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Abstract

Reductions that aggregate fine-grained transitions into coarser transitions can significantly
reduce the cost of automated verification, by reducing the size of the state space. We propose
a reduction that can exploit common synchronization disciplines, such as the use of mutual
exclusion for accesses to shared data structures. Exploiting them using traditional reduction
theorems requires checking that the discipline is followed in the original (i.e., unreduced) system.
That check can be prohibitively expensive. This paper presents a reduction that instead requires
checking whether the discipline is followed in the reduced system. This check may be much
cheaper, because the reachable state space is smaller.

1 Introduction

For many concurrent software systems, a straightforward model of the system has such a large and
complicated state space that automated verification, by automated theorem-proving or state-space
exploration (model checking), is infeasible. Reduction is an important technique for reducing the
size of the state space by aggregating transitions into coarser-grained transitions.

When exploring the state space of a concurrent system, context switches between threads are
typically allowed before each transition. A simple example of a reduction for concurrent systems is
to inhibit context switches before transitions that access only unshared variables. This effectively
increases the granularity of transitions. Thus, one can regard this and similar reductions as defining
a reduced system, which is a coarser-grained version of the original system. The reduced system
may have dramatically fewer states than the original system. A reduction theorem asserts that
certain properties are preserved by the transformation.

We consider a more powerful reduction that exploits common synchronization disciplines. For
example, in a system that uses mutual exclusion on accesses to some shared variables—called
protected variables—our reduction inhibits context switches before transitions that access only un-
shared variables and protected variables. Such transitions are called invisible transitions; other
transitions are called visible transitions. Informally, this reduction is safe because protected vari-
ables cannot be accessed concurrently, and allowing context switches before the synchronization
operations (lock acquire, etc.) that protect them is sufficient. The model-checking experiments

∗This work was supported in part by NSF under Grants CCR-9876058, CCR-0205376, and CNS-0509230 and ONR
under Grants N00014-01-1-0109 and N00014-02-1-0363. Address: Computer Science Dept., Stony Brook University,
Stony Brook, NY 11794-4400. Email: stoller@cs.sunysb.edu Web: http://www.cs.sunysb.edu/˜stoller/

†Microsoft Corp. Email: ernie.cohen@acm.org

1



reported in [Sto02] are based on a similar reduction, which decreased memory usage (which is pro-
portional to the number of states) by a factor of 25 or more. Such reductions can also decrease
the computational cost of the automated theorem-proving needed for thread-modular verification
[FFQ02, FQS02].

Traditional reduction theorems, such as [Lip75, CL98, Coh00], can also exploit such synchroniza-
tion disciplines. However, a hypothesis of these traditional theorems is that the allegedly protected
variables are indeed protected (by synchronization that enforces mutual exclusion) in the original
(i.e., unreduced) system. How can we establish this? Static analyses like [FF01] can automatically
provide a conservative approximation but sometimes return “don’t know”. For general finite-state
systems, it might seem that the only way to automatically obtain exact information about whether
the synchronization discipline is followed (i.e., the selected variables are actually protected) is to
express this condition as a history property and check it by state-space exploration of the original
system. But this would be about as expensive as checking correctness requirements on the original
system, making the reduction almost pointless.

Our reduction theorem implies that one can determine exactly during state-space exploration
of the reduced system whether the synchronization discipline is followed in the original system.

For generality, the reduction theorem is expressed without explicit reference to mutual exclusion
or synchronization. It is expressed in terms of a predicate q, which in the application of the
reduction theorem to mutual exclusion synchronization is chosen to be the history predicate “the
synchronization discipline has been violated”. The theorem assumes that the transition relation of
each thread is partitioned into invisible transitions and visible transitions, as described above. This
allows us to define the reduced system, in which context switches are allowed only immediately
before visible transitions. The reduction theorem states that if the original system has a reachable
state in which q holds, then so does the reduced system, provided the invisible transitions satisfy
several conditions, most notably that (i) a transition cannot enable or disable invisible transitions
of other threads, (ii) as long as q is false (in other words, as long as the synchronization discipline
is followed), a transition commutes to the right of an invisible transition of another thread, and
(iii) invisible transitions cannot falsify q (in other words, they cannot hide a violation of the
synchronization discipline).

In the application to mutual exclusion synchronization, informally, the first condition above
holds because synchronization operations that may block are visible; the second condition holds
because, in the absence of violations of the synchronization discipline, the set of variables accessed
by a transition is disjoint from the set of variables accessed by an immediately following invisible
transition of another thread, because accesses to a protected variable by different threads are
separated by intervening synchronization operations; and the third condition holds because, once
the synchronization discipline has been violated, it remains violated for the rest of the execution.
Note that one needs to prove only once that the hypotheses of the reduction theorem hold when
instantiated for mutual exclusion synchronization; this establishes applicability of the reduction
theorem to all systems that use such synchronization. The role of this proof is analogous to

2



the role of proofs needed with traditional partial-order methods to show validity of a proposed
independence relation on operations of a data type (e.g., queues or locks).

To apply the reduction theorem to a system that uses mutual exclusion synchronization, the user
guesses which variables are protected (this determines which transitions are visible, as described
above) and how they are protected. The latter is done by supplying exclusive access predicates
[FQ03]. For each protected variable x and each thread i, there is an exclusive access predicate
ex
i . The synchronization discipline requires that e

x
i hold in states from which thread i can execute

a transition that accesses x. Mutual exclusion is expressed by the requirement that, for every
variable x and every two distinct threads i and j, ex

i and ex
j are mutually exclusive (i.e., cannot

hold simultaneously). Locks, by themselves or in the form of monitors, are probably the most
widely used synchronization mechanism. For systems that use them, we describe in Section 9 how
to automatically guess which variables are protected (by monitors) and determine the associated
exclusive access predicates.

Our reduction theorem is designed to be used together with traditional reduction theorems.
Suppose a traditional reduction theorem asserts that some property φ is preserved by the reduction
if the original system follows the synchronization discipline. After checking that the reduced system
follows the discipline and satisfies φ, one can use our reduction theorem to conclude that the original
system follows the discipline, and then use the traditional reduction theorem to conclude that the
original system satisfies φ.

A simple example of checking the hypotheses of a reduction during state-space exploration of the
reduced system is mentioned in [HP95]. There, the hypotheses to be checked are whether specified
processes ever access specified variables. Proving soundness in that case is relatively easy, because
the hypotheses are unaffected by re-ordering of the events in an execution.

The reduction in [Sto02] is similar in spirit to the one in this paper. The main contributions
of this paper relative to [Sto02] are a reduction that applies to systems that use arbitrary synchro-
nization mechanisms to achieve mutual exclusion (the results in [Sto02] apply only when monitors
are used), and significantly shorter and cleaner proofs, based on ω-algebra. Similar results could
presumably be proved in a transition-system framework, like the one in [God96], but our experience
attempting to do that suggests that the algebraic framework makes the proofs easier to discover,
shorter, and cleaner.

The main contribution of this paper compared to an earlier version [SC03] is a more liberal
definition of “invisible transition”, which allows some synchronization operations—for example, the
release, notify, and notifyAll operations on monitors—to be classified as invisible. The definition
in [SC03] forces, roughly speaking, all synchronization operations to be classified as visible.

Our method and traditional partial-order methods (e.g., stubborn sets [Val97], ample sets
[CGP99], and persistent sets [God96]) both exploit independence (commutativity) of transitions,
but our method can establish independence of transitions—and hence achieve a reduction—in many
cases where traditional partial-order methods cannot. Traditional partial-order methods, as im-
plemented in tools such as Spin [Hol97] and VeriSoft [God97], use two kinds of information to
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determine independence of transitions: program-specific information, obtained by static analysis,
about which processes may perform which operations on which objects (e.g., only process P2 sends
messages on channel C1), and manually supplied program-independent information about depen-
dencies between operations on selected datatypes (e.g., a send operation on a full channel is disabled
until a receive operation is performed on that channel).

Our method has two main advantages over traditional partial-order methods. First, our method
can exploit more complicated program-specific information to determine independence of transi-
tions, e.g., the invariant that a particular variable is always protected by particular synchronization
constructs. Such invariants take into account the context (specifically, synchronization context) in
which operations are performed. In contrast, traditional partial-order methods are based on anal-
ysis of which operations are performed by each thread with little regard for the context in which
the operations occur. Second, our method does not rely on any conservative static analysis. In
contrast, traditional partial-order methods rely on conservative static analysis to determine which
processes may perform which operations on which objects; for example, static analysis may be used
to determine whether more than one thread can invoke a given operation on the queue accessed
by a given program statement. For programs in relatively simple modeling languages, inexpensive
and precise static analysis of such properties is feasible. For programs that contain references (or
pointers), arrays, procedure calls, and dynamic thread creation, conservative static analyses will
generally be imprecise. This imprecision will cause opportunities for reduction to be overlooked,
decreasing the effectiveness of the traditional partial-order method. Since our method does not rely
on any conservative static analysis, it has no difficulty with references, etc.

