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ABSTRACT
Relationship-based access control (ReBAC) provides a high level of
expressiveness and flexibility that promotes security and informa-
tion sharing, by allowing policies to be expressed in terms of chains
of relationships between entities. ReBAC policy mining algorithms
have the potential to significantly reduce the cost of migration from
legacy access control systems to ReBAC, by partially automating the
development of a ReBAC policy.

This paper presents new algorithms, called DTRM (Decision Tree
ReBACMiner) and DTRM−, based on decision trees, for mining Re-
BAC policies from access control lists (ACLs) and information about
entities. Compared to state-of-the-art ReBAC mining algorithms,
our algorithms are significantly faster, achieve comparable policy
quality, and can mine policies in a richer language.
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1 INTRODUCTION
In relationship-based access control (ReBAC), access control policies
are expressed in terms of chains of relationships between entities.
This increases expressiveness and often allowsmore natural policies.
High-level access control policy models such as attribute-based ac-
cess control (ABAC) and ReBAC are becoming increasingly widely
adopted, as security policies becomemore dynamic and more com-
plex. ABAC is already supported by many enterprise software prod-
ucts, using a standardized ABAC language such as XACML or a
vendor-specific ABAC language. Forms of ReBAC are supported in
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popular online social network systems and are being studied and
adapted for use in more general software systems as well.

High-level policy models such as ReBAC allow for concise and
flexible policies and promise long-termcost savings through reduced
management effort. The up-front cost of developing a ReBAC policy
to replaceanexisting lower-level policy, suchasaccess control lists or
anRBACpolicy, canbeasignificantbarrier toadoptionofReBAC.Pol-
icy mining algorithms have the potential to greatly reduce this cost,
by automatically producing a high-level policy from existing lower-
level data; vetting and tweaking it is significantly less work than cre-
ating a high-level policy from scratch. There is a substantial amount
of research on rolemining, surveyed in [14, 25], and a small but grow-
ing literature on ABAC policy mining [12, 13, 20, 22, 24, 26, 31, 32]
(surveyed in [14]) and ReBAC policy mining [7–10, 21].

The ReBAC policy mining problem as defined by Bui et al. [8, 10]
is: Given information about the attributes of all entities in the system,
and the set of currently granted permissions; Find a ReBAC policy
that grants the same permissions using concise, high-level rules. For
realistic datasets, the search space of possible policies is enormous.
In traditional ABAC languages, such as XACML, each expression
involves at most one attribute dereference. In ReBAC, an expression
may contain a path expression representing a chain of attribute deref-
erences, and the search space grows exponentially in the path length.

This paper proposes newReBACpolicymining algorithms, called
DTRM (Decision Tree ReBACMiner) andDTRM−, based on decision
tree learning. Decision trees are a natural basis for ReBAC policy
mining because logic-based policy rules can be extracted from them
muchmore easily than rules from neural networks, Bayes classifiers,
etc. Also, a decision tree is a compact representation of ABAC (and
ReBAC) policies that supports efficient policy evaluation [23, 29].
DTRM has two main phases: (1) learn an authorization policy in the
form of a decision tree, using a modified version of the decision tree
learning algorithm inScikit [18],which is anoptimizedversionof the
well-known CART algorithm [5], and then extract a set of candidate
authorization rules from the decision tree; (2) construct the mined
policy by optionally eliminating negative conditions and constraints
from the candidate rules (dependingonwhether the target policy lan-
guage is ORAL2 or ORAL2−, as discussed below) and then merging
and simplifying the candidate rules. We selected Scikit’s algorithm
because it has been used successfully in a variety of application areas,
and a patch for the above modification is available for it.

Our approach is general and could be used to mine policies in any
ReBAC language. Our implementation produces policies in an exten-
sion of ORAL (Object-oriented Relationship-based Access-control
Language), a ReBAC policy language developed by Bui et al. ORAL
[7–10] or a similar language [21] is used in much of the published
work on ReBAC policy mining.
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ORAL interprets ReBAC as object-oriented ABAC: relationships
are expressed using attributes that refer to other objects, and path ex-
pressions built from chains of such attributes, as in object-oriented
languages such as UML and Java. In ORAL, rules are built from
atomic conditions, each of which is a condition on a single object—
the subject (the entity making the access request) or resource (the
entity to which access is requested)—and atomic constraints, each of
which expresses a relationship between characteristics of the subject
and the resource. An example of a condition is subject.employer
= LargeBank. An example of a constraint is subject.department ∈
resource.project.departments.

The most recent version of ORAL, introduced in [7], supports
two additional set comparison operators. We refer to that version
as ORAL2, and we introduce ORAL2−, an extension of ORAL2 with
negative conditions and negative constraints. A negative condi-
tion or constraint is the negation of an atomic condition or con-
straint, e.g., subject.employer ≠ LargeBank or subject.department ∉
resource.project.departments.We give algorithms, calledDTRMand
DTRM−, thatminepolicies inORAL2andORAL2−, respectively. The
motivation for introducing ORAL2− is that negation is supported
in some well-known ABAC languages, including XACML, and some
ReBAC languages [3, 11, 19], and it sometimes allows more con-
cise policies. We also support mining ORAL2 policies, i.e., policies
without negation, for two reasons. First, some organizations may
prefer policy languages without negation to reduce the chance of
writing rules that grant excess permissions when new entities are
added; for example, a rule with the condition subject.department
≠MechEng may grant excess permissions to members of new de-
partments, whereas a rule with the condition subject.department ∈
{ChemEng, ElecEng} will not. Second, mining of ORAL2 policies al-
lows direct experimental comparison of our approach with FS-SEA*
[7], a state-of-the-art ReBAC policy mining algorithm.

To demonstrate the benefits of our approach, we conducted an
experimental comparison with two state-of-the-art ReBAC policy
mining algorithms: FS-SEA* [7] and Iyer et al.’s algorithm [21]. The
datasets used in our experiments include four sample policies, two
large case studies based on policies of real organizations [15, 17], and
several synthetic policies including the synthetic policies used in [7].

In summary, the main contribution of this paper is new ReBAC
policymining algorithmswith two significant advantages over state-
of-the-art ReBAC policy mining algorithms. (1) Our algorithms are
significantly faster; specifically, they are more than 10× faster than
FS-SEA* on several datasets, and are several times faster than Iyer
et al.’s algorithm, while achieving comparable or better quality of
the mined policies. The speedup generally increases with policy size
hence is expected to be even larger for the larger datasets arising
in practice. (2) DTRM− mines policies in a richer language than FS-
SEA* and Iyer et al.’s algorithm; specifically, the language includes
set comparison operators and negation.

2 RELATEDWORK
We discuss related work on ReBAC and ABAC policy mining.

2.1 Related work on ReBAC policymining
Bui et al. developed several ReBAC policy mining algorithms [7–10],
themost recent and best ofwhich is FS-SEA* [7]. As shown in Section

7, our algorithms are comparably effective at discovering the desired
ReBAC rules, and are significantly faster; furthermore, DTRM− can
mine policies in a richer language (with negation). Our algorithms
are also simpler than FS-SEA*, which combines neural networks
and a grammar-based genetic algorithm incorporating numerous
heuristics and including two stages of evolutionary search. This is
reflected in the sizes of the implementations. There is 3KLOCof code
in common (which we copied from FS-SEA*), plus an additional 13
KLOC for FS-SEA*, comparedwith an additional 6 KLOC forDTRM−

(our more complicated algorithm).
Bui et al.’s policymining algorithm in [9], which is a variant of the

algorithm in [10], mines ReBAC policies from incomplete and noisy
information about granted permissions [9]. Extending our algorithm
to handle incomplete and noisy information is a direction for future
work. Decision tree pruning methods, which are designed to avoid
overfitting the input data, might be suitable for this.

Iyer et al. present algorithms, based on ideas from rule mining
and frequent graph-based pattern mining, for mining ReBAC au-
thorization policies and graph transition policies [21]. Their policy
mining algorithm targets a policy language that is less expressive
than ORAL2−, because it lacks set comparison operators and nega-
tion; furthermore,unlikeORAL2, it doesnotdirectly supportBoolean
attributes. Set comparison operators are useful in practice: they are
supported in XACML and used in all sample policies and case studies
in [10]. Boolean attributes can be encoded in their framework, but
this may require adding significant numbers of edges (connecting
nodes or edges representing Boolean values to resources, since all
paths referred to by a rule need to end at the resource being accessed),
increasing the running time. They experimentally compare their
policy mining algorithm with Bui et al.’s greedy algorithm (how-
ever, they misinterpreted some vaguely labeled output of the tool
and incorrectly reported that the greedy algorithm in [10] achieved
semantic similarity 0.9 for eWorkForce, while it actually achieves
semantic similarity 1). In our experiments described in Section 7, our
algorithms are faster and more effective.

