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Abstract
Programming with logic for sophisticated applications must deal with recursion and negation, which together have created
significant challenges in logic, leading to many different, conflicting semantics of rules. This paper describes a unified
language, DA logic, for design and analysis logic, based on the unifying founded semantics and constraint semantics, that
supports the power and ease of programming with different intended semantics. The key idea is to provide meta-constraints,
support the use of uncertain information in the form of either undefined values or possible combinations of values and promote
the use of knowledge units that can be instantiated by any new predicates, including predicates with additional arguments.

1 Introduction

Programming with logic has allowed many design and analysis problems to be expressed more
easily and clearly at a high level. Examples include problems in program analysis, network
management, security frameworks and decision support [16]. However, when sophisticated problems
require reasoning with negation and recursion, possibly causing contradiction in cyclic reasoning,
programming with logic has been a challenge. Many languages and semantics have been proposed,
e.g., [10, 13, 31], but they have different underlying assumptions that are conflicting and subtle , and
each is suitable for only certain kinds of problems.

This paper describes a unified language, DA logic, for design and analysis logic, for programming
with logic using logical constraints. It supports logic rules with unrestricted negation in recursion,
as well as unrestricted universal and existential quantification. It is based on the unifying founded
semantics and constraint semantics [18, 19], and it supports the power and ease of programming
with different intended semantics without causing contradictions in cyclic reasoning.

• The language provides meta-constraints on predicates. These meta-constraints capture the
different underlying assumptions of different logic language semantics.

• The language supports the use of uncertain information in the results of different semantics,
in the form of either undefined values or possible combinations of values.

• The language further supports the use of knowledge units that can be instantiated by any new
predicates, including predicates with additional arguments.

Together, the language allows complex problems to be expressed clearly and easily, where
different assumptions can be easily used, combined and compared for expressing and solving a
problem modularly, unit by unit.
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194 Knowledge of uncertain worlds: programming with logical constraints

We present examples for different games that show the power and ease of programming with
DA logic. We use games because interdependent winning and losing positions taken by competing
players give rise to negation in recursion. We also discuss and describe support for restricted
parameters and recursive uses of knowledge units.

The rest of the paper is organized as follows. Section 2 discusses the need of easier programming
with logic when faced with negation in recursion. Section 3 describes the unified language, DA logic.
Section 4 presents the formal definition of the semantics of DA logic, as well as its consistency,
correctness and decidability. Section 5 develops additional examples for different games. Section 6
explains restricted parameters and recursive uses of knowledge units. Section 7 discusses related
work and concludes.

This paper is a revised and extended version of Liu and Stoller [20]. The revisions include many
expanded explanations to make the paper more self-contained and easier to read, as well as general
improvements throughout. The extension is mainly the new Section 6 on support for restricted
parameters and recursive uses of knowledge units.

2 Need of easier programming with logic

We discuss the challenges of programming with negation and recursion and the need of easier
programming with logic. We explain the basic ideas of well-known previous language semantics as
well as founded semantics and constraint semantics, and give an overview of the proposed solutions.
We use a small well-known example, the win-not-win game, for illustration.

Win-not-win game. Given a set of moves for a game, consider the following rule, called the win
rule. It says that x is a winning position if there is a move from x to y and y is not a winning position.

win(x) ← move(x,y) ∧ ¬ win(y)

This seems to be a reasonable rule, because, besides giving the conditions for x to be a winning
position, it also suggests that, if there is no move from x, then x is a losing position and if x is neither
a winning nor a losing position, then x is a draw position. This captures the rule for winning and
losing for many games, including in chess for the King to not be captured, giving winning, losing
and draw positions.

However, there could be problems. For example if there is a move(1,1) for some position 1,
then the win rule would give win(1) ← ¬ win(1), and thus the truth value of win(1) becomes
unclear.

Inductive definitions. Instead of the single win rule, one could use the following three rules to
determine the winning, losing and draw positions.

win(x) ← ∃ y | move(x,y) ∧ lose(y)

lose(x) ← ∀ y | ¬ move(x,y) ∨ win(y)

draw(x) ← ¬ win(x) ∧ ¬ lose(x)

The first two rules are used [8, 14] to form inductive definitions [23], avoiding the potential
problems of the single win rule. The base case is the set of positions that have no moves to any other
position and thus are losing positions based on the second rule.

With winning and losing positions defined, the draw positions are the remaining positions, which
are those in cycles of moves that have no moves to losing positions.

These three rules spell out the intended meaning of winning, losing and draw as implied by the
single win rule. However, clearly, these rules are much more cumbersome than the single win rule.
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Knowledge of uncertain worlds: programming with logical constraints 195

Well-founded semantics. Indeed, with well-founded semantics (WFS) [31], which computes a
3-valued model, the single win rule above gives win(x) being true, false or unknown for each
x, corresponding exactly to x being a winning, losing, or draw position, respectively.

WFS is highly non-trivial—informally, it is defined by the least fixed point of a transformation that
combines what is usually called the one-step derivability operator, Tp and the element-wise negation
of the operator Up for computing what is called the greated unfounded set, yielding a single 3-valued
model [31]; it involves computing an alternating fixed point or an iterated fixed point.

However, win(x) being 3-valued in WFS does not allow the three outcomes to be used as three
predicates or sets for further computation; the three predicates defined by the three rules do allow
this.

For example, there is no way to use draw positions (that is, positions for which win is unknown)
explicitly, say to find all reachable nodes following another kind of moves from draw positions. One
might try to do this by adding the following two additional rules to the single win rule:

lose(x) ← ¬ win(x)

draw(x) ← ¬ win(x) ∧ ¬ lose(x)

However, the result is that draw(x) is false for all positions for which win(x) is true or false, and
draw(x) is unknown for all draw positions.

Stable model semantics. Stable model semantics (SMS) [13] computes a set of 2-valued models,
instead of a single 3-valued model. It has been used for solving many constraint problems in
answer set programming (ASP), because its set of 2-valued models can provide the set of satisfying
solutions.