Section 2 presents some motivating examples. Section 3 introduces omega algebra, which is a
simple and powerful framework for reductions. Section 4 presents and proves the reduction theorem.
The theorem is expressed in a very general algebraic style and is applicable to a variety of system
models, e.g., shared variables or message passing. Section 5 defines a simple model of concurrent
systems with shared variables, and Section 6 defines a synchronization discipline based on mutual
exclusion. Section 7 shows that the reduction theorem applies in that context. Section 8 presents a
methodology for using the reduction. Section 9 describes how the methodology can be automated
for systems that use monitors for synchronization. Section 10 uses a simple example to compare
our reduction with traditional partial-order methods.

2 Motivating Examples

This section describes three examples of systems for which the current reduction is more effective (at
reducing the number of explored states) than traditional partial-order methods and the reduction in
[Sto02]. For the first example, we explain why in some detail; explanations for the other examples
are roughly similar. These examples are based mainly on descriptions in [SBN+97] of code in real
systems.
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Semaphores. A user thread gets a buffer from a buffer pool, sends request to a device driver
thread, supplying the operation type (read or write), a buffer, and a semaphore as arguments, and
then waits for completion of the operation by invoking down() on the semaphore. The device driver
thread receives the request, performs the operation (reading or writing the buffer as appropriate),
and then calls up() on the semaphore. The buffers can be classified as protected variables, allowing
transitions that access them to be classified as invisible by our reduction.

For concreteness, consider a system with two user threads and one driver thread, running the
following pseudo-code. The ellipses represent the actual device access and other operations. Each
thread’s local variables are subscripted by a thread identifier. Uppercase letters denote control
points.

user1 : Ab1 = getBuf();BsendRequest(READ, b1, s1); Cdown(s1);Dread(b1);E · · ·
user2 : Ab2 = getBuf();Bwrite(b2); CsendRequest(WRITE, b2, s2);Ddown(s2);E · · ·
driver : Awhile (true)

BreceiveRequest(opd, bd, sd);
C if (opd = READ) · · ·Dwrite(bd) · · · else · · ·Eread(bd) · · ·
Fup(sd)

Thread user1 has exclusive access to the buffer to which b1 points when user1 is at control point
B, D, or E. Other threads have similar exclusive access predicates for buffers. Let pci denote the
program counter of thread i. The exclusive access predicates for buffers are:

eb
user1 = ∗b1 = b ∧ pc1 ∈ {B,D,E}

eb
user2 = ∗b2 = b ∧ pc2 ∈ {B,C,E}

eb
driver = ∗bd = b ∧ pcd ∈ {C,D,E, F}

Consider a state s0 in which pc1 = C ∧ pc2 = B ∧ pcd = D. With the reduction in this paper,
buffers are protected variables, so reads and writes of buffers are invisible, and our reduction inhibits
context switches before them. Accesses to unshared variables, such as opd, are also invisible. Thus,
the driver will receive the request, test the condition on opd, and write to the buffer without any
intervening context switches. In contrast, traditional partial-order methods, even sophisticated
ones, will allow a context switch before the driver’s access to the buffer; this increases the number
of explored states. For concreteness, consider selective search using persistent sets computed by
the conditional stubborn set algorithm (CSSA) [God96]. A persistent set in a state s is a subset
of the enabled transitions in s that satisfies certain conditions. The selective search explores, from
each state, only a persistent set of transitions. The conditions in the definition of persistent set
ensure that this preserves certain properties of the state space, such as reachability of deadlocks.
CSSA is parameterized by a statically determined binary dependence relation, called might-be-
the-first-to-interfere-with, on operations. In this example, static alias analysis determines that b2

and bd may be aliased, i.e., they may point to the same buffer (at the same or different times).
Consequently, the might-be-the-first-to-interfere-with relation relates each write(b2) operation with
each write(bd) operation, and so on. In state s0, user2 and the driver have enabled transitions that
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perform write(b2) and write(bd), respectively, so CSSA includes transitions of both threads in the
persistent set. The reduction in [Sto02], which is based on analysis of locks, is not effective for this
system, because it uses semaphores.

Memory Re-use. Some systems re-use objects (or structures) by placing them on a free list
when they are not in use. These objects may be protected by different locks each time they are
re-used, violating the locking discipline of [Sto02]. For example, consider a file system in which
blocks in a file are protected by the lock associated with (the i-node of) that file, and blocks on the
free list are protected by the lock associated with the free list. A block may be in a different file,
and hence protected by a different lock, each time it is re-used. Let mF denote the lock associated
with the free list. Let mf denote the lock associated with file f . The exclusive access predicate eb

i

for a block b might be

(onFreeList(b) ∧mF .owner = i) ∨ (∃ file f : allocatedTo(b, f) ∧mf .owner = i)

Master-Worker Paradigm. In the master-worker paradigm, a master thread assigns tasks to
worker threads. Typically, each task is represented by an object created by the master thread and
passed to a worker thread. The master thread does not access a task object after passing it to
a worker. Task objects can be classified as protected. Suppose each worker thread w has a field
w.task that refers to the worker’s task. For a task object x, the exclusive access predicate ex

master

holds before x has been passed to a worker thread, and ex
w holds when w.task = x.

3 Omega Algebra

An omega algebra is an algebraic structure over the operators (listed in order of increasing prece-
dence) 0 (nullary), 1 (nullary), + (binary infix), · (binary infix, usually written as simple juxtapo-
sition), � (binary infix, same precedence as ·), ∗ (unary suffix), and ω (unary suffix), satisfying the
following axioms1:

(x+ y) + z = x+ (y + z) x ≤ y ⇔ x+ y = y
x+ y = y + x
x+ x = x x∗ = 1 + x+ x∗ x∗

0 + x = x x y ≤ x ⇒ x y∗ = x (* ind R)
x (y z) = (x y) z x y ≤ y ⇒ x∗ y = y (* ind L)

0 x = x 0 = 0
1 x = x 1 = x x � y = xω + x∗ y
x (y + z) = x y + x z xω = x xω

(x+ y) z = x z + y z x ≤ y x+ z ⇒ x ≤ y � z (� ind)

(Here, as throughout the paper, in displayed formulas and theorems variables w, x, y, z are implicitly
universally quantified over all omega algebra terms.) In parsing formulas, · and � associate to the

1The axioms are equivalent to Kozen’s axioms for Kleene algebra [Koz94], plus the three axioms for omega terms.
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right; e.g., u v � x � y parses and expands to (u · (vω + v∗ · (xω + x∗ · y))). In proofs, we use the hint
“(distributivity)” to indicate application of the distributivity laws, and the hint “(hyp)” to indicate
the use of hypotheses. In induction steps that use induction, we use the hint “t1 t2 ≤ t1; (* ind R)”
to indicate use of the first induction axiom (with t1 for x and t2 for y), and dually for the second
induction axiom. If xi is a finite collection of terms over the range of i, we write (+i : xi) and
(·i : xi) for the sum and product, respectively, of these terms.

These axioms are sound and complete for the usual equational theory of omega-regular ex-
pressions; more precisely, completeness holds only for standard terms, where the first arguments
to ·, ω, and � are regular. Thus, we make free use, without proof, of familiar equations from
the theory of (omega-)regular languages (e.g., x∗ x∗ = x∗, (1 + x)∗ = x∗), indicated by the hint
“(regular algebra)”. When an (in)equality appears as a hint without other reference, this hint is
implicit.

y is a complement of x iff x y = 0 = y x and x + y = 1. It is easy to show that complements
(when they exist) are unique and that complementation is an involution; a predicate is an element
of the algebra with a complement. In this paper, p and q (possibly with subscripts) range over
predicates, with complements p and q. It is easy to show that the predicates form a Boolean
algebra, with + as disjunction, · as conjunction, 0 as false, 1 as true, complementation as negation,
and ≤ as implication. Equations true in all Boolean algebras (e.g., p q = q p) are freely used in
proofs, indicated by the hint “(Boolean algebra)”; such a hint implicitly carries the claim that all
of the terms in the hint denote predicates.

The omega algebra axioms support several interesting programming models, where (intuitively)
0 is magic2, 1 is skip, + is chaotic nondeterministic choice, · is sequential composition, ≤ is refine-
ment, x∗ is executed by executing x any finite number of times, and xω is executed by executing x

an infinite number of times. The results of this paper are largely motivated by the relational model,
where terms denote binary relations over a state space, 0 is the empty relation, 1 is the identity
relation, · is relational composition, + is union, ∗ is reflexive-transitive closure, ≤ is subset, and xω

relates an input state s to an output state if there is an infinite sequence of states starting with s,
with consecutive states related by x. Thus, xω relates an input state to either all states or none,
and xω = 0 iff x is well-founded. Predicates are identified with the identity relation on the set of
states in their domain; thus, a predicate can be executed, as a no-op, from the states in which it
holds. Define � = 1ω. One can show that � is the maximal element under ≤, and in the relational
model, it relates all pairs of states (because it relates an input state s to an output state if there
is an infinite sequence of states starting with s and with consecutive states related by the identity
relation, and there is such a sequence).

