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Abstract First, it can lead to poor utilization of memory, when one data struc-

This paper presents an analysis that derives a formula describingfure is full and another has space to spare. Second, it requires ex-
plicit memory management: the programmer must keep track of

the worst-case live heap space usage of programs in a functional*” ™ ) . o
language with automated memory management (garbage collec-Which array entries are in use and when it is safe to mark an occu-
tion). First, the given program is automatically transformed into Pi€d entry as available; this can be difficult for entries that may be
bound functionshat describe upper bounds on the live heap space USed by multiple parts of the program and referenced from multi-
usage and other related space metrics in terms of the sizes of funcple d_ata structures. Of course, thes_e are some of the reasons for the
growing popularity of languages with automatic memory manage-

tion arguments. The bound functions are simplified and rewritten .
to obtain recurrences, which are then solved to obtain the desired™eNt (Java, C#, Python, Ruby, etc.) in non-embedded systems. Ver-

formulas characterizing the worst-case space usage. These recurSionS Of these languages suitable for embedded systems exist and
rences may be difficult to solve due to uses ofiteximunopera- are be!ng promoted, g, Java Platform, M_lcro Edition (J_avaME)
tor. We give methods to automatically solve categories of such re- &nd Microsoft .NET Micro Framework. While advances in real-

currences. Our analysis determines and exploits monotonicity andime garbage collection (e.g., [5]) play an essential role in making
monotonicity-like properties of bound functions to derive upper such languages practical, analyses that can accurately predict the

bounds on heap usage, without considering behaviors of the pro_worst-case Space usage of programs writter_1 in_garbage-collected
gram that cannot lead tc; maximal space usage languages are also important for their adoption in embedded sys-

tems [13].
Categories and Subject Descriptors~.3.2 [Logics and Meanings Space analysis is important for determining space requirements
of Program§: Semantics of Programming Languages—Program and for accurate execution-time analysis. For example, analysis
analysis of worst-case execution time in real-time systems often uses loop

bounds or recursion depths, both of which are commonly deter-
_ . ) mined by the size of the data being processed. Space analysis can
Keywords Live Heap Space Analysis, Functional Languages, also help determine the timing effects of memory-related events

General Terms Languages, Performance, Verification

Garbage Collection, Recurrence Relations such as memory allocation, garbage collection, cache misses, and
) page faults.
1. Introduction This paper describes a general approach for automatic accurate

analysis of heap space usage, specifically, the maximum size of live
data on the heap during execution. In other words, the analysis de-
Eermines heap usage of programs in the presence of perfect garbage
collection where garbage is collected as soon as it is created. This
result is the minimum amount of heap space needed to run a pro-

Analysis of the time and space requirements of computer programs
is important for virtually all computer applications, especially in

embedded systems, real-time systems, and interactive systems. Th
importance of time analysis for real-time and embedded systems is

reflected in the long tradition of research on worst-case execution X . X Lar
gram, no matter which garbage collection scheme is used. Limiting

time (WCET) analysis. Space usage is also critical in many real- his “mini f hean” in th f
time and embedded systems, due to the limited amount of memory progf;ra;n tot: IS mllrlnth_Jm amhount 0 _ear; In the ptrﬁs;sncebo
and the potential for severe consequences if the system fails du¢MPEreCt garbage coflection schemes, simply means that garbage

to insufficient memory. Due in part to the difficulty of predicting collection needs to be performed intermittently to free up space for

the space usage of programs that use dynamic memory allocation allocation. The analysis can easily be modified to determine related

real-time and embedded software typically use only statically al- metrics, such as space usage when garbage collection is performed

located data structures. However, this approach has disadvantage _nIy at fixed points in the program. It can .‘"‘ISO be adapted_ to ana-
yze the space usage of continuously running processes with cyclic

* This work was supported in part by ONR under Grant N00014-07-1-0928 Pehavior. Our analysis is designed for a functional language. This

and NSF under Grants CCF-0613913, CNS-0627447, CNS-0831298, andiS @ simplification that allows us to focus on the fundamental is-
CNS-0509230. sues first, deferring the complications needed to handle imperative

updates.

Our approach starts with a prografhwritten in a functional

language with garbage collection. We construct, for every function
Permission to make digital or hard copies of all or part of this work for personal or S IN P, bound functions that describe worst-case live heap space
classroom use is granted without fee provided that copies are not made or distributedusage off and other measures—such as the size of the result of
for profit or commercial advantage and that copies bear this notice and the full citation f__necessary to determine the space usage of the program. The
e s i o o7 8ot 19 19T inputs to bound functions fof are he sizes of inputs {4 Bound

functions are simplified and rewritten to recurrence relations, which
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Copyright@® 2009 ACM 978-1-60558-347-1/09/06. . . $5.00 are solved into closed form expressions that describe live heap




space usage and other measures in terms of sizes of inputs to thelication f (e, . . ., e,) of the functionf (v1, ..., v, ), expressions

corresponding original functions. The basic version of our analysis e1, ..., e, are arg-exps of the call tf. Fori € [1,n], e; corre-

is limited to programs that manipulate non-nested lists, i.e., lists in spondgo parametep; of f.

which every element is a value of a primitive data type. Section 12

describes how to extend the analysis to accommodate other dataArgument-uses (arg-uses) of functions.An arg-use of a func-

types. tion f is an occurrence of an application #fin an arg-exp. For
Solving recurrence relations can be difficult. The availability example,g(1 + f(z),2) contains an arg-use of which corre-

of increasingly sophisticated recurrence solvers [21, 6], is an as- spondsto the first parameter of. Arg-uses of expressions, e.g.,

set to our analysis. We use methods such as elimination of redun-g(if p then el else e2), are defined similarly.

dant arguments from recursive bound functions and recurrences to

improve solvability. This may even eliminate dependence on, and Argument-users (arg-users) of functions.In a function applica-

hence the need to solve, certain recurrences. Since we are interestetion f(e1, ..., e, ), if e; contains an arg-use of a functignthen f

in worst-case heap space usage, bound functions and their recuris called an arg-user of. For example, inf(1 + g(z),2), f is an

rences may contain theax operator, which is typically not han-  arg-user ofy. Arg-users of expressions are defined similarly.