SMS is also highly non-trivial—informally, it is defined by guessing a truth assignment,
expanding each rule into all possible instances, computing what is called the reduct by deleting
rules whose negated conditions cannot be satisfied and deleting negated conditions in remaining
rules, and then computing a minimum model of the resulting rules, yielding one model in a set of
2-valued models [13]; in general, the number of guesses and resulting models can be exponential.

For the single win rule, if besides some winning and losing positions, there is a separate
cycle of even length, say move(1,2) and move(2,1), then the win rule would give
win(1)← ¬ win(2)and win(2)← ¬ win(1). Instead of win being unknown for positions 1
and 2 as in WFS, SMS returns two models: one with win being true for 1 and false for 2, and one
with win being true for 2 and false for 1. This is a very different interpretation of the win rule.

For the single win rule above, when there are draw positions, SMS may also return just the empty
set, that is, the set with no models at all. For example, if besides some winning and losing positions,
there is a separate cycle of moves of odd length, say simply move(1,1), then SMS returns just the
empty set. This is clearly not the desired semantics for the win-not-win game.

Founded semantics and constraint semantics. Founded semantics and constraint semantics [18,
19] unify different prior semantics. They define a 3-valued model and a set of 2-valued models,
respectively. They allow different underlying assumptions to be specified for each predicate.
Specifically:

1. Each predicate can be declared certain (that is, everything about the predicate being true (T)
are given or can be inferred by following the rules, and the rest are false (F)) or uncertain (that
is, everything about the predicate being T or F are given or can be inferred, and the rest are
undefined (U)), except a predicate must be uncertain if it depends on negation in recursion or
on uncertain predicates.
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196 Knowledge of uncertain worlds: programming with logical constraints

2. Each uncertain predicate can be further declared complete (that is, all rules with the predicate
in the conclusion are given, and thus before inferring T and F, completion rules can be added
to define the negation of the predicate using the negation of the conditions of those given rules)
or not, except a predicate must be not complete if it depends on predicates that are uncertain
and not complete.

3. Each uncertain and complete predicate can be declared closed (that is, an assertion of the
predicate is made F, called self-false, if inferring it to be T requires assuming itself to be T)
or not. Being closed is needed to match WFS and SMS theoretically, but is not needed to give
the desired meaning for any example we found in previous literature.

Founded semantics infers T , F and U using a simple least fixed point, with additionally computing
self-false assertions for closed predicates, if any, in each iteration. Constraint semantics then extends
everything U to be combinations of T and F that satisfy everything given as constraints.

For the win-not-win game, one can write the single win rule, with the default assumption that win
is complete, that is, the win rule is the only rule that infers win, which is an implicit assumption
underlying WFS and SMS.

• With founded semantics, the three rules that use inductive definitions can be automatically
derived, and true, false and undefined positions for win are inferred, corresponding to the
three predicates from inductive definitions and the 3-valued results from WFS.

• Then constraint semantics, if desired, computes all combinations of true and false values for
the undefined values for the draw positions, that satisfy all the rules as constraints. It equals
SMS for the single win rule.

Explicit declaration in founded semantics and constraint semantics makes programming and
understanding much easier. For example, in WFS and SMS, if nothing is said about some p, then p
is false. When this is not desired, some programming tricks are used to get around it. For example,
with SMS, to allow p to be possibly true in some models, one could introduce some new q and two
new rules, p ← ¬ q and q ← ¬ p, to make it possible that, in some models, p is true and q is
false. Founded semantics and constraint semantics allow p to be explicitly declared uncertain and
not complete.

Founded semantics and constraint semantics also allow unrestricted universal and existential
quantifications and unrestricted nesting of Boolean operators; these are not supported in WFS and
SMS.

However, founded semantics and constraint semantics alone do not address how to use different
semantics seamlessly in a single logic program.

Programming with logical constraints. Because different assumptions and semantics help solve
different problems or different parts of a problem, easier programming with logic requires supporting
all assumptions and semantics in a simple and integrated design.

This paper treats different assumptions as different meta-constraints for expressing a problem or
parts of a problem, and support results from different semantics to be used easily and directly. For
the win-not-win game:

• The positions for which win is true, false and undefined in founded semantics are captured
using three automatically derived predicates, win.T, win.F and win.U, respectively,
corresponding exactly to the inductively defined win, lose and draw, respectively. These
predicates can be used explicitly and directly for further reasoning, unlike with the truth values
in WFS or founded semantics.
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TABLE 1 Meta-constraints and corresponding prior semantics.

Meta-constraint on Predicate P Founded/Constraint Semantics Other Prior Semantics

Declarations on P Resulting Predicates

certain(P) certain P.T, P.F Stratified (Perfect,
Inductive Definition)

open(P) uncertain, P.T, P.F, P.U

not complete m.P for m ∈ K.CS First-Order Logic

complete(P) uncertain, as above Fitting (Kripke-Kleene)

complete, not closed Supported

closed(P) uncertain, as above WFS

complete, closed SMS

• The constraint semantics of the given rule for win and facts for move is captured using an
automatically derived predicate CS. For a model m in the constraint semantics, CS(m) is true,
also denoted as m ∈ CS, and we use m.win(x) to denote the truth value of win(x) in model
m. Predicate CS can be used directly for further reasoning, unlike the set of models in SMS or
constraint semantics.

More fundamentally, we must enable easy specification of problems with reusable parts and where
different parts may use different assumptions and semantics. To that end, we introduce knowledge
units. DA logic supports instantiation and re-use of existing units, and allows predicates in any
existing units to be bound to other given predicates, including predicates with additional arguments.

Even with all this power, DA logic is decidable, because it does not include function symbols and
is over finite domains.