2.2 Related work on ABAC Policymining
Xu et al. proposed the first algorithm for ABAC policy mining [32]
and a variant of it forminingABACpolicies from logs [31].Medvet et
al. developed the first evolutionary algorithm for ABAC policy min-
ing [24]. Iyer et al. developed the firstABACpolicymining algorithm
that canmine ABAC policies containing deny rules as well as permit
rules [20]. Karimi et al. proposed an ABAC policy mining algorithm
that uses unsupervised learning based on 𝑘-modes clustering [22].
Cotrini et al. proposed a new formulation of the problem of ABAC
mining from logs and a practical algorithm, called Rhapsody, to solve
it [13]. Rhapsody is based on APRIORI-SD, a machine-learning algo-
rithm for subgroup discovery. Rhapsody can easily be extended to
handle path expressions and therefore to support a form of ReBAC
policy mining, but its running time is sensitive to the number of
features and would be quite high for ReBACmining except on small
problem instances [7]. Cotrini et al. also developed a “universal”
access control policy mining algorithm framework, which can be
specialized to produce policy mining algorithms for a wide variety
of policy languages [12]; the downside, based on their experiments,
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is that the resulting algorithms achieve lower policy quality than
customized algorithms for specific policy languages.

A top-down approach to ABAC policy mining has been pursued,
aiming to extract ABAC policies from natural language documents
using natural language processing and machine learning [1, 28].

3 POLICY LANGUAGE
Our policy language, which we call ORAL2−, is Bui et al.’s ORAL2
(our name for it) [7], extended to allow negative conditions and
constraints. We give a brief overview of the language, and refer the
reader to [7] for details ofORAL2and to [10] for details of theoriginal
version ofORAL,whichORAL2 extends. This overview is largely the
same as in [7]. We include it to make this paper more self-contained,
for the reader’s convenience.

A ReBAC policy is a tuple 𝜋 = ⟨CM,OM,Act, Rules⟩, where CM
is a class model, OM is an object model, Act is a set of actions, and
Rules is a set of rules.

A class model is a set of class declarations. Each field has a type,
which is a class name or “Boolean”, and amultiplicity, which spec-
ifies howmany values may be stored in the field and is “one” (also
denoted “1”), “optional” (also denoted “?”), or “many” (also denoted
“*”, meaning any number). Boolean fields always have multiplicity
1. Every class implicitly contains a field “id” with type String and
multiplicity 1. A reference type is any class name (used as a type).
Like [7], we leave inheritance as a topic for future work.

An object model is a set of objects whose types are consistent with
the class model and with unique values in the id fields. Let type(𝑜)
denote the type of object 𝑜 . The value of a field with multiplicity
“many” is a set. The value of a field with multiplicity “optional” may
be a single value or the placeholder⊥ indicating absence of a value.

A path is a sequence of field names, written with “.” as a separator.
A condition is a set, interpreted as a conjunction, of atomic conditions
or their negations. An atomic condition is a tuple ⟨𝑝, op, val⟩, where𝑝
is a non-empty path, op is an operator, either “in” or “contains”, and
val is a constant value, either an atomic value (if op is “contains”) or
a set of atomic values (if op is “in”). For example, an object 𝑜 satisfies
⟨dept.id, in, {CompSci}⟩ if the value obtained starting from 𝑜 and
following (dereferencing) the dept field and then the id field equals
CompSci. In examples, conditions are usually written using math-
ematical notation as syntactic sugar, with “∈” for “in” and “∋” for
“contains”. For example, ⟨dept.id, in, {CompSci}⟩ ismore nicelywrit-
ten asdept ∈ {CompSci}. Note that thepath is simplifiedbyomitting
the “id” field since all non-Boolean paths endwith “id” field. Also, “=”
is used as syntactic sugar for “in” when the constant is a singleton
set; thus, the previous example may be written as dept=CompSci.

A constraint is a set, interpreted as a conjunction, of atomic con-
straintsor theirnegations. Informally, anatomicconstraint expresses
a relationship between the requesting subject and the requested re-
source, by relating the values of paths starting from each of them.
An atomic constraint is a tuple ⟨𝑝1, op, 𝑝2⟩, where 𝑝1 and 𝑝2 are paths
(possibly the empty sequence), and op is one of the following five
operators: equal, in, contains, supseteq, subseteq. Implicitly, the first
path is relative to the requesting subject, and the second path is
relative to the requested resource. The empty path represents the
subject or resource itself. For example, a subject 𝑠 and resource 𝑟

satisfy ⟨specialties, contains, topic⟩ if the set 𝑠 .specialties contains
the value 𝑟 .topic.

In examples, constraints are written using mathematical notation
as syntactic sugar, with “=” for “equal”,“⊇” for “supseteq”, and “⊆”
for “subseteq”.

A rule is a tuple ⟨subjectType, subjectCondition, resourceType, re-
sourceCondition, constraint, actions⟩, where subjectType and resource-
Type are class names, subjectCondition and resourceCondition are
conditions, constraint is a constraint, actions is a set of actions. A
rule must satisfy several well-formedness requirements [10]. For
a rule 𝜌 = ⟨𝑠𝑡, 𝑠𝑐, 𝑟𝑡, 𝑟𝑐, 𝑐, 𝐴⟩, let sType(𝜌) = 𝑠𝑡 , sCond(𝜌) = 𝑠𝑐 ,
rType(𝜌) = 𝑟𝑡 , rCond(𝜌) = 𝑟𝑐 , con(𝜌) = 𝑐 , and acts(𝜌) = 𝐴.

In example rules, paths in conditions and constraints that start
from the subject and resource are prefixed with “subject” and “re-
source”, respectively, to enhance readability. For example, the e-
document case study [10, 16] involves a large bank whose policy
contains the rule: A project member can read all sent documents
regarding the project. Using syntactic sugar, this is written as
⟨Employee, subject.employer = LargeBank, Document, true, sub-
ject.workOn.relatedDoc ∋ resource, {read}⟩,
where Employee.workOn is the set of projects the employee is work-
ing on, and Project.relatedDoc is the set of sent documents related
to the project.

The type of a path 𝑝 (relative to a specified class) is the type of
the last field in the path. Themultiplicity of a path 𝑝 (relative to a
specified class) is one if all fields on the path havemultiplicity one, is
many if any field on the path has multiplicity many, and is optional
otherwise. Given a class model, object model, object 𝑜 , and path 𝑝 ,
let nav(𝑜, 𝑝) be the result of navigating (a.k.a. following or derefer-
encing) path 𝑝 starting from object 𝑜 . The result might be no value,
represented by⊥, an atomic value, or (if 𝑝 has multiplicity many) a
set of values. This is like the semantics of path navigation in UML’s
Object Constraint Language (http://www.omg.org/spec/OCL/).

An object 𝑜 satisfies an atomic condition 𝑐 = ⟨𝑝, op, val⟩, denoted
𝑜 |= 𝑐 , if (op = in∧ nav(𝑜, 𝑝) ∈ val) ∨ (op = contains∧ nav(𝑜, 𝑝) ∋
val). An object 𝑜 satisfies a condition 𝑐 , denoted 𝑜 |= 𝑐 , if it satis-
fies each atomic condition or negated atomic condition in 𝑐 . Ob-
jects 𝑜1 and 𝑜2 satisfy an atomic constraint 𝑐 = ⟨𝑝1, op, 𝑝2⟩, denoted
⟨𝑜1, 𝑜2⟩ |= 𝑐 , if (op = equal ∧ nav(𝑜1, 𝑝1) = nav(𝑜2, 𝑝2)) ∨ (op =

in ∧ nav(𝑜1, 𝑝1) ∈ nav(𝑜2, 𝑝2)) ∨ (op = contains ∧ nav(𝑜1, 𝑝1) ∋
nav(𝑜2, 𝑝2)) ∨ (op = supseteq ∧ nav(𝑜1, 𝑝1) ⊇ nav(𝑜2, 𝑝2)). An ob-
ject 𝑜 satisfies a constraint 𝑐 , denoted 𝑜 |= 𝑐 , if it satisfies each atomic
constraint or negated atomic constraint in 𝑐 .

