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Abstract

When transforming programs for complex instrumentatiosh @
timization, it is essential to understand the effect of taasforma-
tions, to best optimize the transformed programs, and tedige
the transformation process. This paper describes a povmeethod
for composing transformation rules to achieve these goals.

We specify the transformations declaratively as instru@ren
tion rules and invariant rules, the latter for transformammplex
queries in instrumentation and in programs into efficieatemen-
tal computations. Our method automatically composes thestr
formation rules and optimizes the composed rules beforbyimgp
the optimized composed rules. The method allows (1) thecieffe
of transformations to be accumulated in composed rules famsl t
easy to see, (2) the replacements in composed rules to lmeipgdi
without the difficulty of achieving the optimization on la&grans-
formed programs, and (3) the transformation process to &a sp
by applying a composed rule in one pass of program analyskes an
transformations instead of applying the original rules ialtiple
passes.

We have implemented the method for Python. We successfully
used it for instrumentation, in ranking peers in BitTorreartd for
optimization of complex queries, in the instrumentatiorBdfTor-
rent, in evaluating connections of network hosts using MetFand
in generating efficient implementations of Constrained RBA

Categories and Subject Descriptors  D.1.2 [Programming Tech-
niques]: Automatic Programming—Program transformation; D.3.4
[Programming Languages]: Processors—Optimization; F.3.1dg-
icsand Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—Invariants

General Terms Design, Languages, Performance

1. Introduction

Program instrumentation and optimization are key taskspfor
gram understanding and improvement. Instrumentation edds
to monitor program behavior at runtime, for both correcsnasd
performance reasons. Optimization replaces inefficiedeamith
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efficient code and must preserve program semantics. Fer lpet-
gram understanding, instrumentation must support contplexies
of program behaviors. For better program improvementnapt-
tion must transform complex queries, in instrumentatiopartic-
ular and in programs in general, into efficient incrementathpu-
tations with respect to updates to the values that the queéepend
on; such optimizations are callé&trementalization.

Program instrumentation and optimization can be expressed
using transformation rules, which are then applied to @o.
This allows complex instrumentations to be easily turnedrooif,
and complex optimizations to be reused for different ajgpions,
while at the same time allowing the original programs to beieza
to understand. However, three problems must be addresseiti/to
support this approach: (1) the effect of applying a comlbdmabf
rules can be hard to understand, (2) the efficiency of thdthegu
programs might not be the best from a combination of separate
rules, and (3) the application of many rules can be too sloa du
to necessary complex program analysis being repeated.

This paper describes a powerful method for composing trans-
formation rules to address these three problems. We sptwfy
transformations declaratively as instrumentation ruled imvari-
ant rules, the latter for transforming complex queries strummen-
tation and in programs into efficient incremental compotai Our
method automatically composes the transformation ruldsoati-
mizes the composed rules before applying the optimized oseth
rules.

1. The method starts with complex queries needed in instnume
tation or in programs, decomposes them into subqueries for
which individual transformation rules may apply, and condsi
individual rules by repeatedly matching the replacemettepn
parts of a rule against the given-pattern parts of another ru
This allows the effect of transformations to be accumulated
composed rules and thus easier to understand through #se rul

. The method then optimizes the replacement-pattern érts
composed rules through algebraic simplifications of coragos
computations and precise elimination of dead computations
This allows the replacement-pattern parts in composed tale
always be optimized without the difficulty of achieving slami
optimizations on large transformed programs. This alsons|
the effect of transformations to be even easier to see.

. The method finally applies the optimized composed ruléiseo
program, employing powerful control flow, data type, anasli
analysis to ensure that program semantics is preserveslaFhi
lows the transformation process to be sped up by applying a
composed rule in one pass of program analyses and transfor-
mations in place of separate rules in multiple passes.

Our method ensures that applying a composed rule or an @etii
composed rule yields programs that have the same semastics a
programs obtained by applying individual rules.

We have implemented the method for transforming Python pro-
grams. Our implementation handles the entire Python 2dulage.
We have successfully used our system for instrumentatioarik-
ing peers in BitTorrent—a peer-to-peer distributed filerstgapro-
gram. We also successfully used the system for optimizadfon



complex queries in the instrumentation of BitTorrent, irlesat-

ing connections of network hosts using NetFlow—a Cisco net-

work protocol for collecting IP traffic information, and iregerat-

ing efficient implementations from formal specifications @on-

strained RBAC—advanced components in the ANSI standard for

Role-Based Access Control (RBAC). We present experimeatal

sults that demonstrate the effectiveness and benefits ofi¢iieod.
Much work has been done on program transformations and

many related topics, including invariant rules and incretakza-

tion, aspect-oriented programming, and many programfoams.-

tion systems and applications, as discussed in Sectionwevs,

no previous work has studied composition of invariant rued

achieved the kind of optimizations possible using our meéitho

2. Transformation language

We slightly extend invariant rules from previous work [Lit a.
2009] to add instrumentation rules. Invariant rules aregies! to
support the fundamental concept of maintaining invariam{sro-
grams. Instrumentation rules are designed to facilitaésqmwing
semantics of programs when desired.

Invariant rules. Invariant rules are designed for incrementaliza-
tion, i.e., optimizing expensive queries in programs byisgpthe
query result and incrementally maintaining the result wienval-
ues that the query depends on are updated. This maintairs-the
variant that the value of the result variable always equasésult
of the query. By queries, we mean computations of resultsgusi
given values.

For example, the invariant rule in Figure 1 maintains theuirv
ant that the value dbr always equals the result 6. | en() , the
size of setbs, under three kinds of updates$s:

1. when$s is assigned a new empty s8t, is assigned O;

2. when adding an elemefi to $s, $r is incremented by 1 if
$x is notin$s; and

3. when removing an elemefik from $s, $r is decremented by
Lif$x isin$s.

If all possible updates t&s are the three kinds specified, i.e.,
there are no updates such $s=$t , then the linear-time query
$s. 1 en() can be replaced with an efficient retrieval fran,
and efficient maintenance can be done at each update asepecifi

inv py{ $r } = py{ $s.len() }

at py{ $s = set() }
do py{ $r =0}

at py{ $s.add($x) }
do before py{
if $x not in $s:
$r = $r + 1

}
at py{ $s.renove($x) }
do before py{

if $x in $s:

$r = $r - 1

Figure 1. Aninvariant rule for set size.

Thei nv clause denotes an invariant between a result variable
and a query computation. Aat clause denotes an update to the
values that the query depends ondé clause below aat clause
(or i nv clause) denotes maintenance of the query result at the
update (or query), which can be done before or after the epdat
(or query). The notatiopy{} indicates that the enclosed text is
in Python. The symbo$ precedes a meta variable that can be
instantiated to any program variable or program segmererieigl.

