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Abstract. Neural State Classification (NSC) [19] is a scalable method
for the analysis of hybrid systems, which consists in learning a neural
network-based classifier able to detect whether or not an unsafe state
can be reached from a certain configuration of a hybrid system. NSC has
very high accuracy, yet it is prone to prediction errors that can affect sys-
tem safety. To overcome this limitation, we present a method, based on
the theory of conformal prediction, that complements NSC predictions
with statistically sound estimates of prediction uncertainty. This results
in a principled criterion to reject potentially erroneous predictions a pri-
ori, i.e., without knowing the true reachability values. Our approach is
highly efficient (with runtimes in the order of milliseconds) and effective,
managing in our experiments to successfully reject almost all the wrong
NSC predictions.

1 Introduction

Hybrid systems, i.e., systems characterized by the interaction between discrete
(digital) and continuous (physical) components, are a central model for many
cyber-physical system applications, from avionics to biomedical devices [1]. For-
mal verification of hybrid systems typically boils down to solving a hybrid au-
tomata (HA) reachability checking problem [13]: given a modelM of the system
expressed as an HA and a set of unsafe states U of M, check whether U is
reached in any (time-bounded) path from a set of initial states. HA reachability
checking is undecidable in general [13], a difficulty that current HA reachability
checking algorithms address by over-approximating the set of reachable states.
These algorithms are computationally very expensive, and thus, usually limited
to design-time (offline) analysis.

Motivated by the need to make HA reachability checking more efficient and
suitable for online analysis, Phan et al. [19] recently proposed Neural State Clas-
sifications (NSC), an approach for approximating reachability checking using
deep neural networks (DNNs). Their work shows that it is possible to train,
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using examples computed via suitable HA model checkers, DNN-based state
classifiers that approximate the result of reachability checking with very high
accuracy. For any state s of the HA, such a classifier labels s as positive if an un-
safe state is reachable from s within a given time bound; otherwise, s is labeled
as negative.

The key advantage of this approach is its efficiency. Neural state classifiers
indeed run in constant time and space, because the computation is not directly
affected by the size and complexity of the HA model or specification, but only
by the complexity of the chosen DNN architecture.

The main drawback is that DNNs for NSC (like any other machine learn-
ing model) are subject to classification errors, the most important being false
negatives, i.e., when the DNN classifies a state as negative while it is actually
positive. While Phan et al.’s work allows estimation of the classification accuracy
for a region of states (i.e., the probability that a state in the region is wrongly
classified), it does not provide any indication about the reliability of single-point
predictions, i.e., DNN predictions on individual HA states whose true reacha-
bility value is unknown. This limits the applicability of NSC for online analysis,
where state classification errors can compromise the safety of the system. This
is in contrast with methods like smoothed model checking [4], which leverages
Gaussian Processes and Bayesian statistics to quantify uncertainty, but on the
other side faces severe scalability issues as the dimension of the system increases.

The aim of this work is to equip NSC with rigorous methods for quantify-
ing the reliability of single-point predictions. For this purpose, we investigate
Conformal Prediction (CP) [22], a method that provides statistical guarantees
on the predictions of machine learning models. Importantly, CP requires only
very mild assumptions on the data (i.e., exchangeability, a weaker version of the
independent and identically distributed assumption).

By applying CP, we estimate two statistically sound measures of NSC pre-
diction uncertainty, confidence and credibility. Informally, the confidence of a
prediction is the probability that a reachability prediction for an HA state s cor-
responds to the true reachability value of s. Credibility quantifies how a given
state is likely to belong to the same distribution as the training data.

Using confidence and credibility, we show how to derive criteria for anomaly
detection, that is, for rejecting NSC predictions that are likely to be erroneous.
The key advantage of such an approach is that predictions are rejected on rigor-
ous statistical grounds, and we show experimentally its superiority with respect
to discrimination based on the DNN’s class likelihood. Furthermore, computa-
tion of CP-based confidence and credibility is very efficient (approximately 3 ms
in our experiments), which makes our method suitable for online analysis.