Table 1 summarizes the meta-constraints that can be used to express different assumptions,
corresponding declarations and resulting predicates in founded semantics and constraint semantics,
and corresponding other prior semantics if all predicates use the same meta-constraint. Columns 2
and 4 are presented and proved in our prior work [19]. Columns 1 and 3 are introduced in DA logic:

• Each meta-constraint in column 1 specifies the corresponding declarations in column 2. For
example, complete(P) specifies that P is declared uncertain, complete, and not closed.
Note that the four meta-constraints capture all possible combinations of declarations.

• In column 3, P.T, P.F and P.U are predicates that are true for a tuple of arguments if and
only if P is T , F and U , respectively, for that tuple of arguments in founded semantics. K
denotes a knowledge unit, and K.CS denotes the constraint semantics of K.

These will be described precisely in Sections 3 and 4.

3 DA logic

This section presents the syntax and informal meaning of DA logic, for design and analysis logic.
The rule form described under “Conjunctive rules with unrestricted negation” is the same as the
core language in our prior work on founded semantics and constraint semantics, for which we gave
a precise semantics [18, 19]. Disjunction and quantification are mentioned as extensions in our prior
work [18, 19]. The other features are new.
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198 Knowledge of uncertain worlds: programming with logical constraints

Knowledge unit. A program is a set of knowledge units. A knowledge unit, abbreviated as kunit, is
a set of rules, facts and meta-constraints, defined below. The definition of a kunit has the following
form, where K is the name of the kunit, and body is a set of rules, facts, meta-constraints and
instantiations of other kunits:

kunit K :
body

The scope of a predicate is the kunit in which it appears. Predicates with the same name, but
appearing in different kunits, are distinct.

EXAMPLE.
A kunit for the single win rule is

kunit win_unit:

win(x) ← move(x,y) ∧ ¬ win(y)

Kunits provide structure and allow knowledge to be re-used in other contexts by instantiation, as
described below.

Conjunctive rules with unrestricted negation. We first present a simple core form of logic rules
and then describe additional constructs that can appear in rules. The core form of a rule is the
following, where any Pi may be preceded with ¬:

Q(X1, ..., Xa) ← P1(X11, ..., X1a1) ∧ ... ∧ Ph(Xh1, ..., Xhah) (1)

Symbols ←, ∧ and ¬ indicate backward implication, conjunction and negation, respectively. h is
a natural number. Each Pi (respectively Q) is a predicate of finite number ai (respectively a) of
arguments. Each argument Xk and Xij is a constant or a variable, and each variable in the arguments
of Q must also be in the arguments of some Pi. In arguments of predicates in example programs, we
use numbers for constants and letters for variables.

If h = 0, there is no Pi or Xij, and each Xk must be a constant, in which case Q(X1, ..., Xa) is called
a fact. For the rest of the paper, “rule” refers only to the case where h ≥ 1, in which case the left
side of the backward implication is called the conclusion, the right side is called the body and each
conjunct in the body is called a hypothesis.

These rules have the same syntax as in Datalog with negation, but are used here in a more general
setting, because variables can range over complex values, such as constraint models, as described
below.

Predicates as sets. We use a syntactic sugar in which a predicate P is also regarded as the set of x
such that P(x) holds. For example, we may write move = {(1,2), (1,3)} instead of the facts
move(1,2) and move(1,3); to ensure the equality holds, this shorthand is used only when there
are no other facts or rules defining the predicate.

Disjunction. The hypotheses of a rule may be combined using disjunction as well as conjunction.
Conjunction and disjunction may be nested arbitrarily.
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Knowledge of uncertain worlds: programming with logical constraints 199

Quantification. Existential and universal quantifications in the hypotheses of rules are written
using the following notations:

∃ X1, ..., Xn| Y existential quantification
∀ X1, ..., Xn| Y universal quantification (2)

In quantifications of this form, the domain of each quantified variable Xk is the set of all constants
in the containing kunit.

As syntactic sugar, a domain can be specified for a quantified variable, using a unary predicate
regarded as a set. For example, ∃ x ∈ win | move(x,x) is syntactic sugar for ∃ x | win(x)
∧ move(x,x), and ∀ x in win | move(x,x) is syntactic sugar for ∀ x | ¬ win(x) ∨
move(x,x).

Meta-constraints. Assumptions about predicates are indicated in programs using the meta-
constraints in column 1 of Table 1. Each meta-constraint specifies the declarations listed in column
2 of Table 1. For example, if a kunit contains open(P), we say that P is declared uncertain
and not complete in that kunit. In each kunit, exactly one meta-constraint must be given for each
predicate.

Meta-constraint certain(P) means that each assertion of P has a unique true (T) or false (F)
value. Meta-constraint uncertain(P) means that each assertion of P has a unique true, false, or
undefined (U) value. Meta-constraint complete(P) means that all rules with P in the conclusion
are given in the containing kunit. Meta-constraint closed(P) means that an assertion of P is made
false, called self-false, if inferring it to be true using the given rules and facts requires assuming itself
to be true.

A predicate in the conclusion of a rule is said to be defined using the predicates or their negation in
the hypotheses of the rule, and this defined-ness relation is transitive. If a predicate P is not defined
transitively using its own negation and is not defined transitively using a predicate that is defined
transitively using its own negation, then it is given the meta-constraint certain(P) by default.
Otherwise, it is given complete(P) by default.

Using kunits with instantiation. The body of a kunit K2 can use another kunit K using an
instantiation of the form:

use K (P1 = Q1(Y1,1, ..., Y1,b1), ..., Pn = Qn(Yn,1, ..., Yn,bn)) (3)

By definition, this has the effect of applying the following substitution to the body of K and inlining
the result in the body of K2: for each i in 1..n, replace each occurrence Pi(X1, ..., Xa) of predicate
Pi with Qi(X1, ..., Xa, Yi,1, ..., Yi,bi). Note that arguments of Qi specified in the use construct are
appended to the argument list of each occurrence of Pi in K, hence the number of such arguments
must be arity(Qi) − arity(Pi). When Pi and Qi have the same arity, we simply write Pi = Qi in the
use construct.