In general, a rule may also specify, below the query and each
update, conditions on the query or update, using &nclause,
and declarations (with their scopes) needed for the mainizn
using ade clause. For convenience, maintenance at an update
may also be done in place of the update, usindpai nst ead

inv result = computation
(if condition+)?
(de ((in scope :)? declaration+)+)?
(do maint? (before maint)? (after maint)?)?
(at update
(if condition+)?
(de ((in scope :)? declaration+)+)?
(do maint? (before maint)? (after maint)?
(instead maint)?)? )+

Figure 2. General form of an invariant rule.

clause. The general form of an invariant rule is given in Fega.
wherecomputation, result, update, declaration, andmaint are
program text, except that they may contain meta variabled; a
condition and scope are a Boolean expression and a scope ex-
pression, respectively, in the rule language. Scope esiores are

of the formglobal, package packagename, class classname, or
method methodname.

The semantics of applying an invariant rule is: (1) matchra-co
putation in the program againsbmputation, match all possible
updates to the values on which the computation dependssigain
someupdate, and check all correspondingnditions, and (2) if
these succeed, replace all occurrences of the computaiibrihe
correspondingesult, add correspondindeclarations in the spec-
ified scope, and add correspondingiint code before or after the
computation and before, after, or in place of the updatescéo-
venience, a declaration of an existing method, class, omutedd-
serts the specified body at the beginning of the existing loddye
method, class, or module, respectively.

Applying a rule requires automatic detection of all possilp-
dates to values on which the computation depends. We usapowe
ful static analyses—control flow, data type, and alias asislyor-
bovitski et al. 2010]—to minimize the set of possible updaaad
insert runtime checks to confirm them.

To use invariant rules for optimization, the overall al¢iom
repeatedly applies rules to expensive queries and updatde i
given program until no rule applies. The order that rulesap@ied
in follows dependencies among the queries.

The advantage of using an invariant rule to maintain theltresu
of a query, such as the set size, is that all maintenance sspec-
ified declaratively in one rule, and the rule is applied awtioally,
without the rule’s author needing detailed knowledge of phe
gram. This contrasts maintenance code specified in multipés
that must be coordinated for transformations, or manuabgited
at scattered updates throughout the program, possiblgtoeéal to
improve the program. For simple queries such as the setreae,
ual code insertion and refactoring is not too difficult, hidécomes
a serious challenge when maintaining an invariant effitjens:-
quires knowing the internals of multiple classes [Gorlskiiet al.
2008; Liu et al. 2005], or when the class itself is complexhsas
thebi t Tor r ent class of the BitTorrent application.

Instrumentation rules. We slightly extend the rule language
above to support instrumentation, using instrumentatid@srand
pure instrumentation rules. Pure instrumentation rulessgmve
program semantics. An instrumentation rule is of the samm fo
as an invariant rule, with two exceptions:

1. The clausdnv result computation is replaced with
instrunentation or pure instrunentation, indi-
cating that the rule is not for maintaining an invariant, fart
instrumentation or pure instrumentation, respectively.

2. Pure instrumentation rules cannot hawe i nst ead clauses,
meaning that all maintenance code must not replace existing
code, but be inserted before or after existing code.

The semantics of applying an instrumentation rule diffeosnf
applying an invariant rule in two ways. First, tde clause below
thei nstrunentati onorpure instrunmentation clause
inserts code before or after the entire program, insteacefaire
or after the query in thenv clause as for invariant rules. Second,



applying a pure instrumentation rule automatically chetlet in-
serted code does not update existing variables and fieltis ipro-
gram, instead of detecting all possible updates to the sahet a
query depends on as for invariant rules. This checking useset-
vative static analysis first and dynamic checking for theaiging
updates. This ensures that pure instrumentation rulestdthaoge
program semantics other than the extra time and space foingin
the inserted code.

An instrumentation rule is applied only once to the given-pro
gram, and not applied again to the transformed parts—thas-gu
antees termination. This contrasts invariant rules, whicty be
repeatedly applied to the transformed parts—this stopausecin-
variant rules are designed to reduce program complexitiesnw
possible and have clear limits.

Running example. We use instrumentation and incrementalization
of BitTorrent, version 4.9.3, as a running example.

BitTorrentht t p: / / downl oad. bi ttorrent.com dl /)
is a peer-to-peer distributed file sharing protocol. Wheritipia
peers download the same file concurrently, they can relay tdat
each other, making it possible for the file source to supmogd
numbers of downloaders with only a modest increase in itd.loa
Each peer downloads pieces of a file from other peers, and then
reassembles the original file from the pieces. The set ofspbat
a peer communicates with is called its peer horizon.

Each piece is sent as a sequence of packets. Once a piece i
completely received, the peer verifies that the piece atrviehout
errors, by using an SHA1 checksum sent in a bootstrappinthfite
contains the checksum of each piece of the file being dis&huf
the piece contains errors, the peer marks the sender ofébe ps
untrustworthy, and attempts to retrieve the piece fromlzargbeer.

3. Instrumentation of BitTorrent

We instrument the BitTorrent peer to rank peers, giving lo@aks

to peers that sent or received mismatched data packetsg Brom
efficiently allows us to quickly detect bad peers or peersiected

by bad links. In BitTorrent without instrumentation, suatection
requires the peer to receive one complete piece from anpter
and thus has a delay, because checking is done at the piete lev
rather than the packet level.

Figures 3 and 4 together show the complete instrumentation
rule. An instrumented BitTorrent peer, in Figure 4, callstinoel
process to (1) record history—send a notification packet to all
peers in its peer horizon when it receives or sends a datepack
and record the notification packets received, (2) analyzerded
history—compute the ranks of all peers in the peer horizon to
reflect matches between the data packets sent and recenetd, a
(3) act on the analysis result—sort and write out the listesrg in
order of high to low ranks.

Recording history. When the BitTorrent peer receives or sends a
data packep, in the middle block of methodr ocess in Figure 4,
it sends a notification packet to all peers in its peer horiddns
is done by calling methodend_not i fi cati on_packet that
is defined in Figure 3, passing in valles" or "r" indicating
whether the peer was sending or receiving the data packet, an
information about the packet

When the BitTorrent peer receives a notification packet, in
the last block of methoghr ocess in Figure 4, it decodes the
packet and stores the decoded informatior$gent or $recv
based on valué' s" or "r". This is done by calling method
recei ve_notification_packet that is defined in Figure
3.

