broadcast [Rei96,

MR96], and cryptographic protocols for fault-tolerant moving agents [MvRSS96].



Appendix A

Index of Symbols

Symbol Page Description
�

= 11 equal by de�nition

Seq 11 �nite and in�nite sequences

CHist 11 history of concrete messages

CHist
�

= Name ! Seq(CVal)

! 11 constructor for signature of functions

hh�ii 10 sequence

" 11 empty sequence

�CHist 11 partial order on CHist

DProcess 12 determinate process

DProcess
�

= CHist!!CHist

!! 12 monotonic and continuous functions

CRun 12 concrete run

CRun
�

= Name ! CHist

step 12 step function

�CRun 12 partial order on CRun

crun 13 concrete run of a determinate system

h�i 13 tuple

Chain 13 chains of a partial order

j � j 13, 33 length of a sequence, or size of a set

dom 13, 34 domain of a sequence or function

?CRun 14 least element of CRun

137
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?CHist 14 least element of CHist

Process 15 (non-determinate) process

Process
�

= Set(IRProcess)

IRProcess 15 input-restricted process

IRProcess
�

= DProcess � Set(CHist)

cruns 15 concrete runs of a system

�i 15 project ith component of a tuple

� 15 function composition

enabled 15 enabledness of input-restricted process

^ 16 conjunction (in�x or bullet-style)

_ 16 disjunction (in�x or bullet-style)

Order 19 strict partial orderings

POSet 19 strictly-partially-ordered sets

Hist 19 history of messages

Hist
�

= Name ! POSet(L)

Run 19 run

Run
�

= Name ! Hist

L 20 labels

L
�

= Mul � Val � Tag

Val 20 values

Val
�

= P�n(SVal � AVal) n f;g

P�n 20 �nite subsets

n 20 set di�erence

AVal 21 abstract values

InterpSet 21 interpretation (of abstract values)

InterpSet(S)
�

= S ! Set(CVal)

Con 21 constant

Var 21 variable

SVal0 22 symbolic values except wildcard

Sym 22 symbols (constants and variables)

Sym
�

= Con [ Var

SVal 22 symbolic values

SVal
�

= SVal0 [ f g
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Mul 24 multiplicities

Mul
�

= P�n(SVal � AMul) n f;g

AMul 24 abstract multiplicities

IOF 27 input-output functions

IOF
�

= ff 2 Hist ! Hist j tagUniform(f)g
inj
! 28 injections

=POSet(L) 28 equality on POSet(L)

=Hist 28 equality on Hist

tagUniform 28 output is uniform WRT tags in input

?Run 28 least element of Run

?Hist 28 least element of Hist

=Run 28 equality on Run

interp 34 partial interpretation (of symbols)

* 34 partial functions

�interp 34 ordering on interp
onto
�! 34 surjective (onto) funtions

compatVal 35 compatibility of an abstract value with a concrete value

compatPOSet(L) 35 compatibility of labels with a concrete history

ginv 35 generalized inverse of function g

[[]]POSet(L) 36 meaning of a partial-order of labels

[[]]Hist 36 meaning of a history

<IOF 37 meaning of an input-output function

<Sys 37 meaning of a system

Interp 37 extensions of a partial interpretation (of symbols)

[[]]Run 37 meaning of a run

cruns�n 38 �nite-length concrete runs

# 39 restriction of an invariant to a set of names

�POSet(L) 43 ordering on POSet(L)

�InHist 43 ordering on histories regarded as inputs

�OutHist 43 ordering on histories regarded as outputs

�Run 43 ordering on runs

ProcessF 50 failure-prone process

ProcessF
�

= fp 2 Fail * Process j OK 2 dom(p)g
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IOFF 50 input-output function for a failure-prone component