In addition to equational identities of regular languages, we will use the following standard
theorems (more sophisticated theorems of this type appear in [Coh00]). Algebraic lemmas and
theorems in this paper are presented as numbered equations followed by some vertical space followed

2magic is the program that has no possible executions (and so satisfies every possible specification). Of course, it
cannot be implemented.
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by a formal proof.

x y ≤ y z ⇒ x∗ y ≤ y z∗(1)

x∗ y ≤ {1 ≤ z∗ }
x∗ y z∗ = {x y z∗ ≤ y z∗ (below); (* ind L)}
y z∗

x y z∗ ≤ {x y ≤ y z (hyp) }
y z z∗ ≤ {z z∗ ≤ z∗ }
y z∗

✷

y x ≤ x y ⇒ (x+ y)∗ = x∗ y∗(2)

(x+ y)∗ ≤ {1 ≤ x∗ y∗ }
x∗ y∗ (x+ y)∗ = {x∗ y∗ (x+ y) ≤ x∗ y∗ (below); (* ind R)}
x∗ y∗ ≤ {(regular algebra) }
(x+ y)∗

Since the first and last terms are equal, the first and third terms are equal.

x∗ y∗ (x+ y) = {(distributivity) }
x∗ y∗ x+ x∗ y∗ y ≤ {y x ≤ x y (hyp), so y∗ x ≤ x y∗ (1)}
x∗ x y∗ + x∗ y∗ y ≤ {x∗ x ≤ x∗; y∗ y ≤ y∗ }
x∗ y∗

✷

y x ≤ (x+ 1) y ⇒ (x+ y)∗ = x∗ y∗(3)

(x+ y)∗ = {(regular algebra) }
(x+ 1 + y)∗ = {y (x+ 1) ≤ (x+ 1) y (below); (2)}
(x+ 1)∗ y∗ = {(x+ 1)∗ = x∗ }
x∗ y∗

y (x+ 1) = {(distributivity) }
y x+ y 1 ≤ {y x ≤ (x+ 1) y (hyp); y 1 = y = 1 y}
(x+ 1) y + 1 y = {1 ≤ x+ 1 }
(x+ 1) y

✷
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4 A Reduction Theorem

We consider systems composed of a fixed, finite, nonempty set of concurrent processes (each perhaps
internally concurrent and nondeterministic). Variables i and j range over process indices. Each
process i has a visible action vi and an invisible action ui

3, where the invisible action is constrained
to neither receive information from other processes nor to send information to other processes so as
to create a race condition in the recipient. This constraint is guaranteed only so long as some global
synchronization policy is followed. For example, in a system where processes are synchronized using
locks, either visible or invisible actions of process i might modify variables that are either local to
process i or protected by locks held by process i, release locks, or send asynchronous messages to
other processes; but only visible actions can acquire locks or wait for a condition to hold. Note
that violation of the synchronization discipline (e.g., an action accessing a shared variable without
first obtaining an appropriate lock) might cause a race condition between an invisible action and
the actions of another process, violating the constraint on invisible actions.

To avoid introducing temporal operators, we introduce a Boolean history variable q that records
whether the synchronization discipline has been violated at some point in the execution. Predicate
pi means that process i cannot perform an invisible action, i.e., that ui is disabled. Let p be the
conjunction of the pi’s:

p = (·i : pi).(4)

A state satisfying p is called visible; thus, in a visible state, all invisible transitions are disabled.
We now define several actions, formalized in the definitions (5)–(11) below. An Mi action

consists of a visible action of process i followed by a sequence of invisible actions of process i. An
Ni action is an Mi action that is “maximal” (i.e., further ui actions are disabled) and that finishes
in a state where the synchronization discipline has not been violated. Ni is effectively the transition
relation of thread i in the reduced system. Additional conditions will imply that executing an N

action in a visible state results in a visible state; thus, in the reduced system, context switches
occur only in visible states. A u (respectively v, M , N) action is a ui (respectively, vi, Mi, Ni)
action of some process i. Finally, an R action is executable iff (i) the discipline has been violated,
or (ii) such a violation is possible after execution of a single M action. Like xω, R relates each
initial state to either all final states or none.

Mi = vi u∗
i(5)

Ni = Mi pi q(6)
u = (+i : ui)(7)
v = (+i : vi)(8)

M = (+i :Mi)(9)

3Note that ui and vi can be sums of nondeterministic actions that correspond to individual transitions of process
i.
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N = (+i : Ni)(10)
R = (1 +M) q �(11)

Our reduction theorem says that if the original system can reach a violation of the synchroniza-
tion discipline starting from some visible state, then the reduced system can also reach a violation
starting from the same initial state, except that the violation might occur partway through the last
transition of the reduced system (i.e., the last transition might be an M action rather than an N

action). The transition relations of the original and reduced systems are u+ v and N , respectively.
Thus, the conclusion of the reduction theorem is p (u + v)∗ q ≤ N∗ R. This says that if a state
s2 satisfying q is reachable from a visible state s1 in the original system—in other words, 〈s1, s2〉
is in the relation p (u + v)∗ q—then 〈s1, s2〉 is also in N∗ R. Expanding the definition of R and
recognizing that � is the full relation, this means that for some s3, 〈s1, s2〉 is in N∗ (1 +M) q,
i.e., a state satisfying q is reachable from s1 in the reduced system, except that the last transition
might be incomplete (i.e., it might be an M instead of an N).

The hypotheses of our reduction theorem are as follows, formalized in formulas (13)–(21) below.
It is impossible to execute invisible actions of a single process forever without violating the discipline
(13); in other words, the process eventually executes a visible transition, violates the discipline,
or gets stuck. This hypothesis is needed to show that, if a violation occurs in the original system
when nultiple threads are in invisible states, all threads except the one causing the violation can
be advanced to visible states (or to an earlier violation) in a finite number of steps; thus, it suffices
to allow a single M transition in the conclusion of the reduction.

An action cannot enable or disable an invisible action of another process; specifically, pi holds
after uj or vj iff it holds before (14),(15). In the absence of a violation, an action commutes to the
right of an invisible action of another process; specifically, if executing uj or vj followed by ui leads
from a state s1 to a state s2, and we try to move the uj or vj to the right by executing it after the
ui, then one of three outcomes must occur: a violation occurs after the ui, a violation occurs after
the uj or vj , or we reach the same state s2 (16),(17).

The next two hypotheses say that pi holds iff ui is disabled. The first of them says that pi

implies ui is disabled; specifically, no state is reachable by executing ui from a state where pi holds
(18). The second of them says that ui is disabled implies pi; specifically, in every state s1, either
ui is enabled (leading to some state s2, which � relates to s1) or pi holds (recall that predicates
are modeled as subsets of the identity relation) (19).

Visible and invisible actions of a process cannot be simultaneously enabled; specifically, no
state is reachable by executing vi from a state satisfying pi (20). Invisible actions cannot hide
violations of the discipline, i.e., if q holds before ui, then q holds after ui; specifically, the subset of
ui containing pairs whose first state satisfies q is a subset of the subset of ui containing pairs whose
second state satisfies q (21).

Define, for any x,

[x] = x+ q �+ x q �(12)
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Intuitively, [x] behaves like x, except that it is allowed to behave arbitrarily if started in a state
where the discipline has been violated, and may behave arbitrarily after performing x if x results
in a state where the discipline has been violated.

(ui q)ω = 0(13)
i �= j ⇒ uj pi = pi uj(14)
i �= j ⇒ vj pi = pi vj(15)
i �= j ⇒ uj ui ≤ ui [uj ](16)
i �= j ⇒ vj ui ≤ ui [vj ](17)

pi ui = 0(18)
1 ≤ pi + ui �(19)
pi vi = 0(20)
q ui ≤ ui q(21)

Our reduction theorem can be used to check not only the synchronization discipline, but also
the invariance of any other predicate I such that violations of I cannot be hidden by invisible
actions. To see this, note that, except for (21), the conditions above are all monotonic in q. Thus,
if all the conditions above (including (21)) are satisfied for a predicate q, and there is a predicate I

such that I ui ≤ ui I for each i, then all the conditions are still satisfied if q is replaced with q+ I.
The proof below can be viewed as formalizing the following construction, which starts from an

execution that violates the discipline and produces an execution of the reduced system that also
violates the discipline. First, we try to move invisible ui actions to the left of uj and vj actions,
where i �= j, starting from the left (i.e., from the leftmost ui action that immediately follows a uj

or vj action). The ui action cannot make it all the way to the beginning of the execution (since
p ui = 0), so it must eventually run into either another ui or a vi. Repeating this produces an
execution in which a sequence of M actions leads to a violation of the discipline.