Analyzing recorded history. Methodconput e_r ank in Figure

4 uses$sent and $recv to compute the rank of each peer in
the peer horizon. For each pegeeer , uniquely identified by its
addresgp, it computesrat ch, the number of data packets sent by
or received by the peer and whose sending and receiving qudg/lo
match, i.e.,

mat ch = [{p: p € $sent N$r ecv, p.src = ipVp.dst = ip}|

pure instrunentation

de in global py{
i mport scapy #socket nodule fromhttp://ww. secdev.org

#cal | ed when a data packet is sent
def send_notification_packet(peer, type, p):
. #send event type and info about packet p to
#target peer using scapy over UDP on port 555
$sent set() # set of all data packets sent
$recv = set() # set of all data packets received
#cal | ed when a notification packet is received
def receive_notification_packet(bytestring):
. #receive a bytestring, decode it, and insert
#result in $sent or $recv, respectively

}

Figure 3. Instrumentation rule clauses for sending and receiving
notification packets.

de in global py{
fromcollections inport defaul tdict

}

de in class bitTorrent py{

#standard library

S #insert instrunentation at the start of nethod __init__
def __init__(self):
#start sniffing for packets sent/recv’'d by current proc.
#when a packet is sniffed, self.process is called on it
scapy.sniff(prn = sel f.process)
self.rank = defaultdict(float) #rank for each peer

sel f.packet _count = O #num notif. packets received

def process(self, packet):
#i f packet is UDP or TCP packet, decode packet into p
if UDP in packet or TCP in packet:
p = packet[UDP] if UDP in packet el se packet[TCP]

if p.port in self.portrange:
if p.src==self.ip_addr:
for peer in self.peers:
send_notification_packet (peer,
if p.dst==self.ip_addr:
for peer in self.peers:
send_not i fication_packet (peer,

#if p is a data packet
# f sending p
#notify peer horizon
'S, p)
#if receiving p
#notify peer horizon
rp)
if p.port==555: #if p is notif. packet
if p.dst==self.ip_addr: #if receiving p
receive_notification_packet (p. payl oad) #recording
sel f. conput e_r ank() #anal ysi s
sel f.sort_and_print() #action
#ot herwi se, we sniffed an unknown packet; do not hing
def conpute_rank(self):
for peer in self.peers:
match = len(set(p for p in intersect($sent, $recv) if
p. src==peer.ip_addr or p.dst==peer.ip_addr))
= len(set(p for p in union($sent, $recv) if
p. src==peer.ip_addr or p.dst==peer.ip_addr))
self.rank[peer] = 1.0 if total ==0 el se 1.0xnatch/total

#for anal ysis

total

def sort_and_print(self): #for action
sel f. packet _count += 1
if self.packet_count % 1000 == O:

. #call library functions for sorting and printing

Figure 4. Rule clauses to instrument BitTorrent peer to process
packets received, compute ranks, and print sorted peers.

and it computegotal, the number of all data packets sent by or
received by the peer, i.e.,

total =|{p:pe $sent USrecv,p.src =ipVp.dst =ip}|
The peer’s rank is computed amt ch divided byt ot al , i.e.,
rank = match/t ot al



Higher ranks indicate better peers. A peer’s rank is 1 if aliad
packets it sent and received match, i.e., no packet is sénmtdbu
received, received but not sent, or modified in transit.

Acting on analysis results. Methodsort _and_pri nt in Fig-
ure 4 does the sorting and printing for every 1000 notificatiack-
ets received.

Overhead caused by instrumentation. The overhead caused by
instrumentation is shown in the first row of Table 1. It is for
(1) sending notification packets to all peers in the peerzbori
whenever a peer sends or receives a data packet, and (2}iegecu
the queries that computeat ch andt ot al for all peers in the
peer horizon, whenever a peer receives a notification patkéet
takes O(S + R)? x H) expected time, because a total ofSO¢

ht time

O((S + R)? x H)
O((S+ R) x H)
O((S+ R) x H) |5(S+ R)
O(S+R)xH)| S+R

S andR are the sizes dpsent and$r ecv, respectively.
H is the maximal number of peers in the horizon of any given.peer

instrumented BitTorrent varia
use no inv. rules

use separate inv. rules

use composed inv. rules

use opt. composed inv. rules

space
S+ R
5(S + R)

Table 1. Time and space overhead caused by instrumentation.

For example, for the query for computingt ch:

len(set(p for p in intersect($sent, $recv)
I f p.src==peer.ip_addr or p.dst==peer.ip_addr))

R) data and notification packets are sent and received by eachStep 1first extracts the inner-most subqueny er sect ( $sent ,

peer, each packet sent or received has a cost factor &f),G(nd
computingmat ch andt ot al takes Of + R) expected time using
hashing. The space used by the added code$sOR) for storing
$sent and$recv.

4. Decomposition and incrementalization

Complex queries in instrumentations and in programs aremigt
expensive, but often repeated while the values they depend o
change. For example, in the instrumentation for BitTorrehe
queries for computingrat ch andt ot al take O + R) time,
and the query is repeated for each notification packet redeiv

We optimize these queries by storing the query results amd co
puting the results incrementally as the values the quegpsmtl on
change. For example, for BitTorrent instrumentation, weénaén,
for each peer in the peer horizon, the valueg®f ch andt ot al
incrementally a$sent and$r ecv are updated.

We could use a previously studied method [Liu et al. 2005,
2009] to incrementalize expensive queries. It increme@aleach
query in a basic form using an invariant rule; the transfdrons
replace the query with a retrieval of the query result frora th
result variable, and insert code to maintain the query texuall
places that update the values that the query depends one&tidn
queries, the effect is that the innermost query in a basia figr
incrementalized first; after this the query is replaced bgtaaval
of its result from a variable, the outer query that is then baaic
form is incrementalized next; this continues until the onest
query is incrementalized.

This previous method of repeatedly applying invariantsuias
three drawbacks: (1) the overall result of incrementallgnpating
a nested query is difficult to understand because it is sedti@
many places in the final transformed program, (2) optimizetien-
abled by incrementalization are hard to perform on the dfiege
and complex transformed program, and (3) repeatedly appip-
variant rules is expensive because complex control flove tige,
and alias analyses of the entire program are required befky-
ing each rule.

To overcome these drawbacks, our method automatically com-
poses the transformation rules and optimizes the compagdes r
before applying the optimized composed rules to the program
To prepare for composition, the method first decomposesdest
queries into subqueries in basic forms, which contain ndedes
subqueries, and uses previous methods [Liu et al. 2006;aRah
and Liu 2008] to derive invariant rules for incrementallyrguuting
the subqueries.

Decomposing nested queriesThe parameters of a query are the
variables used by the query but defined outside the query.

$recv), Step 2 introduces a new map to store the result of this
subquery, and Step 3 replaces the subquery in the origiralyqu
with | [ ($sent, $recv)], yielding

$I [ ($sent, $recv)]
nmat ch

i ntersect ($sent, $recv)
len(set(p for pin $I[($sent, $recv)]
if (p.src==$ip or p.dst==$ip))

Repeating this procedure until we reach the outermost query
we obtain new maps$!, $P, and $M that store the intersec-
tion, the selected set for each peer, and the results of theyqu
for mat ch, respectively; and we replace the original query by
$M ($sent, $recv, peer.ipaddr)].

