
Parametric Heap Usage Analysis for Functional Programs∗

Leena Unnikrishnan Scott D. Stoller
Computer Science Department

Stony Brook University
{leena,stoller}@cs.stonybrook.edu

Abstract
This paper presents an analysis that derives a formula describing
the worst-case live heap space usage of programs in a functional
language with automated memory management (garbage collec-
tion). First, the given program is automatically transformed into
bound functionsthat describe upper bounds on the live heap space
usage and other related space metrics in terms of the sizes of func-
tion arguments. The bound functions are simplified and rewritten
to obtain recurrences, which are then solved to obtain the desired
formulas characterizing the worst-case space usage. These recur-
rences may be difficult to solve due to uses of themaximumopera-
tor. We give methods to automatically solve categories of such re-
currences. Our analysis determines and exploits monotonicity and
monotonicity-like properties of bound functions to derive upper
bounds on heap usage, without considering behaviors of the pro-
gram that cannot lead to maximal space usage.

Categories and Subject DescriptorsF.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis

General Terms Languages, Performance, Verification

Keywords Live Heap Space Analysis, Functional Languages,
Garbage Collection, Recurrence Relations

1. Introduction
Analysis of the time and space requirements of computer programs
is important for virtually all computer applications, especially in
embedded systems, real-time systems, and interactive systems. The
importance of time analysis for real-time and embedded systems is
reflected in the long tradition of research on worst-case execution
time (WCET) analysis. Space usage is also critical in many real-
time and embedded systems, due to the limited amount of memory
and the potential for severe consequences if the system fails due
to insufficient memory. Due in part to the difficulty of predicting
the space usage of programs that use dynamic memory allocation,
real-time and embedded software typically use only statically al-
located data structures. However, this approach has disadvantages.

∗ This work was supported in part by ONR under Grant N00014-07-1-0928
and NSF under Grants CCF-0613913, CNS-0627447, CNS-0831298, and
CNS-0509230.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’09, June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-347-1/09/06. . . $5.00

First, it can lead to poor utilization of memory, when one data struc-
ture is full and another has space to spare. Second, it requires ex-
plicit memory management: the programmer must keep track of
which array entries are in use and when it is safe to mark an occu-
pied entry as available; this can be difficult for entries that may be
used by multiple parts of the program and referenced from multi-
ple data structures. Of course, these are some of the reasons for the
growing popularity of languages with automatic memory manage-
ment (Java, C#, Python, Ruby, etc.) in non-embedded systems. Ver-
sions of these languages suitable for embedded systems exist and
are being promoted, e.g., Java Platform, Micro Edition (JavaME)
and Microsoft .NET Micro Framework. While advances in real-
time garbage collection (e.g., [5]) play an essential role in making
such languages practical, analyses that can accurately predict the
worst-case space usage of programs written in garbage-collected
languages are also important for their adoption in embedded sys-
tems [13].

Space analysis is important for determining space requirements
and for accurate execution-time analysis. For example, analysis
of worst-case execution time in real-time systems often uses loop
bounds or recursion depths, both of which are commonly deter-
mined by the size of the data being processed. Space analysis can
also help determine the timing effects of memory-related events
such as memory allocation, garbage collection, cache misses, and
page faults.

This paper describes a general approach for automatic accurate
analysis of heap space usage, specifically, the maximum size of live
data on the heap during execution. In other words, the analysis de-
termines heap usage of programs in the presence of perfect garbage
collection where garbage is collected as soon as it is created. This
result is the minimum amount of heap space needed to run a pro-
gram, no matter which garbage collection scheme is used. Limiting
a program to this “minimum amount of heap” in the presence of
imperfect garbage collection schemes, simply means that garbage
collection needs to be performed intermittently to free up space for
allocation. The analysis can easily be modified to determine related
metrics, such as space usage when garbage collection is performed
only at fixed points in the program. It can also be adapted to ana-
lyze the space usage of continuously running processes with cyclic
behavior. Our analysis is designed for a functional language. This
is a simplification that allows us to focus on the fundamental is-
sues first, deferring the complications needed to handle imperative
updates.

Our approach starts with a programP written in a functional
language with garbage collection. We construct, for every function
f in P , bound functions that describe worst-case live heap space
usage off and other measures—such as the size of the result of
f—necessary to determine the space usage of the program. The
inputs to bound functions forf are the sizes of inputs tof . Bound
functions are simplified and rewritten to recurrence relations, which
are solved into closed form expressions that describe live heap

space usage and other measures in terms of sizes of inputs to the
corresponding original functions. The basic version of our analysis
is limited to programs that manipulate non-nested lists, i.e., lists in
which every element is a value of a primitive data type. Section 12
describes how to extend the analysis to accommodate other data
types.

Solving recurrence relations can be difficult. The availability
of increasingly sophisticated recurrence solvers [21, 6], is an as-
set to our analysis. We use methods such as elimination of redun-
dant arguments from recursive bound functions and recurrences to
improve solvability. This may even eliminate dependence on, and
hence the need to solve, certain recurrences. Since we are interested
in worst-case heap space usage, bound functions and their recur-
rences may contain themax operator, which is typically not han-
dled (or not handled exactly) by existing recurrence solvers such as
[21, 6]. We use templates based on pattern matching and inductive
reasoning to solve such recurrences. Results of some bound func-
tions are used as arguments to others. Maximizing the results of the
former bound functions leads to maximal live heap space usage for
the program only if the latter bound functions are monotonically in-
creasing with respect to their arguments. Monotonicity properties
of bound functions are ascertained from their closed form solutions,
if known, and using templates for bound functions still expressed
as recurrences.