The determination of default meta-constraints, and the check for having exactly one meta-
constraint per predicate, are performed after expansion of all use constructs.

A kunit K2 has a use-dependency on kunit K if K2 uses K. The use-dependency relation must
be acyclic. We have not found intrinsically good reasons for uses to be cyclic. However, there is no
real difficulty in supporting circular uses. Section 6 discusses pros and cons of circular uses and
extensions to support circular uses.
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200 Knowledge of uncertain worlds: programming with logical constraints

EXAMPLE

For the example kunit win_unit given earlier in this section, the following kunit is an instantiation
of the win-not-win game with different predicates for moving and winning:

kunit win2_unit:

use win_unit (move = move2, win = win2)

In many logic languages, including our prior work on founded semantics [18, 19], a program is an
unstructured set of rules and facts. The structure and re-use provided by kunits is vital for expressing
knowledge modularly, building large conceptual models and developing large practical applications.

Referencing founded semantics. The founded semantics of a predicate P in a kunit K (formally
defined in Section 4.2) can be referenced in K using special predicates P.T, P.F and P.U, one for
each of the three truth values T , F and U . For each truth value t, P.t(c1, ..., ca) is true if P(c1, ..., ca)

has truth value t, and is false otherwise.
Note that the founded semantics of K can be referenced in another kunit K2 by simply adding

use K, i.e., instantiating K in K2 without replacing any predicate, when predicates of K and K2
are disjoint. Otherwise, an instantiation with predicate replacements can be used to avoid name
collisions. Our could also add a language feature for referencing the founded semantics of K using
predicates of the form K.P.T, K.P.F and K.P.U, instead of using instantiation.

To ensure that the semantics of P is fully determined before these predicates are used, P cannot be
defined transitively using these predicates. Predicates that reference founded semantics are implicitly
given the meta-constraint certain and can appear only in rule bodies.

When referencing the undefined part of a predicate, it is sometimes desirable to prune uninterest-
ing values. For example, consider the rule draw(x) ← win.U(x). If the kunit contains constants
representing players as well as positions, win(X ) is undefined when X is a player, and the user
wants draw to hold only for positions, then the user could add to the rule a conjunct move(x,y)
∨ move(y,x), to select x that are positions in moves.

Referencing constraint semantics. The constraint semantics of a kunit K (formally defined in
Section 4.2) can be referenced in another kunit K2 using the special predicate K.CS. Using this
special predicate in any rule in K2 has the effect of adding each constraint model of K as an element
in the domain (that is, set of constants) of K2. In other words, the possible values of variables in K2
include the constraint models of K. The assertion K.CS(c) is true when c is a constraint model of K
and is false for all other constants.

Note that the constraint semantics of K cannot be referenced from within K; this ensures that the
set of constraint models is fully defined before it is referenced. The constraint semantics of K cannot
be referenced by instantiating K; this is why we need to introduce a language feature for referencing
it using predicates of the form K.CS.

The constraint models of a kunit K can be referenced using K.CS only if K does not reference
its own founded semantics (using predicates such as P.U). This restriction is needed to prevent
constraint models from containing contradictions such as the following: suppose P.U(0) is true in
the founded model of a kunit K, and K has at least one constraint model m; then P.U(0) must also
be true in m, but P(0) must be true or false, not undefined, in m, because m is 2-valued. A kunit
K2 has a CS-dependency on another kunit K if K2 uses K.CS. The CS-dependency relation must be
acyclic.

When the value of a variable X is a constraint model of K, a predicate P of K can be referenced
using the notation X .P. If the value of X is not a constraint model, or P is not a predicate defined in
that constraint model, then X .P is undefined for all arguments.
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Knowledge of uncertain worlds: programming with logical constraints 201

Predicates that reference constraint semantics are implicitly given the meta-constraint certain
and can appear only in rule bodies.

4 Formal definition of semantics of DA logic

This section extends the definitions of founded semantics and constraint semantics in [18, 19] to
handle the new features of DA logic.

Handling kunits is relatively straightforward. Because each kunit defines a distinct set of
predicates, the founded semantics of the program is simply a collection of the founded semantics
of its kunits, and similarly for the constraint semantics. All use constructs in a kunit are expanded,
as described in Section 3, before considering its semantics. Therefore, the constants, facts, rules and
meta-constraints of a kunit include the corresponding elements (appropriately instantiated) of the
kunits it uses.

Handling references to founded semantics and constraint semantics requires changes in the
definitions of domain, literal, interpretation and dependency graph.

Handling disjunction, which is mentioned as an extension in [18, 19] but not considered in the
detailed definitions, requires changes in the definition of completion rules and the handling of closed
predicates.

The paragraphs “Founded semantics of DA logic without closed declarations”, “Least fixed point”
and “Constraint semantics of DA logic” are essentially the same as in [18, 19]; they are included for
completeness.

When we say that a predicate is certain, complete, or closed, we mean that it has that declaration
in column 2 of Table 1 from its meta-constraint.

4.1 Preliminary definitions

Atoms, literals and projection. Let π be a program. Let K be a kunit in π . A predicate is intensional
in K if it appears in the conclusion of at least one rule in K; otherwise, it is extensional in K. The
domain of K is the union of the following sets: the set of constants in K, and for each kunit K1 such
that K1.CS appears in K, the set of constraint models of K1. Constraint models are formally defined
in the last paragraph of Section 4.2. The requirement that the CS-dependency relation is acyclic
ensures the constraint models of K1 are determined before the semantics of K is considered.

An atom of K is a formula P(c1, ..., ca) formed by applying a predicate P in K with arity a to a
constants in the domain of K. A literal of K is a formula of the form P(c1, ..., ca) or P.F(c1, ..., ca),
for any atom P(c1, ..., ca) of K where P is a predicate that does not reference founded semantics
or constraint semantics. These are called positive literals and negative literals for P(c1, ..., ca),
respectively. A set of literals is consistent if it does not contain positive and negative literals for
the same atom. The projection of a kunit K onto a set S of predicates, denoted Proj(K, S), contains
all facts of K for predicates in S and all rules of K whose conclusions contain predicates in S.