$I [ ($sent, $recv)]
$P[ ($sent, $recv, $ip)]

$M ($sent, $recv, $ip)]

intersect ($sent, $recv)

set(p for p in $I[($sent, $recv)]
if (p.src==$ip or p.dst==$ip))

I en($P[ ($sent, $recv, $ip)])

Parameters that throughout the lifetime of the program are
bound to a single object are unnecessary and thus removed. Fo
the example above, paramet&sent and$r ecv are removed,
yielding the subqueries in Figure 5, and the original quencbm-
puting mat ch is then replaced byM peer.i p_addr]. The

$l = intersect($sent, $recv)
$P[$ip] = set(p for pin $l if p.src==$ip or p.dst==3%ip)
$M $i p] = len($P[S$ip])

Figure 5. Result of decomposingat ch query.

query for computingt ot al can also be decomposed into three
subqueries, one each for the union, the selection, and shit.re

Deriving invariant rules for subqueries. For each subquery, we
use previous methods [Liu et al. 2006; Rothamel and Liu 2008]
derive invariant rules for incrementally maintaining thegy result
under each kind of update to a parameter of the query. Theoaeth
work for large classes of queries and updates. For example, f
incrementally maintaining! , $P, and$M the resulting invariant
rules in Figure 6 are derived. Note that the parantiitgrin a result
expression allows the query result to be looked up in theltresu
map for any$i p given. Similar rules for incrementally computing
subqueries fot ot al can also be derived.

Overhead caused by instrumentation using separate invaria
rules. The overhead caused by instrumentation after incremental-
ization using separate invariant rules is as shown in therseow

of Table 1. The time complexity is Qf + R) x H), because each
piece of maintenance code inserted takes constant timeetieV/-

Decomposing nested queries has three steps. Step 1 extracteng query results from all three maps also takes constar, tmd

subqueries following the innermost, leftmost-first depamay or-
der of computation. That is, if a subquery is contained iasid-
other subquery, then the inner one is extracted first; ifheeibf
two subqueries is contained inside the other, then the fedtie
extracted first. Step 2 introduces, for each subquery, a muap f
tuples of values of the subquery parameters to subquerytsesu
Step 3 rewrites the original query to use this map in placénef t
subquery.

thus the overhead is constant for each peer in the peer hadidzo
each packet sent or received. The space complexity is bdumgde
(S + R) x 5 because, besides storifigent and$r ecv, we also
store$l and$P for computing the query farat ch and two simi-
lar variables for computing the query foot al , and the space for
each of these four maps is bounded%y R; the result magMfor
the query fommat ch and the result map for the query foot al
take significantly less space and thus are omitted.



inv py{ $I } = py{ inv py{ $P[S$ip] } = py{ inv py{ $M$ip] } = py{
intersect ($sent, $recv) set(p for pin $I if I en($P[ $i p])
} p.src==$i p or p.dst==8$ip) }
de in class bitTorrent py{ } de in class bitTorrent py{
def __init_ (self): de in class bitTorrent py{ def __init_ (self):
$I = set() def __init__(self): $M = defaul tdict(int)
} $P = defaul tdict(set) }
at py{ $sent.add($p) } } at py{ $P[$ip].add($p) }
do before py{ at py{ $I.add($p) } do before py{
if $p in $recv: do before py{ $M$ip] +=1
if $p not in $I: if $p not in $P[$p.src]: }
$1 . add( $p) $P[ $p. src] . add($p) at py{ $P[$ip].renove($p) }
} if $p not in $P[$p.dst]: do before py{
at py{ $recv.add($p) } $P[ $p. dst] . add( $p) $MS$ip] -=1
do before py{ } }
if $p in $sent: at py{ $I.renove($p) }
if $p not in $I: do before py{
$1 . add( $p) if $p not in $P[$p.src]:
} $P[ $p. src] . renove($p)

if $p not in $P[$p.dst]:
$P[ $p. dst] . renmove($p)

Figure 6. Invariant rules for maintaining the results of subquer@scbmputingrat ch in $1 , $P, and$M Clauses for handling removals
from $sent and$r ecv are symmetric to clauses for handling addition and are erhittr brevity.

5. Composition and optimization

We describe composition of invariant rules and optimizatas
composed rules. We then discuss composition of instrurtienta
rules with invariant rules. Our composition and optimiaatipre-
serve program semantics, i.e., applying a composed rule opt
mized composed rule yields programs that have the same sesan
as programs obtained by applying individual rules; howespply-
ing an optimized composed rule may yield more efficient progg
due to optimizations performed on the composed rules.

5.1 Composition of rules

Given a nested querydecomposed into a sequence of subqueries,

they form a sequence of invariants = q1,72 = q2, ..., 7n = Gn,
where the value of original queryequals the result, of the last
query with its parameters instantiated to the correspgnparam-
eters ing. For example, the subqueries for computmat ch, in
Figure 5, form three invariants, and the value of the orilgipeery
equals the resuiM $i p] of the third subquery with its parameter
$i p instantiated tgpeer . i p_addr .

For each invariant; = ¢; in the sequence, there is a corre-
sponding invariant rule?; of the formi nv r; = ¢; B;, where
B; is the body of the ruleB; may have multipleat , i f, de, and
do clauses. Composition must combine code patterns inrall,
at , de, anddo clauses, as described below. The conditionisfin
clauses can be evaluated or simplified using static anadlysiag
the composition. Composition produces a single rule whosari
antisr, = ¢, such thaig,, with its parameters instantiated to the
corresponding parameters in the original querys syntactically
identical tog.

The composition algorithm builds a composed rule up start-
ing from the first rule—the rule for the innermost subquery of
the original query. The construction produces a sequenceles

Y, R, ..., R, whereR) is the result of composing rule?; to
R;. As the base cas&) is identical toR;. At the end,R,, is the
desired rule fog. We give the precise algorithm below for the case
that the sequence of subqueries are strictly nested; itagyhtfor-
ward to extend it to handle multiple independent subquenisise
an enclosing query. We uge[v — 2] to denotet, with each oc-
currence o replaced withis.

gt =q; Bi=B1; Ri=R; (1)
fori=1ton—1 (2
qz+1 = Git1[ri = qi] (3
41 =transfor n(BZ,RZH) 4)

RZH =inv rig1 =qiy1 Biyr o (5)

Applying the substitutiorjr; — ¢;] to ¢;11 in line (3) recon-
structs part of the structure of the original nested queegabse
this substitution reverses the replacement,oivith r; when ex-
tractingq; from ¢;41 during the decomposition. This substitution
is valid becauseR, ensures its invariant; = ¢.. To ensure that
R;,, also maintains this invariant, the body, of R; is used in
line (4) as the basis for the body;, ; of R}, ;.

To ensure thaR;,; also maintains the invariant a1, the
transformation specified bys; 1 is applied to the maintenance
code inB;. Specificallyt r ansf or m(B;, R;+1) inline (4) returns
the result of that application. Following the semanticsdpplying
invariant rulest r ansf or mfirst checks whether every update to
parameters ofi;+1 in B, matches somapdate pattern inB; ;1. If
so, declarations and maintenance codd®ijn, are inserted in3;
as specified by thee anddo clauses inB;;. If not,t r ansf or m
aborts, which causes the composition algorithm to abort.

Note that the transformation defined 81 is applied only
to code inB,. If we did not use rule composition, it would be
applied to the entire subject program. To ensure that apgpliti
only to B; gives the same result as applying it to the entire subject
programt r ansf or m(B;, R;+1) checks that every update pattern
In B; 41 updates only the query parameter that is the query result
introduced byR; and hence would not match any other update in
the subject program. If this condition is not satisfiedansf or m
aborts.