dled (or not handled exactly) by existing recurrence solvers such as

[21, 6]. We use templates based on pattern matching and inductiveDependence. A function f is dependent on a functiapif there

reasoning to solve such recurrences. Results of some bound funcis a path fromf to ¢ in the call graph off.

tions are used as arguments to others. Maximizing the results of the

former bound functions leads to maximal live heap space usage fOVMonotonicity. Consider functionf : X1 X Xa... X Xm — Y,

the program only if the latter bound functions are monotonically in- \where X4, ..., X.., andY are sets of whole numbers, integers or

creasing with respect to their arguments. Monotonicity properties rea| numbersf is monotonically increasing with respect to ité
of bound functions are ascertained from their closed form solutions, argument, if

if known, and using templates for bound functions still expressed
as recurrences. Va,be Xi,c1 € X1,...,¢m € Xim. a < b=
fler,eayeoyay. . em) < fler,ea,.ooyby ooy Cm)

2. Language wherea andb are thei'th argument off. We use the termsono-
We formalize the analysis for a first-order, call-by-value functional tonicandmonotonically increasingnterchangeably.

language that has literal values of primitive types (e.g., Boolean

and integer constants), operations on primitive types (e.g., addition

and subtraction), data constructors (engl| for the empty list, and 4. Bound Functions

consto construct lists), testers (which test whether a value is built
using a particular constructor), selectors (which extract parts of data
structures), conditionals, bindings (i.e., local variable declarations),
and function calls. A program is a set of function definitions of
the form f(v1, ..., vn) = e, where an expressionis given by the

Consider functionf (v1, ..., v») = ey in input programP. We de-
fine three bound functions fgf. Bound functions off take as ar-
guments, the sizes of arguments ..., v, of f. We call thesesize
argumentsand denote them by, ..., v,,. Thelive heap space
bound functionof f, Sy, called simply theS function of f, de-

grammar scribes the worst-case heap usag¢ afver all possible combina-
en=v variable tions and values of arguments, ..., v, having sizes_, ..., vn,,
l literal respectively.
cons(e1, e2) constructor application S4( )
rim(e1,. .., en rimitive operation fLss -5 Uny )
fwll?((e) ) Fester P = upper bound (min heap to evaluatéus, ..., an))
car(e) first element of list allargsa..anto f
cdr(e) tail of list st Vie[nl. Jail=vi
if p thfn e else 62_ . conditional expression The worst-case heap usage corresponds to the maximum size of
let vy =e1,...,vn = en in e binding expression the live heap seen during the evaluation fof This is also the
flei, ... en) function application P g fo

minimum heap space required to evaluften arguments of sizes
Predicates in conditional expressions are given by the grammar v, _, ..., v, , N0 matter which garbage collection scheme is used. A
- ; heap object idive as long as it can be reached from the program
p = vl prim(ps,....p) [ null?(p) | car(p) | cdr(p) throFL)lgh jfunction argumgnts or the reference to the resﬂlt gf the
The basic version of our analysis supports recursive functions most recently evaluated expression. The live heap space usage of
but not mutual recursion. Section 12 describes how to handle mu- programP is described bys,, wherey is the entry function ofP.
tual recursion. The new result-space bound functiai f, also called theV
Our analysis makes use of type information, which may be function of f, denotedN;, describes the newly-allocated space
obtained from type declarations or from automated type inference. in the result off in terms of the sizes of’'s arguments, and the
type(v) denotes the type of variable rtype(f) denotes the return  amounts of newly-allocated space in these arguments. For function
type of functionf. The allowed types arBool, Int andList. call (e, ...,en), Ny returns the number of new heap cells in the
resultr of the call. A heap cell in is new if it is created after
3. Definitions the start of evaluation of (e, ..., e ), i.€., created in the body of
f or in one of the arg-exps, ..., e,. S0, in addition to itssize
]argumentst also hamewsizearguments, denoted , , ..., Un,, ,
representing the number of new heap cells in each argument. For
flei,...,en), vsy, is the number of heap cells in created during
Argument-expression (arg-exp).An arg-exp is an expression  evaluation of expressios;. v;,, is meaningful only ifv; is a list;
whose result is an argument to a function call. In a function ap- if not, then there are no heap cellsipandv;,, is not required or

Data Sizes. The size of an empty list is 0. The sizes of all other
atomic objects (booleans and numbers) are their values. The size o
a listis its length.



used. For f(vi,...,vn) =€, SF(vigy...,Un,) = Sle.

Nf(Uls,...,vns,’l)lw,...,’Unw) — 1 — —
amount of new heap in the result|of Sl =Sl =Sk =0

= upper bound fla, ..., an) Slcons(er, e2)] = 1 4+ max(Slei], Sle2])

allargsay,...,anto f Slprim(ey, ..., en)] = max(Slei], ..., S[en])
oot vien]- Jail=vi S[null?(e)] = S[ear(e)] = S[edr(e)] = Se]
Inew heap i | Sviy, S|[if p then e; else es ]

The size bound functioof £, also called theR function of f, _ Jmax(S[ei], S[e2]), if p containscar
denotedR;, describes the size of the result pfin terms of the if R[p] then Sei] else S|ez], otherwise
sizes off’s arguments. Slletvi =e1, ..., v, =enine]