2. Language
We formalize the analysis for a first-order, call-by-value functional
language that has literal values of primitive types (e.g., Boolean
and integer constants), operations on primitive types (e.g., addition
and subtraction), data constructors (e.g.,null for the empty list, and
consto construct lists), testers (which test whether a value is built
using a particular constructor), selectors (which extract parts of data
structures), conditionals, bindings (i.e., local variable declarations),
and function calls. A program is a set of function definitions of
the formf(v1, ..., vn) = e, where an expressione is given by the
grammar

e ::= v variable
| l literal
| cons(e1, e2) constructor application
| prim(e1, . . . , en) primitive operation
| null?(e) tester
| car(e) first element of list
| cdr(e) tail of list
| if p then e1 else e2 conditional expression
| let v1 = e1, . . . , vn = en in e binding expression
| f(e1, . . . , en) function application

Predicates in conditional expressions are given by the grammar

p ::= v | l | prim(p1, . . . , pn) | null?(p) | car(p) | cdr(p)

The basic version of our analysis supports recursive functions
but not mutual recursion. Section 12 describes how to handle mu-
tual recursion.

Our analysis makes use of type information, which may be
obtained from type declarations or from automated type inference.
type(v) denotes the type of variablev. rtype(f) denotes the return
type of functionf . The allowed types areBool, Int andList.

3. Definitions
Data Sizes. The size of an empty list is 0. The sizes of all other
atomic objects (booleans and numbers) are their values. The size of
a list is its length.

Argument-expression (arg-exp).An arg-exp is an expression
whose result is an argument to a function call. In a function ap-

plicationf(e1, . . . , en) of the functionf(v1, . . . , vn), expressions
e1, . . . , en are arg-exps of the call tof . For i ∈ [1, n], ei corre-
spondsto parametervi of f .

Argument-uses (arg-uses) of functions.An arg-use of a func-
tion f is an occurrence of an application off in an arg-exp. For
example,g(1 + f(x), 2) contains an arg-use off which corre-
spondsto the first parameter ofg. Arg-uses of expressions, e.g.,
g(if p then e1 else e2), are defined similarly.

Argument-users (arg-users) of functions.In a function applica-
tion f(e1, . . . , en), if ei contains an arg-use of a functiong, thenf
is called an arg-user ofg. For example, inf(1 + g(x), 2), f is an
arg-user ofg. Arg-users of expressions are defined similarly.

Dependence. A function f is dependent on a functiong if there
is a path fromf to g in the call graph off .

Monotonicity. Consider functionf : X1 ×X2 . . . ×Xm → Y ,
whereX1, ..., Xm, andY are sets of whole numbers, integers or
real numbers.f is monotonically increasing with respect to itsith

argument, if

∀ a, b ∈ Xi, c1 ∈ X1, . . . , cm ∈ Xm. a ≤ b ⇒
f(c1, c2, . . . , a, . . . , cm) ≤ f(c1, c2, . . . , b, . . . , cm)

wherea andb are thei’th argument off . We use the termsmono-
tonicandmonotonically increasinginterchangeably.

4. Bound Functions
Consider functionf(v1, ..., vn) = ef in input programP . We de-
fine three bound functions forf . Bound functions off take as ar-
guments, the sizes of argumentsv1, ..., vn of f . We call thesesize
argumentsand denote them byv1s , ..., vns . The live heap space
bound functionof f , Sf , called simply theS function of f , de-
scribes the worst-case heap usage off over all possible combina-
tions and values of argumentsv1, ..., vn having sizesv1s , ..., vns ,
respectively.

Sf (v1s , . . . , vns)
= upper bound (min heap to evaluatef(a1, ..., an))

all argsa1,...,anto f

s.t. ∀i∈[1,n]. |ai|=vis

The worst-case heap usage corresponds to the maximum size of
the live heap seen during the evaluation off . This is also the
minimum heap space required to evaluatef on arguments of sizes
v1s , ..., vns , no matter which garbage collection scheme is used. A
heap object islive as long as it can be reached from the program
through function arguments or the reference to the result of the
most recently evaluated expression. The live heap space usage of
programP is described bySg, whereg is the entry function ofP .

The new result-space bound functionof f , also called theN
function of f , denotedNf , describes the newly-allocated space
in the result off in terms of the sizes off ’s arguments, and the
amounts of newly-allocated space in these arguments. For function
call f(e1, ..., en), Nf returns the number of new heap cells in the
resultr of the call. A heap cell inr is new if it is created after
the start of evaluation off(e1, ..., en), i.e., created in the body of
f or in one of the arg-expse1, ..., en. So, in addition to itssize
arguments,Nf also hasnewsizearguments, denotedv1w , ..., vnw ,
representing the number of new heap cells in each argument. For
f(e1, ..., en), viw is the number of heap cells invi created during
evaluation of expressionei. viw is meaningful only ifvi is a list;
if not, then there are no heap cells invi andviw is not required or

used.
Nf (v1s , . . . , vns , v1w , . . . , vnw)

= upper bound

[
amount of new heap in the result of
f(a1, ..., an)

]
all argsa1,...,anto f

s.t. ∀i∈[1,n]. |ai|=vis

|new heap inai|≤viw

The size bound functionof f , also called theR function off ,
denotedRf , describes the size of the result off in terms of the
sizes off ’s arguments.

Rf (v1s , ..., vns) = upper bound |f(a1, . . . , an)|
all argsa1,...,anto f

s.t. ∀i∈[1,n]. |ai|=vis

The bodies ofSf , Nf , andRf are obtained by applying transfor-
mationsS, N , andR, respectively, to the bodyef of f . The defi-
nitions of transformationsS,NandR. are provided in Sections 5,
6, and 7.

S [[e]]: Computes an upper bound on the live heap required for
evaluation ofe.

N [[e]]: Computes an upper bound on the number of new heap cells
in resultr of e. If e occurs in the body of functionf , then a heap
cell in r is new if it is created ine, or if it is new in v1, ..., vn,
which can easily be determined usingv1w , ..., vnw . Since there is
no imperative update in our target language, any node that points to
another node must be newer than the latter. So, for a list argument
vi, only the firstviw nodes are new.

R [[e]]: Computes an upper bound on the size of the result ofe.
R [[e]] is boolean ife returns a boolean and is numeric ife returns a
number or a list.