When applying R;+1 to the maintenance code iB;,
transfor m(B;, R;11) needs alias information to identify pos-
sible updates to the query parametershn.;. The two checks
above imply that the only such query parameter is the resuit v
able of R;; updates to index variables R;, if any, do not matter
because the query result can be looked up for any index values
Standard alias analysis cannot be used here, becauseiiesstie
whole program. Instead,r ansf or m(B;, R;11) checks whether
B! contains assignments that could create aliases to thdt vagti
able. If so, the call td r ansf or maborts; otherwise, it proceeds
knowing that result variable has no aliases.

To summarize, the algorithm succeeds for rules that obey the
following: (1) every update in the maintenance code of the for
an inner query is handled by an update pattern of the rulenfor t
enclosing query, (2) every update in the rule for an outemrygue
updates only query parameters that are the query resultsein t
rules for the enclosed queries, and (3) the maintenance incale
rule does not create aliases to the result variable. Theitigo
is correct because each iteration of its for-loop ensuras dn
invariant is preserved. Figure 7 shows the result of conmgpgie
three rules in Figure 6.



at py{ $sent.add($p) }
do before py{

at py{ $recv.add($p) }
do before py{

if $p in $recv: if $p in $sent:
if $p not in $I: if $p not in $I:

if $p not in $P[$p.src]: if $p not in $P[$p.src]:
$M $p.src] +=1 $M $p.src] +=1
$P[ $p. src] . add($p) $P[ $p. src] . add($p)

if $p not in $P[$p.dst]: if $p not in $P[$p.dst]:
$M $p. dst] += 1 $M $p. dst] += 1
$P[ $p. dst] . add( $p) $P[ $p. dst] . add( $p)

$1 . add( $p) $1 . add( $p)

} }

at py{ $sent.renove($p) }
do before py{

at py{ $recv.renove($p) }
do before py{

if $p in $recv: if $p in $sent:
if $pin $I: if $pin $I:
if $p in $P[$p.src]: if $p in $P[$p.src]:
$M $p.src] -=1 $M $p.src] -=1

$P[ $p. src] . renmove($p)
if $p in $P[$p.dst]:
$M $p. dst] -=1
$P[ $p. dst] . renove($p)
$1 . renove( $p)
} }

$P[ $p. src] . renove($p)
if $p in $P[$p.dst]:

$M $p.dst] -=1

$P[ $p. dst] . renove($p)
$1 . renove( $p)

Figure 7. Result of composing the rules in Figure 6 for computireg ch. Thei nv andde clauses are not shown; they are the same as in the
optimized rule on the left of Figure 8, except that, in theeclause, the definition afi ni t __also contain$P = def aul t di ct (set)

and$l set().

5.2 Optimization of composed rules

Optimizing the maintenance code in invariant rules, befape
plying the rules, conveniently allows the invariants mained by
the rules to be exploited for optimization. While these niaats
could be made available to an optimizer running on the taanséd
program, it is much more difficult and less efficient to optimi
the transformed program, which is typically much largeantthe
rules.

Optimizing the maintenance code is especially useful fesu
constructed by composition, because composition of separkes
may introduce redundant or dead computations. Our method re
peatedly eliminates redundant computations and dead dampu
tions in the composed rules until no more can be eliminated.

Eliminating redundant computations. Composing rules derived
for separate subqueries may produce, in the composed maite
code, redundant computations, i.e., computations thatrareces-
sary for producing the desired result. For queries over, Hetsre-
dundant computations are dominantly redundant membeies$iip,
i.e., membership tests that can be statically simplifiedetoroue
or f al se. We first show an example before describing member-
ship test simplification in general.

Consider the code segment on lines 4-6 in the third column of
Figure 7:

if $pin $l:
if $p in $P[$p.dst]:
$M $p.dst] -=1
First, using the invariant abo®®P from Figure 5:
$P[$ip] = set(p for pin $I if p.src==$ip or p.dst==8$ip)
the membership tesp i n $P[ $p. dst] is replaced with its
equivalent, yielding the following rewritten code segment
if $pin $l:
if $p in $I and ($p.src==$p.dst or $p.dst==$%p.dst):
$M $p.dst] -=1

Then, the resulting conjunction is simplified; the first aomgt
becomeg r ue because it equals the condition of the encosihg
statement and is in thier ue branch of the statement:
if $pin $I:
if true and ($p.src==%p.dst or $p.dst==$p.dst):
$M $p.dst] -=1

then the second equality is symbolically evaluatetirtoe:

if $pin $I:
if true and ($p.src==%p.dst or true):
$M $p.dst] -=1

and further symbolic evaluation of Boolean expressionkligie

if $pin $I:
if true:
$M $p. dst]

In general, our method simplifies membership tests of tha for
v i n rsuch that- = ¢ is an invariant generated during query de-
composition andy has the formset (z for =z in S if ¢).
This is done in two steps.

-=1

Step 1 replaces a membership testn r with the equivalent
inSand cz — v], wherec[z — v] denotesc with all
occurrences af replaced with.

Step 2 simplifies the conjuncts from Step 1 by repeatedlyyappl
ing (a) simplification in context, and (b) symbolic evalwatiof
primitives, until no more simplification can be done.

For (a), if any conjunct simplifies to an expression that & dbn-
dition of an enclosing f statement or the negation of the condi-
tion, and if variables used by the conjunct are not updatésdsn
the condition and the conjunct, then the conjunct is replagith
true or f al se, respectively. For (b), standard symbolic evalu-
ation is used, e.g., for any expressiene and t r ue simplifies
to e; and for expressiom without side effecte==¢ simplifies to
t r ue. Checking updates and side effects uses alias analysis con-
servatively as in composing rules. If (a) or (b) replaces@mjunct
with a Boolean constant, then the original membership sesit-
plified; otherwise, the membership test is left unchanged.

It would be difficult to perform this optimization based plyre
on analysis of the transformed program because Step 1 would
require re-discovering the invariant of the invariant rule

Eliminating dead computations. Dead computations include
dead branches, i.e., branches that will never be executed; \chri-
ables, i.e., variables that will never be used; and updateead
variables.

If the condition in an f statement is a Boolean constant, usu-
ally as a result of membership test simplification, then ther@a-
tive branch is dead, and thé statement is replaced with the reach-
able branch. For the example above, this optimization cejsla

if true:

$M $p.dst] -=1

with
$M $p. dst] -=1

If the value of a variable that is introduced by an invariarer
is not used in the rule’s result (on the left side of thev clause)
or in the rule’s maintenance code @ clauses), and there are no
aliases of the variable, then the variable and all updatésae
dead and thus eliminated. For example, after repeatedllyiagp
membership test simplification to the rules in Figure 7, alales
$1 and $P are dead, so these variables and updates to them are
eliminated.

Applying these optimizations to the composed rule in Figure
for maintainingmat ch and the similar composed rule for main-
tainingt ot al , we obtain the optimized composed rules in Figure
8. Note how much easier tle¢ clauses in these rules are to under-
stand than those in Figure 7.