Interpretations, ground instances, models and derivability. An interpretation I of K is a
consistent set of literals of K. Interpretations are generally 3-valued.

• For a predicate P that does not reference founded or constraint semantics, P(c1, ..., ca) is true
(T) in I if I contains P(c1, ..., ca), is false (F) in I if I contains P.F(c1, ..., ca) and is undefined
(U) in I if I contains neither P(c1, ..., ca) nor P.F(c1, ..., ca).

• For the predicates that reference founded semantics, for each of the three truth values t,
P.t(c1, ..., ca) is true in I if P(c1, ..., ca) has truth value t in I , and is false otherwise.
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202 Knowledge of uncertain worlds: programming with logical constraints

• For the predicates that reference constraint semantics, K1.CS(c) is true in I if c is a model in
the constraint semantics of K1, and is false otherwise; the requirement that the CS-dependency
relation is acyclic ensures that the constraint models of K1 are determined before the semantics
of K1.CS(c) is considered.

• If c is a constraint model that provides a truth value for P(c1, ..., ca), then c.P(c1, ..., ca) has
the same truth value in I that P(c1, ..., ca) has in c, otherwise it is undefined.

An interpretation I of K is 2-valued if every atom of K is true or false in I , that is, no atom is
undefined. Interpretations are ordered by set inclusion ⊆.

A ground instance of a rule R is any rule that can be obtained from R by expanding universal quan-
tifications into conjunctions over all constants in the domain, instantiating existential quantifications
with constants, and instantiating the remaining variables with constants.

An interpretation is a model of a kunit if it contains all facts in the kunit and satisfies all rules of
the kunit (that is, for each ground instance of each rule, if the body is true, then so is the conclusion),
when the rules are interpreted as formulas in 3-valued logic [10]. A collection of interpretations,
one per kunit in a program π , is a model of π if each interpretation is a model of the corresponding
kunit.

The one-step derivability operator TK performs one step of inference using rules of K, starting
from a given interpretation. Formally, C ∈ TK(I) iff C is a fact of K or there is a ground instance R
of a rule in K with conclusion C such that the body of R is true in I .

Dependency graph. The dependency graph DG(K) of kunit K is a directed graph with a node for
each predicate of K that does not reference founded semantics and constraint semantics (including
these predicates is unnecessary, because they cannot appear in conclusions), and an edge from Q
to P labeled + (respectively, −) if a rule whose conclusion contains Q has a positive (respectively,
negative) hypothesis that contains P. If the node for predicate P is in a cycle containing only positive
edges, then P has circular positive dependency in K; if it is in a cycle containing a negative edge,
then P has circular negative dependency in K.

4.2 Founded semantics and constraint semantics of DA logic

This subsection first defines founded semantics of DA logic without meta-constraint closed, then
extends the founded semantics to handle meta-constraint closed, and then defines the constraint
semantics of DA logic.

Founded semantics of DA logic without meta-constraint closed. Intuitively, the founded model
of a kunit K without meta-constraint closed, denoted Founded0(K), is the least set of literals
that are given as facts or can be inferred by repeated use of the rules. We define Founded0(K) =
LFPbySCC(NameNeg(Cmpl(K))), where functions Cmpl, NameNeg and LFPbySCC, are defined as
follows.

Completion. The completion function, Cmpl(K), returns the completed version of K. Formally,
Cmpl(K) = AddInv(Combine(K)), where Combine and AddInv are defined as follows.

The function Combine(K) returns the kunit obtained from K by replacing the facts and rules defin-
ing each uncertain and complete predicate Q with a single combined rule for Q, defined as follows.
(1) Transform the facts and rules defining Q so they all have the same conclusion Q(V1, ..., Va), by
replacing each fact or rule Q(X1, ..., Xa) ← B with Q(V1, ..., Va) ← (∃ Y1, ..., Yk | V1 = X1∧· · ·∧Va =
Xa ∧ B), where V1, ..., Va are fresh variables (i.e., not occurring in the given rules defining Q), and
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Y1, ..., Yk are all variables occurring in X1, ..., Xa, B, where B denotes the entire body of the rule. (2)
Combine the resulting rules for Q into a single rule defining Q whose body is the disjunction of the
bodies of those rules. This combined rule for Q is logically equivalent to the original facts and rules
for Q. This definition is the same as given for the core language in [18, 19], except generalized to
allow rule bodies that may contain disjunction. Similar completion rules are used in Clark completion
[5] and Fitting semantics [10].

The function AddInv(K) returns the kunit obtained from K by adding, for each uncertain and
complete predicate Q, a completion rule that derives negative literals for Q. The completion rule for
Q is obtained from the inverse of the combined rule defining Q (recall that the inverse of C ← B is
¬C ← ¬B), by putting the body of the rule in negation normal form, that is, using equivalences of
predicate logic to move negation inwards and eliminate double negations, so that negation is applied
only to atoms.

Least fixed point. Explicit use of negation is eliminated before the least fixed point is computed,
by applying the function NameNeg. The function NameNeg(K) returns the kunit obtained from K by
replacing each ¬P(X1, ..., Xa) with P.F(X1, ..., Xa).

The function LFPbySCC(K) uses a least fixed point to infer facts for each strongly connected
component (SCC) in the dependency graph of K, as follows. Let S1, ..., Sn be a list of the SCCs
in dependency order, so earlier SCCs do not depend on later ones; it is easy to show that any
linearization of the dependency order leads to the same result for LFPbySCC. For convenience,
we overload Si to also denote the set of predicates in the SCC Si.