An SRA-tuple is a tuple ⟨𝑠, 𝑟, 𝑎⟩, where the “subject” 𝑠 and “re-
source” 𝑟 are objects, and 𝑎 is an action, representing (depending on
the context) authorization for 𝑠 to perform 𝑎 on 𝑟 or a request to per-
form that access. An SRA-tuple ⟨𝑠, 𝑟, 𝑎⟩ satisfies a rule 𝜌 = ⟨𝑠𝑡, 𝑠𝑐, 𝑟𝑡,
𝑟𝑐, 𝑐, 𝐴⟩, denoted ⟨𝑠, 𝑟, 𝑎⟩ |= 𝜌 , if type(𝑠) = 𝑠𝑡 ∧ 𝑠 |= 𝑠𝑐 ∧ type(𝑟 ) =
𝑟𝑡 ∧ 𝑟 |= 𝑟𝑐 ∧ ⟨𝑠, 𝑟 ⟩ |= 𝑐 ∧ 𝑎 ∈ 𝐴. Themeaning of a rule 𝜌 , denoted
[[𝜌]], is the set of SRA-tuples that satisfy it. Themeaning of a ReBAC
policy 𝜋 , denoted [[𝜋]], is the union of the meanings of its rules.

4 PROBLEMDEFINITION
We adopt Bui et al.’s definition of the ReBAC policy mining problem.
We present the core parts of the definition here, and refer the reader
to [10] for more details and discussion.
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An access control list (ACL) policy is a tuple ⟨CM,OM,Act,AU ⟩,
where CM is a class model, OM is an object model, Act is a set of
actions, andAU ⊆ OM×OM×Act is a set of SRA tuples representing
authorizations. Conceptually,AU is the union of ACLs. An ReBAC
policy 𝜋 is consistentwith an ACL policy ⟨CM,OM, Act, AU ⟩ if they
have the same class model, object model, actions, and [[𝜋]] = AU .

Among the ReBACpolicies consistentwith a givenACL policy𝜋0,
the most desirable ones are those that satisfy the following two cri-
teria. (1) The “id” field should be used only when necessary, i.e., only
wheneveryReBACpolicyconsistentwith𝜋0 uses it, becauseusesof it
make policies identity-based (likeACLs) and less general. (2) The pol-
icy should have the best quality asmeasured by a givenpolicy quality
metric𝑄pol, expressed as a function fromReBACpolicies to the natu-
ral numbers,with small numbers indicatinghighquality. This is natu-
ral formetrics based on policy size, which are themost common type.

The ReBAC policy mining problem is: given an ACL policy 𝜋0 =

⟨CM,OM, Act,AU ⟩ and a policy quality metric𝑄pol, find a set Rules
of rules such that the ReBAC policy 𝜋 = ⟨CM,OM,Act, Rules⟩ is
consistent with 𝜋0, uses the “id” field only when necessary, and has
the best quality, according to𝑄pol, among such policies.

The policy quality metric that our algorithm aims to optimize
isweighted structural complexity (WSC), a generalization of policy
size first introduced for RBAC policies [27] and later extended to Re-
BAC [10]. Minimizing policy size is consistent with usability studies
showing that more concise access control policies are more man-
ageable [2]. WSC is a weighted sum of the numbers of primitive
elements of various kinds that appear in a rule or policy. WSC is
defined bottom-up. TheWSC of an atomic condition ⟨𝑝, op, val⟩ is
|𝑝 | + |val |, where |𝑝 | is the length of path 𝑝 , and |val | is 1 if val is an
atomic value and is the cardinality of val if val is a set. TheWSC of
an atomic constraint ⟨𝑝1, op, 𝑝2⟩ is |𝑝1 | + |𝑝2 |. TheWSC of a negated
atomic condition or constraint 𝑐 is 1 +WSC(𝑐). TheWSC of a rule 𝜌 ,
denotedWSC(𝜌), is the sum of theWSCs of the atomic conditions
and atomic constraints in it, plus the cardinality of the action set
(more generally, it is a weighted sum of those numbers, but we take
all of the weights to be 1). TheWSC of a ReBAC policy 𝜋 , denoted
WSC(𝜋), is the sum of theWSC of its rules.

5 ALGORITHM
5.1 Phase 1: Learn Decision Tree and

Extract Rules
A feature is an atomic condition (on the subject or resource) or atomic
constraint satisfying user-specified limits on lengths of paths in con-
ditions and constraints. We define a mapping from feature vectors
to Boolean labels: given an SRA tuple ⟨𝑠, 𝑟, 𝑎⟩, we create a feature
vector (i.e., a vector of the Boolean values of features evaluated for
subject 𝑠 and resource 𝑟 ) andmap it to true if the SRA tuple is permit-
ted (i.e., is in AU ) and to false otherwise. We represent Booleans as
integers: 0 for false, and 1 for true. We train a decision tree to learn
this classification (labeling) of feature vectors.

We decompose the problem based on the subject type, resource
type, and action. Specifically, we learn a separate decision tree
𝐷𝑇𝐶𝑠 ,𝐶𝑟 ,𝑎 to classify SRA tuples with subject type𝐶𝑠 , resource type
𝐶𝑟 , and action 𝑎. We do this for each ⟨𝐶𝑠 ,𝐶𝑟 , 𝑎⟩ such that AU con-
tains some SRA tuple with a subject of type𝐶𝑠 , a resource of type
𝐶𝑟 , and action 𝑎. The inputs to𝐷𝑇𝐶𝑠 ,𝐶𝑟 ,𝑎 are limited to the features

appropriate for subject type𝐶𝑠 and resource type𝐶𝑟 , e.g., the path
in the subject condition starts with a field in class 𝐶𝑠 . The set of
labeled feature vectors used to train𝐷𝑇𝐶𝑠 ,𝐶𝑟 ,𝑎 contains an element
generated from each possible combination of a subject of type𝐶𝑠 (in
the given object model) and resource of type𝐶𝑟 .

This decomposition by type is justified by the fact that all SRA
tuples authorized by the same rule contain subjects with the same
subject type and resources with the same resource type. A rule can
authorize SRA tuples with different actions since the last component
of a rule is a set of actions. The first phase of our algorithm learns
rules containing a single action; the second phase attempts to merge
similar rules with different actions into a single rule authorizing
multiple actions.

As an optimization, we discard a feature if it has the same truth
value in all of the labeled feature vectors used to train a DT; for
example, if all instances of some type𝐶 in the given object model
have the same value for a field 𝑓 , then atomic conditions on field 𝑓

are discarded.
We also detect sets of equivalent features, which are features that

have the same truth value in all feature vectors labeled true used to
train a particular DT. For each set of equivalent features, we keep the
features with the lowestWSC and discard the rest. This is justified
by that fact that the discarded features cannot appear in a policy
with minimumWSC and consistent with AU .

Each internal node of a decision tree is labeled with a feature.
Each outgoing edge of an internal node corresponds to a possible
value of the feature (true or false). Each leaf node is labeled with an
classification label (permit or deny). A feature vector is classified by
testing the feature in the root node, following the edge correspond-
ing to the value of the feature to reach a subtree, and then repeating
this procedure until a leaf node is reached.

Figure 1 shows an example of a decision tree that represents a rule
inanelectronicmedical recordpolicy.Thesubject type, resource type
and action are “Physician”, “MedicalRecord” and “read”, respectively.
Internal nodes and leaf nodes are represented in thefigure byunfilled
andfilledboxes, respectively. The rule specifies that onlynon-trainee
physicians can read medical records which are associated to them.
Formally, the rule is written as ⟨ Physician, subject.isTrainee = False,
MedicalRecord, true, subject ∈ resource.physician, {read}⟩.

Figure 1: A sample decision tree for part of the healthcare
sample policy.
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5.1.1 Build Decision Trees. CART (and other well-known decision
tree building algorithms including ID3 and C4.5) builds a decision
tree by recursively partitioning feature vectors in the dataset, start-
ing from a root node associated with the entire dataset. It chooses
(as described below) a feature to test at the root node, creates a child
node for each possible outcome of the test, partitions the set of fea-
ture vectors associatedwith the root node among the children, based
on the outcome of the test, and recursively applies this procedure
to each child. The recursion stops when all of the feature vectors
associated with a node have the same classification label.

We use the decision tree learning algorithm in the Python library
scikit-learn [18]. It is an optimized version of CART [5]. We disable
its pruning methods. Pruning aims to reduce overfitting and make
the decision trees generalize better. However, a pruned tree might
misclassify some feature vectors in the training data. Pruning is
therefore inappropriate for our purpose, which is to produce a pol-
icy completely consistent with the given ACL policy. The current
implementation of the algorithm in scikit-learn treats categorical
features as continuous features. For example, instead of treating a
binary feature as a feature with possible values of 0 and 1, the test
checks if the feature’s value is less than or greater or equal than 0.5
for 0 and 1 respectively.