Next, we try to turn all but the last of these M actions into N actions, starting from the next
to last M action. In general, we will have done this for some number of M actions, so we will have
an execution that ends with N∗ R. Now try to convert the last Mi before the N∗ R suffix into an
N action. Suppose this Mi action ends with ui enabled. ui must then also be enabled later when
the discipline is first violated (because (14) and (15) imply Nj does not affect enabledness of ui,
and (20) implies Ni is disabled when ui is enabled), so we add a ui action just after the violation
and try to push it backward (through the N∗ (1 +M)). This may create additional violations of
the discipline, but there will always be an N∗ R to the right of the new ui. Eventually, ui makes
it back to the Mi, extending Mi with another ui. By (13), ui’s cannot continue forever without
violating the discipline, so repeating this extension process eventually either gives us a violation
right after Mi (in which case we have produced a new N∗ R action, so we can discard everything
after it) or lead to the ui’s being disabled, in which case we have succesfully turned the Mi action
into an N action and again turned the extended execution into an execution that ends with N∗ R.
Repeating this for each Mi action, moving from right to left, produces the desired execution of the
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reduced system.

Theorem 1 Let P be a finite set, and let i and j range over P . For all ui and vi, using definitions
(4)–(11), if hypotheses (13)–(21) hold, then p (u+ v)∗ q ≤ N∗ R.

Proof. The proof below is top-down; in other words, we prove lemmas used in a proof after the
proof itself. Thus, within the proof of formula n, we may use only formulas with labels greater
than n and results proved before now (i.e., formulas with labels less than (22), the label on the
top-level proof below). The top-level proof works as follows: push u’s left (lines 1-2) where they
are eliminated by the initial p (line 3), push M ’s to the left of R’s (line 4), condense the R’s to a
single R (lines 5-6), and finally turn the M ’s into N ’s (lines 7-8).

p (u+ v)∗ q ≤ N∗ R(22)

p (u+ v)∗ q ≤ {v ≤ M +R (23) }
p (u+M +R)∗ q ≤ {(M +R) u ≤ (1 + u) (M +R) (24); (3)}
p u∗ (M +R)∗ q ≤ {p u∗ ≤ 1 (25) }
(M +R)∗ q ≤ {R M ≤ (M + 1) R (27); (3) }
M∗ R∗ q ≤ {R∗ = 1 +R (28) }
M∗ (1 +R) q ≤ {(1 +R) q ≤ R (29) }
M∗ R ≤ {1 ≤ N∗ }
M∗ N∗ R = {M N∗ R ≤ N∗ R (30); (* ind L) }
N∗ R

✷

A v is either an M or an R:

v ≤ M +R(23)

v = {(8) }
(+i : vi) ≤ {1 ≤ ui

∗ }
(+i : vi ui

∗) = {vi u∗
i =Mi (5) }

(+i :Mi) = {(9) }
M ≤ {(regular algebra)}
M +R

✷

A u moves to the left of an M or R (but may disappear in the process):

(M +R) u ≤ (1 + u) (M +R)(24)

12



(M +R) u = {(distributivity) }
M u+R u ≤ {R u ≤ R (34) }
M u+R = {M = (+j :Mj) (9); u = (+i : ui) (7)}
(+j :Mj) (+i : ui) +R = {(distributivity) }
(+i, j :Mj ui) +R ≤ {Mj ui ≤ (pi + ui) (Mj +R)) (38) }
(+i, j : (pi + ui) (Mj +R)) +R ≤ {pi ≤ 1 }
(+i, j : (1 + ui) (Mj +R)) +R = {(distributivity) }
(+i : 1 + ui) (+j :Mj +R) +R = {(distributivity) }
(1 + (+i : ui)) ((+j :Mj) +R) +R ≤ {(+i : ui) = u (7); (+j :Mj) =M (9) }
(1 + u) (M +R) +R = {R ≤ (1 + u) (M +R) }
(1 + u) (M +R)

✷

A p swallows up u’s to the right:

p u∗ ≤ 1(25)

p u∗ = {p u ≤ p (26); (* ind R)}
p ≤ {(Boolean algebra) }
1

✷

A p swallows up a single u to the right:

p u ≤ p(26)

p u = {u = (+i : ui) (7) }
p (+i : ui) = {(distributivity) }
(+i : p ui) ≤ {p ≤ pi (4), (Boolean algebra)}
(+i : pi ui) = {pi ui = 0 (18) }
(+i : 0) = {(distributivity) }
0 ≤ {(regular algebra) }
p

✷

An M moves left past an R (possibly disappearing in the process):

R M ≤ (M + 1) R(27)

R M ≤ {(34) }
R ≤ {1 ≤ M + 1}
(M + 1) R

✷

A sequence of R’s can be reduced to at most one R:

R∗ = 1 +R(28)
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R∗ = {z∗ = 1 + z + z z∗ }
1 +R+R R∗ = {R R ≤ R (34); (* ind R)}
1 +R+R = {(regular algebra) }
1 +R ≤ {(regular algebra) }
R∗

Since the first and last terms are equal, the first and fourth terms are equal.
✷

(1 +R) q ≤ R(29)

(1 +R) q = {(distributivity) }
q +R q ≤ {R q ≤ R (34) }
q +R ≤ {q = 1 q ≤ (1 +M) q ≤ (1 +M) q � = R (11)}
R

✷

An N∗ R action swallows up Mi actions to its left:

Mi N∗ R ≤ N∗ R(30)

The following proof says that an N∗ R action can be used to generate ui actions to its left until it
either produces a discipline violation (q) or until it has produced enough ui’s to turn the Mi to its
left into an N :

Mi N∗ R ≤ {N∗ R ≤ (ui q)N∗ R+ (pi + ui q)N∗ R (32); }
{(� ind) w. x := n∗ R, y := ui q, z := (pi + ui q)N∗ R}

Mi (ui q) � (pi + ui q) N∗ R ≤ {(ui q)ω = 0 (13); definition of � }
Mi (ui q)∗ (pi + ui q) N∗ R ≤ {q ≤ 1 }
Mi u∗

i (pi + ui q) N∗ R ≤ {Mi u∗
i =Mi (31) }

Mi (pi + ui q) N∗ R = {(distributivity) }
(Mi pi +Mi ui q) N∗ R ≤ {Mi ui ≤ Mi u∗

i ≤ Mi (31) }
(Mi pi +Mi q) N∗ R = {1 = q + q }
(Mi pi (q + q) +Mi q) N∗ R = {(distributivity) }
(Mi pi q +Mi pi q +Mi q) N∗ R ≤ {pi ≤ 1 }
(Mi pi q +Mi q) N∗ R ≤ {Mi pi q = Ni (6); Ni ≤ N(10) }
(N +Mi q) N∗ R = {(distributivity) }
N N∗ R+Mi q N∗ R ≤ {N N∗ ≤ N∗; N∗ R ≤ � }
N∗ R+Mi q � ≤ {Mi q � ≤ R (11) }
N∗ R+R ≤ {R ≤ N∗ R }
N∗ R

✷

Mi actions swallow ui actions to their right:

Mi u∗
i ≤ Mi(31)
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Mi u∗
i = {Mi = vi u∗

i (5)}
vi u∗

i u∗
i = {u∗

i u∗
i = u∗

i }
vi u∗

i = {vi u∗
i =Mi (5)}

Mi

✷

N∗ R can be used to generate (to its left) either a ui or a pi (indicating that ui no longer has
invisible operations to perform):

N∗ R ≤ (ui q) N∗ R+ (pi + ui q) N∗ R(32)

N∗ R = {R = (1 +M) q � (11) }
N∗ (1 +M) q � ≤ {1 ≤ pi + ui � (19) }
N∗ (1 +M) q (pi + ui) � = {(distributivity) }
N∗ (1 +M) (q pi + q ui) � ≤ {q pi = pi q (Boolean algebra) }
N∗ (1 +M) (pi q + q ui) � ≤ {q ui ≤ ui q (21) }
N∗ (1 +M) (pi q + ui q) � = {(distributivity) }
N∗ (1 +M) (pi + ui) q � = {(distributivity) }
N∗ ((pi + ui) +M (pi + ui)) q � ≤ {M (pi + ui) ≤ (pi + ui) (M +R) (38) }
N∗ ((pi + ui) + (pi + ui) (M +R)) q � = {(distributivity) }
N∗ (pi + ui) (1 +M +R) q � ≤ {(1 +M +R) q � ≤ R (33) }
N∗ (pi + ui) R ≤ {N (pi + ui) ≤ (pi + ui) (N +R) (35); }

{(1) with x := N, y := pi + ui, z := N +R}
(pi + ui) (N +R)∗ R ≤ {R N ≤ R (34) ≤ (1 +N) R; (3) }
(pi + ui) N∗ R∗ R = {R R ≤ R (34); (* ind R) }
(pi + ui) N∗ R ≤ {1 = q + q }
(pi + ui (q + q)) N∗ R = {(distributivity) }
(ui q) N∗ R+ (pi + ui q) N∗ R

✷

(1 +M +R) q � ≤ R(33)

(1 +M +R) q � = {(distributivity) }
(1 +M) q �+R q � ≤ {R q � ≤ R (34) }
(1 +M) q �+R ≤ {(1 +M) q � = R (11)}
R

✷

R’s swallow up z’s to the right:

R z ≤ R(34)

R z = {R = (1 +M) q � (11)}
(1 +M) q � z = {� z ≤ � }
(1 +M) q � = {(1 +M) q � = R (11)}
R
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✷

N commutes right past (pi + ui) (possibly changing into an R):

Nj (pi + ui) ≤ (pi + ui) (N +R)(35)

Nj (pi + ui) ≤ {Nj =Mj pj q (6) }
Mj pj q (pi + ui) ≤ {q ≤ 1 (Boolean algebra) }
Mj pj(pi + ui) = {(distributivity) }
Mj (pj pi + pj ui) ≤ {pj pi = pi pj (Boolean algebra) }
Mj (pi pj + pj ui) ≤ {pj ui ≤ ui pj (37) }
Mj (pi pj + ui pj) = {(distributivity) }
Mj (pi + ui) pj ≤ {Mj (pi + ui) ≤ (pi + ui) (Mj +R) (38)}
(pi + ui) (Mj +R) pj = {(distributivity) }
(pi + ui) (Mj pj +R pj) ≤ {Mj pj ≤ N +R (36) }
(pi + ui) (N +R+R pj) ≤ {pj ≤ 1 (Boolean algebra) }
(pi + ui) (N +R)

✷

Mj pj ≤ N +R(36)

Mj pj = {1 = q + q (Boolean algebra) }
Mj pj (q + q) = {(distributivity) }
Mj pj q +Mj pj q = {Mj pj q = Nj (6) }
Mj pj q +Nj ≤ {Nj ≤ N (10) }
Mj pj q +N ≤ {Mj ≤ M (9); pj ≤ 1 (Boolean algebra)}
M q +N ≤ {M q ≤ (1 +M) q � = R (11) }
R+N

✷

ui commutes left past pj :

pj ui ≤ ui pj(37)

i = j : (18); i �= j : (14)

✷

Mj commutes to the right past (pi + ui) (possibly changing into an R):

Mj (pi + ui) ≤ (pi + ui) (Mj +R)(38)

i = j :
Mi (pi + ui) ≤ {pi ≤ 1 (Boolean algebra) }
Mi (1 + ui) ≤ {Mi = vi ui

∗ (5) }
vi ui

∗ (1 + ui) = {ui
∗ (1 + ui) = ui

∗ }
vi ui

∗ = {1 = pi + pi (Boolean algebra)}
(pi + pi)vi ui

∗ = {(distributivity) }
(pi vi + pi vi) ui

∗ = {pi vi = 0 (20) }
pi vi ui

∗ = {vi ui
∗ =Mi (5) }

pi Mi = {pi ≤ pi + ui; Mi ≤ Mi +R }
(pi + ui) (Mi +R)
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i �= j :
Mj (pi + ui) = {Mj = vj u∗

j (5) }
vj u∗

j (pi + ui) ≤ {i �= j ⇒ uj (pi + ui) ≤ (pi + ui) [uj ] (39); (1)}
vj (pi + ui) [uj ]∗ = {[uj ]∗ = [u∗

j ] (41) }
vj (pi + ui) [u∗

j ] = {(distributivity) }
(vj pi + vj ui) [u∗

j ] ≤ {i �= j ⇒ vj pi ≤ pi vj (15) }
(pi vj + vj ui) [u∗

j ] ≤ {i �= j ⇒ vj ui ≤ ui [vj ] (17) }
(pi vj + ui [vj ]) [u∗

j ] ≤ {vj ≤ [vj ] (12) }
(pi [vj ] + ui [vj ]) [u∗

j ] = {(distributivity) }
(pi + ui) [vj ] [u∗

j ] ≤ {[vj ] [u∗
j ] ≤ [vj u∗

j ] (40) }
(pi + ui) [vj u∗

j ] = {vj u∗
j =Mj (5) }

(pi + ui) [Mj ] = {[Mj ] =Mj + q �+Mj q � (12) }
(pi + ui) (Mj + q �+Mj q �) = {(distributivity) }
(pi + ui) (Mj + (1 +Mj) q �) ≤ {Mj ≤ M (9) }
(pi + ui) (Mj + (1 +M) q �) = {(1 +M) q � = R (11) }
(pi + ui) (Mj +R)

✷

i �= j ⇒ uj (pi + ui) ≤ (pi + ui) [uj ](39)

uj (pi + ui) = {(distributivity) }
uj pi + uj ui = {i �= j ⇒ uj pi = pi uj (14) }
pi uj + uj ui = {i �= j ⇒ uj ui ≤ ui [uj ] (16) }
pi uj + ui [uj ] ≤ {uj ≤ uj + q �+ uj q � = [uj ] (12)}
pi [uj ] + ui [uj ] = {(distributivity) }
(pi + ui) [uj ]

✷

[x] [y∗] ≤ [x y∗](40)

[x] [y∗] = {[x] = x+ q �+ x q � (12) }
(x+ q �+ x q �) [y∗] = {(distributivity) }
x [y∗] + q � [y∗] + x q � [y∗] ≤ {� [y∗] ≤ � }
x [y∗] + q �+ x q � = {[y∗] = y∗ + q �+ y∗ q � (12) }
x (y∗ + q �+ y∗ q �) + q �+ x q � = {(distributivity) }
x y∗ + x q �+ x y∗ q �+ q � ≤ {1 ≤ y∗, so x q � ≤ x y∗ q �}
x y∗ + x y∗ q �+ q � = {(12) }
[x y∗]

✷

[x]∗ = [x∗](41)
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[x∗] = {[x∗] = x∗ + q �+ x∗ q � (12)}
x∗ + q �+ x∗ q � = {x ≤ [x] (12); q � ≤ [x] (12) }
[x]∗ + [x] + [x]∗ [x] ≤ {(regular algebra) }
[x]∗ ≤ {1 ≤ x∗ ≤ [x∗] (12) }
[x∗] [x]∗ = {[x∗] [x] ≤ [x∗] (42); (1) }
[x∗]

Since the first and last terms are equal, the first and fourth terms are equal.
✷

[x∗] [x] ≤ [x∗](42)

[x∗] [x] = {[x∗] = x∗ + q �+ x∗ q � (12)}
(x∗ + q �+ x∗ q �) [x] = {(distributivity) }
x∗ [x] + q � [x] + x∗ q � [x] ≤ {� z ≤ � }
x∗ [x] + q �+ x∗ q � = {[x] = x+ q �+ x q � (12) }
x∗ (x+ q �+ x q �) + q �+ x∗ q � = {(distributivity) }
x∗ x+ x∗ q �+ x∗ x q �+ q �+ x∗ q � = {x∗ x ≤ x∗ }
x∗ + x∗ q �+ q � = {(12) }
[x∗]

✷

5 System Model

We define a simple model of concurrent systems that use mutual exclusion for access to selected
variables, and we prove that our reduction theorem applies to these systems. This model is intended
to be the simplest one that retains all relevant aspects of concurrent programming languages, such
as Java. It can be modified and generalized in numerous ways with little effect on our results.

Each shared variable is classified as protected or unprotected. There are no constraints on how
unprotected variables are accessed. The synchronization discipline requires that mutual exclu-
sion be used for access to protected variables. Any combination of synchronization mechanisms
(locks, condition variables, semaphores, barriers, etc.) can be used to provide the mutual exclusion,
provided the scheme can be captured by exclusive access predicates, as described in Section 1.

Formally, a system is a tuple 〈Θ, Vunsh , Vprot , Vunprot , T, I, e〉 where

Θ is a set of threads (thread identifiers). i and j range over Θ.

Vunsh is a set of unshared variables, i.e., variables that appear in transitions of at most one thread.

Vprot is a set of variables declared (possibly incorrectly) to be protected, i.e., there are synchro-
nization mechanisms that ensure mutual exclusion for accesses to these variables. For each
variable x ∈ Vprot and each thread i, there is an exclusive access predicate ex

i .
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Vunprot is a set of (possibly shared) variables, called unprotected variables. No assumptions are
made regarding synchronization for accesses to them.

T =
⋃

i Ti is a set of transitions, where Ti is the set of transitions of thread i. Let V = Vunsh ∪
Vprot ∪ Vunprot and Vguard = Vunsh ∪ Vunprot . A transition t is a guarded command g → c,
where the guard g is a predicate over Vguard , and c is built from assignments over V , sequential
composition, and conditionals (if-then and if-then-else).

I is a predicate over V . I characterizes the initial states.

e is a family of (possibly incorrect) exclusive access predicates ex
i over V .

Our results do not depend on the details of the expression language. The expression language
may support references (pointers) to variables. Expressions in commands may be non-deterministic,
e.g., expressions like choose(S), which returns a non-deterministically selected element of the non-
empty set S.

Guards are used for synchronization (blocking). Conditionals in commands are used for sequen-
tial control flow. For convenience of analysis, protected variables cannot appear in guards. This is
reasonable because the synchronization mechanisms that protect the protected variables, not the
protected variables themselves, should be used to achieve the necessary synchronization. If neces-
sary, the value of a protected variable v can be copied into an unshared or unprotected variable,
and the latter variable can be used in a guard, or v can be moved from Vprot to Vunprot and used
in a guard directly (this last approach may make more transitions visible, as defined below, and
thereby decrease the benefit of the reduction).