Define LFPbySCC(K) = In, where I0 = ∅ and Ii = AddNeg(LFP(TIi−1∪Proj(K,Si)), Si) for
i ∈ 1..n. LFP(f ) is the least fixed point of function f . The least fixed point is well-defined, because
TIi−1∪Proj(K,Si) is monotonic, because the kunit K was transformed by NameNeg and hence does not
contain negation. The function AddNeg(I , S) returns the union of I and the set of completion facts
for predicates in S that have meta-constraint certain; specifically, for each such predicate P, and
for each combination of values c1, ..., ca of arguments of P, if I does not contain P(c1, ..., ca), then
P.F(c1, ..., ca) is added as a completion fact.

Founded semantics of DA logic with meta-constraint closed. Informally, when a predicate of
kunit K has meta-constraint closed, an atom A of the predicate is false in an interpretation I ,
called self-false in I , if every ground instance of rules that concludes A, or recursively con-
cludes some hypothesis of that rule instance, has a hypothesis that is false or, recursively, is
self-false in I .

To formally define the set of self-false atoms, we first transform the rules of K so that they do not
contain disjunction, by putting the body of each rule R containing disjunction into disjunctive normal
form (DNF) and then replacing R with multiple rules, one per disjunct of the DNF; this allows direct
re-use of the following definitions of unfounded set and self-false atom from [18, 19], which do not
take disjunction into account.

A set U of atoms of kunit K is an unfounded set of K with respect to an interpretation I of K
iff, for each atom A in U , for each ground instance R of a rule of K with conclusion A, either (1)
some hypothesis of R is false in I or (2) some positive hypothesis of R for a closed predicate is in
U ; this is the usual definition of unfounded set [31], except we inserted “for a closed predicate”.
SelfFalseK(I), the set of self-false atoms of kunit K with respect to interpretation I , is the greatest
unfounded set of K with respect to I .

The founded semantics is defined by repeatedly computing the semantics given by Founded0
(the founded semantics without meta-constraint closed) and then setting self-false atoms
to false, until a least fixed point is reached. For a set S of positive literals, let ¬ · S =
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{P.F(c1, ..., ca) | P(c1, ..., ca) ∈ S}. For a kunit K and an interpretation I , let K ∪ I denote K
with the literals in I added to its body. Formally, the founded semantics is Founded(K) = LFP(FK),
where FK(I) = Founded0(K ∪ I) ∪ ¬ · SelfFalseK(Founded0(K ∪ I)).

Constraint semantics of DA logic. Constraint semantics is a set of 2-valued models based on
founded semantics. A constraint model of K is a consistent 2-valued interpretation I of K such
that I is a model of Cmpl(K) and such that Founded(K) ⊆ I and ¬ · SelfFalseK(I) ⊆ I . Let
Constraint(K) denote the set of constraint models of K. Constraint models can be computed from
Founded(K) by iterating over all assignments of true and false to atoms that are undefined in
Founded(K), and checking which of the resulting interpretations satisfy all rules in Cmpl(K) and
satisfy ¬ · SelfFalseK(I) ⊆ I .

4.3 Properties of DA logic semantics

The following theorems express important properties of the semantics.

THEOREM 4.1
The founded model and constraint models of a program π are consistent.

PROOF. First we consider founded semantics. Each kunit in the program defines a distinct set
of predicates, so consistency can be established one kunit at a time. For each kunit K, the proof
of consistency is a straightforward extension of the proof of consistency of founded semantics
[19,Theorem 1]. The extension is to show that consistency holds for the new predicates that reference
founded semantics and constraint semantics.

For predicates in K that reference founded semantics, we prove this for each SCC Si in the
dependency graph for K; the proof is by induction on i. The predicates used in SCC Si to reference
founded semantics have the same truth values as the referenced predicates in earlier SCCs. These
truth values are consistent because, by the induction hypothesis, the interpretation computed for
predicates in earlier SCCs is consistent.

For predicates in K that reference constraint semantics, they have the same truth values as the
referenced predicates in the constraint models of other kunits, and constraint models are consistent
by definition.

Next we consider constraint semantics. Again note that constraint models are consistent by
definition. �
THEOREM 4.2
The founded model of a kunit K is a model of K and Cmpl(K). The constraint models of K are
2-valued models of K and Cmpl(K).

PROOF. The proof that Founded(K) is a model of Cmpl(K) is essentially the same as the proof
that Founded(π) is a model of Cmpl(π) [19,Theorem 2], because the proof primarily depends on the
behavior of Cmpl, AddNeg and the one-step derivability operator, and they handle atoms of predicates
that reference founded semantics and constraint semantics in exactly the same way as other atoms.
Constraint models are 2-valued models of Cmpl(K) by definition. Any model of Cmpl(K) is also a
model of K, because K is logically equivalent to the subset of Cmpl(K) obtained by removing the
completion rules added by AddInv. �
THEOREM 4.3
DA logic is decidable.
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PROOF. DA logic has a finite number of constants from given facts, and has sets of finite nesting
depths bounded by the depths of CS-dependencies. In particular, it has no function symbols to build
infinite domains in recursive rules. Thus, DA logic is over finite domains and is decidable. �

Proving decidability of DA Logic is straightforward, but stating it explicitly is important, because
DA logic supports recursion and allows nested constraint models to be used as constants.

5 Additional examples

We present additional examples that show the power of our language. They are challenging or
impossible to express and solve using prior languages and semantics. For each example, we
spell out the default meta-constraint for each predicate, in a topological-sort dependency order.
We use -- to prefix comments.

5.1 Same different games

The same win-not-win game can be over different kinds of moves, forming different games,
using kunit instantiation. However, the fundamental winning, losing and draw situations stay the
same, parameterized by the moves. The moves could also be defined easily using another kunit
instantiation.