IOFF
�

= ff 2 Fail * IOF j OK 2 dom(f)g

FS 50 failure scenarios

fsOK 50 failure-free failure scenario

crunsF 50 concrete runs of a system

stepF 50 step function for a system in a given failure scenario

<IOFF
50 meaning of an element of IOFF

B 51 booleans

origIndepC 63 sanity condition for ProcessFC

consistent 64 sanity condition for ProcessFC

ProcessFC 64 failure-prone process, represented using changes

crunsFC 64 concrete runs of a system, represented using changes

LFC 66 original label with changes, or new label

LFC
�

= Lper [ Lnew

Lper 66 original label with changes

Lper
�

= Mul � Val ��Mul ��Val � Tag

Lnew 66 new label

Lnew
�

= Mul � Val � Tag

�AVal 66 change to abstract value

�AMul 67 change to abstract multiplicity

�Val 67 change to value

�Val
�

= P�n(SVal ��AVal) n f;g

�Mul 67 change to multiplicity

�Mul
�

= P�n(SVal ��AMul ) n f;g

HistFC 67 history of messages, represented using changes

HistFC
�

= Name ! POSet(LFC )

RunFC 67 run of a system, represented using changes

RunFC
�

= Name ! HistFC

IOFFC 69 input-output function for a failure-prone component

represented using changes

tagUniformFC 69 output is uniform WRT tags in input

orig 69 projection on original behavior

origIndep 69 sanity condition for IOFFC
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borig 69 bijection associated with orig

runFC 70 run of a failure-prone system, represented using changes

unchanged 70 unchanged (for a poset of labels)

totalOrd 70 totally-ordered (a property of posets)

unchangedVal 70 unchanged (for a value)

[[]]POSet(LFC ) 75 meaning of an element of POSet(LFC )

compatPOSet(LFC ) 75 compatibility of labels with original and perturbed

concrete histories

compat�Val 75 compatibility of a change to a value

with original and perturbed values

[[]]HistFC 75 meaning of elements of HistFC

<IOFFC 76 meaning of elements of IOFFC

<SysFC
76 meaning of a failure-prone system

represented using changes

[[]]RunFC 76 meaning of elements of RunFC

�POSet(LFC ) 78 ordering on POSet(LFC )

�InHistFC 78 ordering on HistFC regarded as inputs

�OutHistFC 78 ordering on HistFC regarded as outputs

�RunFC 78 ordering on RunFC



Appendix B

CRAFT: A Tool for Fault-Tolerance

Analysis

The non-perturbational and perturbational analysis frameworks described in Chapter 3 are

implemented in a prototype tool, called CRAFT (Change-Relations for Analysis of Fault-

Tolerance). This appendix sketches the structure and use of CRAFT.

B.1 Overview

CRAFT is implemented in the functional programming language CAML Light [Ler97], a di-

alect of Standard ML [MTH90]. CRAFT provides a collection of CAML types and functions

that implement the non-perturbational and perturbational analysis frameworks described in

Chapter 3. CRAFT also provides a graphical interface to facilitate entry of systems and

inspection of analysis results. This section gives an overview of the use of CRAFT; the

remaining sections contain more detailed descriptions of the types and functions provided

by CRAFT.

To use CRAFT to analyze a system, the �rst step is to express the input-output functions

representing system components as CAML functions of appropriate type. Note that input-

output functions are written directly in the CAML programming language. This allows

the full power of CAML and its libraries to be used. However, automatically checking

requirements (such as uniformity with respect to tags) on these functions is harder than it

would be for a more restricted language; this is partly why CRAFT leaves enforcement of

such requirements to the user. CRAFT provides CAML types corresponding to IOF and

IOFFC . Input-output functions should have one of these two types, depending on whether
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a non-perturbational or perturbational analysis is desired.

Once the input-output functions have been expressed in CAML, the remaining steps

depend on whether the graphical interface is being used. Without the graphical interface,

the next step is to de�ne a mapping sys from names (represented in CAML as strings) to

input-output functions that represents the system. Mappings are constructed using functions

in the map module in the CAML standard library. Functions in the map module are also used

to de�ne failure scenarios, which are represented in CAML as mappings from names to

failures. Given a system sys and a failure scenario fs, functions provided by CRAFT are

used to compute a run r representing the behavior of system sys in that failure scenario.