A state is a mapping from variables to values. Let Σ be the set of states. We also use states as
maps from expressions to values, with the usual meaning (homomorphic extension).

A transition t is enabled in state s if its guard is true in s. We interpret a transition t as a
binary relation [[t]] over Σ in the usual way: 〈s, s′〉 ∈ [[t]] iff t is enabled in s and execution of t from
s can lead to s′. An execution is a finite or infinite sequence σ of states such that σ(0) satisfies I

and every pair of consecutive states in σ is in [[t]] for some transition t.
A transition t of thread i is invisible if (i) for each unprotected variable x, each operation op on x

in t left-commutes with all operations op′ on x in transitions of other threads (i.e., op′op ≤ opop′),
and (ii) for each protected variable x, either (ii-a) t cannot change the value of any exclusive access
predicate for x, or (ii-b) t cannot truthify any exclusive access predicate for x, and the exclusive
access predicates for x are disjoint in all reachable states. Other transitions are visible. Let T vis

i

and T invis
i be the sets of visible and invisible transitions in Ti, respectively. The visible and invisible

transition relations and the predicate pi are

vi =
⋃

t∈T vis
i

[[t]] ui =
⋃

t∈T invis
i

[[t]] v =
⋃

i

vi u =
⋃

i

ui(43)

pi = all transitions in T invis
i are disabled(44)

A system is well-formed if the following conditions hold.
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WF-disjoint. Vunsh , Vprot , and Vunprot are disjoint.

WF-initVis. The initial transitions of each thread are visible, i.e., I ⇒ p. This ensures that the
conclusion of the reduction theorem applies to all reachable states of the original system.

WF-sep. Visible and invisible transitions of each thread are separate, i.e., cannot be executed
from the same state. Formally, (∀i : domain(ui) ∩ domain(vi) = ∅).

WF-acc. Internal non-determinism in a transition (i.e., non-deterministic choices that do not
affect the ending state) does not affect the set of variables accessed by the transition or
the order in which those variables are first accessed. This ensures well-definedness of acc in
Section 6 and of x in case 2 of the proof of (17) in Section 7.

WF-finiteInvis. No thread has an infinite execution sequence containing only invisible transitions.
Formally, (∀i : uω

i = ∅).

WF-initExcl. For each protected variable x, the exclusive access predicates for x are initially
disjoint, i.e., I ⇒ disjoint(ex), where disjoint(ex) = ¬(∃i, j : i �= j ∧ ex

i ∧ ex
j ).

WF-endExcl. A thread cannot take away another thread’s exclusive access to a variable. For-
mally, for an exclusive access predicate ex

i and j �= i, transitions of thread j cannot falsify
ex
i .

Assuming Vunsh and the exclusive access predicates are chosen appropriately, all transition
systems that are reasonable models of Java programs satisfy these conditions, except possibly
WF-finiteInvis, WF-initExcl, and WF-endExcl. One approach to choosing Vunsh is to use an
automatic and conservative static analysis, such as [WR99]. Another approach is to allow the
user to specify Vunsh and check correctness of the classification during state-space exploration of
the reduced system; as mentioned in Section 1, a similar idea is used in Spin [HP95] and can easily
be proved sound. In practice, WF-finiteInvis is approximated by aborting state-space exploration
if a thread consumes an excessive amount of CPU time without executing a visible transition.
WF-initExcl and WF-endExcl are typically easy to check.

6 Mutual-Exclusion Synchronization Discipline

The synchronization discipline requires that, for every variable x ∈ Vprot , (i) a transition of thread
i executed from a state s may access x only if s |= ex

i , and (ii) disjoint(e
x) holds in every reachable

state.
Let acc(s1, t, s2) denote the set of protected variables accessed by execution of transition t from

state s1 to s2. The set of accessed variables may depend on which branches of conditionals are taken.
The ending state s2 is included as an argument to acc because t may be non-deterministic. WF-acc
ensures that acc is well-defined. Since guards do not contain protected variables, acc(s1, t, s2) = ∅
if t is disabled in s1 (otherwise, acc(s1, t, s2) would be the set of protected variables in t’s guard).
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We augment the system with a predicate q that holds iff the synchronization discipline has been
violated. Formally, q is the least predicate that satisfies

∀i : ∀t ∈ Ti : ∀〈s1, s2〉 ∈ [[ti]] : s2 |= q ⇐⇒
(∃x ∈ Vprot : (x ∈ acc(s1, t, s2) ∧ s1 �|= ex

i ) ∨ s2 �|= disjoint(ex)) ∨ s1 |= q.

(45)

The third disjunct in (45) implies that q is monotonic, i.e., it can be truthified but not falsified.
Maintaining q involves accesses to q and accesses to variables that occur in exclusive access

predicates. These accesses are ignored when determining acc(s1, t, s2).

7 Proof that the Reduction Theorem Applies to the Mutual-Exclu-

sion Synchronization Discipline

Section 1 explains informally why the main hypotheses of the reduction theorem hold for the
mutual-exclusion synchronization discipline; in particular, hypotheses (14)-(15), (16)-(17), and (21)
correspond to the informal hypotheses (i), (ii), and (iii) discussed in Section 1. Detailed proofs of
these hypotheses appear below.

The other formal hypotheses of the reduction theorem follow directly from the definitions and
well-formedness conditions in Section 5. In particular, hypothesis (13) follows directly from the
well-formedness condition WF-finiteInvis. Hypotheses (18)-(19) say that pi holds iff ui is disabled;
this follows directly from the definitions of pi and ui. Hypothesis (20) follows directly from WF-sep.

Proof of (14) and (15). These formulas say that a (invisible or visible) transition tj of thread
j cannot change the truth value of pi. tj could change the truth value of pi only by updating some
variable that is used in tj ’s command and in the guard gi of an invisible transition ti of thread i.
We show that no such variable exists. A protected variable cannot appear in a guard. An unshared
variable cannot appear in both tj and gi. An unprotected variable cannot appear in gi, because ti

is invisible.

Proof of (16). This is a corollary of (17), because every invisible transition could be classified as
visible: an invisible transition is just a visible transition that satisfies some additional restrictions.

Proof of (17). Let ti be an invisible transition of thread i, and let tj be a visible transition tj of
thread j, and let s1, s2, and s3 be states such that 〈s1, s2〉 ∈ tj and 〈s2, s3〉 ∈ ti. Let ti = gi → ci

and tj = gj → cj . tj does not enable ti, because each variable x accessed by both tj and the guard
of ti must be unprotected (recall that protected variables cannot appear in guards) and operations
on x in ti left-commute with operations on x in tj . ti does not disable tj , for analogous reasons.
Thus, there exist states s′2 and s′3 such that 〈s1, s

′
2〉 ∈ ti and 〈s′2, s′3〉 ∈ tj . Transitions may be

non-deterministic, so s′2 and s′3 are not uniquely determined by these conditions. It suffices to
show that s′2 and s′3 can be chosen so that one of the following conditions (which correspond to the
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summands in (17)) holds: (i) s′2 |= q, (ii) s′3 = s3 (i.e., ci left-commutes with cj), or (iii) s′3 |= q.
Let A = acc(s1, tj , s2) ∩ acc(s1, ti, s

′
2).

case 1: A = ∅. This implies that
acc(s1, tj , s2) = acc(s′2, tj , s

′
3) ∧ acc(s2, ti, s3) = acc(s1, ti, s

′
2),(46)

because the same branches of conditionals will be executed from either source state. This and
A = ∅ imply that (∀x ∈ acc(s2, ti, s3) : s1(x) = s2(x)) and (∀x ∈ acc(s1, tj , s2) : s1(x) = s′2(x)).
Thus, by resolving non-determinism (if any) in the transitions in the same way when executing
ti followed by tj as when executing tj followed by ti to reach s3, we obtain s′3(v) = s3(v) for all
variables v ∈ V \ {q}. We must exclude q here because acc does not reflect accesses used to update
q, as stated in Section 6.

case 1.1: s3 |= q̄. If s′3 |= q̄, then s′3 = s3, i.e., condition (ii) holds. If s′3 |= q, then condition
(iii) holds.

case 1.2: s3 |= q. We show that s′2 |= q or s′3 |= q.
case 1.2.1: s1 |= q. This and monotonicity of q imply s′3 |= q.
case 1.2.2: s1 |= q̄. This and s3 |= q imply that the synchronization discipline is violated either

by execution of tj from s1 or by execution of ti from s2. The violation corresponds to the first or
second disjunct in (45) being true (the third disjunct just makes q monotonic). Thus, there are
2× 2 cases to consider.

case 1.2.2.1: (∃x ∈ Vprot : x ∈ acc(s1, tj , s2) ∧ s1 �|= ex
j ). (46) implies x ∈ acc(s′2, tj , s′3). ti is

invisible, so it cannot truthify ex
j , so s′2 �|= ex

j . Thus, the definition of q implies s
′
3 |= q.

case 1.2.2.2: (∃x ∈ Vprot : x ∈ acc(s2, ti, s3) ∧ s2 �|= ex
i ). (46) implies x ∈ acc(s1, ti, s

′
2).