Rs(vi.,...,vn,) = upperbound |[f(ai,...,an = maz(S|eq],
f( ! allargsay,...,anto f | ( ' )‘ N[ffl] [O/'Uw] +S [62] )
s.t. Vi€[1,n]. |a;|=vi, :
The bodies ofS;, Ny, and R; are obtained by applying transfor- Nlel][0/ve] + ... + Nen-1][0/vw] + Slen],
mationsS, NV, andR, respectively, to the body; of f. The defi- Nlei][0/ve] + ... + N [en] [0/vw]+
nitions of transformations, AN'andR. are provided in Sections 5, Sle] [Rled] /v, .., R [en] fvn.])
6,and 7. S[f(er,...,en)]
Sle]: Computes an upper bound on the live heap required for = maz(S[ei],
evaluation ofe. Nlea] [0/vw] + Sez],
Nle]:  Computes an upper bound on the number of new heap cells :
in resultr of e. If e occurs in the body of functiorf, then a heap Nle] [0/vw]... + N [e(n—1)] [0/vw] + Sen],
cell in r is new if it is created ire, or if it is new inwvs, ..., vn, N el [0/vw]... + N ]en] [0/vw]+
which can easily be determined using,, ..., v,,,. Since there is Si(Rlei], ..., Rlen]))

no imperative update in our target language, any node that points to
another node must be newer than the latter. So, for a list argument
v;, only the firstv;,, nodes are new.

Figure 1. TransformationS. e[0/v.,] substitutes every newsize
argumenty,, in e with 0.

R[e]l: Computes an upper bound on the size of the result of

R [e] is boolean ife returns a boolean and is numerieifeturns a

number or a list.

6. New Result-Space Bound Functions

5. Live Heap Space Bound Functions TransformationV, defined in Figure 2, produces new result space-

TransformationS, defined in Figure 1, is used to derive live heap bound functions. If functiory in the input program returns prim-
space bound functions. In titransformation of conditionals, if ~itive data, then its result uses no heap space/pdeturns 0.N

the predicate contains:r then its truth value is unknown, because functions exploit the fact that, in the absence of imperative update,
the analysis does not track the values of list elements. The heapnéwer heap cells reference older heap cells. So, if avlisbn-
space required to evaluate the conditional is the maximum of that tainsv., new heap cells, it is the first, cells of v that are new.
required for the branches (the grammar in Section 2 implies that Newsize arguments are decremented in recursive call fonc-
predicates in conditional expressions do not perform heap alloca- tions if corresponding size arguments are, e\j[f (cdr(ls))] is
tion). If the predicate does not containr, then we maintain the ~ Nf(lss — 1,ls, — 1). Recursion often proceeds until; = 0,
conditional structure, and transform the predicate and the branchesWhich implies decrementing from is,,. Only the firstls,, of is,
Such predicates are often tests of recursive functions that control re-Cells are new. So, all decrements to newsize arguments are enclosed
cursion, e.g., base case tests or tests that determine the next recuRY applications ofnaz(0, ...). See Figure 4 for examples of func-
sion step. The transformed conditionals in bound functions even- tions in an input program and correspondiNgunctions.

tually (after simplification) become multiple cases in the definiton ~ N functions may sometimes yield recurrences that are diffi-
of a recurrence. The original predicatén the conditional expres-  Cult to solve, because of the large number of arguments (size and
sion is transformed into a predicate over size argumevitand R newsize arguments) and the presencenatr(0, ...) expressions.
transformations of conditionals are similar. If Ny cannot be solved, we redefine it @ (vi,,...,vn,) =

In function applicationf(ei, ..., e,), arg-expses, ...,e, are Ry (vig, ..., vn, ). In other words, instead of determining how much

evaluated in order, followed by the call th The heap usage of  Of the list returned by is new, we over-approximate, saying that
f(ex, ..., en) is the maximum of the heap usages of the arg-exps the whole list is new. In all our examples, these simplefunc-
e1,...,en and the heap usage ¢f when called with arguments  tions, wherever used, do not introduce overestimations in the anal-
whose sizes are those of the resultseof..., en. Whene;, i € ysis result. The redefinition does not lose accuracy in practice, be-
[2,n], is evaluated, the results of the previous arg-exps are live. So, cause our analysis determinesrst-casespace usage, and in the
the maximum size of the live heap during evaluation;dé the sum worst case, most functions either build completely new lists or the
of the newly-allocated space in the results of previous arg-exps andarguments given to functions are completely new; in both cases, all
Slei]. N'[ei] [0/v.] is the amount of new heap in that is allo- cells in the result lists are new. This is in keeping with the following
cated ine;. Newsize arguments are neither required nor applicable Observation:
and they are substituted wi@ls. The function call is evaluated after
all arg-exps, and this takes spagg(R [e1] , ..., R [exn])-

See Figure 4 for examples of functions in an input program and where the values of the newsize argument®&pfequal those of the
correspondingy functions. corresponding size arguments.

Nf(/Uls7"‘>/U7Ls7/Uls7'“)/U7Ls) = Rf(/uls7"‘7/u7ls)



For f(v1,...,un) = e, For f(vl,...,on) =e, Rf(vi,,...,vn,) = Rle]
0, if rtype(f) # List _ 7= o
L= N i Mk
N :N[m'_l] =0 | R [prim(ei, ..., en)] = prim(R[ei] , ..., R [en])
Nt = {0, Ttz bt R fri?(e)] = eq?(R ], 0)
R [car(e)] = uk, Rlcdr(e)] =Rle] — 1
Nleons(er,ez)] = 1+ Nle:] R[if p then e; else e]

Nlprim(ex, ...;en)] = 0 _ {maa:(R lel], R[ez]), if p containscar
N [null?(e)] = N[car(e)] =0 T 1if R[p] then R [e] else R [ez], otherwise

N [edr(e)] = maxz(0,N [e] — 1) Rletvi =e1, ..., vn =€, in€]

N [if p then e; else ey] = (Rle]) [Rlea] /1. - Rlen] /vn.]
_ {mam(/\f [e1] , Ne2]), if p containscar Rifler,...,en)]| = Rs(Rle],..., Rlen])
T 1if R[p] then N [eq] else NV [eg], otherwise

Nletvi =e1, ..., v, =€, in¢] Figure 3. TransformatioriR.