To choose which feature to test at each node 𝑛, the algorithm
applies a scoring criteria to the remaining features (i.e., features that
have not been used for splitting at an ancestor of 𝑛) and then choos-
ing the top-ranked feature. The most popular scoring criteria are
information gain andGini index. For both of them, smaller values are
better. We experimented with both on some sample policies, and the
generated decision trees were identical. We adopted scikit-learn’s
default scoring metric, Gini index, for our experiments.

The Information Gain uses entropy to calculate the homogeneity
of a set of feature vectors. Entropy is the measure of uncertainty
of a random variable. The entropy is 0 if the sample contains only
instancesof thesameclass, and theentropy is1 if thesample isequally
divided. The information gain at node𝑛 for splittingwith feature 𝑓 is

InfoGain(𝑛, 𝑓 ) =
∑
𝑗

|decis(𝑆𝑛, 𝑓 , 𝑗) |
|𝑆𝑛 |

Entropy(decis(𝑆𝑛, 𝑓 , 𝑗))

Entropy(𝑆) = −
∑
𝑖

|label(𝑆, 𝑖) |
|𝑆 | log2

|label(𝑆, 𝑖) |
|𝑆 |

where 𝑆𝑛 is the set of feature vectors associated with the current
node 𝑛, 𝑗 ranges over the possible outcomes of testing feature 𝑓 ,
decis(𝑆, 𝑓 , 𝑗) is the subset of 𝑆 containing feature vectors for which
testing of feature 𝑓 has outcome 𝑗 , 𝑖 ranges over the classification
labels, and label(𝑆, 𝑖) is the subset of 𝑆 containing feature vectors
with label 𝑖 .

The Gini Index uses impurity to measure how likely a randomly
selected element would be misclassified. If all instances in the sam-
ple have the same class, the impurity will be 0. The Gini Index is
calculated by subtracting the sum of squared probabilities of each
class from 1. The Gini index for splitting at node 𝑛 with feature 𝑓 is

GiniIndex(𝑛, 𝑓 ) =
∑
𝑗

|decis(𝑆𝑛, 𝑓 , 𝑗) |
|𝑆𝑛 |

Impurity(decis(𝑆𝑛, 𝑓 , 𝑗))

Impurity(𝑆) = 1 −
∑
𝑖

(
|label(𝑆, 𝑖) |

|𝑆 |

)2

Whenmultiple features are tied for top-ranked according to the
scoring criterion, scikit-learn chooses pseudorandomly among them.
We adopt a modification to the algorithm that allows specification
of a secondary metric as a tie-breaker, and we use theWSC of the
feature as the secondary metric.

5.1.2 Extract rules. We convert the decision tree into an equivalent
set of rules and include them in the candidate policy. For each distinct
path through the tree from the root node to a leaf node labeled “PER-
MIT”, we generate a rule containing the features associated with the
internal nodes on that path; furthermore, if the path follows the False
branch out of a node, then the feature associated with that node is
added to the rule as anegative feature. For example, for the sample de-
cision tree in Figure 1, onlyone rule is generated,which is the sameas
the input rulementioned in Section 5.1. Rules extracted directly from
the decision tress always have non-overlapping meanings. The next
phaseof our algorithmcanproduce ruleswithoverlappingmeanings.

5.2 Phase 2: Improve the Rules
Phase 2 has two main steps: eliminate negative features, and merge
and simplify rules.

5.2.1 Eliminate Negative Features. This step is included only in
DTRM, in order to mine rules without negation. This step is omitted
fromDTRM−. This step eliminates each negative feature¬𝑓 in a rule
𝜌 by applying the following substeps in order until one succeeds. A
rule is valid if it covers only SRA tuples in AU .

(1) Remove ¬𝑓 from 𝜌 , if the resulting rule is valid.
(2) Replace ¬𝑓 with a feature 𝑓 ′, if the resulting rule is valid and

the resulting policy (i.e., the policy with 𝜌 replaced with the
resulting rule) covers all SRA tuples inAU . In particular, try
this for each feature 𝑓 ′ not already used in 𝜌 , in ascending
order ofWSC.

(3) If ¬𝑓 is a negative atomic condition, and path 𝑝 has multiplic-
ity “one”, then replace all of the negative atomic conditions
with path 𝑝 with a positive atomic condition using the same
path 𝑝 and the same operator, and with a set of constants
which is the complement of the set of constants that appear
in those negative atomic conditions. The complement is with
respect to the set of all possible constants for that path. Note
that this step always succeeds when it is applicable, i.e., the
resulting rule is always valid, and the resulting policy always
covers all SRA tuples in AU . Generalizing this step to apply
when 𝑝 has multiplicity “many” would require either replac-
ing 𝜌 with multiple rules, or extending the policy language
to allow atomic conditions containing operators (such as ⊇)
for which both arguments have multiplicity “many”.

(4) If ¬𝑓 is a subject atomic condition, remove all subject atomic
conditions (positive or negative) in 𝜌 , and add the condition
“subject.id ∈ 𝐶”, where𝐶 is the set of ids of subjects that ap-
pear in SRA tuples covered by 𝜌 . An analogous step applies if
¬𝑓 is a resource atomic condition. Note that this step always
succeeds when it is applicable.

(5) Replace ¬𝑓 with a set of features, if the resulting rule is valid
and the resulting policy covers all SRA tuples inAU . In par-
ticular, try this for all sets containing twomore features not
already used in 𝜌 , in ascending order ofWSC of the set (which
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is the sumof theWSCs of the features in it). Note that this step
can be reached only if 𝑓 is a constraint. In the experiments
described in Section 7, this step is never reached, i.e., one of
the previous steps always succeeds.

5.2.2 Merge and Simplify Rules. This step attempts to merge and
simplify rules using the same techniques as [10].

First, this step attempts to merge pairs of rules that have the same
subject type, resource type, and constraint by taking the least upper
bound of their subject conditions, the least upper bound of their
resource conditions, and the union of their sets of actions. The least
upper bound of conditions 𝑐1 and 𝑐2, denoted 𝑐1 ⊔ 𝑐2, is

{⟨𝑝, in, val⟩ | (∃val1, val2 : ⟨𝑝, in, val1⟩ ∈ 𝑐1 ∧ ⟨𝑝, in, val2⟩ ∈ 𝑐2
∧ val = val1 ∪ val2)}

∪ {⟨𝑝, contains, val⟩ | ⟨𝑝, contains, val⟩ ∈ 𝑐1
∧ ⟨𝑝, contains, val⟩ ∈ 𝑐2)}.

When computing least upper bounds, DTRM− uses only positive
atomic conditions; negative atomic conditions are dropped. Note
that the meaning of the merged rule 𝜌mrg is a superset of the mean-
ings of the rules 𝜌1 and 𝜌2 being merged. If the merged rule 𝜌mrg is
valid, then it replaces 𝜌1 and 𝜌2.

Second, this step attempts to simplify the rules as follows.
(1) It eliminates atomic conditions from the subject and resource

conditionswhen this preserves validity. Removingoneatomic
conditionmight prevent removal of another atomic condition,
so it searches for a set of removable atomic conditions that
maximizes the quality of the resulting rule.

(2) It eliminates atomic constraints when this preserves validity.
It searches for the set of atomic constraints to remove that
maximizes the quality of the resulting rule.

(3) It eliminates overlapping actions between rules. Specifically,
an action 𝑎 in a rule 𝜌 is removed if there is another rule 𝜌 ′ in
the policy such that sCond(𝜌 ′) ⊆ sCond(𝜌) ∧ rCond(𝜌 ′) ⊆
rCond(𝜌) ∧ con(𝜌 ′) ⊆ con(𝜌) ∧ 𝑎 ∈ acts(𝜌 ′).

(4) It eliminates actions when this preserves the meaning of the
policy. In other words, it removes an action 𝑎 in rule 𝜌 if all
the SRA tuples covered by 𝑎 in 𝜌 are covered by other rules
in the policy. Note that the previous item is a special case of
this one, listed separately to ensure that the special case takes
precedence.

(5) If the subject condition contains an atomic condition of the
form 𝑝 = 𝑐 , and the constraint contains an atomic constraint
of the form 𝑝 = 𝑝 ′, then replace that atomic constraint with
the atomic condition 𝑝 ′ = 𝑐 in the resource condition (note
that this is a form of constant propagation); and similarly
for the symmetric situation in which the resource condition
contains such an atomic condition, etc.
DTRM− consider an additional case with the presence of neg-
ative condition/constraint. If the subject condition contains
an atomic condition of the form 𝑝 = 𝑐 , and the constraint
contains an atomic constraint of the form𝑝 ≠ 𝑝 ′, then replace
that atomic constraint with the atomic condition 𝑝 ′ ≠ 𝑐 in the
resource condition; and similarly for the symmetric situation
as mentioned in the first case.