To determine whether such a run satis�es the fault-tolerance requirement, we express the

fault-tolerance requirement as a CAML function ftr, which takes a failure scenario and a

run as arguments and returns a Boolean, and compute ftr fs r. If this returns false, a

textual representation of the run can be inspected to help ascertain the problem. CRAFT

does not currently provide a special function to automatically repeat the analysis for all

possible failure scenarios for a system, but this is trivial to implement, since CRAFT does

provide a function that returns a list of all possible failure scenarios for a system.

CRAFT's graphical interface is implemented using CamlTk, a CAML interface to the Tk

widget library. The graphical interface can be used by CAML-illiterates to access libraries

of input-output functions already written in CAML.1 A user clicks (button1)2 on the canvas

to add a component to the system. This creates a new node at the location of the click

and pops up the \Create Node" window, which is used to specify the input-output function

associated with the new node. Speci�cally, the \Create Node" window displays the names of

all the input-output functions in the library and contains �elds for entering the parameters of

each input-output function.3 The user selects one of those input-output functions and enters

values for its parameters (if any). For example, if the function VoterFC de�ned in (3.53) is in

the library, there would be �elds to enter its three parameters (namely, srcs, dest , and aval).

The user uses the same window to select the possible failures of the new component. Figure

B.1 shows the \Create Node" window for a library containing input-output functions similar

to those used in the running example in Chapter 3. If \Arbitrary Failure" is selected as a

possible failure, the user enters in the \Dests" �eld below it the names of the neighbors of

1For historical reasons, the representations of runs and input-output functions used in the implementation
of the graphical interface are slightly di�erent than the representations described in Section B.2.

2By convention, mouse buttons are numbered from left to right.
3The writer of a library must include in the library a special value describing the names and types of

the parameters of each input-output function. CRAFT uses this special value to generate a window with
appropriate �elds for entering parameters.
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the new component; if the new component su�ers an arbitrary failure, it will send arbitrary

messages to its neighbors.

After entering a system by creating a node corresponding to each system component,

the user can specify a failure scenario and execute the �xed-point analysis. When each

component is created, failure OK is associated with that component; thus, the default

failure scenario is fsOK . To change the failure associated with a component, the user clicks

(Control-button1) on the corresponding node. This pops up the \Set failure status" window,

which is used to select one of the possible failures of that component. Nodes for which a

failure other than OK is selected are displayed with a red border (recall that in the �gures

in this thesis, such nodes are displayed with dots on their circumference). By repeating this

procedure, the user can select any failure scenario of interest.

When a failure scenario of interest has been selected, the user selects the \Analyze"

command from the pull-down menu entitled \Analyze". The �xed-point is computed, and

(if the computation terminates) the result is displayed. If the computed ms-atoms are not

too long or too numerous, they are displayed directly on the edges of the graph, as in

Figures B.1 and B.1. The ms-atoms are color-coded (unfortunately, this is not apparent

from the black-and-white printouts in the �gures): black and brown text are used for the

value and multiplicity, respectively, in the original part of a ms-atom; red text is used

for the perturbation; and blue text is used for new ms-atoms. The edges are also color-

coded: black is used for edges labeled only with perturbed ms-atoms containing the identity

perturbation; red, for edges labeled only with perturbed ms-atoms such that some ms-atom

contains a perturbation other than the identity; blue, for edges labeled only with new ms-

atoms or perturbed ms-atoms containing only the identity perturbation; and violet, for edges

labeled with both new mass and perturbed ms-atoms such that some ms-atom contains a

perturbation other than the identity. If the textual representation of the ms-atoms does not

�t on an edge, the edge is still color-coded, but the ms-atom is elided. The user can click

(Shift-button2) on an edge to pop up a window showing all of the ms-atoms on that edge.