5. Live Heap Space Bound Functions
TransformationS, defined in Figure 1, is used to derive live heap
space bound functions. In theS transformation of conditionals, if
the predicate containscar then its truth value is unknown, because
the analysis does not track the values of list elements. The heap
space required to evaluate the conditional is the maximum of that
required for the branches (the grammar in Section 2 implies that
predicates in conditional expressions do not perform heap alloca-
tion). If the predicate does not containcar, then we maintain the
conditional structure, and transform the predicate and the branches.
Such predicates are often tests of recursive functions that control re-
cursion, e.g., base case tests or tests that determine the next recur-
sion step. The transformed conditionals in bound functions even-
tually (after simplification) become multiple cases in the definition
of a recurrence. The original predicatep in the conditional expres-
sion is transformed into a predicate over size arguments.N andR
transformations of conditionals are similar.

In function applicationf(e1, ..., en), arg-expse1, ..., en are
evaluated in order, followed by the call tof . The heap usage of
f(e1, ..., en) is the maximum of the heap usages of the arg-exps
e1, ..., en and the heap usage off when called with arguments
whose sizes are those of the results ofe1, ..., en. Whenei, i ∈
[2, n], is evaluated, the results of the previous arg-exps are live. So,
the maximum size of the live heap during evaluation ofei is the sum
of the newly-allocated space in the results of previous arg-exps and
S [[ei]]. N [[ei]] [0/vw] is the amount of new heap invi that is allo-
cated inei. Newsize arguments are neither required nor applicable
and they are substituted with0s. The function call is evaluated after
all arg-exps, and this takes spaceSf (R [[e1]] , ...,R [[en]]).

See Figure 4 for examples of functions in an input program and
correspondingS functions.

Forf(v1, ..., vn) = e, Sf (v1s , ..., vns) = S [[e]].

S [[l]] = S [[nil]] = S [[v]] = 0

S [[cons(e1, e2)]] = 1 + max(S [[e1]] ,S [[e2]])

S [[prim(e1, ..., en)]] = max(S [[e1]] , ...,S [[en]])

S [[null?(e)]] = S [[car(e)]] = S [[cdr(e)]] = S [[e]]

S [[if p then e1 else e2]]

=

{
max(S [[e1]] ,S [[e2]]), if p containscar
if R [[p]] then S [[e1]] else S [[e2]] , otherwise

S [[let v1 = e1, . . . , vn = en in e]]
= max(S [[e1]] ,

N [[e1]] [0/vw] + S [[e2]] ,
...
N [[e1]] [0/vw] + . . . +N [[en−1]] [0/vw] + S [[en]] ,
N [[e1]] [0/vw] + . . . +N [[en]] [0/vw]+
S [[e]] [R [[e1]] /v1s , ...,R [[en]] /vns])

S [[f(e1, ..., en)]]
= max(S [[e1]] ,

N [[e1]] [0/vw] + S [[e2]] ,
...
N [[e1]] [0/vw]... +N

[[
e(n−1)

]]
[0/vw] + S [[en]] ,

N [[e1]] [0/vw]... +N [[en]] [0/vw]+
Sf (R [[e1]] , ...,R [[en]]))

Figure 1. TransformationS. e[0/vw] substitutes every newsize
argumentvw in e with 0.

6. New Result-Space Bound Functions
TransformationN , defined in Figure 2, produces new result space-
bound functions. If functionf in the input program returns prim-
itive data, then its result uses no heap space andNf returns 0.N
functions exploit the fact that, in the absence of imperative update,
newer heap cells reference older heap cells. So, if a listv con-
tainsvw new heap cells, it is the firstvw cells of v that are new.
Newsize arguments are decremented in recursive calls toN func-
tions if corresponding size arguments are, e.g.,N [[f(cdr(ls))]] is
Nf (lss − 1, lsw − 1). Recursion often proceeds untillss = 0,
which implies decrementinglss from lsw. Only the firstlsw of lss

cells are new. So, all decrements to newsize arguments are enclosed
by applications ofmax(0, ...). See Figure 4 for examples of func-
tions in an input program and correspondingN functions.

N functions may sometimes yield recurrences that are diffi-
cult to solve, because of the large number of arguments (size and
newsize arguments) and the presence ofmax(0, ...) expressions.
If Nf cannot be solved, we redefine it asNf (v1s , ..., vns) =
Rf (v1s , ..., vns). In other words, instead of determining how much
of the list returned byf is new, we over-approximate, saying that
the whole list is new. In all our examples, these simplerN func-
tions, wherever used, do not introduce overestimations in the anal-
ysis result. The redefinition does not lose accuracy in practice, be-
cause our analysis determinesworst-casespace usage, and in the
worst case, most functions either build completely new lists or the
arguments given to functions are completely new; in both cases, all
cells in the result lists are new. This is in keeping with the following
observation:

Nf (v1s , ..., vns , v1s , ..., vns) = Rf (v1s , ..., vns)

where the values of the newsize arguments ofNf equal those of the
corresponding size arguments.

Forf(v1, ..., vn) = e,

Nf (v1s , ..., vns , v1w , ..., vnw) =

{
0, if rtype(f) 6= List
N [[e]] , otherwise

N [[l]] = N [[nil]] = 0

N [[v]] =

{
0, if type(v) 6= List
vw, otherwise

N [[cons(e1, e2)]] = 1 +N [[e2]]

N [[prim(e1, ..., en)]] = 0

N [[null?(e)]] = N [[car(e)]] = 0

N [[cdr(e)]] = max(0,N [[e]]− 1)

N [[if p then e1 else e2]]

=

{
max(N [[e1]] ,N [[e2]]), if p containscar
if R [[p]] thenN [[e1]] elseN [[e2]] , otherwise

N [[let v1 = e1, . . . , vn = en in e]]
= (N [[e]]) [R [[e1]] /v1s , ...,R [[en]] /vns ,

N [[e1]] /v1w , ...,N [[en]] /vnw]

N [[f(e1, . . . , en)]]

=

{
0, if rtype(f) 6= List
Nf (R [[e1]] , ...,R [[en]] ,N [[e1]] , ...,N [[en]]), otherwise

Figure 2. TransformationN .