In summary, the main contributions of this paper are the following:

– We extend the framework of neural state classification with conformal pre-
diction to quantify the reliability of NSC predictions.

– We derive criteria for anomaly detection based on CP to reject unreliable
NSC predictions.
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– We evaluate our method on three hybrid automata models showing that,
with adequate choices of confidence and credibility thresholds, our method
successfully rejects almost all prediction errors: over a total of 30,000 test
samples, our method successfully rejected 43 out of 44 errors.

The paper is structured as follows. Sections 2 and 3 provide background on
neural state classification and conformal prediction, respectively. In Section 4,
we introduce our CP-based measures of prediction reliability. Results of the
experimental evaluation are given in Section 5. Related work is discussed in
Section 6. Section 7 offers concluding remarks.

2 Neural State Classification for Hybrid System
Reachability

Neural state classification seeks to solve the State Classification Problem (SCP) [19],
a generalization of the reachability checking problem for hybrid systems. Let
B = {0, 1} be the set of Boolean values. Given an HA M with state space
S(M), time bound T , and set of unsafe states U ⊂ S(M), the SCP problem
is to find a state classifier, i.e., a function F ∗ : S(M) −→ B such that for all
s ∈ S(M), F ∗(s) = 1 ifM |= Reach(U, s, T ), i.e., if it is possible forM, starting
in s, to reach a state in U within time T ; F ∗(s) = 0 otherwise. A state s ∈ S(M)
is called positive if F ∗(s) = 1. Otherwise, s is negative.

Neural State Classification [19] offers an approximate solution to the SCP
based on machine learning models, deep neural networks (DNNs) in particular.
The NSC method is summarized in Figure 1. The state classifier is trained using
supervised learning, where the training examples are derived by sampling the
state space according to some distribution and labelling the sampled states with
the corresponding reachability values. The latter are computed by invoking an
oracle, e.g., an hybrid system model checker [11]. The approach can handle
parametric HA, by encoding parameters as additional inputs to the classifier.
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Fig. 1. Overview of the NSC approach (diagram from [19]).

NSC supports arbitrary state distributions. In [19], the following distributions
and corresponding sampling methods are considered:

– Uniform sampling, where every state is equi-probable.
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– Dynamics-aware sampling, which is based on the probability that a state is
visited in any time-bounded evolution of the system, where such probabilities
are estimated by performing isotropic random walks of the HA (i.e., by
uniformly sampling the non-deterministic choices during the HA simulation).

– Balanced sampling, which seeks to draw a balanced number of positive and
negative states. This is useful when U is a small portion of S(M), in which
case uniform sampling would produce imbalanced datasets with an insuffi-
cient number of positive samples, leading to classifiers with poor accuracy.
For this purpose, in [19] the authors introduce a new method for the construc-
tion and simulation of reverse hybrid automata. Indeed, arbitrary numbers
of positive samples can be generated by simulating the reverse HA starting
from an unsafe state [19].

The performance of a trained classifier is evaluated by computing the empiri-
cal accuracy, rate of false positives (FPs), and rate of false negatives (FNs) using,
as commonly done in supervised learning, test datasets of samples unseen during
training. Inspired by statistical model checking [14], NSC also applies sequential
hypothesis testing [23] to certify that a classifier meets prescribed accuracy, FN,
or FP levels on unseen data, up to some given confidence level. Albeit useful,
these kinds of statistical guarantees are, however, only applicable to regions of
the HA state space, and as such, cannot be used to quantify the reliability of
single-point predictions. The present paper aims to solve this very problem.

NSC includes two methods to reduce FNs: threshold selection, which adjusts
the DNN’s classification threshold to favor FPs over FNs, and a more advanced
technique called falsification-guided adaptation that iteratively re-trains the clas-
sifier with false negatives found through adversarial sampling, i.e., by solving
a non-linear optimization problem that maximizes the disagreement between
DNN-predicted and true reachability values.