Figure B.1 contains a screen-dump of the result of the analysis in the absence of failures

for the system used as the running example in Chapter 3. Figure B.1 shows the result of the

analysis when component F1 su�ers a value failure. Note that \Top�" corresponds to >�V .

CRAFT supports miscellaneous other commands: saving and loading systems, show-

ing intermediate results of the �xed-point calculation (i.e., \single-stepping" through the

calculation), deleting and moving nodes, selecting di�erent fonts and colors, etc.
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B.2 Type De�nitions and Function Declarations

The translation of the mathematical de�nitions into CAML is generally straightforward.

Figure B.4 contains CAML type de�nitions corresponding to Val and Mul . Associated with

each type is a function used to print values of that type. Declarations of those functions are

omitted here.

The CAML type sval corresponding to SVal does not enforce two restrictions on the

form of symbolic values: (1) the �rst argument to data constructor Expr should be a Con

or Var, not an Expr or Wild; (2) the second argument to Expr should not contain Wild.

One way to enforce these restrictions is to follow the approach taken in Section 2.2.2, i.e., to

de�ne sval in terms of auxiliary types sym and sval 0, corresponding to Sym and SVal0,

respectively. We would like these two auxiliary types to be subtypes of sval, but CAML

does not support subtyping, so we would need to introduce data constructors to inject sym

into sval 0 and sval 0 into sval. These extra constructors would be inconvenient. A better

approach would be to introduce an abstract data type with two operations: a constructor

function that checks these two requirements, and a destructor function that simply returns

the symbolic value. With this approach, one needs only one extra constructor for each

symbolic value, rather than an extra constructor for each symbol in the symbolic value.

For convenience in development, the current implementation does not actually use such an

abstract data type, but it would be trivial to do so using CAML's module system.

The type aval corresponding to AVal is generally straightforward. Note that the iden-

ti�ers in the �rst argument of Arb are interpreted as constants (in KC ). The treatment

of equality for aval requires some care. One way to handle equality is to introduce, for

each type, a function that tests equality of two elements of that type. However, it is more

convenient if we can instead use CAML's built-in polymorphic structural equality function.

Structural equality is simply a \pointwise extension" of equality on base types; for example,

two lists of integers are structurally equal i� they have the same length and the elements

in corresponding positions are equal. Is structural equality the desired equality on aval?

In general, no. Recall from Chapter 5 that the arguments of Arb are sets, not sequences.

Since sets are not a base type in CAML, we use lists as arguments of Arb.4 Thus, in the

desired equality on aval, the order of elements in the arguments of Arb should be irrelevant.

4CAML does provide a module that implements sets over ordered types using balanced trees. However,
the built-in equality function does not have the desired meaning on elements of that type, because the same
set can be represented by di�erent balanced trees, depending on the history of operations used to construct
that set. So, using the set module wouldn't help.
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One way to achieve this is to write an equality function that deliberately ignores the order.

As mentioned above, it is more convenient to use CAML's built-in equality function. This

works provided the lists are maintained in a canonical form, i.e., sorted (according to some

total order) and without duplicates. This is the approach taken in the current implementa-

tion. To mechanically enforce this invariant, we could introduce an abstract data type whose

constructor function puts the given term into canonical form.

The type amul is the same as aval. Since CAML does not support subtyping, the only

alternative would be to make amul an entirely distinct type, which would have prevented

some code re-use. Of course, equating these two types introduces the possibility of input-

output functions encountering in their input abstract values like TopV used as multiplicities.

In this case, the input-output function should simply abort (e.g., by raising an exception).

The types val and mul are represented using lists, which should be regarded as sets. In

other words, the list should be maintained in canonical form, as described above. Also, the

empty list is prohibited. Again, it would be easy to mechanically enforce these restrictions

using abstract data types.

The type daval corresponding to �AVal is straightforward; note that Full(a) corre-

sponds to a�. Type damul is the same as daval, for the same reasons that amul is the

same as aval. Types dval and dmul, corresponding to �Val and �Mul , respectively, are

represented using lists, which should be kept in canonical form.