EXAMPLE

Consider the following kunits. First, path_unit defines path recursively using edge: there
is a path from x to y if there is a sequence of connected edges leading from x to y. Then,
win_path_unit defines link, uses path_unit to infer path with edge bound to link
and finally uses win_unit in Section 2 to determine winning, losing and draw positions except
with move bound to path. With default meta-constraints, edge and path are certain, link is
certain and win is complete.

kunit path_unit:

path(x,y) ← edge(x,y)

path(x,y) ← edge(x,z) ∧ path(z,y)

kunit win_path_unit:

link = {(1,2), (1,3),...} -- shorthand for link(1,2), link(1,3),...

use path_unit (edge = link) -- instantiate path_unit with edge replaced by link

use win_unit (move = path) -- instantiate win_unit with move replaced by path

Alternatively, in win_path_unit, one could define edge instead of link, and then use
path_unit without replacing the name edge to link, as follows.

kunit win_path_unit:

edge = {(1,2), (1,3),...} -- define edge in place of link

use path_unit () -- use path_unit without replacing edge to link

use win_unit (move = path)
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5.2 Defined from undefined positions

Sets and predicates can be defined using the set of values of arguments for which a given predicate
is undefined. This is not possible in previous 3-valued logic like WFS, because anything depending
on undefined can only be undefined.

EXAMPLE
Consider the following draw_unit. It defines move and uses win_unit. Then, using the
result of win-not-win game, predicate move_to_draw defines the set of positions that have a
move to a draw position, and predicate reach_from_draw defines the set of positions that
are reachable by following a path of special moves from a draw position. With default meta-
constraints, move is certain, win is complete and move_to_draw, special_move, path and
reach_from_draw are certain.

kunit draw_unit:

move = {(1,1), (2,3), (3,1)}

use win_unit ()

move_to_draw(x) ← move(x,y) ∧ win.U(y)

special_move = {(1,4), (4,2)}

use path_unit (edge = special_move)

reach_from_draw(y) ← win.U(x) ∧ path(x,y)

In draw_unit, we have win.U(1), that is, 1 is a draw position. Then we have
move_to_draw(3) to be true, and we have reach_from_draw(4) and
reach_from_draw(2) to be true.

Note that we could copy the single win rule here in place of use win_unit () and obtain an
equivalent draw_unit. We avoid copying when possible because this is a good principle, and in
general, a kunit may contain many rules and facts.

5.3 Unique undefined positions

Among the most critical information is assertions that have a unique true or false value in all possible
ways of satisfying given constraints but cannot be determined to be true by just following founded
reasoning. Having both founded semantics and constraint semantics at the same time allows one to
find such information.

EXAMPLE

Consider the following two kunits. First, pa_unit defines prolog, asp and move and uses
win_unit. Then, cmp_unit uses pa_unit and defines unique(x) to be true if (1) win(x)
is undefined in founded semantics, (2) a constraint model of pa_unit exists and (3) win(x) is
true in all models in the constraint semantics. With default meta-constraints, predicates prolog
and asp are complete, move is specified to be closed, win is complete and predicate unique is
certain. Note that prolog, asp and move cannot be certain because prolog and asp are defined
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with negation in recursion and move depends on prolog and asp.

kunit pa_unit:

prolog ← ¬ asp

asp ← ¬ prolog

move(1,0) ← prolog

move(1,0) ← asp

closed(move)

use win_unit ()

kunit cmp_unit:

use pa_unit ()

unique(x) ← win.U(x) ∧ ∃m ∈ pa_unit.CS ∧ ∀m ∈ pa_unit.CS | m.win(x)

In pa_unit, founded semantics gives move.U(1,0) (because prolog and asp are undefined),
win.F(0) (because there is no move from 0) and win.U(1) (because win(1) cannot be true or
false).

Constraint semantics pa_unit.CS has two models: {prolog, move(1,0), win(1)} and
{asp, move(1,0), win(1)}. We see that win(1) is true in all two models. So win.U(1)
from founded semantics is imprecise.

In cmp_unit, unique(1) is true. That is, win(1) is undefined in founded semantics, a
constraint model exists, and win(1) is true in all models in the constraint semantics.

5.4 Multiple uncertain worlds

Given multiple worlds each corresponding to a different model, different uncertainties can arise from
different worlds, yielding multiple uncertain worlds. It is simple to represent this using predicates
that are possibly 3-valued and that are parameterized by a 2-valued model.

EXAMPLE

Consider the following two kunits. The game in win_unit2 uses win_unit on a set of moves.
The game in win_set_unit has its own moves, but a move is valid if and only if it starts from
a position that is a winning position in a model in the constraint semantics of win_unit2. With
default meta-constraints, move in both kunits are certain, win is complete, valid_move is certain,
valid_win is complete and win_some and win_each are certain.

kunit win_unit2:

move = {(1,4),(4,1)}

use win_unit ()

kunit win_set_unit:

move = {(1,2),(2,3),(3,1),(4,4),(5,6)}

valid_move(x,y,m) ← move(x,y), win_unit2.CS(m), m.win(x)

use win_unit (move = valid_move(m), win = valid_win(m))

win_some(x) ← valid_win.T(x,m)

win_each(x) ← win_some(x) ∧ ∀ m ∈ win_unit2.CS | valid_win.T(x,m)
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In win_unit2, there is a 2-move cycle. The constraint semantics win_unit2.CS is a set of two
models, say {m1,m2}, where m1.win = {1} and m2.win = {4}. That is, in m1, position 1 is
winning, and position 4 is not, and in m2, the situation is the opposite.

In win_set_unit, each model m in win_unit2.CS leads to a separately defined
valid_move under argument m. In m1, only move(1,2) starts from the winning position 1,
and in m2, only move(4,4) starts from the winning position 4. So valid_move is true for only
valid_move(1,2,m1) and valid_move(4,4,m2).

The separate valid_move under argument m is then used to define a separate valid_win
under argument m, by instantiating win_unit with predicates move and win bound to
valid_move and valid_win, respectively, with the additional argument m. This yields
valid_win being true for only valid_win(1,m1).

Finally, win_some(x) is true for any position x such that valid_win(x,m) is true for some
model m, and win_each(x) is true if win_some(x) is true and valid_win(x,m) is true for
all models m in win_unit2.CS. The result is that win_some is true for only win_some(1)
and is false for all other positions, and win_each is false for all positions.