Overhead caused by instrumentation using optimized com-
posed rules. The optimized composed invariant rule for com-
puting mat ch does not us&l and$P. Similarly, the optimized
composed invariant rule for computinngt al does not introduce
maps maintaining the union and peer selection. Thus, themat-
tions eliminate four maps, each of size€O¢ R). This is reflected
in the improved space complexity in the last row in Table 1.



inv py{ $M$ip] } = py{
len(set(p for p in intersect($sent, $recv)
if p.src==$ip or p.dst==$ip))
}
de in class bitTorrent py{
def __init__(self):
$M = def aul tdict(int)

at py{ $sent.add($p) }
do before py{
if $p in $recv:
if not ($p in $sent):
$M $p.src] +=1
$M $p. dst] += 1

at py{ $recv.add($p) }
do before py{
if $p in $sent:
if not ($p in $recv):
$M $p.src] +=1
$M $p. dst] +=1

inv py{ $T[$ip] } = py{
len(set(p for p in union($sent, $recv)
if p.src==$ip or p.dst==$ip))
}
de in class bitTorrent py{
def __init__(self):
$T = defaul tdict(int)

at py{ $sent.add($p) }
do before py{
if $p not in $recv:
if not ($p in $sent):
$T[$p.src] += 1
$T[$p. dst] += 1

at py{ $recv.add($p) }
do before py{
if $p not in $sent:
if not ($p in $recv):
$T[$p.src] +=1
$T[$p. dst] += 1
}

Figure 8. Optimized composed rules for maintainingt ch andt ot al .

5.3 Composing instrumentation rules with invariant rules

Our system composes instrumentation rules with invariaesrby
applying invariant rules, including composed and optirdizem-
posed invariant rules, to the code in instrumentation rute$ore
applying the instrumentation rules to a subject progranis Bk
lows expensive queries in instrumentation code to be inergat-
ized before the instrumentation code is inserted in a stipjex
gram. When applying an invariant rule to the code in an imsén-
tation rule, the analysis and transformations are donedarsétme
way as when applying an invariant rule to the maintenance obd
another invariant rule when composing invariant rules.

This composition is not essential, but it reduces the oleral
transformation time. Applying an invariant rule to an instren-
tation rule, and then applying the resulting rule to the sabpro-
gram, requires one analysis of the code in the instrumentatile
and one analysis of the subject program. Sequentially appthe
instrumentation rule, and then the invariant rule to thgestkpro-
gram, requires two analyses of the subject program. Theeiorm
increases performance, because the code in an instruiarmae
is typically much smaller than the subject program, and bsea
the alias analysis used to analyze code in instrumentatiles is
less sophisticated, and hence cheaper, than the aliassnased
to analyze subject programs.

6. Experiments

We have implemented the composition and optimization neelyo
extending InvTS [Gorbovitski et al. 2010; Liu et al. 2005020
a system for applying invariant rules, performing powedngl-
ysis, and deriving classes of invariant rules. Our impletaion
handles the entire Python 2.5 language. The generatedpinptl
composed rules make the effect of transformations mucleessi
see, as discussed. We then performed experiments to cohfitm t
our method also increases the efficiency of the transformesd p
gram and reduces the transformation time, as describedbelo
We used three diverse applications: BitTorrent, a NetFloarg
tool, and Constrained RBAC. For experiments, we automigtica
transformed each application using three transformatoiants:

1. Application of separate rules, in dependency order.

2. Composition of rules, followed by application of the carapd
rule.

3. Composition and optimization of rules, followed by apption
of the optimized rule.

For each variant, we measured the size of the applicatioordef
and after the transformation, the times it took to composaties
and to optimize the composed rules, the time it took InvTS to

apply the rules, and other quantities about the transforamet!
original programs. All programs were written in Python arld a
experiments were run under Python 2.6.1. Table 2 summatizes
results, explained below.

6.1 BitTorrent

We instrumented BitTorrent and optimized the instruméoitaas
described in the running example. When the five rules tajalifl
lines are separately applied to the BitTorrent peer, thee ide
increases from 41,162 to 41,374 lines, a difference of 21&xli

Composition and optimization of rules. To evaluate the effi-
ciency of the BitTorrent peers instrumented using eacheftiree
transformation variants, we performed experiment thatsuesl
the number of notifications stored by the instrumentatiba, rum-
ber of set operations performed by the instrumentationGR&)
usage, and the total network usage. During each experiment,
transferred a 1GB file from a BitTorrent peer to 29 other Bitéat
peers over a 100 MBit link. Each peer was on a virtual machine r
ning Ubuntu 9.04 with 1GB of RAM and a single core of a Xeon
L5430 @2.66GHz provisioned to it. Because the peers were never
CPU-bound, CPU under-provisioning was not an issue. Tafale 2
summarizes the results.

Instrumented using composed but not optimized rules, the Bi
Torrent peers stored 93 million notifications, and perfatm®0
million additional set operations. Using optimized cormgubsules
eliminated intermediate query results and thereby abouitlinvds
of the storage overhead, reducing the number of stored gwotifi
tions to 25 million, and the number of additional set operagito
59 million.

The BitTorrent peers instrumented using separate rulesisnd
ing composed rules both have CPU usage that is 7% higher than
the CPU usage of the original BitTorrent peers, due to thexmai
tenance of intermediate query results by both of them. Itrash
using optimized composed rules eliminated these interatede-
sults and reduced the CPU usage to be within 0.5% of the atigin
BitTorrent peers.

Because the experiments were ran on top-of-the-line mashin
connected by only 100 MBit links, none of the BitTorrent eauts
were CPU bound, and thus the CPU overhead did not affecttihle to
time to transfer the file to 29 peers, which was about 220 skcon
Since the CPU utilization was about 50% even with 100 MBKdin
we estimate that if one was to upgrade the links to the cuyrent
industry-standard 1 GBit, the peers would become CPU bound,
and thus the total time to transfer the file would be noticgabl
higher for the BitTorrent peers instrumented using sepanaes
and composed rules than for either the original BitTorresgrp or
the peers instrumented using optimized composed rules.



(a) BitTorrent

#LOC | #LOC | #rules | composition | optimization | rule application notifications extrasetops. | CPU total
before after time (s) time (s) time (s) stored (millions) (millions) usage | network
Original | 41,162 | 41,162 - - - - - - 48.6% | 32.1GB
Separate rules| 41,162 | 41,374 6 - 2998 96.3 193.3 56.1% | 33.1GB
Composed rules| 41,162 | 41,374 6 2.9 - 2320 93.1 189.6 56.9% | 32.7GB
Opt. composed| 41,162 | 41,331 6 2.8 35 2261 25.0 58.8 49.1% | 33.3GB
(b) NetFlow query tool
#LOC | #LOC | #rules | composition | optimization | rule application total processing throughput
before after time (s) time (s) time (s) time (s) (packets/s)
Original query 64 64 - - - - >600 81
Separate rules| 64 105 5 - 211 33.1 302,114
Composed rules| 64 105 5 1.0 - 15.3 32.8 304,878
Opt. composed 64 75 5 1.0 0.4 154 19.9 502,512
(c) Constrained RBAC
#LOC | #LOC | #rules | composition | optimization | rule application #i nv clauses
before after time (s) time (s) time (s) applied
Separate rules| 381 2,183 21 - - 257.4 38
Composed rules| 381 2,183 21 11 - 44.2 27
Opt. composed| 381 2,183 21 1.1 0.5 44.8 27

Table 2. Summary of rule composition and optimization experiments.