WF-endExcl implies tj did not falsify ex
i , so s1 �|= ex

i . Thus, the definition of q implies s
′
2 |= q.

case 1.2.2.3: (∃x ∈ Vprot : s2 �|= disjoint(ex)). ti is invisible, and the exclusive access predicates
for x are not disjoint in some reachable state, so ti must satisfy condition ii-a in the definition of
invisible transition, so ti cannot falsify any exclusive access predicate for x, so s3 �|= disjoint(ex).
s3 and s′3 have the same values for all variables except q, so s′3 �|= disjoint(ex). Thus, the definition
of q implies s′3 |= q.

case 1.2.2.4: (∃x ∈ Vprot : s3 �|= disjoint(ex)). s3 and s′3 have the same values for all variables
except q, so s′3 �|= disjoint(ex). Thus, the definition of q implies s′3 |= q.

case 2: A �= ∅. Note that A ⊆ Vprot , because ti does not access unprotected variables, and
because ti and tj do not access each other’s unshared variables. Let x be the variable in A first
accessed by execution of tj from s1 to s2.

case 2.1: s1 |= ex
j . By definition of A, x ∈ acc(s1, ti, s

′
2).

case 2.1.1: s1 |= disjoint(ex). The hypotheses of cases 2.1 and 2.1.1, together with i �= j, imply
s1 �|= ex

i . This and x ∈ acc(s1, ti, s
′
2) imply s′2 |= q.

case 2.1.2: s1 �|= disjoint(ex). This and the definition of q imply s1 |= q. This and monotonicity
of q imply s′2 |= q.

case 2.2: s1 �|= ex
j . The definitions of A and x imply that we can choose s′2 and s′3 such that

x ∈ acc(s′2, tj , s′3), because the first access to x by tj precedes execution of conditionals in tj whose
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conditions could be affected by execution of ti from s1. The only variables that can be accessed by
both ti and those conditionals are unprotected variables (in A), and operations on those variables
in ti left-commute with operations on them in tj , because ti is invisible. ti cannot truthify ex

j , again
because ti is invisible, so s′2 �|= ex

j . Thus, the definition of q implies s
′
3 |= q.

Proof of (21): This follows directly from monotonicity of q, discussed in Section 6.

8 How to Use the Reduction

A methodology for using the reduction is as follows.
1. Guess the set Vprot of protected variables and the exclusive access predicates ex

i . These
guesses determine visibility of transitions and hence define a reduced system, in which the transition
relation of thread i is Ni, defined in (6).

2. Augment the reduced system with a predicate q, as described in Section 6.
3. Check whether q̄ holds in all reachable states of the reduced system. Check this using your

favorite technique: model checking, theorem proving, hand waving, etc.
4. If so, then the reduction theorem implies that q̄ holds in all reachable states of the original

system, i.e., the guesses in Step 1 are correct. Traditional reduction theorems can now be used to
infer other properties of the original system from properties of the reduced system.

5. If not, then for some variable x in Vprot , the reduced system has a reachable state in which
the mutual-exclusion synchronization discipline for x is violated. Revise the guess for ex (using the
path to the violation as a guide) or re-classify x as unprotected, and then return to Step 1.

A user who is uncertain in Step 1 whether a variable is protected or what its exclusive access
predicates are, has two options. One option is to go ahead and guess. In the best case, the guess
will be correct; in the worst case, a violation will be reported, and the incorrect guess will be revised
or eliminated in Step 5. Another option is to declare the variable to be unprotected; this makes
the reduction less effective (because more transitions are visible), but eliminates the need to guess
the exclusive access predicates.

9 How to Use the Reduction Automatically for Systems with

Monitors

The methodology in Section 8 is automatic except that the user must guess Vprot and the exclusive
access predicates. For systems that use monitors for synchronization, this step, too, can be auto-
mated. We give a model of Java’s built-in monitors and then describe how to automatically guess
exclusive access predicates for variables protected by monitors.
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9.1 Monitors

Java provides five built-in synchronization operations based on the classic operations on monitors:
acquire, release, wait, notify, and notifyAll. A recursive lock and a condition variable are
implicitly associated with each object. A recursive lock can be repeatedly acquired by a thread
that holds it; the lock is free when each call to acquire has been matched by a call to release.
In Java, acquire and release are implicitly invoked by synchronized methods and synchronized
statements.

Every object has methods wait(), notify(), and notifyAll(). These methods throw Illegal-

MonitorStateException if invoked by a thread that does not own the target object’s lock; oth-
erwise, they behave as follows. o.wait() adds the calling thread i to o’s wait set (i.e., the set of
threads waiting on o), releases o’s lock, and suspends i. When another thread notifies i (by invoking
notify or notifyAll), i contends to re-acquire o’s lock. When i acquires the lock, the invocation
of o.wait() returns. o.notify() non-deterministically selects a thread i in o’s wait set, removes
i from the set, and notifies i. If o’s wait set is empty, o.notify() has no effect. o.notifyAll()

removes all threads from o’s wait set and notifies each of them. A waiting thread i can also be
awoken by a call to i.interrupt.

We deal only with untimed systems, so we do not consider bounded-time variants of wait. Also,
we do not consider Java’s controversial weakly consistent memory model.

Java’s monitors can be represented in our system model by transitions with the forms in Figure
1, where g, c1, and c2 are not part of the monitor operations but rather are fragments of the
surrounding program. Figure 1 does not model Thread.interrupt but can easily be extended
to do so. Let m be a variable containing the state of a monitor, which is a record with four
fields. m.owner is free or the identity of the thread that owns m’s lock. m.depth is the number of
unmatched acquire operations on m. m.waiters is the set of threads waiting on m. m.notified is the
set of threads that were waiting on m, have been notified, and have not executed any transitions
since the notification. In addition, ldepthi is an unshared variable of thread i, which holds the old
value of m.depth while thread i is waiting on m.

For an acquire, release, wait, notify, notifyAll, or waitResume transition of the form in Figure
1, we refer to the fragment not containing containing g, c1, and c2 as an acquire, release, wait,
notify, notifyAll, or waitResume operation, respectively.

In order to classify transitions containing a release, notify, or notifyAll operation as invisible,
we need to show that each such operation left-commutes with operations of other threads, and
that the exclusive access predicates for a variable x protected by a monitor m are disjoint in all
reachable states. The latter typically follows immediately from the structure of the predicates; for
example, if ex

i = (m.owner = i), the predicates are clearly disjoint. For the former, let opi be a
release, notify, or notifyAll operation on monitor m by thread i, and let opj be an operation on m

by another thread j. We show that opjopi ≤ opiopj , i.e., if execution of opjopi can lead from a
state s to a state s′, then execution of opiopj can also lead from state s to s′. Note that the error
command ce in opi accesses only unshared variables and therefore commutes with opj . Each of the
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acquire: m.owner ∈ {free, i} ∧ g → m.owner := i;m.depth := m.depth + 1; c2
release: g → c1;

if m.owner = i then
if m.depth = 1 then m.owner := free;
m.depth := m.depth − 1

else ce;
c2

wait: g → c1;
if m.owner = i then

m.waiters := m.waiters ∪ {i}; ldepthi := m.depth;
m.depth := 0;m.owner := free;

else ce;
c2

notify: g → c1;
if m.owner = i then

if m.waiters �= ∅ then
j := choose(m.waiters);
m.notified := m.notified ∪ {j};
m.waiters := m.waiters \ {j};

else ce;
c2

notifyAll: g → c1;
if m.owner = i then

m.notified := m.notified ∪m.waiters;
m.waiters := ∅;

else ce;
c2

waitResume: i ∈ m.notified ∧m.owner = free ∧ g → m.notified := m.notified \ {i};
m.owner := i;m.depth := ldepthi; c2

Figure 1: Forms of transitions for monitor operations, where m is a monitor and i, j ∈ Θ. m and
ldepthi may not appear in g, c1, c2, or ce or in transitions with other forms. The command ce (e is
mnemonic for “error”) throws an IllegalMonitorStateException; ce may access only unshared
variables.

three monitor operations that opi could be has the property that, when executed from any state
in which m.owner �= i, it behaves in exactly the same way: it is a no-op on m, and it executes its
error command ce.

Suppose m.owner �= i in s. Then m.owner �= i also holds after execution of opj from s, because
no monitor operation sets the owner of a monitor to be the identifier of a thread other than the
one executing the operation. Thus, whether opi executes before or after opj , opi behaves exactly
the same way and does not update m. This implies that opi left-commutes with opj .