In order to re-use code for the perturbational and non-perturbational frameworks, we

make the type of ms-atoms polymorphic in the type of \events", and use di�erent types

of events for the two frameworks. Speci�cally, making the tag part of the ms-atom allows

re-use of the code that tests whether two graphs are equal up to renaming of tags. The types

event msatom and event FC msatom correspond to L and LFC , respectively.

The type 'e poset of posets with events of type 'e is represented as a pair of a list

of ms-atoms and an ordering. The list of ms-atoms is kept in canonical form (i.e., sorted

and duplicate-free). The ordering is represented using the order module, which is part of

CRAFT. Internally, the order module represents an ordering as a transitively-closed set of

pairs.

The type 'e hist of histories with events of type 'e is represented using the map module,

which is part of the CAML standard library and provides an implementation of �nite maps

with ordered domains using balanced trees. We allow partial maps, with the convention that

elements not in the domain of the map are implicitly mapped to the empty poset. The use of

�nite maps rather than the function type name -> 'e poset allows e�cient and convenient
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(* component name *)

type name == string;;

(* identifiers are used to name constants and variables. *)

type identifier == string;;

(* SVal *)

type sval =

| Con of identifier

| Var of identifier

| Expr of sval*(sval list)

| Wild

;;

(* AVal *)

type aval =

| One (* denotes {1} *)

| ZeroOne (* denotes {0,1}. printed as "?". *)

| Nat (* denotes the natural numbers. *)

| Plus (* denotes {1,2,...} *)

| TopV (* denotes all concrete values *)

| MsgFrom of name (* used in analysis of reliable bcast *)

| Data (* used in analysis of Byz. agreement *)

| Msg (* used in analysis of Byz. agreement *)

| Arb of (identifier list * sval list)

(* used in analysis of Byz. agreement. *)

;;

(* AMul *)

type amul == aval;;

(* Val *)

type val == (sval * aval) list;;

(* Mul *)

type mul == (sval * amul) list;;

Figure B.4: CAML type de�nitions corresponding to Val and Mul .
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(* Delta-AVal *)

type daval =

| Identity (* denotes the identity relation on CVal *)

| Full of aval (* denotes the full relation on aval *)

;;

(* Delta-AMul *)

type damul == daval;;

(* Delta-Val *)

type dval == (sval * daval) list;;

(* Delta-Mul *)

type dmul == (sval * damul) list;;

(* abstract event in non-perturbational framework *)

type event = mul * val;;

(* abstract event in perturbational framework *)

type event_FC =

| Pert of mul * val * dmul * dval

| New of mul * val

;;

(* tags used in ms-atoms *)

type tag == int;;

(* ms-atoms with events of type 'e.

Type (event msatom) corresponds to L;

type (event_FC msatom), to L_{FC}. *)

type 'e msatom == 'e * tag;;

Figure B.5: CAML type de�nitions corresponding to �Val , �Mul , L, and LFC .
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iteration over the non-empty posets in a history.

The type 'e run of runs with events of type 'e is also represented using �nite maps. By

convention, a component name not in the domain of the map is implicitly mapped to the

empty history.

The type event iofn corresponding to IOF is straightforward. The requirement that

these functions be uniform with respect to tags is not mechanically enforced.

The type (event FC, 'f) iofn F corresponds to IOFFC , with type 'f corresponding to

the set Fail of possible failures. Since elements of IOFFC are partial functions, we represent

them using a pair, whose �rst component speci�es the domain of the partial function, and

whose second component corresponds to the function itself.

A system with events of type 'e and failures of type 'f is represented by an element of

type ('e, 'f) system F, i.e., by a �nite mapping from names to input-output functions.

Type 'f failure scenario is straightforward.

Recall that a fault-tolerance requirement is a function b such that for each failure scenario

fs, b(fs) is a predicate on runs. This signature corresponds directly to the type ('e,'f)

ft req of fault-tolerance requirements for systems with events of 'e and failures of type 'f.