In [19], the authors applied NSC to six nonlinear hybrid system benchmarks,
achieving an accuracy of 99.25% to 99.98%, and a false-negative rate of 0.0033
to 0, which was further reduced to 0.0015 to 0 by applying falsification-guided
adaptation. While, with such performance, NSC can derive nearly perfect ap-
proximations of the HA reachability function, it does not provide a recipe for
rejecting uncertain predictions a priori, i.e., without knowing the true reacha-
bility value. Our work extends NSC in this direction.

3 Conformal Prediction for Neural Networks

Conformal Prediction (CP) [22] is a flexible framework built on top of any tra-
ditional supervised machine learning model, called in CP the underlying model.

In this section, we describe CP in relation to a generic classification problem
(of which NSC is an instance), where we denote with X the set of inputs and
with Y = {y1, . . . , yc} the set of classification labels (or classes). The underlying
classification model is a function h : X −→ [0, 1]c mapping inputs into a vector
of class likelihoods, such that the class predicted by h corresponds to the class
with the highest likelihood. For a generic input xi, we will denote with yi the
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true label of xi and with ŷi the label predicted by h (i.e., the label with highest
likelihood). Further, we will often use the notation x∗ to indicate test points
whose true label is unknown.

The interpretation of CP is two-fold. On one hand, conformal predictors
output prediction regions, instead of single point predictions. In the case of clas-
sification, given a test point xi and a significance level ε ∈ (0, 1), the prediction
region of xi, Γ

ε
i ⊆ Y , is a set of labels guaranteed to contain the true label yi

with probability 1− ε. We call this the global interpretation of CP.
On the other hand, given a prediction ŷi ∈ Y for xi, we can compute the

minimum value of ε such that the prediction region Γ εi contains only ŷi. The
corresponding probability 1 − ε is called the confidence of the predicted label
ŷi. Along with the confidence, CP allows computing another measure, called
credibility, which indicates how suitable the training data are for the current
prediction. Therefore, CP complements each prediction, on a new input, with a
measure of confidence and a measure of credibility. We call this the point-wise
interpretation of CP.

Importantly, CP does not require prior probabilities, unlike Bayesian meth-
ods, but only that data is exchangeable (a weaker version of the classic i.i.d.
assumption). We now provide a brief description of the method, but we refer
to [22] for a detailed introduction.

Let Z = X × Y . The main ingredients of CP are: a nonconformity function
f : Z → R, a set of labelled examples Z ′ ⊆ Z, an underlying model h trained
on (a subset of) Z ′, and a statistical test. The nonconformity function f(z)
measures the “strangeness” of an example z = (xi, yi), i.e., the deviation between
the label yi and the corresponding prediction h(xi). A natural choice for f is
f(z) = ∆(h(xi), yi), where ∆ is a suitable distance 5. As explained below, f(z)
is used to construct prediction regions in CP. In general, any function f : Z → R
will result in valid regions. However, a good nonconformity function, i.e. one that
produces tight prediction regions, should give low scores to correctly predicted
inputs, and large scores to misclassified inputs. See Section 3.2 for details about
the nonconformity function definition.

3.1 CP Algorithm

Given a set of examples Z ′ ⊆ Z, a test input x∗ ∈ X, and a significance level
ε ∈ (0, 1), a conformal predictor computes a prediction region Γ ε∗ for x∗ as
follows.