7. Size Bound Functions
TransformationR in Figure 3 produces size bound functions; recall
thatRf bounds the size of the result (return value) off . See figure
4 for examples of functions in an input program and corresponding
R functions. From the definitions of transformationsS,N , andR,
it can be seen that results ofR functions are used byS and N
functions only as the values of size arguments. Also, recall that we
are interested only in the maximal value of the input program’sS
function. Consider theR transformation of conditionals. Predicates
containingcar are concluded as being undeterminable and in such
cases, the size of the result of the conditional is the maximum of
the sizes ofe1 and e2, max(R [[e1]] ,R [[e2]]). Ideally, we should
return that size which helpsS functions determine the worst-case
(maximal) space usage of the input program. But it is impossible
to know which size to return, in the general case. Further, it is not
tractable to return all sizes. Thus, the use ofmax in the definition
of bound functions is a necessary approximation, and based on the
somewhat reasonable expectation that the maximum size leads to
maximum space-usage results of dependentS and N functions.
We perform checks, namely MC1, MC2, and MC3 described later
in this section, to verify if this is indeed the case, i.e., if the use
of max in R functions results in dependentS and N functions
determining true upper bounds on space measures. Transformation
R, along with checks MC1, MC2, and MC3, ensure that allR
functions, including ones whose definitions do not containmax
but are dependent onR functions that do, uniformly return upper
bounds (maximums) on size measures.

Composite recurrences.A composite recurrence is a recurrence
(or a definition of a bound function) which contains an application
of max in which at least one arg-exp contains a recursive call to
the function defined by the recurrence. A regular recurrence is one
that does not contain such occurrences ofmax. The R function
Rappend of append, which appends one list to another, is regu-
lar, while Rlls, theR function of lesserorequal-listis composite.
lesserorequal-list, an auxiliary function ofquick-sort, takes a listls
and a cutoffx as arguments and returns a new list containing the

Forf(v1, ..., vn) = e, Rf (v1s , ..., vns) = R [[e]]

R [[l]] = l, R [[nil]] = 0, R [[v]] = vs

R [[cons(e1, e2)]] = 1 +R [[e2]]

R [[prim(e1, ..., en)]] = prim(R [[e1]] , ...,R [[en]])

R [[null?(e)]] = eq?(R [[e]] , 0)

R [[car(e)]] = uk, R [[cdr(e)]] = R [[e]]− 1

R [[if p then e1 else e2]]

=

{
max(R [[e1]] ,R [[e2]]), if p containscar
if R [[p]] thenR [[e1]] elseR [[e2]] , otherwise

R [[let v1 = e1, . . . , vn = en in e]]
= (R [[e]]) [R [[e1]] /v1s , . . . ,R [[en]] /vns]

R [[f(e1, . . . , en)]] = Rf (R [[e1]] , . . . ,R [[en]])

Figure 3. TransformationR.

elements ofls that are less than or equal tox.

Rappend(n, m) =

{
m if n = 0
1 + Rappend(n− 1, m) otherwise

Rlls(n) =

{
0 if n = 0
max(1 + Rlls(n− 1), Rlls(n− 1)) otherwise

Given recurrenceT , we define recurrenceT all that has the same
arguments asT and returns the set of results obtained by using the
value of each argument ofmax in place of themax expression in
T . Note that this is done recursively, not only at the top-level call.
T , on the other hand, uses only the largest of the arguments tomax
at every recursion level.

Intuitively, T captures only the maximum value of the size or
space measure for a function in the input program, whileT all cap-
tures all possible values of the size or space measure for that func-
tion. We can generate the definition ofT all from the definition of
T , by replacing each occurrence ofmax with union and replac-
ing every function callF (. . .) with F all(. . .); note that upper case
letters (F , G, H) are used to denote bound functions. These re-
placements in the definition ofT need to be accompanied by mod-
ifications that ensure type-safety, for instance, the replacement of
primitive operators and functions with ones that are overloaded to
handle regular argument values as well as sets of argument values.
For example, for setsX andY of argument values tof , f(X, Y) =
{f(x, y) | x ∈ X, y ∈ Y }, andf(x, Y) = {f(x, y) | y ∈ Y }.
RecurrencesRlls andRall

lls and their solutions are shown below.

Rlls(n) =

{
0 if n = 0
max(1 + Rlls(n− 1), Rlls(n− 1)) otherwise

= n

Rall
lls (n) =

{
{0} if n = 0
∪(1 + Rall

lls (n− 1), Rall
lls (n− 1)) otherwise

= {n, n− 1, . . . , 0}

A composite recurrenceT is simple if the solution ofT all is
a singleton set for all evaluations of its arguments; otherwise, we
say thatT is complex. If Rf is a simple composite recurrence, then
the size of the result off is uniquely determined by the sizes of its
arguments. IfRf is a complex composite recurrence, then the size
of the result off depends on the actual elements in list arguments
of f . The solution ofRall

lls is not a singleton set and therefore,Rlls

is complex. TheR functionRins of insertwhich inserts a number

insertion-sort insert

insertion-sort(ls) = if null?(ls) then nil
else insert(car(ls),

insertion-sort(cdr(ls)))

insert(x, ls) = if null?(ls) then cons(x, nil)
else if lessoreq?(x, car(ls))

then cons(x, ls)
else cons(car(ls), insert(x, cdr(ls)))

Sis(lss) = if lss = 0 then 0
else max(Sis(lss − 1),

Nis(lss − 1) + Sins(Ris(lss − 1)))

=

{
0 if lss = 0
max(Sis(lss − 1), 2lss − 1) otherwise

=

{
0 if lss = 0
2lss − 1 otherwise

Sins(lss) = if lss = 0 then 1
else max(1, 1 + Sins(lss − 1))

=

{
1 if lss = 0
1 + Sins(lss − 1) otherwise

= lss + 1

Nis(lss) = if lss = 0 then 0 else Nins(Ris(lss − 1))

= lss

Nins(lss) = Rins(lss) = 1 + lss

Ris(lss) = if lss = 0 then 0 else Rins(Ris(lss − 1))

=

{
0 if lss = 0
1 + Ris(lss − 1) otherwise

= lss

Rins(lss) = if lss = 0 then 1 + 0
else max(1 + lss, 1 + Rins(lss − 1))

=

{
1 if lss = 0
max(1 + lss, 1 + Rins(lss − 1)) otherwise

= 1 + lss

Figure 4. Entry functioninsertion-sortand auxiliary functioninsert of programinsertion-sort, followed by their bound functions, recur-
rences (if any) obtained from bound functions, and closed form solutions of recurrences.

into a sorted list is a simple composite recurrence, as shown below.