Rule application time. Table 2(a) shows that applying separate
rules takes the longest time: 2,998 seconds. Applying ceexbo
rules takes 2,320 seconds, after taking less than 3 secondsnt
pose the rules, a net savings of 675 seconds. Optimizingadime c
posed rule takes under 4 seconds, and reduces rule applitiatie

to 2,261 seconds, a further gain of 55 seconds.

Effects of instrumentation on free-riding clients. There are non-
specification-adhering modifications to BitTorrent clemhbat at-
tempt to get around the BitTorrent choking feature that @nés
specification-adhering clients from sending data to fidiag
clients [Moor 2006]. One such modification has the peer start
sending out pieces of the torrent before the peer has fullyndo
loaded them. This self-promotion causes no harm when there a
few or no network errors, but it makes the swarm susceptible t
swarm poisoning—wide propagation of pieces corrupted by ne
work errors—when network errors increase.

To measure the effect of swarm poisoning, we transferredga 1G
file from a BitTorrent peer to 29 other BitTorrent peers ovdi08
MBIt link, with 3 of 29 peers having a 10% error rate. This te38
seconds and a total bandwidth of 93.1GB. This is over 2 tirses a
long, and a factor of 3 increase in total bandwidth used, ceg
to the specification-adhering BitTorrent swarm. Note ths s
10% error rate in 10% of the peers, so only 1% overall erra.rat

To combat swarm poisoning, we modify our BitTorrent in-

strumentation rule to use the computed ranks to let the peer

avoid connecting to peers with low ranks. The modified rule
changes the BitTorrent metric for selecting peers, storefdl fi
goodness of each peer, to prefer peers with better ranks. The

modified rule changes program semantics, so we need to chang

pure instrumentationtoinstrunentationintherule.
We measure the effect of this instrumentation by performiey
same experiment as above. The experiment shows that thenswar
took 227 seconds and a total bandwidth of 34.2GB to trankter t
same 1GB file over a 100 MBIt link, which is comparable to the
performance of a specification-adhering swarm.

6.2 NetFlow

NetFlow is an IETF-standardized [Claise 2004] network @cot
used for analyzing network traffic. In NetFlow, source hasib
lect information about their network activity, includingformation
about packets received and sent. They then transmit ttosniai-
tion using the NetFlow protocol to a target host, called aF\®t
collector. The collector may analyze the received infofamabn-
the-fly, store it for further analysis, or discard it if it gzt cope
with the volume of the incoming information.

HOSTS = set ()
RECV = set ()
SENT = set ()
for p in generate_netflow packets():
if p.is_received:
RECV. add( p)
el se:
SENT. add( p)
HOSTS. add( p. dst)
query()

Figure 9. Pseudocode for the NetFlow query tool.

def query():
for host in HOSTS:
match = len(set(p for p in intersect(SENT, RECV)
if p.dst==host))

total = len(set(p for p in union(SENT, RECV)
if p.dst==host))
qual ity[host] = 1.0+nmatch/total

Figure 10. The NetFlow query function.

We created a NetFlow query tool based on the collector from
thef | owt ool s package [Romig 2000]. Figure 9 shows the pseu-
docode for this tool, wherguer y can be any user-specified query
function. The tool allows the executi@uer y over the setSENT,
RECV, andHOSTS—the set of packets sent by the hosts, the set of
packets received by the hosts, and the set of hosts, resggciihe
query is executed every time a packet is received or sent.

Queries can be written easily and implemented efficientiygis
our NetFlow query tool. Figure 10 shows, for ease of explanat
an example query similar to the query for BitTorrent insteunta-
tion. It computes, for each host, the quality of its netwookieec-
tion, defined as the fraction of packets sent to and or reddiyeéhe
host that arrived unchanged, i.eat ch/ t ot al , wheremat ch
is the number of packets that were sent to the host, receiyed b
the host, and not modified in transit, andt al is the total num-
ber of packets sent to the host, including packets that vessteor
changed.

Itis clear that for reasonable performance, the resultoofal
andmat ch must be incrementally maintained. We do so using our
composition and optimization method, by deriving and udiag
invariant rules. These rules are similar to the rules in Fédiifor
incrementalizing the instrumentation of BitTorrent.



Incrementalization and rule composition. To show the effect of
optimizing NetFlow queries using each of the three tramsédion
variants, we ran the original query program and optimizeergu
programs on a set of 10 million packets recorded over theseour
of about 20 seconds from a saturated Gigabit network withsisho
on it. We measure the time to process 10 million packets, laad t
number of packets processed per second, and we set thertirhe li
for the query program to 600 seconds. The query was run on an
Intel i7 920@3.1GHz with 12GB of RAM, running Ubuntu 9.04.
Table 2(b) shows the measured results.

The first row shows that running the original query exceeds th
time limit of 600 seconds while processing an average of 8dly
packets per second. This is because computatgal andmat ch
iterates over the enti®ENT andRECV sets every time the NetFlow
query is called.

The query program transformed using separate rules or com-
posed rules took approximately 33 seconds to process 1®mill
packets. In contrast, the query program transformed uspig o
mized composed rules took 19.9 seconds to process the same da
Because the packets were recorded over the course of 20dsecon
and there is non-negligible overhead in reading the padkeits
disk, one can infer that the query program transformed by opt
mized composed application is capable of running the query i
real-time without the need to store the packets to disk. $hasvs
that using optimized composed rules provides very tangdiblee-
fits over using separate rules.

Rule application time. Table 2(b) shows that applying separate
rules takes the longest time: 21 seconds. Applying compasged

and optimized composed rules takes 15 seconds each, with com
position taking an additional 1 second, and optimizatidmigan-
other 0.5 seconds.

6.3 Constrained RBAC

RBAC is an ANSI-standardized [American National Standdnds
stitute, Inc. 2004] framework for controlling user accessrée-
sources based on roles. It can significantly reduce the ¢ssica-
rity policy administration and is increasingly used in kugrgani-
zations. Core RBAC controls access based on relations apemg
missions, users, sessions, and roles. Constrained RBAS tedd
kinds of constraints:

1. Static Separation of Duty (SSD) constraints. A SSD cairstr
specifies that a user can be assigned to at mastes from a
certain seR of roles.

2. Dynamic Separation of Duty (DSD) constraints. A DSD con-
straint specifies that a session can have at mastes from a
setR of roles active at the same time.