= (N[@]]) [R [61}] /'Uls, vR[E’"«]] /U’ﬂs7
N[el] JV1,,, ...,./\/‘[en] /Vnw]

Nf(e1,...,en)l
_ J0, if rtype(f) # List elements ot s that are less than or equalto

N¢(Rlei], ..., Rlen] ;N [ea], ..., N [exn]), otherwise im0

Rappena(n,m) = {1 + Rappena(n — 1,m) otherwise

Figure 2. TransformationV.

Rus(n) = 0ifn=0
#s\) =\ maxz(1 + Rus(n — 1), Rus(n — 1)) otherwise

7. Size Bound Functions Given recurrencé’, we define recurrencE®"! that has the same
TransformatiorR in Figure 3 produces size bound functions; recall arguments a and returns the set of results obtained by using the
that Ry bounds the size of the result (return value)foee figure value of each argument ofax in place of themaxz expression in

4 for examples of functions in an input program and corresponding T'. Note that this is done recursively, not only at the top-level call.
R functions. From the definitions of transformatiafis\/, andR, T, on the other hand, uses only the largest of the argumenta 0

it can be seen that results &f functions are used by and N at every recursion level.

functions only as the values of size arguments. Also, recall thatwe Intuitively, T' captures only the maximum value of the size or
are interested only in the maximal value of the input progrash’s  space measure for a function in the input program, whié cap-
function. Consider th& transformation of conditionals. Predicates  tures all possible values of the size or space measure for that func-
containingcar are concluded as being undeterminable and in such tion. We can generate the definitionf'* from the definition of
cases, the size of the result of the conditional is the maximum of T, by replacing each occurrence wfax with union and replac-

the sizes ofe; and ez, maz(R [e1], R [e2]). Ideally, we should  ing every function callF(. . .) with F*(...); note that upper case
return that size which helpS functions determine the worst-case |etters ¢, G, H) are used to denote bound functions. These re-
(maximal) space usage of the input program. But it is impossible placements in the definition @f need to be accompanied by mod-

to know which size to return, in the general case. Further, it is not jfications that ensure type-safety, for instance, the replacement of
tractable to return all sizes. Thus, the userafx in the definition primitive operators and functions with ones that are overloaded to
of bound functions is a necessary approximation, and based on thehandle regular argument values as well as sets of argument values.
somewhat reasonable expectation that the maximum size leads tg=gr example, for set¥ andY” of argument values tf, f(X,Y) =
maximum space-usage results of dependermind N functions. {flz,y) |z € X,y € Y}, andf(z,Y) = {f(z,y) | y € Y}.

We perform checks, namely MC1, MC2, and MC3 described later Recurrences;;, andRj"' and their solutions are shown below.

in this section, to verify if this is indeed the case, i.e., if the use )

of maz in R functions results in dependestand N functions R _Joifn=0

determining true upper bounds on space measures. Transformation us(n) = max(1 + Rys(n — 1), Rus(n — 1)) otherwise
R, along with checks MC1, MC2, and MC3, ensure that 7all =n

functions, including ones whose definitions do not contaiar {0} ifn=0

but are dependent oR functions that do, uniformly return upper R (n) = { all all .
bounds (maximums) on size measures. U + Rijs(n — 1), Rijs(n — 1)) otherwise

= {n,n—1,...,0}
Composite recurrences. A composite recurrence is a recurrence
(or a definition of a bound function) which contains an application A composite recurrenc® is simpleif the solution of7%" is
of max in which at least one arg-exp contains a recursive call to a singleton set for all evaluations of its arguments; otherwise, we
the function defined by the recurrence. A regular recurrence is onesay thatl’ is complex|If Ry is a simple composite recurrence, then

that does not contain such occurrencesrefz. The R function the size of the result of is uniquely determined by the sizes of its
Rappena Of append which appends one list to another, is regu- arguments. IfR; is a complex composite recurrence, then the size
lar, while Ry, the R function of lesserorequal-lisis composite. of the result off depends on the actual elements in list arguments
lesserorequal-listan auxiliary function ofjuick-sort takes a lists of f. The solution ofR{ is not a singleton set and therefor;.

and a cutoffr as arguments and returns a new list containing the is complex. TheR function R;, of insertwhich inserts a number



insertion-sort

insert

insertion-sor{ls) = if null?(ls) then nil
else insert(car(ls),
insertion-sorfcdr(ls)))

insert(x, ls) = if null?(ls) then cons(x, nil)
else if lessoreq?(z, car(ls))
then cons(z, ls)
else cons(car(ls), inser{x, cdr(ls)))

0iflss =0
1+ R;s(lss — 1) otherwise

|

lss

Sis(lss) = if lss = 0then 0 Sins(lss) = if lss = 0then 1
else max(S;s(lss — 1), else maz(1l, 14 Sins(lss — 1))
Nis(lss - 1) + Sins(Ris(lSs - 1))) 1if lss =0
_ f0iflss=0 = {1 + Sins(lss — 1) otherwise
— |\ maz(Sis(lss — 1), 2lss — 1) otherwise = ls.+1
~ J0iflss =0
~ ] 2lss — 1 otherwise
Nis(lss) = if lss = 0then 0 else N;ps(Ris(lss — 1)) Nins(Iss) = Rins(lss) =1+ 1ss
= lsg
Ris(lss) = if lss = 0then 0 else R;ps(Ris(lss — 1)) Rins(lss) = if lss =0then1+0

else max(1l +lss, 1 + Rins(lss — 1))

_ [1iflss =0
~ \maz(l+lIss, 1 + Rins(lss — 1)) otherwise
= 1+1Iss

Figure 4. Entry functioninsertion-sortand auxiliary functiorinsert of programinsertion-sort followed by their bound functions, recur-
rences (if any) obtained from bound functions, and closed form solutions of recurrences.

into a sorted list is a simple composite recurrence, as shown below.it is not always the same as the result Bfe1, . ..