The sanity condition that these functions be independent of tags cannot be expressed in the

CAML type system; the user is responsible for ensuring that this condition is satis�ed.

Finally, we are �nished with the type de�nitions and come to the function declara-

tions. The function application step F sys fs corresponds to stepF (nf ; fs). Function

lfp computes least �xed points of functions of type ('e run) -> ('e run). Function

failure scenarios returns a list containing all failure scenarios for a given system. The

implementations of these functions are straightforward. The only non-trivial aspect is that

lfp checks for termination of the �xed-point calculation using =Run (de�ned on page 28), so

an implementation of this equality is needed. The current implementation of r1 =Run r2 is as

follows: (1) the tags in each run are \normalized" to be a pre�x of the natural numbers; (2)

if the runs contain di�erent numbers of distinct tags, then r1 6=Run r2; (3) if the runs contain

the same number n of distinct tags, then for each permutation � of the natural numbers

0; 1; : : : ; n, rename the tags in r1 according to � and check whether the resulting run equals

r2. If any permutation results in equality in step 3, then r1 =Run r2; otherwise, r1 6=Run r2.
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(* poset with events of type 'e. *)

type 'e poset == ('e msatom) list * ('e msatom) order__order;;

(* history. use a map, not a function, so we can iterate over the

non-empty edges in normalize_tags. *)

type 'e hist == (name, 'e poset) map__t;;

(* run with events of type 'e. Type (event graph) corresponds to Run;

type (event_FC graph), to Run_{FC}. *)

type 'e run == (name, 'e hist) map__t;;

(* input-output function (no failures), with events of type 'e.

Type (event iofn) corresponds to IOF. *)

type 'e iofn == ('e hist) -> ('e hist);;

(* input-output function with failures of type 'f.

Type ((event, 'f) iofn_F) corresponds to IOF_F;

type ((event_FC, 'f) iofn_F), to IOF_{FC}. *)

type ('e,'f) iofn_F == ('f list)*('f -> ('e iofn));;

type failure = OK | ValFail | ... ;;

(* system (with failures) *)

type ('e,'f) system_F == (name, ('e,'f) iofn_F) map__t;;

(* failure scenario *)

type 'f failure_scenario == (name, 'f) map__t;;

(* fault-tolerance requirement *)

type ('e,'f) ft_req == ('f failure_scenario) -> ('e run) -> bool;;

(* step function for a given system_F in a given failure scenario *)

value step_F : ('e,'f) system_F -> ('f failure_scenario)

-> 'e run -> 'e run;;

(* least fixed point *)

value lfp : (('e run) -> ('e run)) -> ('e run);;

(* return a list containing all failure scenarios for a system_F. *)

value failure_scenarios : ('e,'f) system_F

-> (('f failure_scenario) list);;

Figure B.6: CAML type de�nitions corresponding to Run, IOF , RunFC , and IOFFC , plus
miscellaneous other CAML type de�nitions and function declarations.
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B.3 Using CRAFT

This section describes in more detail how to use CRAFT without the graphical interface.

To use CRAFT for a non-perturbational analysis:

1. De�ne appropriate types aval and failure.

2. De�ne input-output functions representing the components of the system. These func-

tions should be elements of (event, failure) iofn F.

3. Express the fault-tolerance requirementas a functionof type (event, failure) ft req.

4. Using those input-output functions, construct an element sys of type (event, failure)

system F representing the system. Functions in the map module in the CAML standard

library are used to construct maps.

5. For each failure scenario fs of interest, call lfp (step F sys fs) to compute a run

r of type event run representing the behavior of the system in that failure scenario,

and compute ftr fs r to check whether the fault-tolerance requirement is satis�ed

in that failure scenario. If the fault-tolerance requirement is violated in some failure

scenarios, the corresponding runs can be inspected to help ascertain the problem.

To use CRAFT for a perturbational analysis, simply replace event with event FC in the

above.
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