Rins(n) =

{
1 if n = 0
max(1 + n, 1 + Rins(n− 1)) otherwise

Rall
ins(n) =

{
{1}, if n = 0
∪({1 + n}, 1 + Rall

ins(n− 1)) otherwise

= {1 + n}
We determine if composite recurrences are simple or complex using
templates. This is described in Section 9.

ComplexR functions. An R function iscomplexif it is defined
by a complex composite recurrence or it depends on another com-
plexR function or its solution contains an application ofmax over
closed forms; otherwise, we say that theR function issimple. R
functionsRappend and Rins are simple, whileRlls is complex.
Rqs, shown below, is a complexR function even though the recur-
rence defining it is regular because of the dependence on complex
R functionRlls.

Rqs(lss)

=

{
lss if lss = 0 or lss = 1
1 + Rqs(Rlls(lss − 1)) + Rqs(Rgls(lss − 1)) otherwise

8. Conditions on Uses of ComplexR Functions
We observe that for anR functionF that does not depend on any
complexR functions (in other words, does not call anyR function
or depends only on simpleR functions),F = max o F all. Con-
sider the following definition of a bound functionG that depends
on a complexR functionF , for whichF = max o F all.

G(. . .) = . . . F (e1, . . . , en) . . .

From the discussion in Section 7, the desired result ofG is that
of max o Gall, whetherG is an S or N or R function. For
this to be true, in place ofF (e1, . . . , en) in the body ofG, we
should use the specific sizes ∈ F all(e1, . . . , en) that maximizes
the result of evaluation of the body ofG. This desired sizes is
not necessarily the maximum element inF all(e1, . . . , en), i.e.,

it is not always the same as the result ofF (e1, . . . , en) (since
F = max o F all). Consider functionG1(v) = v − F1(v) as an
example. The expression ‘v−F1(v)’ is the result of multiple rounds
of simplification, and this explains the occurrence of the result of
anR function in a non-recursive expression that definesG1 which
could be anS or N function. The result ofmax o Gall

1 , which
is the desired result ofG1, is obtained by replacing ‘F1(v)’ in the
body ofG with the minimum element ofF all

1 (v). Thus, the derived
definitions of bound functions such asG1 do not necessarily yield
the desired upper bounds because of the use ofmax in calledR
functions. So, for every complexR function F for which F =
max o F all, we perform the following checks to ensure that the
definitions of bound functions dependent onF yield upper bounds
on relevant space and size measures.

MC1 All expressions containing calls toF are monotonically in-
creasing with respect to the calls toF (e.g.,1+F (. . .) is mono-
tonic with respect to the call toF , but n − (1 + F (. . .))) is
not. This check ensures that values of size arguments ofS and
N functions, determined using expressions containing applica-
tions of complexR functions, are maximized.

MC2 For every arg-use ofF by a functionH, occurring in the body of
G, the solution ofH should be monotonically increasing with
respect to the argument corresponding to the arg-use ofF . An
example fromquick-sort:

Nqs(lss, lsw)
= . . . Napp(. . . Rlls(lss − 1), . . . Rgls(lss − 1))

qs, app, lls, andgls are abbreviations forquick-sort, append,
lesserorequal-list, andgreater-list, respectively.Rlls andRgls

are complexR functions. So, the above definition ofNqs is
correct only ifNapp is monotonically increasing with respect
to both its arguments (which it is, becauseNapp(ls1s , ls2w) =
ls1s + ls2w).

MC3 For every arg-use ofF by functionG, occurring in the body of
G, we need to ascertain from the definition ofG, that the use of
the result ofF (in other words,max o F all) yields the desired

maximum value, namely the result ofmax o Gall. An example
from quick-sort:

Sqs(lss)

=


lss if lss = 0 or lss = 1
max(2lss−1 + lss − 1 + Sqs(Rgls(lss − 1)),

3.2lss−1 − 2), otherwise

The definition ofSqs contains the recursive callSqs(Rgls(lss−
1)). Rgls is a complexR function. The result ofRgls (equal to
that ofmax o Rall

gls) can be used only if we can ascertain that
this will result in the body ofSqs evaluating tomax o Sall

qs .
Templates are used to determine such properties (see . Tem-
plates described in Section 10) are used to determine if MC3
holds for a given recurrenceG. They do so by checking if
certain requirements, such as the following, are met:G con-
tains only safe patterns of recursion, base cases ofG are in-
creasing, and closed form expressions added to results of re-
cursive calls toG are monotonically increasing (this pertains
to “2lss−1 + lss − 1” in the definition ofSqs). These require-
ments ensure that recurring on a large argument value (in place
of the result of the complexR function) leads to a greater re-
sult of evaluation of the body ofG, than recurring on a small
argument value.

Monotonicity properties in MC1 and MC2 follow directly from
monotonicity properties of primitive operations, e.g.,+, × are
monotonic with respect to their arguments,−, ÷ are monotonic
with respect to their first arguments but not with respect to their
second arguments, andmodulo is not monotonic with respect to
either of its two arguments.

Consider a bound functionG such that for everyR functionF
thatG depends on,F = max o F all. If checks MC1, MC2, and
MC3 are satisfied by all complexR functions thatG is dependent
on, thenG = max o Gall. These checks are performed in the
analysis for all bound functions. This includes the case whenG
is an R function. So, by induction, the previous argument holds
for all bound functions because for any calledR functionF , F =
max o F all.