R, _Jlifn=0
ins() =\ 1az(1 +n, 14 Rins(n — 1)) otherwise
wll {1}, fn=0
Rins(n) = {u({l +n}, 14+ R¥L(n — 1)) otherwise
= {1+n}

,en) (since

F = maz o F*). Consider functiorG; (v) = v — Fi(v) as an
example. The expression- F1 (v)’is the result of multiple rounds

of simplification, and this explains the occurrence of the result of
an R function in a non-recursive expression that defiGgswvhich
could be anS or N function. The result ofnaz o G$%, which

is the desired result @', is obtained by replacingF: (v)’ in the
body of G with the minimum element of " (v). Thus, the derived

We determine if composite recurrences are simple or complex using d€finitions of bound functions such &5 do not necessarily yield

templates. This is described in Section 9.
ComplexR functions. An R function iscomplexif it is defined

the desired upper bounds because of the usewf in called R
functions. So, for every compler function F' for which F* =
mazx o F*, we perform the following checks to ensure that the

by a complex composite recurrence or it depends on another com-gefinitions of bound functions dependent Bryield upper bounds

plex R function or its solution contains an applicationati.z over
closed forms; otherwise, we say that tRefunction issimple R
functions Rappena and R;,s are simple, whileR;;s is complex.
Rgs, shown below, is a compleR function even though the recur-

rence defining it is regular because of the dependence on complex

R function Rys.
Rgs(lss)
{ls5 if lss =00rlss =1

14+ Rys(Rus(lss — 1)) + Rgs(Rgis(Iss — 1)) otherwise
8. Conditions on Uses of Complexk Functions
We observe that for aR function F' that does not depend on any
complexR functions (in other words, does not call aRyfunction
or depends only on simpl& functions),F’ = max o F*. Con-

sider the following definition of a bound functiai that depends
on a complex® function F', for which F' = max o F!.

G(..)=... Fler,...,en) ...

From the discussion in Section 7, the desired result’aé that
of max o G*, whetherG is anS or N or R function. For
this to be true, in place of'(ei, ..., e,) in the body ofG, we
should use the specific sizec F*(e1,...,e,) that maximizes
the result of evaluation of the body @f. This desired size is
not necessarily the maximum element " (ey, ..., e,), i.e.,

on relevant space and size measures.

MC1 All expressions containing calls t6' are monotonically in-
creasing with respect to the callskb(e.g.,1 + F (. . .) is mono-
tonic with respect to the call t&', butn — (1 + F(...))) is

not. This check ensures that values of size argumenssasfd

N functions, determined using expressions containing applica-
tions of complexR functions, are maximized.

MC2 For every arg-use df by a functionH, occurring in the body of
G, the solution ofH should be monotonically increasing with
respect to the argument corresponding to the arg-uge @i
example fromguick-sort

Nqs(lSSv lS’LU)
Napp(~ . ‘Rlls(lss — 1), .. 'Rgls(lss — 1))

qs, app, lls, andgls are abbreviations foquick-sort append
lesserorequal-listandgreater-list respectively.R;;s and Ry
are complexR functions. So, the above definition &f,, is
correct only if N, is monotonically increasing with respect
to both its arguments (which it is, becauSg,, (Is1,,ls2,,)
l81s + ngw).

MC3 For every arg-use df' by function@, occurring in the body of

G, we need to ascertain from the definition@®fthat the use of
the result ofF (in other wordsmax o F*") yields the desired



maximum value, namely the resultofaz o G*. An example N function isNy (Iss,lsw) = 1 + maxz(0, (Isw — 1)). In particu-
from quick-sort lar, newsize arguments ¥ functions only get added to the result;
Sys(lss) non-monotonic operators are never applied to them. Further, new-
s lbs if s, — 0orls. — 1 size arguments have no counterparts in the original program, unlike
_ y (21;_1 Y - 1+ Sys(Rys(Iss — 1)) size arguments of numeric variables where operators applied to the
R lsa—1 5s h as\Mgls (LS5 ’ latter may translate into the same operators applied to the former
3.2 —2), otherwise in the definitions of bound functions. Predicates of conditionals
The definition ofS,; contains the recursive call,s (Rgis (Iss — could result in r_ecurrences_that are non-monotoni_c with respect to
1)). Ry is a complexR function. The result oRR,;s (equal to the arguments in the predicates; however, newsize arguments do
that of maz o R;Ei) can be used only if we can ascertain that Not occur in the predicates of conditional expressions after trans-
this will result in the body ofS,, evaluating tomaz o 52! formation by (note from the definition of\ that predicates are
qs st .
Templates are used to determine such properties (see . Tem{ransformed byR). Arg-exps of functions are transformed Byto
plates described in Section 10) are used to determine if MC3 OPtain size arguments to corresponding bound functions. So, new-
holds for a given recurrencé. They do so by checking if  SIZ& arguments are never used as size arguments with respect to
certain requirements, such as the following, are ni&ton- which bound functions can be non-monotonic.

tains only safe patterns of recursion, base cases afe in- . )
creasing, and closed form expressions added to results of re-9. Solving Composite Recurrences

cursive calls toz are monotonically increasing (this pertains \ye developed a set of templates to solve composite recurrences.
t0 “2*=~! 4 Is. — 1" in the definition ofS,.). These require- g templates are designed to match composite recurrences of the
ments ensure that recurring on a large argument value (in placefqrms that commonly arise in bound functions, such as fromSthe

of the result of the complex function) leads to a greater re-  yansformation of function applications (see Figure 1). The applica-
sult of evaluation of the body of/, than recurring on a small  jjity of a template is defined by a pattern that the recurrence must

argument value. match, together with some requirements that must be satisfied by
Monotonicity properties in MC1 and MC2 follow directly from  the constants and expressions in the recurrence. Several templates
monotonicity properties of primitive operations, e.g., x are solve composite recurrences by reducing the given composite re-

monotonic with respect to their arguments, — are monotonic currence into a regular recurrence containing a single argument
with respect to their first arguments but not with respect to their Of the maz application, such that the evaluationcfs the maxi-
second arguments, amdodulo is not monotonic with respect to ~ mum at the relevant base cases (different from the base cases of the
either of its two arguments. given recurrence), as well as the inductive case. Other templates