(6) Remove cycles in the paths in the conditions and constraint, if
the resulting rule is valid and the resulting policy still covers

all ofAU . A cycle is a path that navigates from some class𝐶
back to class𝐶 .

(7) If a subject/resource path of an atomic constraint evaluates
to a same constant value 𝑐 for all of the subjects/resources
that are in SRA tuples covered by the rule, then replace the
atomic constraint with corresponding resource/subject con-
dition and constant 𝑐 . In DTRM−, if the atomic constraint is
negative, it will be replaced with the corresponding negative
atomic condition.

5.3 Asymptotic Running Time
This section analyzes the asymptotic running time of our algorithm.
An extended version of this analysis appears in [6].

Phase 1. Let𝑛feat and𝑛samp be the number of features and feature
vectors (samples), respectively. The cost of splitting samples at each
node is𝑂 (𝑛samp · 𝑛feat).Let 𝑠𝑧rule be the “size” of the rules extracted
from the tree, specifically, the sum of the numbers of features in
each extracted rule; typically, the size of these intermediate rules is
comparable to the size of the final mined rules. Note that the num-
ber of nodes in the tree is at most 𝑠𝑧rule. The cost of building the
tree is𝑂 (𝑛samp · 𝑛feat · 𝑠𝑧rule), and the cost of extracting the rules is
𝑂 (𝑠𝑧rule). This cost for each tree is summed over the number of trees,
which is the number of ⟨𝐶𝑠 ,𝐶𝑟 , 𝑎⟩ tuples, explained in Section 5.1.

Phase 2. The eliminating negative features step consists of several
substeps, which are applied in order until one succeeds. Substep
(1) takes𝑂 (𝑛samp) time, mainly for the rule validity check. Substep
(2) takes 𝑂 (𝑛feat · 𝑛samp) time to find the best valid replacement
feature. Substep (3) takes𝑂 (𝑛obj) time, with 𝑛obj is the maximum
(over all types) number of objects of a single type in the object model.
Substep (4) takes𝑂 (𝑛samp) time to compute the rule’s coverage and
extract the appropriate set of constants. We omit substep (5) from
the complexity analysis here (but consider it in [6]), since this step is
never reached inour experiments. Let𝑛neg be thenumber of negative
features generated in the first phase; 𝑛neg is typically small. If the
first 4 substeps are all applied for every negative feature, the cost is
𝑂 (𝑛neg · ((𝑛feat · 𝑛samp) + 𝑛obj)).

Let 𝑛rules be the number of rules generated in Phase 1, and 𝑛cond
and 𝑛cons be the maximum number of atomic conditions and atomic
constraints, respectively, in each of these rules; 𝑛rules is typically
similar to the number of rules in the finalmined policy. Let 𝑙𝑚 denote
the maximum value of | [[𝜌]] | among all of the rules. The value of
𝑙𝑚 is at most |AU | but typically much smaller. The cost of checking
rule validity in these steps is𝑂 (𝑙𝑚).

The merging step takes 𝑂 (𝑛3rules · 𝑙𝑚) time. The simplification
step consists of several substeps. Substeps (1) and (2) take𝑂 (𝑛rules ·
2𝑛cond · 𝑙𝑚) and𝑂 (𝑛rules · 2𝑛cons · 𝑙𝑚) time, respectively; the exponen-
tial factors here are small in practice, because rules typically have
only a few conditions and constraints. Substeps (3) and (4) each take
𝑂 (𝑛2rules · |Act | · 𝑙𝑚) time. Substep (5) takes𝑂 (𝑛rules · 𝑛cond · 𝑛cons)
time. Substep (6) takes𝑂 (𝑛rules · (𝑛cond +𝑛cons) ·𝑛class) time, where
𝑛class is the number of classes in the class model. Substep (7) takes
𝑂 (𝑛rules · 𝑛cons · 𝑙𝑚) time.

6 EVALUATIONMETHODOLOGY
We adopt Bui et al.’s methodology for evaluating policy mining algo-
rithms [7]. It is depicted in Figure 2. It takes a class model and a set
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Policy_N #obj #field #FV #rule
EMR_15 353 877 4134 6
healthcare_5 736 1804 42121 8
project-mgmt_5 179 296 4080 10
university_5 738 926 83761 10
e-document_75 284 1269 31378 39
e-document_100 352 1653 52466 39
e-document_125 423 2065 82860 39
e-document_150 486 2406 108403 39
e-document_175 563 2830 152093 39
eWorkforce_10 412 1124 14040 19
eWorkforce_15 585 1647 31769 19
eWorkforce_20 691 1963 45625 19
eWorkforce_25 862 2484 74856 19
eWorkforce_30 1016 2928 104845 19
syn_20_𝑥 678 7848 25600 𝑥

syn_25_20 828 9773 40000 20
syn_30_20 978 11698 57600 20
syn_35_20 1128 13623 78400 20

Original 
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Object Model 

Generator
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Model

Policy Mining 

Algorithm

Mined 

Rules

Policy Similarity 

Computation

Authorizations 

AU

Authorizations 

Generator

Similarity of original 

rules and mined rules

LEGEND

Inputs Algorithms Outputs

1

2

3

4

Figure 2: Left: Policy sizes. For the given value of the objectmodel size parameter𝑁 , #obj is the average number of objects in the
object model, and #field is the average number of fields in the object model, i.e., the sum over objects 𝑜 of the number of fields
in 𝑜 . #FV is the number of feature vectors (i.e., labeled SRA tuples) that the algorithms use to train a classifier. Averages are
over 5 pseudorandom object models for each policy. For the syn_20_𝑀 policies, the number of rules𝑀 is 10, 20, 30 or 40. Right:
Evaluationmethodology; reproduced from [7].

of ReBAC rules as inputs. The methodology is to generate an object
model based on the class model (independent of the ReBAC rules),
compute the authorizationsAU from the object model and the rules,
run the policy mining algorithmwith the class model, object model,
and AU as inputs, and finally compare the mined policy rules with
the simplified original (input) policy rules, obtained by applying
the simplifications in Section 5.2.2 to the given rules. Comparison
with the simplified original policy is a more robust measure of the
algorithm’s ability to discover high-level rules than comparisonwith
the original policy, because the original policy is not always the sim-
plest. If the mined rules are similar to the simplified original rules,
the policy mining algorithm succeeded in discovering the desired
ReBAC rules that are implicit in AU .

6.1 Datasets
We use four sample policies developed by Bui et al. [10]. One is for
electronic medical records (EMR), based on the EBAC policy in [4],
translated to ReBAC; the other three are for healthcare, project man-
agement, and university records, based on ABAC policies in [32],
generalized and made more realistic, taking advantage of ReBAC’s
expressiveness. These policies are non-trivial but relatively small.

We also use Bui et al.’s translation into ORAL2 [10] of two large
case studies developed by Decat, Bogaerts, Lagaisse, and Joosen
based on the access control requirements for Software-as-a-Service
(SaaS) applications offered by real companies [15, 17]. One is for a
SaaS multi-tenant e-document processing application; the other is
for a SaaS workforce management application provided by a com-
pany that handles the workflow planning and supply management
for product or service appointments (e.g., install or repair jobs).

Finally, we use the synthetic ORAL2 policies described in [7] and
some extensions of themwith additional rules.

All of the object models are generated by policy-specific pseudo-
random algorithms designed to produce realistic object models, by
creating objects and selecting their attribute values using appropri-
ate probability distributions. These algorithms are parameterized
by a size parameter 𝑁 ; for most classes, the number of instances is
selected from a normal distributionwhosemean is linear in𝑁 . Bui et
al.’s policy rules and object model generators for the sample policies
and case studies, and their synthetic policy generator, are available
online [30]. We slightly modified the object model generators for
the project management, workforce management, and e-document
policies, to make the generated object models slightly more realistic.
More details about object model generation are in [7, 10].

These policies, or variants of them, have been used as benchmarks
in several other papers on policy mining. In work on ReBACmining,
Iyer et al. [21] use variants of parts of three of the sample policies
and the workforce management case study, and Bui et al. [9] use all
of the sample policies and case studies. In work on ABACmining,
Medvet et al. [24], Iyer at al. [20], and Karimi et al. [22] use Xu et al.’s
original ABAC versions of some of the sample policies.