1. Divide Z ′ into a training set Zt, and calibration set Zc. Let q = |Zc| be the
size of the calibration set.

2. Train a model h using Zt.
3. Define a nonconformity function f((xi, yi)) = ∆(h(xi), yi), i.e., choose a

metric ∆ to measure the distance between h(xi) and yi (see Section 3.2).
4. Apply f(z) to each example z in Zc and sort the resulting nonconformity

scores {α = f(z) | z ∈ Zc} in descending order: α1 ≥ · · · ≥ αq.
5 The choice of ∆ is not very important, as long as it is symmetric.
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5. Compute the nonconformity scores αj∗ = f((x∗, y
j)) for the test input x∗

and each possible label j ∈ {1, . . . , c}. Then, compute the smoothed p-value

pj∗ =
|{zi ∈ Zc : αi > αj∗}|

q + 1
+ θ
|{zi ∈ Zc : αi = αj∗}|+ 1

q + 1
, (1)

where θ ∈ U [0, 1] is a tie-breaking random variable. Note that pj∗ represents
the portion of calibration examples that are at least as nonconforming as
the tentatively labelled test example (x∗, y

j).
6. Return the prediction region

Γ ε∗ = {yj ∈ Y : pj∗ > ε}. (2)

Note that steps 1–4 have to be performed only once, while 5–6 for every test
point x∗

6.
The idea behind the above procedure is use a statistical test to check if

(x∗, y
j) is particularly nonconforming compared to the calibration examples.

The rationale is to estimate Q, the unknown distribution of f(z), by applying
f(z) to calibration examples, then to compute αj∗ for every possible label yj and
test for the null hypothesis αj∗ ∼ Q. We reject the null hypothesis when the
p-value associated to αj∗ is smaller than the significance level ε. That is, we do
not include yj in Γ ε∗ if it appears unlikely that f((x∗, y

j)) ∼ Q. The prediction
region therefore contains all the labels for which we could not reject the null
hypothesis. This is an application of the Neyman-Pearson theory for hypothesis
testing and confidence intervals [15].

Note that in Equation 1 by setting θ to a random value between 0 and 1, we
compute a so-called smoothed p-value. The main difference between a standard
p-value (where θ = 1) and a smoothed p-value is that in the latter situation, we
treat the borderline cases where αi = αj more carefully. Instead of increasing
the p-value by 1

q for each αi = αj , we increase it by a random amount between

0 and 1
q . It has been proven that any smoothed conformal predictor is exactly

valid, whereas a general conformal predictor is only conservative; see [22] for a
complete treatment.

3.2 Nonconformity function

In general, the nonconformity function is a measurable function with type f :
Z → R. A nonconformity function is well-defined if it assigns low scores to
correctly predicted inputs and high scores to wrong predictions. It is typically
based on the underlying machine learning model h, and defined by

f((xi, yi)) = ∆(h(xi), yi),

6 The approach we use is known in literature as inductive CP. The original CP ap-
proach, also called transductive CP, requires retraining the model for each new test
sample and does not use a calibration set. See [18].
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where ∆ is some function that measures the prediction error of h. Recall that, for
an input x ∈ X, the output of h is a vector of class likelihoods, which we denote
by h(x) = [Ph(y1|x), . . . , Ph(yc|x)]. For classification problems, a common choice
for ∆ is

∆(h(xi), yi) = 1− Ph(yi|xi), (3)

where Ph(yi|xi) is the likelihood of class yi when the model h is applied on xi.
Note that such defined ∆ induces a well-defined nonconformity function. Indeed
if h correctly predicts yi for input xi, then the corresponding likelihood Ph(yi|xi)
is high (the highest among all classes) and the resulting nonconformity score is
low. The opposite holds when h does not predict yi.

Using (3) also guarantees that the resulting p-values (see Equation 1) preserve
the ordering of the class likelihoods predicted by model h. This means that,
for example, the class with the lowest likelihood will also be the class with the
smallest p-value and the class with the highest likelihood will result in the largest
p-value. This property ensures that the prediction regions are consistent with
the classification predicted by h.

In our experiments we use (3) as nonconformity function. Other functions
designed specifically for neural networks have been proposed in [18]. However,
our results showed no significant differences between the latter and (3).

3.3 Confidence and credibility

We now describe the measures of confidence and credibility, which are point-wise
measures, i.e., derived from individual predictions.