Suppose m.owner = i in s. Thus, m.owner �= j in s. By the same reasoning as above,
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m.owner �= j also holds after execution of opi from s. Note that opj cannot be an acquire or
waitResume operation, because opj would be blocked in s, so opjopi would not lead to any state
s′. Each of the four monitor operations that opj could be (namely, releasej , waitj , notifyj , or
notifyAllj) has the property that, when executed from any state in which m.owner �= j, it behaves
in exactly the same way: it is a no-op on m, and it executes its error command ce. Thus, whether
opj executes before or after opi, it behaves exactly the same way and does not update m. This
implies that opi left-commutes with opj .

9.2 Exclusive Access Predicates for Variables Protected By Monitors

Exclusive access predicates for variables protected by monitors typically have the form ex
i = eapx,m

i ,
where

eapx,m
i = initx

i ∨ (i = m.owner ∧ ¬initx)(47)

initx = (∃i ∈ Θ : initx
i ).(48)

and where the initialization predicate initx
i holds while thread i is executing code that initializes

x. Note that the lock protecting a variable does not need to be held while the variable is being
initialized.

Initialization predicates for variables in systems that correspond to Java programs can be
guessed automatically: initx

i holds when thread i’s program counter is in the appropriate class
initializer (for static fields) or the appropriate constructor invocation (for instance fields).

To use (47), we need to identify, for each variable x in Vprot , a monitor m that protects x.
This can be done automatically by running a variant of the lockset algorithm [SBN+97] during
state-space exploration of the reduced system.

10 Comparison to Traditional Partial-Order Methods

This section demonstrates that our method can outperform traditional partial-order methods even
on simple systems that do not involve pointers, object references, etc. Consider a system with two
threads that use monitors m0 and m1 as locks and use an integer variable y to implement a barrier.
Let uppercase letters denote control points. Let guard → stmt denote a transition that blocks when
guard is false and can execute stmt when guard is true. For i ∈ {0, 1}, the code for thread i is

Am0.acquire(); Bx0 := i; Cm0.release();Dm1.acquire(); Ex1 := i; Fm1.release();
Gy ++; Hy = 2→ skip; Ixi = i J

(49)

In the initial state, xj = j and y = 0, and both threads are at control point A. xj is a protected
variable, with exclusive access predicate e

xj

i = (mj .owner = i)∨ (y = 2∧ i = j). y is not protected.
This system has 106 reachable states. With the reduction in this paper, transitions that release

locks or update x0 or x1 are invisible; other transitions are visible. The reachable states of the
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reduced system are the reachable states of the original system in which every thread is ready to
perform a visible transition or is at its final control point. There are 38 such states.

Traditional partial-order methods based on persistent sets [God96] (or ample sets [CGP99])
can also significantly reduce the number of explored states but do not achieve the same benefits as
our reduction. To illustrate this, we compare our method to selective search using persistent sets.
To ensure an unbiased comparison, we compute persistent sets using the most precise algorithm
in [God96], namely, the conditional stubborn set algorithm (CSSA). CSSA is a non-deterministic
algorithm for computing persistent sets. It is parameterized by a dependence relation, called
might-be-the-first-to-interfere-with (MBTFTIW), on operations. To further ensure an unbiased
comparison, we maximize the effectiveness of CSSA by always resolving non-determinism in a way
that yields a minimum-size persistent set, and by using the most precise MBTFTIW relations.
For acquire and release, this is the relation in [Sto02, Fig. 3]. For accesses to y, this is the
MBTFTIW relation derived from the dependence relation on operations in which increments to y

are independent of each other, and an increment to y is dependent with the condition y = 2 only
in states in which the increment changes the truth value of the condition.

The CSSA-based selective search explores 77 states. To illustrate why it explores more than
the 38 states explored by our method, consider the reachable state s in which thread 0 is at control
point D and thread 1 is at control point B. With the reduction in this paper, the transitions that
update x0 or x1 are invisible, so the system passes through this invisible state by executing the
enabled transition of thread 1; the enabled transition of thread 0 is not executed in s. In contrast,
the selective search explores both enabled transitions in s.

Selective search using persistent sets can be improved by incorporating sleep sets, a partial-
order reduction technique that exploits information about the history of the search [God96]. For
this example, incorporating sleep sets reduces the number of explored states from 77 to 72. This is
still significantly more than the 38 states explored using our reduction.

This example can be generalized to show our method outperforming selective search by an arbi-
trary amount: simply insert additional transitions that access x0 before the transition m0.release()
in thread 0.

If the barrier were implemented using two separate variables y0 and y1, such that only thread
i increments yi, then CSSA would be able to determine that {1B} is persistent in state s. This
illustrates that CSSA is a static analysis that is more effective for systems with more explicit static
structure. Our method works equally well with either implementation of barriers.

11 Experimental Results

We implemented the reduction, specialized for monitor-based synchronization with exclusive ac-
cess predicates of the form (47), in Java PathFinder (JPF) [BHPV00]. Specifically, we augmented
the scheduler with an inner loop that iterates over invisible transitions without allowing context
switches before them, and the system uses an appropriate variant of the lockset algorithm [SBN+97]
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Program None LocalFinal Optimistic Optimistic/LocalFinal
Clean 5.03 2.43 1.79 0.74
HaltException 6.74 2.18 1.69 0.78
Elevator > 1260 31.2 7.24 0.23
TSP > 1600 > 1600 32.5 0.02

Table 1: Experimental results. The middle three columns show memory usage, in MB, of JPF
with the indicated reduction. The rightmost column shows the ratio of memory usage with the two
reductions.

to automatically identify which monitors, if any, protect each protected variable. The user sup-
plies configuration files indicating which variables are unshared and which are unprotected; other
variables are implicitly classified as protected.

Traditional partial-order reductions are not supported in the version of JPF that we modified, so
a direct experimental comparison to them is not readily possible. Nevertheless, it is clear that they
would be less effective for these programs than our reduction. Suppose Spin’s partial-order reduction
[HP95, Hol97], described briefly in Section 1, were used. For reads and writes to shared variables
(excluding special variables such as the state of a lock or thread), that reduction will be effective
only when it can determine that a shared variable will not be written by any thread in the future
(because reads are independent with reads), which is non-trivial in the presence of dynamic thread
creation. Even if an effective static analysis is used to determine this, it will have relatively little
benefit in the above examples, because most shared variables, with the exception of final variables,
are both read and written by all threads that access them. Thus, Spin’s reduction would be about
as effective as one that treats all accesses to unshared variables and all accesses to final variables
as invisible, and other operations as visible. We implemented the latter reduction in JPF, with
all stack-allocated (i.e., method-local) variables classified as unshared (identifying unshared heap-
allocated variables would require a static analysis that is significantly more complicated than the
static analyses used in Spin’s partial-order reduction). We refer to this reduction as the LocalFinal
reduction.

We measured the benefit of the reduction for four programs. Clean [BHPV00, Figure 1] and
HaltException [HP00] are small synchronization skeletons (i.e., they were obtained from real pro-
grams by deleting everything except the statements related to synchronization) supplied by the
developers of JPF; they are about 50 and 100 lines of code (LOC), respectively. The other two
programs, Elevator and TSP, were developed at ETH Zürich and used as benchmarks in [vPG01].
Elevator (350 LOC) is a simple discrete event simulator. TSP (590 LOC) is a parallel program to
solve the traveling salesman problem; we ran it on the data file map4 that accompanies it. The
lockset algorithm was used in all experiments. All of the configuration files were empty; thus, all
variables were classified, without error, as protected.

Table 1 shows the memory usage in MB for JPF to explore the state space, looking for assertion
violations. We enabled JPF’s hash compaction, which is similar to Spin’s bitstate hashing [Hol97],
for all experiments. Elevator with no reduction was manually terminated after 24 hours (of CPU
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time); Elevator with either reduction finishes in less than half an hour. For TSP with no reduction
or LocalFinal reduction, the JVM reported an out-of-memory error. The JVM’s maximum heap
size was set to 1600 MB. Experiments were run on a Sun Blade 1500 with 2 GB RAM.

For Clean and HaltException, our reduction has modest benefit (average 24% reduction in
memory usage) over the LocalFinal reduction, because these toy programs perform little real con-
current computation, and most instructions are accesses to unshared variables. For Elevator, a
slightly larger and more realistic program, our reduction has noticeably more benefit, reducing
memory usage by 77% compared to LocalFinal. For TSP, an even larger and more computationally
interesting program, our reduction reduces memory usage by 98% compared to LocalFinal.

More elaborate traditional partial-order reductions, such as persistent sets computed using
CSSA combined with sleep sets, can achieve more reduction than Spin’s algorithm, e.g., by ex-
ploiting a given dependence relation on monitor operations, but still would not recognize or exploit
properties of protected variables. Accesses to protected variables are much more frequent than
monitor operations in Elevator, TSP, and most other Java programs, so the performance of these
more elaborate traditional partial-order reductions would be much closer to the performance of the
LocalFinal reduction than to the performance of our optimistic reduction.

Acknowledgments. We thank Shaz Qadeer for telling us about exclusive access predicates,
Liqiang Wang for doing the experiments with JPF, and Patrice Godefroid for insightful comments
about partial-order methods.
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