An example of a recurrenceT whose body contains an arg-use
of a complexR functionRf by T , and which does not satisfy MC3
is:

Rall
f (m) = {m− 1, . . . , 0}, Rf (m) = m− 1

T (n, m) =

{
n, if m = 0
T (n− 1, Rf (m)), otherwise

= n−m

diff(ls1, ls2) is an example of an input function from which a
bound function similar toT might be derived.diff(ls1, ls2) returns
the tail list of ls1 of size |ls1| − |ls2|. A variation of diff, with
similar bound functions, returns a copy of the tail list.

diff(ls1, ls2) = if null?(ls2) then ls1

else diff(cdr(ls1), cdr(ls2))

The need for checks MC2 and MC3 stems from the use of
R function results as arguments to other bound functions. Check
MC1 simply ensures that size arguments to bound functions are,
uniformly, maximums of sizes seen during program execution,
rather than an arbitrary size from amongst the possible sizes. These
checks are not relevant to applications ofS andN functions. Re-
sults ofS functions are never used as arguments to bound func-
tions. Results ofN functions may sometimes be values of newsize
arguments (ofN functions). We argue that allN functions are, by
construction, monotonically increasing with respect to newsize ar-
guments. These arguments are used only to determine the number
of new heap cells in an argument that, for example, may be part
of the result list. For example, forf(ls) = cons(1, cdr(ls)), the

N function isNf (lss, lsw) = 1 + max(0, (lsw − 1)). In particu-
lar, newsize arguments toN functions only get added to the result;
non-monotonic operators are never applied to them. Further, new-
size arguments have no counterparts in the original program, unlike
size arguments of numeric variables where operators applied to the
latter may translate into the same operators applied to the former
in the definitions of bound functions. Predicates of conditionals
could result in recurrences that are non-monotonic with respect to
the arguments in the predicates; however, newsize arguments do
not occur in the predicates of conditional expressions after trans-
formation byN (note from the definition ofN that predicates are
transformed byR). Arg-exps of functions are transformed byR to
obtain size arguments to corresponding bound functions. So, new-
size arguments are never used as size arguments with respect to
which bound functions can be non-monotonic.

9. Solving Composite Recurrences
We developed a set of templates to solve composite recurrences.
The templates are designed to match composite recurrences of the
forms that commonly arise in bound functions, such as from theS
transformation of function applications (see Figure 1). The applica-
bility of a template is defined by a pattern that the recurrence must
match, together with some requirements that must be satisfied by
the constants and expressions in the recurrence. Several templates
solve composite recurrences by reducing the given composite re-
currence into a regular recurrence containing a single argumente
of themax application, such that the evaluation ofe is the maxi-
mum at the relevant base cases (different from the base cases of the
given recurrence), as well as the inductive case. Other templates
work by reducing composite recurrences with multiplemax ap-
plications into component composite recurrences which are recur-
sively solved. A complete list of templates is available in [24].

We now describe a template for solving composite recurrences
of the form

T (n) =

{
c1, . . . , cj+1, if n = i, . . . , i + j, respectively
max(e1(n), e2(n) + aT (n− b)), otherwise

wherei, j, c1, ..., cj+1, a, b are constants, ande1(n) ande2(n) are
closed forms inn. T has j + 1 base cases and one recursive
case. The requirements for applicability of the template include
a few conditions that ensure the recurrence is well-defined, e.g.,
0 < b ≤ (j +1). The remaining requirements define three separate
cases in which a solution can be ascertained. In case (a), we also
conclude that the recurrence is simple, and therefore this case is
checked first. LetE1 bee1(n), and letE2 bee2(n) + aT (n− b).

Case (a): If the following conditions hold,

A1: e1(n) = e2(n) + ac(n−b−i+1), ∀n ∈ [i + j + 1, i + j + b]
A2: e1(n) = e2(n) + ae1(n− b), ∀n > (i + j + b)

thenT is simple, and the solution ofT is:

T (n) =

{
c1, . . . , cj+1, if n = i, . . . , i + j, respectively
e1(n), otherwise

Informally, this case applies when all unfoldings ofT , using all
combinations of arg-expsE1 and E2 of max, yield the same
value. A1 ensures this for the smallest non-base cases ofn (in
the range[i + j + 1, i + j + b]) for which T (n) uses a base
value ofT ; this corresponds to the base case of the proof of case
(a). A2 performs the necessary check for the inductive case: for
n > (i + j + b), the value ofE1 equals that ofE2, unfolded once
usingE1. For example, consider theR function Rre of remove-
elementin selection-sort.

Rre(lss) =

{
0, if lss = 1
max(lss − 1, 1 + Rre(lss − 1)), otherwise

Case (a) applies and gives the solutionRre(lss) = lss − 1.

Case (b): If the following conditions hold,

B1: e1(n) ≥ e2(n) + ac(n−b−i+1), ∀n ∈ [i + j + 1, i + j + b]
B2: e1(n) ≥ e2(n) + ae1(n− b), ∀n > (i + j + b)

thenT is complex, and the solution ofT is:

T (n) =

{
c1, . . . , cj+1, n = i, . . . , i + j, respectively
e1(n), otherwise

The solution is based on the observation that, under these condi-
tions,E1 always yields a larger value thanE2.

Case (c): DefineT ′ as

T ′(n) =

{
c1, . . . , cj+1, if n = i, . . . , i + j, respectively
e2(n) + aT ′(n− b), otherwise

Suppose the solution ofT ′ is

T ′(n) =

{
c1, . . . , cj+1, n = i, . . . , i + j, respectively
e3(n), otherwise

If e1(n) ≤ e3(n) for n > (i + j), thenT is complex and has
the same solution asT ′. The solution is based on the observation
that, under these conditions, arg-expE2 of max always yields the
maximal value.

10. Performing Test MC3
Test MC3 is performed on bound function recurrences that contain
arg-uses of complexR functions, where the arg-users are the defin-
ing bound functions. Consider such a bound functionG:

G(v) = . . . G(F (v)) . . .

whereF is a complexR function. We consider a single-argument
function for simplicity. The discussion is easily extrapolated for
functions with multiple arguments. Test MC3 checks if using the
result ofF (v) in the definition ofG yieldsmax(Gall(v)), which
is the desired result ofG.

An example of such a bound function isRqs in Section 7. IfRqs

does not satisfy MC3, then the analysis cannot proceed without
an alternate strategy, e.g., ifG is an N function, then it can be
redefined without newsize arguments, as discussed in Section 6.
This simplification may allow test MC3 to succeed or even make it
unnecessary.