Consider a bound functio such that for everyz function ¥ work by reducing composite recurrences with multipie ap-
that G depends onF’ = max o F*". If checks MC1, MC2, and plications into component composite recurrences which are recur-
MCS3 are satisfied by all compleR functions that3 is dependent  sively solved. A complete list of templates is available in [24].

on, thenG = maz o G**. These checks are performed in the We now describe a template for solving composite recurrences
analysis for all bound functions. This includes the case wien  Of the form

is an R function. So, by induction, the previous argument holds Cly...yCit1, fn=1,...,4i+ j, respectively

for all bound functions because for any callBdunction F', F = T(n) = maz(e1(n), ea(n) + aT(n — b)), otherwise

maz o FU.
An example of a recurrencE whose body contains an arg-use  Wherei, j,ci, ..., ¢j+1,a, b are constants, and (n) andez(n) are

of a complexR function R by T', and which does not satisfy MC3 closed forms inn. T' has j + 1 base cases and one recursive
is: case. The requirements for applicability of the template include

R}”(m) ={m—1,...,0}, Ry(m) =m — 1 a few con'ditions that ensure the recurrence is .Well-defined, e.g.,
) 0 < b < (j+1). The remaining requirements define three separate
T(n,m) = {” if m =0 _ cases in which a solution can be ascertained. In case (a), we also
’ T(n —1, Ry(m)), otherwise conclude that the recurrence is simple, and therefore this case is
=n—m checked first. LeF; beei(n), and letE; beez(n) + aT'(n — b).

diff(ls1,ls2) is an example of an input function from which a

bound function similar t@” might be deriveddiff(ls1, s2) returns Case (a): If the following conditions hold,

the tail list of s, of size|ls;| — |ls2|. A variation of diff, with Al:e1(n) = ea(n) + ac(n—p—it+1), VR € [i+ 5+ 1,0+ 5+ 1]
similar bound functions, returns a copy of the tail list. A2:e1(n) = ea(n) +aer(n —b), Vn > (i +5+b)
diff(ls1, Is2) = if null?(ls2) then ls; thenT is simple, and the solution &f is:

else diff(cdr(ls1), cdr(lsz))

The need for checks MC2 and MC3 stems from the use of
R function results as arguments to other bound functions. Check . . . )
MC1 simply ensures that size arguments to bound functions are, Informally, this case applies when all unfoldings bf using all
uniformly, maximums of sizes seen during program execution, combinations of arg-exp#&1 and E2 of max, yield the same
rather than an arbitrary size from amongst the possible sizes. These/alue. A1 ensures this for the smallest non-base cases @h
checks are not relevant to applicationsband N functions. Re-  the rangefi + j + 1,4 + j + b]) for which T'(n) uses a base
sults of S functions are never used as arguments to bound func- Value of T'; this corresponds to the base case of the proof of case
tions. Results ofV functions may sometimes be values of newsize (&) A2 performs the necessary check for the inductive case: for
arguments (ofV functions). We argue that aV functions are, by 7 > (i +j +b), the value off"1 equals that of<2, unfolded once
construction, monotonically increasing with respect to newsize ar- Using E'1. For example, consider the function ... of remove-
guments. These arguments are used only to determine the numbeglementn selection-sort
of new heap cells in an argument that, for example, may be part 0, iflss =1
of the result list. For example, fof(ls) = cons(1, cdr(ls)), the Rre(lss) = { max(lss — 1, 1 + R,.(Iss — 1)), otherwise

| ca,... ¢4, Tn=1,... i+ j, respectively
I(n) = { e1(n), otherwise



Case (a) applies and gives the soluti®n. (Iss) = Iss — 1. thogonal to MC3).

Case (b): If the following conditions hold Rl:c1 < ... < ¢j41, i.e., base cases are monotonically increas-

ing.
Bl:ei(n) > e2(n) + ac(n—p—it1), VR € [i +j+ 1,14+ j + b] R2:cjt1 <e(i+j+1)+aT(f(i+ 37+ 1)), ie., the largest
B2:ei(n) > ez2(n) +aer(n —0b), Vn > (i +j +b) base value is not greater than the valug'cdt the smallest

non-base case.
R3:Vn > (i + j). f(n) < n. For example, this holds for
Ty = | C1esciea, n=i,... i+ j, respectively f(n) =n—bandf(n) = n/2 (integer division).
(n) = e1(n), otherwise R4: f is monotonically increasing w.r.ta. For example, this
holds forf(n) =n —bandf(n) =n/2.
R5:¥n > (i + j), e(n) > 0 ande(n) is monotonically
increasing w.r.tn.

thenT is complex, and the solution @t is:

The solution is based on the observation that, under these condi-
tions, E'1 always yields a larger value thare.

Case (c): DefineT” as It is easy to see that if R1-R5 are satisfied by a recurrénce
) ] o ) then MC3 is satisfied folG. The above template matchég,,
T'(n) = Cly- vy Cj1, T =1,...,4 +7 respectively which after evaluation of the calls #;;; and R is
e2(n) + aT’(n — b), otherwise _
0, iflss =0
Suppose the solution @’ is Rys(lss) = ¢ 1,iflss =1