The table in Figure 2 shows several metrics of the size of the rules,
class model, and object model in each policy. #field is computed by
summing, over the objects in the object model, the number of fields
(including “id” field and Boolean fields) in each object.

The Electronic Medical Record (EMR) sample policy, based on the
EBAC policy in [3], controls access by physicians and patients to
electronicmedical records, based on institutional affiliations, patient-
physician consultations (eachEMR is associatedwith a consultation),
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supervisor relationships among physicians, etc. The numbers of
physicians, consultations, EMRs, and hospitals are proportional to𝑁 .

The healthcare sample policy, based on the ABAC policy in [32],
controls access by nurses, doctors, patients, and agents (e.g., a pa-
tient’s spouse) to electronic health records (HRs) and HR items (i.e.,
entries in health records). The numbers of wards, teams, doctors,
nurses, teams, patients, and agents are proportional to 𝑁 .

The project management sample policy, based on the ABAC policy
in [32], controls access by departmentmanagers, project leaders, em-
ployees, contractors, auditors, accountants, and planners to budgets,
schedules, and tasks associatedwith projects. Thenumbers of depart-
ments, projects, tasks, and users of each type are proportional to 𝑁 .

The university sample policy, based on the ABAC policy in [32],
controls access by students, instructors, teaching assistants (TAs),
department chairs, and staff in the registrar’s office and admissions
office to applications (for admission), gradebooks, transcripts, and
course schedules. The numbers of departments, students, faculty,
and applicants for admission are proportional to 𝑁 .

The e-document case study, based on [15], is for a SaaS multi-
tenant e-document processing application. The application allows
tenants to distribute documents to their customers, either digitally
or physically (by printing and mailing them). The overall policy
contains rules governing document access and administrative oper-
ations by employees of the e-document company, such as helpdesk
operators and application administrators. It also contains specific
policies for some sample tenants. One sample tenant is a large bank,
which controls permissions to send and read documents based on
(1) employee attributes such as department and projects, (2) docu-
ment attributes such as document type, related project (if any), and
presence of confidential or personal information, and (3) the bank
customer to which the document is being sent.Some tenants have
semi-autonomous sub-organizations, modeled as sub-tenants, each
with its own specialized policy rules. The numbers of employees
of each tenant, registered users of each customer organization, and
documents are proportional to 𝑁 .

The workforce management case study, based on [17], is for a
SaaS workforce management application provided by a company,
pseudonymously called eWorkforce, that handles theworkflowplan-
ning and supply management for product or service appointments
(e.g., install or repair jobs). Tenants (i.e., eWorkforce customers) can
create tasks on behalf of their customers. Technicians working for
eWorkforce, its workforce suppliers, or subcontractors of its work-
force suppliers receive work orders to work on those tasks, and
appointments are scheduled if appropriate. Warehouse operators
receive requests for required supplies. The overall policy contains
rules governing the employees of eWorkforce, aswell as specific poli-
cies for some sample tenants, including PowerProtection (a provider
of power protection equipment and installation and maintenance
services) andTelCo (a telecommunications provider, including instal-
lation and repair services). Permissions to view, assign, and complete
tasks are based on each subject’s position, the assignment of tasks
to technicians, the set of technicians each manager supervises, the
contract (between eWorkforce and a tenant) that each work order is
associated with, the assignment of contracts to departments within
eWorkforce, etc. The only change we make is to omit from the work-
force management case study the classes and 7 rules related to work
orders, because they involve inheritance, which our algorithm does

notyet support (it is futurework).Thenumbersofhelpdesk suppliers,
workforce providers, subcontractors, helpdesk operators, contracts,
work orders, etc., are proportional to 𝑁 .

The synthetic policies developed by Bui et al. [7] are designed
to have realistic structure, statistically similar in some ways to the
sample policies and case studies described above. The class model
is designed to allow generating atomic conditions and atomic con-
straints with many combinations of path length and operator. It
supports the types of conditions and constraints that appear in the
sample policies and case studies, plus constraints involving the addi-
tional constraint operators that are supported in ORAL2 but not in
the original ORAL [10]. The object model generator’s size parameter
𝑁 specifies the desired number of instances of each subject class.
The number of instances of each resource class is 5 ·𝑁 . The numbers
of instances of other classes is fixed at 3. This reflects a typical struc-
ture of realistic policies, in which the numbers of instances of some
classes (e.g., doctors, patients, health records) scale linearly with
the overall size of the organization, while the numbers of instances
of other classes (e.g., departments, medical specialties) growmuch
more slowly (which we approximate as constant).

6.2 Policy SimilarityMetrics
We evaluate the quality of the generated policy primarily by its
syntactic similarity and policy semantic similarity to the simplified
original policy. These metrics are first defined in [9, 32] and are
normalized to range from 0 (completely different) to 1 (identical).
We adapt the syntactic similarity metric to take negation into ac-
count. The metrics are based on Jaccard similarity of sets, defined
by 𝐽 (𝑆1, 𝑆2) = |𝑆1 ∩ 𝑆2 | / |𝑆1 ∪ 𝑆2 |. For convenience, we extend 𝐽 to
apply to single values: 𝐽 (𝑣1, 𝑣2) is 1 if 𝑣1 = 𝑣2 and 0 otherwise.

Syntactic similarity of policies measures the syntactic similar-
ity of rules in the policies, based on the fractions of types, con-
ditions, constraints, and actions that rules have in common. The
syntactic similarity of rules is defined bottom-up as follows. For a
possibly negated atomic condition 𝑎𝑐 , let sign(𝑎𝑐), path(𝑎𝑐), and
val(𝑎𝑐) denote its sign (positive or negative), its path, and its value
(or set of values), respectively. Syntactic similarity of atomic con-
ditions 𝑎𝑐1 and 𝑎𝑐2 is 0 if they contain different paths, otherwise
it is the mean of 𝐽 (sign(𝑎𝑐1), sign(𝑎𝑐2)), 𝐽 (path(𝑎𝑐1), path(𝑎𝑐2)),
and 𝐽 (val(𝑎𝑐1), val(𝑎𝑐2))); we do not explicitly compare the oper-
ators, because atomic conditions with the same path must have
the same operator, since the operator is uniquely determined by
the multiplicity of the path. For a set 𝑆 of atomic conditions, let
paths(𝑆) = {path(𝑎𝑐) | 𝑎𝑐 ∈ 𝑆}. For sets 𝑆1 and 𝑆2 of atomic condi-
tions,

syn(𝑆1, 𝑆2) = |paths(𝑆1) ∪ paths(𝑆2) |−1
∑

𝑎𝑐1∈𝑆1,𝑎𝑐2∈𝑆2
synac (𝑎𝑐1, 𝑎𝑐2)

The syntactic similarity of rules 𝜌1 = ⟨𝑠𝑡1, 𝑠𝑐1, 𝑟𝑡1, 𝑟𝑐1, 𝑐1, 𝐴1⟩ and
𝜌2 = ⟨𝑠𝑡2, 𝑠𝑐2, 𝑟𝑡2, 𝑟𝑐2, 𝑐2, 𝐴2⟩ issyn(𝜌1, 𝜌2) = mean(𝐽 (𝑠𝑡1, 𝑠𝑡2), syn(𝑠𝑐1,
𝑠𝑐2), 𝐽 (𝑟𝑡1, 𝑟𝑡2), syn(𝑟𝑐1, 𝑟𝑐2), 𝐽 (𝑐1, 𝑐2), 𝐽 (𝐴1, 𝐴2)).

The syntactic similarity of policies 𝜋1 and 𝜋2, syn(𝜋1, 𝜋2), is the
average, over rules 𝜌 in 𝜋1, of the syntactic similarity between 𝜌 and
the most similar rule in 𝜋2.

The semantic similarity of policesmeasures the fraction of autho-
rizations that the policies have in common. Specifically, the semantic
similarity of policies 𝜋1 and 𝜋2 is 𝐽 ( [[𝜋1]] , [[𝜋2]]).
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7 EVALUATIONRESULTS
This section presents the results of experiments comparing our al-
gorithms with Bui et al.’s FS-SEA* algorithm [7] and Iyer et al.’s
algorithm [21]. DTRM and DTRM− are implemented in Python, ex-
cept that phase 2 step 2 (merge and simplify rules) uses the Java
code from Bui et al.’s implementation of FS-SEA*, available at [30].
Experiments were run onWindows 10 on an Intel i7-6770HQ CPU.
In summary,wefind that: (1) comparedwith FS-SEA*, our algorithms
are comparably effective at discovering the desired ReBAC rules, and
are significantly faster, with the speedup exceeding 10× for several
datasets and generally increasing with policy size, hence expected
be even larger for the large datasets arising in practice; and (2) com-
pared with Iyer et al.’s algorithm, our algorithms are several times
faster, and produce policies that are the same size or smaller (fewer
rules) and more similar to the original policies.