Mirroring the formal specification of RBAC, we extended the
125-line straightforward implementation of Core RBAC [ldtial.
2006] into a 381 line straightforward implementation of €on
strained RBAC. The queries in Constrained RBAC are much more
complex than those in Core RBAC, even after simplificatioiu[L
and Stoller 2007]. For example, the SSD constraints holdhef t
following universally quantified query returns true.

forall u in USERS, [nane,c] in SsdNC |
#{r: r in AssignedRoles(u) | [nanme,r] in SsdNR} <= c

Clearly, a straightforward implementation is extremelgffitient
when evaluating expensive queries, includ@igeck Access, the
main query of RBAC.

To improve efficiency, we derived and used 21 invariant rtdes
optimize the straightforward implementation, increménitag all
queries in it. Out of the 21 rules, only 7 are unique to Comsée
RBAC; the other 14 are the same as the rules used to increlmenta
ize Core RBAC [Liu et al. 2006], and this reuse shows the &igni
icant advantage of capturing complex optimizations insul€or
Constrained RBAC, no dead code is eliminated by optiminadid
composed rules, so the optimized composed rules are idétdic
the composed rules.

When the straightforward Constrained RBAC program is incre
mentalized, using all three transformation variants, ddmees 2183
lines of code, a more than 5-fold increase in size. In cohtrasen

Core RBAC was incrementalized [Liu et al. 2006], it tripledsize
to slightly over 400 lines. Incrementalization of queriegroves
performance asymptotically: for exampléheckAccess is im-
proved fromO(roles) to O(1), which in our experiments with 100
roles manifests itself as an almost 50-fold speedup.

Rule application time. All experiments were performed on the
same machine as in the experiments for the NetFlow query tool
Table 2(c) shows that applying composed rules, compareg-to a
plying separate rules, reduces the transformation timepbtola
factor of five, from 257 seconds down to 44 seconds . The reason
is evident from the “# nv clauses applied” column, which shows
that when applying composed rules, fewer invariant rulesagr-
plied than when applying separate rules. After applyingle that
changes the program, the changed program must be reanalyzed
Thus, applying more separate rules is slower than fewer osath
rules, even when both produce the same transformed program.

Correctness. We also experimentally checked that the incremen-
talization preserved the program semantics, using the satere
sive test approach as for Core RBAC [Liu et al. 2006]. Ouringst
suite randomly generates a sequence of 50 million RBAC epera
tions. It then verifies that the straightforward and incratabzed
implementations produce the same results for these opesati

7. Related work

A large amount of work has been done on program transformstio
and in related areas.

The rule language we use is a slight extension of the invarian
rules in [Liu et al. 2009], to support instrumentation rullest were
not supported before. It allows concise and convenientifigec
tion of program transformations for inserting instruméiota and
maintaining invariants. To this end, it supports automaétection
of all program segments that may affect an invariant, anddioo
nated transformations for all those segments. Pure ingimtation
rules ensure that inserted code does not change progranmsema
tics. Other powerful program manipulation systems, sucBtest-
egoXL [Visser 2004] and TXL [Cordy 2004], do not provide such
support.

Previous work related to invariant rules [Liu et al. 200502
studied only transformations using repeated applicatfandivid-
ual rules, not composition and optimization of rules as is faper.
Our method in this paper makes the result of composition much
simpler and easier to understand than before. It also signify
reduces the transformation time, as well as the running tnte
memory overhead of the instrumentation. Our eliminatiodesd
computations is more powerful than standard compiler dpéim
tions [Aho et al. 2006], because it exploits the results ofdifi-
cation and symbolic evaluation, as also exploited in pletialua-
tion [Jones et al. 1993]. In particular, our transformagiane based
on the semantics of set operations, especially set compsimes,
that have not been studied in partial evaluation beforehédoest
of our knowledge.

Aspect-oriented programming (AOP) [Kiczales et al. 1997,
2001] also allows code for cross-cutting concerns, sucheas d
bugging, to be expressed separately and inserted autathatic
at a set of matched program points. Connections between AOP
and invariants are studied specially [Smith 2007, 2008}. Wark
can be viewed as extensions to existing AOP approaches: our
rule language has an explicit definition for preserving irasmts,
to facilitate formal verification, and it provides powerfatatic
analysis, especially for automatically detecting updatesap-
ply coordinated transformations. Also, existing AOP melghao
not help the programmer write code to efficiently maintaie th
query results—he must figure that out on his own. Finallystxg
AOP systems for Python provide a very limited set of join p&in
Aspyct . aop [Antoine 2010] provides jusat Cal | , at Rai se,
andat Ret ur n, whereas our method provides also the equivalent
of pointcuts at field accesses.

Program optimization by incrementalization has been etiidi
for many languages. For example, Acar et al. [Acar 2009]ystud
combination of change propagation and memoization for Md an



C, which works quite well for recursive algorithms. Howewtre
method requires the programmer to write the program to lmstra
formed using special constructs (e.g., mutable refer¢naed re-
lies on runtime support (e.g., dynamic dependence tragkigh
runtime overhead of up to a factor of 18.8 for C [Hammer et al.
2009] and 31.1 for ML [Ruy et al. 2008]. We derive invariant
rules by combining a method for sets but not objects [Liu et al
2006] that is static and a method for sets and objects thag-is d
namic [Rothamel and Liu 2008]. None of these previous works
provides a platform for general and efficient instrumentatinor

do they study composition of transformation rules.

For composing program transformation specifications gthee
two approaches. The extensional approach simply condatetie
specifications; applying the resulting specification to@gpam in-
volves applying the original transformations, one at a timehe
specified order. The intensional approach composes théispec
tions into a single transformation specification that campglied
in one shot. The extensional approach is used in StrategoXL a
TXL. The intensional approach is used in J& [Nystrom et aD&|0
but is limited to specifications that do not depend on statatyesis
results. Our previous work [Liu et al. 2005, 2009] also usesx
tensional approach, but, unlike StrategoXL and TXL, autiicady
determines the order for applying transformation ruless Paper
presents a method for intensional composition without itmétd-
tions of J&: we allow the rules to depend on static analysssilts,
and we also optimize composed rules.

Using our method in complex applications shows the promise
of the method. For example, our method makes the instrumenta
tion of BitTorrent significantly easier than manually irtseg book-
keeping code. Design and implementation of NetFlow coblexct
analyzers that operate at line speeds on Gigabit links (D083,
packets/sec) is challenging, due to the classic tensiongaest clar-
ity and efficiency, i.e., the desire to let the network adstitai-
tor write analysis scripts in a declarative manner vs. theirde
to have these scripts process hundreds of thousands oftpacke
per second. Some systems allow a degree of customizatidreof t
queries that they efficiently execute [Deri 2003; SolarVgiga09].

Our method can allow such systems to execute even more gen-N.

eral queries efficiently. Various implementations of Cosisied
RBAC exist, such as [Finin et al. 2008; Strembeck 2004; Ven-
tuneac et al. 2003]. We are aware of only one incrementalized
implementation—Strembeck’s, and it was incrementalizexth-m
ualllly. Our method generates efficient implementations raatd
cally.
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