) L . 1+ 2Rys(lss — 1), otherwise
Cly...,Cjt1, W =1,...,1+ j, respectively

T'(n) = { .
otherwise
ea(n), 11. Examples
If ex(n) < es(n) forn > (i +j), thenT is complex and has e applied the analysis to several list-processing programs, namely
the same solution &&". The solution is based on the observation |ist reversal, insertion sort, selection sort, merge sort, quicksort, and
that, under these conditions, arg-eip of max always yields the  programs that compute longest common subsequence, string edit
maximal value. distance, and binomial coefficients efficiently using dynamic pro-
gramming. In the latter set of programs, lists (instead of arrays)
- are used to store results of subproblems. Figure 5 shows the re-
10.  Performing Test MC3 sults of our analysis. The closed forms derived by the analysis in-
Test MC3 is performed on bound function recurrences that contain clude linear and quadratic polynomials, and exponential formulae.
arg-uses of compler functions, where the arg-users are the defin- A complete listing of example programs, their bound functions, re-

ing bound functions. Consider such a bound functidn currence relations, resulting closed forms, and how these were de-
rived, appears in [24].
Gw)=... G(F(v)) ... The accuracy (tightness) of the analysis results was confirmed

by comparing with results from the analysis in [25] for the same
function for simplicity. The discussion is easily extrapolated for Programs. The closed form solutions derived by our analysis are
functions with multiple arguments. Test MC3 checks if using the exact maximums of live heap space usage of all example programs
result of F(v) in the definition ofG yieldsmaz (G (v)), which exceptquicksort Our analysis gives a loose bound for quicksort
is the desired result af.. because it does not recognize that the sizes of the results of func-
An example of such a bound functionf, in Section 7. IfRy. tions lesserorequal-lis{this is the function abbreviated & in

does not satisfy MC3, then the analysis cannot proceed (\Il\/ithout Section 7) andjreater-list(which is similar but returns the sublist
an alternate strategy, e.g.,@ is an N function, then it can be containing elements greater than the cutoff) are correlated, specifi-
redefined without newsize arguments, as discussed in Section g cally, that when both functions are applied to the same list of length

This simplification may allow test MC3 to succeed or even make it " W'.th the same .CUtOﬁ’ the sizes of th_elr results sumsitave
unnecessary verified that this is the only source of inaccuracy in the analysis

Test MC3 is difficult to check in the general case. We developed of quicksort by manually modifying the relevant bound functions

templates that perform the test by matching recurrences againstOf quicksortto take .th's invariant into account, the angly5|s then
safe patterns and ensuring certain properties such as the following:°rduces a quadratic polynomial that accurately describes the heap
base values of the recurrence are monotonically increasing, base'S29¢€ of quicksort. . .

values are less than values of the recurrence at the smallest non- F19uré 4 shows how live heap space analysis works for an
base cases, and closed form expressions in the recurrence definiti0|.’?)(""rnpIe program, name!ylsertlon-sort It Ilsts.the functions of
contain only monotonically increasing operators. Templates are Nsertion-sort corresponding, IV, and R functions, recurrences
constructed such that, when checking MC3 for aforementi@gned ob.talned by simplifying the bound functions, and closed form so-
it is sufficient to provide its definition using just the solution/of lutions of the recurrences.

instead of the set of elements Bf'.. A complete list of templates . .

is available in [24]. 12. Extensions to the Analysis

One of the templates that test MC3 matches recurrences of thegr analysis can be extended to data types other than lists by defin-

whereF' is a complexR function. We consider a single-argument

form ing an appropriate? function for each data type and introducing
T(n) = €1,y Cijt1, M =1, ...,7 + j, respectively corresponding size arguments to bound functions. Some d_ata types,
n)= e(n) + aT'(f(n)), otherwise such as arrays, are similar to lists and can be handled easily. Binary

trees are more interesting. Their size can be measured by height and
wherei, j, c1, ..., ¢cj+1, a are constants, ane(n) is a closed form number of nodes, so we define twd functions for binary trees,
in n. The given recurrence is required to meet the following condi- Rpeighs and Ryo4es, @nd for each binary-tree argumenof each
tions (we elide general well-formedness requirements that are or-function f in the original program, we introduce argumentsand



Derived Heap

Examples Entry Function | S Function of Entry Function Usage Complexity Tight?
reverse rev(ls) Srev(lss) = {(Z)lslzlislzootherwise Linear Yes
N . _ [0iflss =0 .

insertion sort is(ls) Sis(lss) = {QZsS ~'1, otherwise Linear Yes
selection sort ss(ls Sss(lss) = Ls(lsstl) Quadratic Yes

2
merge sort ms(ls) Sms(lss) = {glslfs lislzt?therwise Linear Yes
. if lss =0,1 .
quick sort qs(ls) Sqs(lss) = {g‘élsl_ffl 70’2 otherwise Exponential No

1 if 181S = OOI’lSQS =0
longest common subsequencgelcs(ls1, ls2) Sies(Is14,1s2,) = Isg, +2 if sy, =1 Linear Yes
2lsa, + 2, otherwise

stri, + stra, + 1,
string edit distance se(stry, stra) | Sse(stri,,stra,) = ¢ if stri, =00rstro, =0 Linear Yes
2stri, + 2stra, + 1, otherwise

2ms + 2, otherwise

1 if ms = ns
binomial coefficient be(n, m) Spe(ns,ms) = ms +2 if msg =ns — 1 Linear Yes

Figure 5. Parametric heap space usage bounds derived for some example programs.

v, to the bound functions of, representing the height and number ing program execution, while time always increases. Further, live
of nodes, respectively, of the tree passed.to heap space analysis needs to determine when allocations become

In the presence of these new data types, bound functions maygarbage.
need to make approximations, e.g., that each branch of a binary Wegbreit [26] proposed deriving closed form expressions de-
treev has at mostnin(2*» — 1, v, — 1) nodes. We can mitigate, if ~ scribing running times of Lisp programs in terms of sizes of inputs,
not eliminate, the effects of such approximations by using type- much like we do for live heap space, by deriving recursive functions
specific invariants in the analysis, e.g,, < 2°»*' — 1 and describing running times, converting them into difference equa-
Rodes [left(€)] + Runodes [Tight(€)] = Rnodes [€], whereleft(e) tions and solving the same. Analyses that produce such formulas
and right(e) return the subtrees of, respectively. Note that the  are sometimes callgshrametricanalyses. Probabilities attached to
metric R,.q4es IS useful for all data types, including nested lists. ambiguous predicates (that require information other than sizes of
The currentR functions are, in factR,.n4: functions; for a nested inputs) enable the derivation of mean running times, in addition to
list Is, Riengtn, describes the length of the top-level listiof best-case and worst-case running times. The prototype implemen-

S and N functions, and theS and N transformations, also  tation is limited to simple Lisp programs. [19] is similar to [26]
need to be specialized to new data types. For some data typesput derives asymptotic, rather than exact, upper bounds on running
S and N functions can take any one of several size measures times; also, the user is required to aid the analysis in converting the
as arguments, depending on which size measure yields the mostecursive function into a closed form expression. These two papers
compact and accurate formulas representing live heap usage andlescribe only limited methods to handle their respective equiva-
new result-space usage, respectively. The analysis may try differentlents of composite recurrences, and neither of them use the notion
size measures and then determine which yields the best results.  of monotonicity requirements.