6 Restricted parameters and circular uses of kunits

Knowledge units are similar to modules in that they provide a means to organize the knowledge
expressed as logic rules and constraints. We discuss extensions that allow knowledge units to have
specially specified parameters, and have circular uses. We describe the pros and cons of supporting
them and show that there is no real difficulty in supporting them.

6.1 Units with restricted parameters

Knowledge units as described in Section 3 do not need specially specified parameters. Any predicate
in a kunit is in fact a parameter that can be instantiated with any predicate of the same number of
arguments, or even with additional arguments if desired.

Some people may be accustomed to using modules or components with a specially specified set of
parameters, where all uses of the module or component must instantiate exactly this restricted set of
parameters. This is straightforward to add to DA logic, by simply specifying some of the predicates
in a kunit as this restricted set of parameters of the kunit.

There are both pros and cons with specially specified parameters.

• The advantage is that one can hide the remaining predicates of the kunit from uses of the
kunit. Changes to the hidden predicates will not affect uses of the kunit so long as the changes
do not affect the specially specified parameters.

• The disadvantage is that if a hidden predicate becomes useful outside the kunit, the predicate
must be added to the specially specified parameters to be used. Furthermore, this change is
not limited to new uses of this kunit, but requires changes to all previous uses of the kunit.

Knowledge units with no restriction on parameters are more general and powerful for knowledge
representation, for at least two reasons.

1. They can be used in any way that is easy and clear, with any combination of instantiated
predicates that is needed, without changing the kunit or any previous uses of the kunit.

2. They encourage all predicates in a kunit to be carefully defined for clarity and reusability,
eliminating the need to hide predicates that are not externally used.
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Procedural programming benefits greatly from hiding internal details, because additional variables
and parameters are most often used for efficiency reasons. In DA Logic, rules are declarative
specifications, and hiding such specifications is generally unnecessary.

Nevertheless, to support hiding certain predicates, a kunit can specially specify which predicates
can be externally used, as follows:

kunit K (preds) :

body

where preds is a set of predicates in K that can be instantiated or can be used outside K. The use
clause

use K (P1 = Q1(Y1,1, ..., Y1,b1), ..., Pn = Qn(Yn,1, ..., Yn,bn))

does not need any change. The semantics is extended to check that each predicate Pi is in the set
preds of specially specified predicates of kunit K, and to ensure that there is no external use of
predicates not in preds.

Note that this extension still allows each use of a kunit to instantiate any subset of the specially
specified predicates of the kunit. This design is more general than parameterized module systems in
which each module has a fixed set of parameters, all of which must be instantiated at every use.

6.2 Units with circular uses

Uses of knowledge units as described in Section 3 must form acyclic dependencies.
Some people may be accustomed to module systems that allow circular uses of modules. Allowing

circular uses has both pros and cons.

• The advantage is that modules could be smaller and more f lexible, and could use one another
recursively.

• The disadvantage is that the dependencies between predicates in modules with circular uses
may be difficult to determine and understand.

Knowledge units with no circular uses are easier to understand, for at least two reasons.

1. Dependencies between predicates defined in the knowledge units are clearer at a high level,
because they must follow the tree of dependencies between kunits. With circular uses of kunits,
all predicates defined in those kunits potentially depend on each other, depending on the details
of their definitions.

2. Within a kunit, predicates easily capture any structure including cyclic graphs and the trivial
case of recursive structures like trees, and recursive rules can easily define mutually dependent
predicates.

Nevertheless, to support circular uses of kunits in DA logic, we can eliminate the requirement
that the use-dependency relation is acyclic, and extend the semantics of use to handle circularity as
follows. Recall from Section 3 that using a kunit has the effect of instantiating the body using the
specified substitution and then inlining the result at the use. To support circular uses, the algorithm
is extended to keep track of which uses of kunits have already been instantiated and inlined. The
effect of using a kunit is to check whether the same use of the kunit has already been instantiated
and inlined, and if so, do nothing, otherwise instantiate and inline it.

DA logic with this extension is still decidable, because there is only a finite number of possible
uses of kunits in a program.
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7 Related work and conclusion

Many logic languages and semantics have been proposed. Several overview articles [1, 11, 24, 25,
28] give a good sense of the complications and challenges when there is unrestricted negation in
recursion. Notable different semantics include Clark completion [5] and similar additions, e.g., [4,
12, 15, 21, 26, 27], Fitting semantics or Kripke-Kleene semantics [10], supported model semantics
[2], stratified semantics [2, 29], WFS [30, 31] and SMS [13]. Note that these semantics disagree, in
contrast to different styles of semantics that agree [9].

There are also a variety of works on relating and unifying different semantics. These include
Dung’s study of relationships [7], partial stable models, also called stationary models [24], Loop
formulas [22], FO(ID) [6] and founded semantics and constraint semantics [18, 19]. FO(ID) is
more powerful than works prior to it, by supporting both first-order logic and inductive definitions
while also being similar to SMS [3]. However, it does not support any 3-valued semantics. Founded
semantics and constraint semantics uniquely unify different semantics, by capturing their different
assumptions using predicates declared to be certain, complete and closed, or not.

However, founded semantics and constraint semantics by themselves do not provide a way for
different semantics to be used for solving different parts of a problem or even the same part of the
problem. DA logic supports these, and supports everything completely declaratively, in a unified
language.

Specifically, DA logic allows different assumptions under different semantics to be specified
easily as meta-constraints, and allows the results of different semantics to be built upon, including
defining predicates using atoms that have truth value undefined in a 3-valued model and using
models in a set of 2-valued models, and parameterizing predicates by a set of 2-valued models. More
fundamentally, DA logic allows different parts of a problem to be solved with different knowledge
units, where every predicate is a parameter that can be instantiated with new predicates, including
new predicates with additional arguments. These are not supported in prior languages.

Among many directions for future work, one particularly important and intriguing problem is
to study optimal algorithms and precise complexity guarantees, similar to [17], for inference and
queries for DA logic.
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