Let us first notice that the regions Γ ε for different ε values are nested: when
ε1 ≥ ε2, we have that Γ ε1 ⊆ Γ ε2 . Indeed, for an input x∗, if we choose an ε
lower than the p-values of all the classes (ε < minj=1,...,c p

j
∗), then the region Γ ε

will necessarily contain all the class labels. On the opposite, as ε increases, fewer
and fewer classes will have their p-value higher than ε, until the region becomes
empty (when ε ≥ maxj=1,...,c p

j
∗).

The confidence of a point x∗ ∈ X, 1 − γ∗, is a measure of how likely our
prediction for x∗ is compared to all other possible classifications (according to
the calibration set). It is computed as one minus the smallest value of ε for which
the conformal region is a single label, i.e. the second largest p-value γ∗:

1− γ∗ = sup{1− ε : |Γ ε∗ | = 1}.

The credibility, c, is an indicator of how suitable the training data are to
classify that example. In practice, it is the smallest ε for which the prediction
region is empty, i.e. the highest p-value according to the calibration set.

c∗ = inf{ε : |Γ ε∗ | = 0}.

A high confidence, 1 − γ∗, means that there is no likely alternative to the
point prediction, whereas a low credibility means that even the point prediction is
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unlikely. Therefore, if c∗ is close to zero, the test example x∗ is not representative
of the data set.

If we consider γ∗, i.e., one minus the confidence, and c∗, the credibility, we
obtain the range I∗ of ε values for which we are sure that the corresponding
prediction region contains a single label: I∗ = [γ∗, c∗) ⊆ [0, 1]. We stress that
the class contained in the singleton prediction region corresponds to the model
prediction ŷ∗. This is a consequence of the chosen nonconformity function (3), by
which the ordering of class likelihoods is preserved in the corresponding p-values
(as discussed in Section 3.2).

Confidence and Credibility in binary classification. When Y = {0, 1}, as
in NSC, the conformal classifier outputs, for each input point x∗, two probabil-
ities: p0∗ and p1∗. Suppose p1∗ > p0∗ (the same reasoning applies if p0∗ > p1∗), which
implies that the predicted class is 1. We define confidence as 1−p0∗, and credibil-
ity as p1∗. We call the interval I∗ = [p0∗, p

1
∗) the confidence-credibility interval. It

contains all values of ε for which we are sure that the prediction region contains
a single label (in this case, Γ ε = {1}, ∀ε ∈ I∗).

4 Measures of Prediction Reliability

Confidence and credibility can be used as uncertainty metrics. They measure
how much a prediction h(x), made by the underlying model, can be trusted. We
will leverage both the global and the point-wise interpretations of CP in order to
generate a statistically valid acceptance criterion. The following measures and
acceptance criterion are described in relation to a test set X∗ ⊆ X of unseen
input points, i.e., whose true label is unknown. Let K = |X∗| be the size of the
test set. Moreover, we will assume the case of binary classification, which is the
one relevant for NSC.

4.1 Global evaluation

Recall the global interpretation of CP: given a significance level ε, constant along
X∗, the conformal classifier produces regions Γ ε for each test input x∗ ∈ X∗ that
guarantee a global error probability of ε across the entire test set X∗. We say
that the CP algorithm makes an error, at point x∗, if the prediction set at this
point does not contain the true label. The most interesting prediction regions
are those containing only a single class label, referred to as singleton regions,
since empty and double (Γ ε = {0, 1}) regions have little actionable information.
A singleton region containing the output prediction of h makes an error, i.e., Γ ε

contains the wrong label, if that point is misclassified by h. An empty prediction
region for x at significance level ε is equivalent to the case that x has credibility
less than ε (low credibility) in the point-wise interpretation of CP, whereas a
double region for x corresponds to having confidence smaller than 1 − ε (low
confidence) in the point-wise interpretation.
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4.2 Acceptance criterion

The p-values returned by the CP algorithm can be interpreted as anomaly mea-
sures. In binary classification, the two p-values of a test point x∗, p

0
∗ and p1∗

(see Equation 1), coincide with γ∗ and c∗, respectively. The rationale behind
our acceptance criterion is that every unseen point x∗ is required to have both
values of confidence, 1− γ, and credibility, c, sufficiently high in order to accept
the classification made by h with a particular certainty level α. The derivation
of α is shown later in this section.