The current version of our analysis does not allow mutual recur- Most of the work related to analysis of space is on analysis of
sion in the input programs. Such mutual recursion typically leads cache behavior, e.g., [27, 14], much of which is at a lower language
to mutual recursion in the bound functions. Mutual recursion can level, for compiler generated code, while our analyses are at source
sometimes be handled by converting it into self-recursion (i.e., or- level and can serve many purposes. Live heap analysis is a first
dinary recursion): iff andg are mutually recursive, and unfolding  step towards analyzing cache behavior in the presence of garbage
f a few times yields a definition of that recursively calls only collection.

f and notg, then f is in fact self-recursive. Our analysis can be Several type systems [18, 17, 12, 11] have been proposed for
extended to first use such unfolding to try to convert mutual re- reasoning about space and time bounds, and some of them include
cursion into self-recursion. If this does not succeed, then standardimplementations of type checkers [18, 12]. They require program-
mathematical techniques for solving mutual recurrences are used,mers to annotate their programs with cost functions as types. Fur-
if applicable. thermore, some programs must be rewritten to have feasible types
[18, 17]. [9] proposes a loop-detecting algorithm to identify meth-
ods and instructions that execute an unbounded number of times,
13. Related Work thereby detecting possibly unbounded memory usage. [4, 7] ensure

There is a large amount of work on analyzing program cost or re- acceptable memory use in bytecode, by verifying specified resource
source complexities, but the majority of it is on time analysis, e.g., annotations or memory consumption policies.

[26, 19, 22, 23, 20, 15]. Analysis of stack space and heap alloca- [16] proposes a method to obtain linear bounds on heap space
tion are similar to time analysis [20]. Analysis of live heap space Cconsumption of functional programs using type derivations and
is different because live heap space increases and decreases dulinear programming. While programs are not required to be linearly



typed, restrictions are made on sharing of heap cells. Our analysisthe first call tog(n) become garbage before the second cal(io).
is not restricted to linear bounds and does not restrict sharing of The method of [1, 2] does not recognize this (since cells allocated
heap cells. in g escape it) and yields a bound &f on the space usage ¢f
Several methods have been developed to automatically infer Albert et al’s paper in the same proceedings analyzes live heap
heap space bounds for Java-like imperative languages and bytespace (as opposed to total heap allocation and active heap space)
code. Imperative update poses special challenges for determiningin the presence of garbage collection [3]. The methods used in our
liveness. Chiret al.[10] propose a method to infer stack and heap analysis to solve composite recurrences can be enhanced by the
usage bounds for an assembly-like language. “dispose” commandgechniques in [1] to solve non-deterministic cost relations and those
that reclaim unused heap space, are explicitly inserted into inputin [15] to handle disjunctive invariants.
programs [11] at points where objects are no longer live. Recur-
sive constraint abstractions derived from these modified input pro-
grams describe stack and heap usages of the programs. Fixpoinfl4. Conclusions and Future Work
analysis of constraint_ abstractions using a Presburger solver yields),, summary, this paper describes a method that aims to determine
closed form expressions for stack and heap usages. Our analyyyq tcase live heap space usage of functional programs automati-
sis applies to a high-level language and is not limited to Pres- .oy and accurately using source-level program analysis and trans-
burger formulae, so it can derive both linear and non-linear bounds. ¢, mations. Specific technical contributions include a framework
The alias/uniqueness analy5|_s used_to determine Ilve_nessf and inset,, deriving bound §, N, and R) functions that describe the live
“dispose” commands appropriately, is an over-approximation of the pea5 space usage of functional programs, the identification and for-
behaviour of an ideal garbage collector. In the absence of impera- ., 1ation of conditions (tests MC1, MC2, and MC3) that are nec-
tive update, live heap analysis is able to determine liveness exactly.oggary to ensure soundness of the analysis, and the templates used
As aresult, our bounds on heap usage are tighter than those of [10]4q gg|ve recurrences and check part of the monotonicity condition
While their analysis has been applied to sever.al benchmarks, all X-(namely, MC3). The results reported in Section 11 suggest that the
cept one of the benchmarks use few heap objects. _ analysis usually produces tight bounds in practice. Although these
The heap analysis in [8] is also targeted to an imperative lan- gyample programs are small, they have non-trivial patterns of heap
guage but is able to derive polynomial, not just linear, heap bounds. 51ocation and garbage collection. In part, this is because they are

Our analysis is not limited to a complexity category, although itis ¢nctional programs and must allocate new data structures instead
limited by the solvability of the encountered recurrences. Region- ¢ updating existing data structures.

based memory management is used to model garbage collection;” g£re work on live heap analysis for functional programs in-
objects are allocated in regions associated with methods and re-,ges modifying the analysis to reflect the effect of optimization of
gions are garbage collected at the end of methods. As in the abovejj recyrsion, incorporating techniques for analysis of higher-order
discussion, this is an over-approximation of heap usage compareds,nctions [23, 20], and evaluating the accuracy and scalability of

to our analysis, which is, in the absence of imperative update, able o analysis more extensively. Another important direction for fu-
to model “ideal” garbage collection (objects are garbage collected e \ori is to modify the analysis to handle imperative update.
as soon as they become dead). The maximum memory occupied by

a region configuration is modelled as a parametric polynomial op-
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