7.1 Comparison with FS-SEA*
We compared DTRM and DTRM− with FS-SEA* using the datasets
described in Section 6.1. We use the same path length limits (cf. Sec-
tion 5.1) as in [7, 10]. For the case studies, we generated policies
with varying size (of the object model): 𝑁 = 10, 15, 20, 25, 30, 35 for
eWorkforce and 𝑁 = 75, 100, 125, 150, 175 for e-document. For each
size, we generated 5 pseudo-random object models. For synthetic
policies, we generated two families of policies. Synthetic policies are
designated by syn_𝑁_𝑀 , where𝑁 is the objectmodel size parameter,
and𝑀 is the number of rules. The first family consists of 5 sets of
𝑀 = 20 synthetic rules, and object models with sizes 𝑁 = 20, 25, 30
(one of each size); we chose𝑀 = 20 because it is the average number
of rules in the sample policies and case studies. The second family
consists of sets of𝑀 = 10, 30, 40 synthetic rules (one of each size),
and 5 object models with size 𝑁 = 20. We ran DTRM, DTRM−, and
FS-SEA* on all of them, and average the results for the five policies
with the same 𝑁 and 𝑀 . The standard deviations are reasonable,
indicating that averaging over 5 object models for each data point
is sufficient to obtain meaningful results.

7.1.1 Policy Similarity andWSC. All three algorithms always mine
policies that grant exactly the same authorizations as the input ACL
policies and thus achieve perfect semantic similarity for all datasets.

All algorithms achieve similar syntactic similaritywhen compar-
ingmined ruleswith simplified original rules, as explained in Section
6. Theminimum, median, andmaximum (over all datasets) syntactic
similarity achieved by each algorithm are: 0.91, 0.98, 1.0 for FS-SEA*;
0.90, 0.98, 1.0 for DRTM; and 0.90, 0.97, 1.0 for DTRM−. The syntac-
tic similarity achieved by DTRM and DTRM- are usually the same
or better than that achieved by FS-SEA*, and in the worst cases in
Table 1, are at most 2% and 4% lower, respectively. DTRM− achieved
slightly lower syntactic similarity since the input policies do not use
any negative atomic condition/constraint.

We report results for WSC in terms of the ratio of the WSC of
the policy mined by DTRM or DTRM− to the WSC of the policy
mined by FS-SEA*; thus a ratio below 1means that DTRMorDTRM−

produce amore concise policy than FS-SEA*. Theminimum, median,
and maximum (over all datasets) of this ratio are: 0.79, 1.0, 1.21 for
DRTM, and 0.86, 1.01, 1.32 for DTRM−. WSC of policies mined by
DTRM− is not smaller thanWSC of policies mined by DTRM, even
though theoretically negation could allow more concise policies.

This indicates that DTRM− sometimes produces policies that use
negation even when it is not beneficial. This is not surprising, be-
cause when constructing the decision tree, the algorithm does not
have a preference for using or avoiding negation.

Detailed results for policy similarity appear in Table 1. Detailed
results for WSC appear in [6]. We conclude that all three algorithms
produce policies with similar quality according to all three metrics.

7.1.2 Running Time. We report results for running time as the
speedup relative to FS-SEA*, i.e., the ratio of the running time of
each algorithm to the running time of FS-SEA*. Detailed results ap-
pear in Table 1. The results are summarized in the stacked bar chart
in Figure 3. Each bar has three segments, representing three overlaid
bars, each corresponding to an algorithm. The total height (as mea-
sured on the y-axis) of the top of each segment is the speedup of that
algorithm. The first (black) segment is for FS-SEA*, so it always has
height 1. The second (white) segment is forDTRM.The third (shaded)
segment is for DTRM−. For example, if DTRM achieved speedup 2.2
and DTRM− achieved speedup 4.4 for some policy, then the top of
the black segment would be at height 1, the top of the white segment
at height 2.2 (hence the white segment would be 1.2 units long), and
the top of the shaded segment at height 4.4. This stacked bar chart
format is suitable for reporting the speedups because, in all of our
experiments, DTRM− is faster than DTRM, and DTRM is faster than
FS-SEA*. The bars within each cluster other than the sample policy
cluster are ordered left-to-right by increasing policy size, specifically
by object model size for the e-doc., eWorkforce, and syn clusters,
and by number of rules for the syn_20 cluster. Observe that speedup
generally increases from left to right within those clusters, i.e., gen-
erally increases with policy size. A main reason that speedups for
e-documentandsyntheticpolicies are larger than for eWorkforceand
most sample policies is that the former policies have a larger number
of rules per ⟨𝐶𝑠 ,𝐶𝑟 , 𝑎⟩ tuple (explained in Section 5.1). DTRM (and
DTRM−) achieve larger speedups for such policies, because FS-SEA*
repeats its expensive processing (feature selection and evolutionary
search) for each generated rule, while DTRM performs its expen-
sive processing (tree construction) once per ⟨𝐶𝑠 ,𝐶𝑟 , 𝑎⟩ tuple and can
quickly extract multiple rules from a tree.

Experiments with Sample Policies. DTRMandDTRM− spendmost
of the time in phase 1 to learn decision trees. The averaged running
times spent on phase 2 are less than 1 second for EMR_15 and project-
mangagment_5, and are less than 3 seconds for healthcare_5 and
university_5. DTRM and DTRM− are faster than FS-SEA* on all of
these policies. The average speedup is 2.17 for DTRM and 2.38 for
DTRM−. DTRM has similar running time as DTRM− on the sam-
ple policies, since only a few negative features are generated when
learning decision trees for these policies, and they are not useful and
hence are removed in the “merge and simplify rules” phase, so the
negative feature elimination step in DTRM has no work to do.

Experiments with Case Study Policies. For eWorkforce, the aver-
age speedup is 1.70 for DTRM and 1.96 for DTRM−. The negative
feature elimination step in DTRM has little effect on the speedup,
since the decision trees generated from the first phase do not contain
many negative features. For e-document, the average speedup is
2.92 for DTRM and is 8.13 for DTRM−, and the speedup for DTRM−

increases with policy size. The difference in speedup is larger for
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Policy
Syntactic Similarity Running Time (sec)

FS-SEA* DTRM DTRM− FS-SEA* DTRM SpdUp DTRM−
SpdUp

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

EMR_15 0.99 0.01 0.99 0.01 0.99 0.01 96 7.37 56 0.30 1.70 53 5.55 1.82
healthcare_5 1.00 0.00 1.00 0.00 1.00 0.00 111 14.54 80 41.07 1.39 70 29.68 1.57
project-mgmt._5 1.00 0.00 1.00 0.00 1.00 0.00 6 0.45 2 1.62 3.88 2 0.39 4.07
university_5 1.00 0.00 1.00 0.00 1.00 0.00 271 21.98 159 64.02 1.70 131 44.32 2.07
e-doc._75 0.93 0.02 0.90 0.01 0.90 0.01 696 133.88 296 42.57 2.35 121 14.90 5.75
e-doc._100 0.94 0.01 0.91 0.03 0.90 0.02 1734 542.88 650 64.94 2.67 250 19.14 6.94
e-doc._125 0.93 0.01 0.92 0.01 0.93 0.02 3516 1415.93 1200 276.13 2.93 481 24.52 7.31
e-doc._150 0.91 0.01 0.94 0.01 0.94 0.00 6068 1202.25 2292 323.12 2.65 735 58.44 8.25
e-doc._175 0.92 0.01 0.93 0.01 0.93 0.01 15218 4535.45 3823 460.36 3.98 1227 68.07 12.41
eWorkforce_10 0.97 0.01 0.98 0.01 0.97 0.01 70 9.32 50 5.80 1.41 48 0.69 1.47
eWorkforce_15 0.95 0.02 0.98 0.02 0.97 0.02 287 37.68 182 13.62 1.58 176 2.06 1.63
eWorkforce_20 0.92 0.03 0.98 0.02 0.96 0.02 669 89.99 426 94.17 1.57 319 5.16 2.10
eWorkforce_25 0.95 0.04 0.97 0.02 0.95 0.02 1750 294.25 946 280.87 1.85 745 10.67 2.35
eWorkforce_30 0.97 0.02 0.97 0.02 0.95 0.02 3113 725.28 1492 312.45 2.09 1378 17.42 2.26
syn_20_10 0.99 0.00 0.99 0.01 0.99 0.01 938 348.24 166 52.16 5.66 142 12.42 6.61
syn_20_20 0.98 0.01 0.98 0.02 0.97 0.04 3129 887.18 309 88.93 10.11 256 24.97 12.22
syn_20_30 0.99 0.00 0.99 0.01 0.98 0.03 6303 1258.03 379 88.73 16.65 317 27.25 19.86
syn_20_40 0.99 0.01 0.98 0.02 0.97 0.03 11169 2812.94 435 69.75 25.67 370 14.52 30.21
syn_25_20 1.00 0.00 0.98 0.02 0.97 0.04 6494 2283.31 571 142.31 11.38 485 42.43 13.40
syn_30_20 1.00 0.00 0.99 0.01 0.99 0.01 11161 3396.60 898 82.72 12.43 861 75.63 12.96
syn_35_20 0.99 0.01 0.99 0.01 0.99 0.01 21758 7355.68 1419 138.17 15.33 1416 114.47 15.36