Our acceptance criterion works as follows. First, a value for the significance
level ε, fixed along the entire test set, has to be chosen. As discussed in the
previous section, ε represents the global error probability that we are willing
to accept. The next step is to apply the conformal algorithm and obtain a
confidence-credibility interval, I∗, for each test point x∗ ∈ X∗. We accept the
prediction of model h for x∗ if and only if ε ∈ I∗, i.e., if γ∗ ≤ ε < c∗. Note that
the latter condition implies that we only accept singleton prediction regions, i.e.,
such that |Γ ε∗ | = 1 (see Section 3.3). Otherwise, if credibility is smaller than ε
or confidence is smaller than 1− ε, we reject the prediction of h for x∗. In other
words, these uncertainty measures indicate if a prediction is trustworthy or not.
As explained below, the certainty level α is determined by the chosen ε and the
ratio of rejected points.

We now discuss how to derive α. With the acceptance criterion introduced
above, we are sure to accept only singleton prediction regions, rejecting points
with non-informative regions (empty and double regions). Since ε gives the error
probability in relation to any test point (which might or might not be accepted),
it gives no guarantees on the error of accepted predictions alone. For this purpose,
we provide a revised error probability estimate, ε̂, for accepted predictions only,
i.e., that does not consider the rejected points. The certainty level α that we
seek to obtain is defined as 1− ε̂.

To compute ε̂, we follow the approach of [16]. Given a significance level ε, let
P ε(e), P ε(s) and P ε(d) be respectively the fraction of empty, single and double
prediction regions observed on a test set with K examples (P ε(e) + P ε(s) +
P ε(d) = 1). Overall, the expected number of errors is E = εK. Since double
predictions are never erroneous (they always contain the true label) and empty
predictions are always erroneous (they never do), we can rewrite the expected
number of errors as:

εK = ε̂ ·KPε(s) +KPε(e)⇒ ε̂ =
ε− Pε(e)
Pε(s)

. (4)

Thus, ε̂ represents the expected error rate over the K ·Pε(s) singleton predictions.
In other words, ε̂ is the error probability on accepted predictions.

5 Experimental Evaluation

To evaluate the proposed method for NSC with CP-based anomaly detection,
an experimental evaluation was conducted on a selection of the hybrid-system



10 L. Bortolussi et al.

Fig. 2. Calibration scores α1 ≥ · · · ≥ αq for the neuron (left), pendulum (center) and
cruise (right) models for a calibration set size of q = |Zc| = 6, 000. Histograms in the
second row show the distributions of the calibration scores on a log-scale.

case studies considered in NSC (see [19] for details): a model of the spiking
neuron action potential [9], the classic inverted pendulum on a cart, and a cruise
controller [9].

Experimental settings. We consider the same settings used in NSC for training
sigmoid DNNs [19]. NSC neural networks were learned using MATLAB’s train
function, with the Levenberg-Marquardt backpropagation algorithm optimiz-
ing the mean square error loss function, and the Nguyen-Widrow initialization
method for the NN layers. The classifier is a DNN with 3 hidden layers, each
consisting of 10 neurons with the Tan-Sigmoid activation function, and an out-
put layer with 1 neuron with the Log-Sigmoid activation function. With such
DNN architecture, the only output of the underlying model is the likelihood of
class 1, which we denote with o1, that is, the likelihood that a hybrid automaton
state is positive, i.e., leads to a safety violation. The likelihood of class 0 is given
by o0 = 1− o1.