Test MC3 is difficult to check in the general case. We developed
templates that perform the test by matching recurrences against
safe patterns and ensuring certain properties such as the following:
base values of the recurrence are monotonically increasing, base
values are less than values of the recurrence at the smallest non-
base cases, and closed form expressions in the recurrence definition
contain only monotonically increasing operators. Templates are
constructed such that, when checking MC3 for aforementionedG,
it is sufficient to provide its definition using just the solution ofF ,
instead of the set of elements ofF all. A complete list of templates
is available in [24].

One of the templates that test MC3 matches recurrences of the
form

T (n) =

{
c1, ..., cj+1, n = i, ..., i + j, respectively
e(n) + aT (f(n)), otherwise

wherei, j, c1, ..., cj+1, a are constants, ande(n) is a closed form
in n. The given recurrence is required to meet the following condi-
tions (we elide general well-formedness requirements that are or-

thogonal to MC3).

R1: c1 ≤ ... ≤ cj+1, i.e., base cases are monotonically increas-
ing.

R2: cj+1 ≤ e(i + j + 1) + aT (f(i + j + 1)), i.e., the largest
base value is not greater than the value ofT at the smallest
non-base case.

R3: ∀n > (i + j). f(n) < n. For example, this holds for
f(n) = n− b andf(n) = n/2 (integer division).

R4: f is monotonically increasing w.r.t.n. For example, this
holds forf(n) = n− b andf(n) = n/2.

R5: ∀n > (i + j), e(n) > 0 and e(n) is monotonically
increasing w.r.t.n.

It is easy to see that if R1-R5 are satisfied by a recurrenceG,
then MC3 is satisfied forG. The above template matchesRqs

which after evaluation of the calls toRlls andRgls is

Rqs(lss) =

 0, if lss = 0
1, if lss = 1
1 + 2Rqs(lss − 1), otherwise

11. Examples
We applied the analysis to several list-processing programs, namely
list reversal, insertion sort, selection sort, merge sort, quicksort, and
programs that compute longest common subsequence, string edit
distance, and binomial coefficients efficiently using dynamic pro-
gramming. In the latter set of programs, lists (instead of arrays)
are used to store results of subproblems. Figure 5 shows the re-
sults of our analysis. The closed forms derived by the analysis in-
clude linear and quadratic polynomials, and exponential formulae.
A complete listing of example programs, their bound functions, re-
currence relations, resulting closed forms, and how these were de-
rived, appears in [24].

The accuracy (tightness) of the analysis results was confirmed
by comparing with results from the analysis in [25] for the same
programs. The closed form solutions derived by our analysis are
exact maximums of live heap space usage of all example programs
exceptquicksort. Our analysis gives a loose bound for quicksort
because it does not recognize that the sizes of the results of func-
tions lesserorequal-list(this is the function abbreviated aslls in
Section 7) andgreater-list(which is similar but returns the sublist
containing elements greater than the cutoff) are correlated, specifi-
cally, that when both functions are applied to the same list of length
n with the same cutoff, the sizes of their results sums ton. We
verified that this is the only source of inaccuracy in the analysis
of quicksort by manually modifying the relevant bound functions
of quicksort to take this invariant into account; the analysis then
produces a quadratic polynomial that accurately describes the heap
usage of quicksort.

Figure 4 shows how live heap space analysis works for an
example program, namelyinsertion-sort. It lists the functions of
insertion-sort, correspondingS, N , andR functions, recurrences
obtained by simplifying the bound functions, and closed form so-
lutions of the recurrences.

12. Extensions to the Analysis
Our analysis can be extended to data types other than lists by defin-
ing an appropriateR function for each data type and introducing
corresponding size arguments to bound functions. Some data types,
such as arrays, are similar to lists and can be handled easily. Binary
trees are more interesting. Their size can be measured by height and
number of nodes, so we define twoR functions for binary trees,
Rheight andRnodes , and for each binary-tree argumentv of each
functionf in the original program, we introduce argumentsvh and

Examples Entry Function S Function of Entry Function
Derived Heap
Usage Complexity Tight?

reverse rev(ls) Srev(lss) =

{
0 if lss = 0
2lss − 1, otherwise Linear Yes

insertion sort is(ls) Sis(lss) =

{
0 if lss = 0
2lss − 1, otherwise Linear Yes

selection sort ss(ls) Sss(lss) =
lss(lss+1)

2
Quadratic Yes

merge sort ms(ls) Sms(lss) =

{
0 if lss = 0
2lss − 1, otherwise Linear Yes

quick sort qs(ls) Sqs(lss) =

{
0 if lss = 0, 1
3.2lss−1 − 2, otherwise

Exponential No

longest common subsequencelcs(ls1, ls2) Slcs(ls1s , ls2s) =

1 if ls1s = 0 or ls2s = 0
ls2s + 2 if ls1s = 1
2ls2s + 2, otherwise

Linear Yes

string edit distance se(str1, str2) Sse(str1s , str2s) =

str1s + str2s + 1,
if str1s = 0 or str2s = 0

2str1s + 2str2s + 1, otherwise
Linear Yes

binomial coefficient bc(n, m) Sbc(ns, ms) =

1 if ms = ns

ms + 2 if ms = ns − 1
2ms + 2, otherwise

Linear Yes

Figure 5. Parametric heap space usage bounds derived for some example programs.

vn to the bound functions off , representing the height and number
of nodes, respectively, of the tree passed tov.

In the presence of these new data types, bound functions may
need to make approximations, e.g., that each branch of a binary
treev has at mostmin(2vh −1, vn−1) nodes. We can mitigate, if
not eliminate, the effects of such approximations by using type-
specific invariants in the analysis, e.g.,vn ≤ 2vh+1 − 1 and
Rnodes [[left(e)]] + Rnodes [[right(e)]] = Rnodes [[e]], whereleft(e)
and right(e) return the subtrees ofe, respectively. Note that the
metric Rnodes is useful for all data types, including nested lists.
The currentR functions are, in fact,Rlength functions; for a nested
list ls, Rlength describes the length of the top-level list ofls.