Table 1: Comparison of DTRM, DTRM−, and FS-SEA*. 𝜇 and 𝜎 are the mean and standard deviation, respectively. SpdUp is the
speed up, computed as the ratio of the running time of each of our algorithms to the running time of FS-SEA*.

e-document, because more negative features are generated in phase
1, so the negative feature elimination step in DTRM takes longer.

DTRM and DTRM− have lower average speedups on sample poli-
cies and eWorkforce, compared with the other policies (discussed
next), because these policies are simpler, allowing FS-SEA* to have
relatively good running time on them. In particular, FS-SEA* needs
only one or a few iterations of feature selection and evolution to
learn the rules for a given combination of subject type, resource
type, and action, whereas for themore complicated policies, FS-SEA*
typically needs more such iterations.

Experiments with Synthetic Policies. In experiments with the first
family of synthetic policies, with 𝑀 = 20 rules and varying ob-
ject model size, the average speedup is 12.31 for DTRM and 13.49
for DTRM−. For both DTRM and DTRM−, the speedup generally
increases with object model size; the 3% dip from syn_25_20 to
syn_30_20 is not statistically significant (it’s less than the 𝜎).

In experiments with the second family of synthetic policies, with
object model size 𝑁 = 20 and varying number of rules, the average
speedup is 17.48 for DTRM and 20.76 for DTRM−. The speedups of
both DTRM and DTRM− significantly increase with the number of
rules: for DTRM, speedup increases from 5.66 with 10 rules to 25.67
with 40 rules; for DTRM−, speedup increases from 6.61 with 10 rules
to 30.21 with 40 rules.

7.2 Comparison with Iyer et al.’s Algorithm
We compare DTRM and DTRM− with Iyer et al.’s ReBAC mining
algorithm [21] using modified versions of the eWorkforce datasets
described in Section 7.1. We use Iyer et al.’s translation of a subset
of the eWorkforce rules (used in experiments in [21]) as a starting
point, and update it retainmore of the original ORAL2 rules.We also
modify the ORAL2 rules to exactly match (in meaning and structure,
not syntax) the translated rules. We end up with 17 rules in each
framework. Note that the original eWorkforce rules cannot be used
directly: they need to be simplified, because Iyer et al.’s framework
in [21] is less expressive than ORAL2. In particular, we eliminate
Boolean attributes, and set comparison operators other than equality.
We also simplify the object models in the eWorkforce_10 dataset
by eliminating fields and classes not used in the modified rules. We
implemented a translator that converts the simplified object models
into Iyer et al.’s “system graph” representation. This enables us to
run their system on significantly larger system graphs than used in
any of the experiments (with any policy, not just eWorkforce) in [21].
We then compare the results of running our algorithms and their
implementation of their algorithms.

When run on the modified eWorkforce_10 dataset, their system
doesnotfinish ina reasonable time (weuseda timeoutof 30+minutes,
since DTRM and DTRM− take less than aminute for this dataset) for
some object models, and it returns errors, such as “MemoryError”
and “IndexError: pop from empty list”, for others. We reported these
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Figure 3: Speedups of DTRM and DTRM− relative to FS-SEA*. There are 5 clusters, corresponding to 5 groups of policies. The
“sample” cluster contains bars for the following policies (from left to right): EMR_15, healthcare_5, project-management_5
and university_5; “e-doc” cluster for e-document_75, e-document_100, e-document_125, e-document_150, e-document_175;
“eWorkforce” cluster for eWorkforce_10, eWorkforce_15, eWorkforce_20, eWorkforce_25, eWorkforce_30; “syn” cluster for
syn_20_20, syn_25_20, syn_30_20, syn_35_20; “syn_20” cluster for syn_20_10, syn_20_20, syn_20_30, syn_20_40.

Policy Input Policies Avg. # of Mined Rules Avg. Running Time (sec)
#obj #field #FtVec #rules [21] DTRM DTRM− [21] DTRM SpdUp DTRM− SpdUp

eWorkforce_10 354 530 8662 7 8 7 7 14 3 4.67 3 4.67
eWorkforce_15 505 751 20170 7 8 7 7 34 10 3.40 10 3.40
eWorkforce_20 601 897 29158 7 8 7 7 78 19 4.11 19 4.11
eWorkforce_25 755 1121 48253 7 8 7 7 101 42 2.40 41 2.46
eWorkforce_30 888 1304 67653 7 8.3 7 7 346 76 4.55 74 4.68

Table 2: Comparison of DTRM, DTRM− and Iyer et al.’s algorithm on the simplified eWorkforce_10 dataset. #obj, #field, #FtVec
and #rules have the samemeanings as in Figure 2. SpdUp is the speedup of DTRMandDTRM− relative to Iyer et al.’s algorithm.

issues to Iyer et al. Until they provide a fix, we circumvented these
issues by removing the rules that trigger these issues, and removing
parts of the object models unused by the remaining rules, until their
system ran successfully for the remaining rules and at least one of the
simplified object models for each object model size. In the end, we re-
moved10 rules that their systemhas troublewith, leaving7 rules.The
majority of the problematic rules are syntacticallymore complicated
than the remaining ones. Specifically, 8 out of 10 of the problem-
atic rules contain more than two atomic conditions/constraints (in
ORAL2) or relationship patterns (in [21]’s policy language). In con-
trast, most (specifically, 5 out of 7) of the remaining rules contain
only one atomic condition/constraint or relationship pattern (the
other two remaining rules contain 3 atomic conditions/constraints).
Results of these experiments are reported in Table 2. We set the
path length limits for DTRM and DTRM− to smaller values suitable
for these simplified policies: MCSE = 5, MSPL = 2, MRPL = 1,
SPED = 0, RPED = 0, andMTPL = 4. Even using these 7 remaining
rules and significantly simplified object models, their system does

not finish in a reasonable time (30 minutes) for some of the 5 object
models for each policy size. Although we do not know for certain
whether this is due to inefficiency of their algorithm or bugs in their
implementation, we make the more generous assumption (i.e., as-
sume the latter) and therefore omit those object models from the
reported results. Consequently, the results in Table 2 are averages
over 4 object models for eWorkforce_10, 1 for eWorkforce_15, 1 for
eWorkforce_20, 2 for eWorkforce_25, and 3 for eWorkforce_30.

All three algorithms mine policies that grant the same authoriza-
tions as the input policies. ForDTRM, theminedpolicies are identical
to the input policies. For DTRM−, themined policies are almost iden-
tical to the input policies: the only difference is replacement of the
condition tenant.id =PP inone input rulewith thenegative condition
tenant.id ≠ Telco, which is equivalent in context of these simplified
object models. For Iyer et al.’s algorithm, the mined policy contain
one more rule than the original policy (8 instead of 7) for all object
models, except it contains two more rules for one object model of
eWorkforce_30, because their algorithm fails to mine some of the
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desired relationship patterns, generating instead multiple rules con-
taining longer relationship patterns.We do not reportWSC for these
experiments, because the algorithms use different policy languages,
andWSC is language-dependent.

DTRM and DTRM− are faster than Iyer et al.’s algorithm for all
policies. Averaged over all policies, DTRM is 3.83 times faster, and
DTRM− is 3.86 times faster. DTRM and DTRM− have very simi-
lar running times in these experiments, because very few negative
features appear in the rules extracted from the decision trees.

8 FUTUREWORK
Directions for future work include: extending our algorithms to
handle incompleteness and noise in the ACLs, perhaps using deci-
sion tree pruning methods, which are designed to avoid overfitting;
extending our algorithms to identify errors in attribute values, and
possibly suggest corrections; anddeveloping incremental algorithms
that efficiently handle updates to the object model or authorizations.
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