We consider training datasets of 14, 000 samples and calibration sets of q =
|Zc| = 6, 000 samples. Training of the DNNs is very fast, taking 2 to 7 seconds.
The test set contains 10, 000 points. The CP algorithm was implemented in
Python. Computation of confidence and credibility is very efficient, and takes
around 30 seconds for the entire test set, approximately 3 ms per point.

5.1 Calibration scores

We conduct a detailed analysis of the distribution of calibration scores, which
depends both on the case study at hand and on the underlying model. The
DNNs trained for NSC approximate the output of reachability checking with
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Fig. 3. Landscape of confidence (left) and credibility (right) values along the entire
state space of the two-dimensional case-studies: spiking neuron (top) and inverted
pendulum (bottom). Red dots indicate false-negatives, black dots false-positives.

very high accuracy. Therefore, the scores α1, . . . , αq are close to zero for most
of the points in Zc (see Fig. 2). Recall that the p-values of an unseen test point
x∗ count the number of calibration scores greater than that of x∗. Credibility
is the p-value associated with the class predicted by h, for which we expect
a small score and therefore a high p-value. On the contrary, γ is the p-value
associated to the other (non-predicted) class, for which we expect a larger score.
However, given the high accuracy of h, the number of large calibration scores,
i.e., scores significantly greater than zero, is very small. Therefore, the fraction
of calibration scores determining γ is not very sensitive to changes in the value
of the nonconformity score of x∗, α∗. On the contrary, credibility is extremely
sensitive to small changes in α∗. In general, the sensitivity of confidence w.r.t.
α∗ increases as the accuracy of h decreases, and vice versa for credibility.

5.2 Performance evaluation

Figures 3 and 4 show the landscapes of confidence and credibility for the three
case studies. Notice that both measures are able to detect the input regions with
higher uncertainty, i.e., regions where misclassification occurs. However, given
the high accuracy of our DNNs, credibility results in an extremely sensitive
measure, as previously discussed. Indeed, we observe drastic drops in credibility
values even for regions that return correct predictions. In these areas the DNN
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Fig. 4. The cruise controller model has a four-dimensional input space. Four points
were misclassified by the DNN, and they all have coordinate x4 = 5.0. The figure
shows two dimensional sections ((x1, x2)-plane) at the x3 coordinates of the four mis-
classified points and with x4 = 5.0. The confidence landscapes are on top; the credibility
landscapes are below them. Red dots indicate false-negatives, black dots false-positives.

is classifying properly but with lower accuracy with respect to areas with higher
credibility. Confidence values, on the other hand, span in an extremely narrow
interval close to 100%.

5.3 Benefit of conformal predictions

The key advantage of our approach is that predictions are rejected on rigorous
statistical grounds. We experimentally compare it with a naive approach based
on the DNN output.

We define the naive uncertainty metric as the difference between the likeli-
hoods of the two classes, that is, |o0 − o1|. Intuitively, small differences should
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Fig. 5. Experimental superiority of conformal predictions over naive discrimination
based on the DNN class likelihood. Top: Confidence-credibility pairs for the test
datasets. The horizontal dashed line indicates the empirical and qualitative choice
of ε. Bottom: Values of the naive uncertainty metric for the test datasets. In both
cases (top and bottom) the true test labels were used to check the performances of
the uncertainty metrics a posteriori. Green dots indicate properly classified points, red
dots misclassified points.

indicate uncertain predictions. Although this simple approach does not provide
any statistical guarantee, we may still look for a rejection threshold that allows
us to reject the misclassified examples and keep the overall rejection rate low.
However, Figure 5 (bottom) shows that this naive metric is not sufficiently dis-
criminative, especially for the spiking neuron model. This supports our claim that
a more principled method to measure uncertainty and define rejection criteria
is needed. On the contrary, Figure 5 (top) shows that the values of confidence-
credibility pairs for misclassified points are easily separated from the major-
ity of properly classified points. Furthermore, the distribution of points in the



14 L. Bortolussi et al.

Model ε Pε(e) + Pε(d) α # accepted errors

neuron 0.000175 4.78% 0.9998 0/31
pendulum 0.000167 0.84% 0.9983 0/7
cruise 0.000170 0.55% 0.9998 1/6

Table 1. For each case study, a significance level ε was chosen qualitatively from
Figure 5 (top), ignoring the colors, as we should not know the true labels of test points.
We computed the fractions of empty, single and double prediction regions occurring
along the entire test set. The sum Pε(e) + Pε(d) gives the ratio of points rejected.
α = 1 − ε̂ is the statistical certainty level for accepted points/predictions. The last
column counts how many errors, among all the errors made by the classifier in the test
set, were not rejected by our criterion.

confidence-credibility plane helps us choose the proper value for ε, which leads
to a statistically significant measure of uncertainty.

Table 1 summarizes the experimental performance of our rejection criterion
on the three hybrid automata models. Setting an adequate threshold is very im-
portant. We choose the value of 1 − ε that better distinguishes between points
with low confidence and points with high confidence, shown with horizontal lines
in Figure 5 (top). We successfully reject almost all prediction errors, with an over-
all rejection rate between 0.5% and 5%. The certainty value α is always greater
than 99.83%, which demonstrates that our approach only accepts predictions
that have very small probability of being incorrect.

6 Related Work

Even though research on reachability checking of hybrid systems [13, 1] has pro-
duced effective verification algorithms and tools [10, 7, 11], comparably little has
been done to make these algorithms efficient for online analysis. Existing ap-
proaches are limited to restricted classes of models [8], or require handcrafted
optimization of the HA’s derivatives [2], or are efficient only for low-dimensional
systems and simple dynamics [21]. NSC [19] (introduced in Section 2) overcomes
these limitations because, by employing machine learning models, it is fully au-
tomated and its performance is not affected by the model size or complexity.

Applications of machine learning in verification include parameter synthe-
sis of stochastic systems [5], techniques for inferring temporal logic specifica-
tions from examples [3], synthesis of invariants for program verification [12], and
reachability checking of Markov decision processes [6].

A related approach to NSC is smoothed model checking [4], where Gaussian
processes [20] are used to approximate the satisfaction function of stochastic
models, i.e., mapping model parameters into the satisfaction probability of some
specification. Smoothed model checking leverages Bayesian statistics to quantify
prediction uncertainty, but faces scalability issues as the dimension of the system
increases. On the contrary, our method for quantifying the reliability of NSC
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predictions is very efficient, because its performance is nearly equivalent to that
of the underlying machine learning model7.

In Bayesian approaches to uncertainty/confidence estimation, one has to as-
sume a prior distribution, which is often chosen arbitrarily. However, in order to
guarantee accurate confidence values, the correct priors must be known. In fact,
if the prior is incorrect, the confidence values have no theoretical base. The CP
framework instead provides confidence information based only on the standard
i.i.d. or exchangeability assumption. Avoiding Bayesian assumptions makes CP
conclusions more robust to different underlying data distributions. In [17] the
authors show empirically that the performance of CP is close to Bayes when the
prior is known to be correct. Unlike Bayes, the CP method still gives accurate
confidence values even when different data distributions are considered.

7 Conclusion

We applied the theory of conformal predictions to endow the neural state clas-
sification approach with a criterion to reject unreliable predictions, predictions
that can lead safety-critical state classification errors. Our criterion leverages two
statistically sound measures of uncertainty, i.e., confidence and credibility. By
accepting only predictions that satisfy specific confidence and credibility thresh-
olds, our criterion is conservative and allows making safe choices with respect to
any state classifier, independently of the classifier’s accuracy. In the experiments,
our criterion successfully rejected almost all classification errors, and doing so
very efficiently, with an average runtime of 3 ms per sample.

In future work, we will investigate automated methods to derive the rejec-
tion thresholds for confidence and credibility, and how to use this approach in
an active learning framework to improve accuracy, reduce false negatives, and
reduce the rejection rate.
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