S and N functions, and theS andN transformations, also
need to be specialized to new data types. For some data types,
S and N functions can take any one of several size measures
as arguments, depending on which size measure yields the most
compact and accurate formulas representing live heap usage and
new result-space usage, respectively. The analysis may try different
size measures and then determine which yields the best results.

The current version of our analysis does not allow mutual recur-
sion in the input programs. Such mutual recursion typically leads
to mutual recursion in the bound functions. Mutual recursion can
sometimes be handled by converting it into self-recursion (i.e., or-
dinary recursion): iff andg are mutually recursive, and unfolding
f a few times yields a definition off that recursively calls only
f and notg, thenf is in fact self-recursive. Our analysis can be
extended to first use such unfolding to try to convert mutual re-
cursion into self-recursion. If this does not succeed, then standard
mathematical techniques for solving mutual recurrences are used,
if applicable.

13. Related Work
There is a large amount of work on analyzing program cost or re-
source complexities, but the majority of it is on time analysis, e.g.,
[26, 19, 22, 23, 20, 15]. Analysis of stack space and heap alloca-
tion are similar to time analysis [20]. Analysis of live heap space
is different because live heap space increases and decreases dur-

ing program execution, while time always increases. Further, live
heap space analysis needs to determine when allocations become
garbage.

Wegbreit [26] proposed deriving closed form expressions de-
scribing running times of Lisp programs in terms of sizes of inputs,
much like we do for live heap space, by deriving recursive functions
describing running times, converting them into difference equa-
tions and solving the same. Analyses that produce such formulas
are sometimes calledparametricanalyses. Probabilities attached to
ambiguous predicates (that require information other than sizes of
inputs) enable the derivation of mean running times, in addition to
best-case and worst-case running times. The prototype implemen-
tation is limited to simple Lisp programs. [19] is similar to [26]
but derives asymptotic, rather than exact, upper bounds on running
times; also, the user is required to aid the analysis in converting the
recursive function into a closed form expression. These two papers
describe only limited methods to handle their respective equiva-
lents of composite recurrences, and neither of them use the notion
of monotonicity requirements.

Most of the work related to analysis of space is on analysis of
cache behavior, e.g., [27, 14], much of which is at a lower language
level, for compiler generated code, while our analyses are at source
level and can serve many purposes. Live heap analysis is a first
step towards analyzing cache behavior in the presence of garbage
collection.

Several type systems [18, 17, 12, 11] have been proposed for
reasoning about space and time bounds, and some of them include
implementations of type checkers [18, 12]. They require program-
mers to annotate their programs with cost functions as types. Fur-
thermore, some programs must be rewritten to have feasible types
[18, 17]. [9] proposes a loop-detecting algorithm to identify meth-
ods and instructions that execute an unbounded number of times,
thereby detecting possibly unbounded memory usage. [4, 7] ensure
acceptable memory use in bytecode, by verifying specified resource
annotations or memory consumption policies.

[16] proposes a method to obtain linear bounds on heap space
consumption of functional programs using type derivations and
linear programming. While programs are not required to be linearly

typed, restrictions are made on sharing of heap cells. Our analysis
is not restricted to linear bounds and does not restrict sharing of
heap cells.

Several methods have been developed to automatically infer
heap space bounds for Java-like imperative languages and byte-
code. Imperative update poses special challenges for determining
liveness. Chinet al. [10] propose a method to infer stack and heap
usage bounds for an assembly-like language. “dispose” commands
that reclaim unused heap space, are explicitly inserted into input
programs [11] at points where objects are no longer live. Recur-
sive constraint abstractions derived from these modified input pro-
grams describe stack and heap usages of the programs. Fixpoint
analysis of constraint abstractions using a Presburger solver yields
closed form expressions for stack and heap usages. Our analy-
sis applies to a high-level language and is not limited to Pres-
burger formulae, so it can derive both linear and non-linear bounds.
The alias/uniqueness analysis used to determine liveness and insert
“dispose” commands appropriately, is an over-approximation of the
behaviour of an ideal garbage collector. In the absence of impera-
tive update, live heap analysis is able to determine liveness exactly.
As a result, our bounds on heap usage are tighter than those of [10].
While their analysis has been applied to several benchmarks, all ex-
cept one of the benchmarks use few heap objects.

The heap analysis in [8] is also targeted to an imperative lan-
guage but is able to derive polynomial, not just linear, heap bounds.
Our analysis is not limited to a complexity category, although it is
limited by the solvability of the encountered recurrences. Region-
based memory management is used to model garbage collection;
objects are allocated in regions associated with methods and re-
gions are garbage collected at the end of methods. As in the above
discussion, this is an over-approximation of heap usage compared
to our analysis, which is, in the absence of imperative update, able
to model “ideal” garbage collection (objects are garbage collected
as soon as they become dead). The maximum memory occupied by
a region configuration is modelled as a parametric polynomial op-
timization problem. This is then solved using Bernstein basis. The
analysis does not handle recursions.

Albert et al.propose a two-part analysis of heap space usage for
Java bytecode [2]. The first part constructs cost equations character-
izing the amount of heap space allocated by each method and then
uses the technique in [1] to obtain closed-form upper bounds on the
total amount of allocation. The second part takes garbage collec-
tion into account in a simple way by using escape analysis to iden-
tify allocations that do not escape from the static scope containing
the allocation statement, and then ignoring these allocations when
computing the total amount of heap allocation. Solving the result-
ing cost equations provides an upper bound on what they call the
active heap spacefor each method. On the one hand, their analysis
handles various language features that ours does not, most notably
imperative update. On the other hand, their analysis cannot easily
be extended to compute what our analysis computes—the maxi-
mum live heap space, which they call thememory high-watermark.
The “active heap space” computed by their analysis only increases
(like running time); live heap space is different, because it increases
and decreases. They write: “Analysis for finding upper bounds on
the memory high-watermark cannot be directly done using cost re-
lations as introducing decrements in the equations requires com-
puting lower bounds” [2, Section 6]. To illustrate the difference
between live space and “active heap space”, consider the program

f(n) = len(g(n)) + len(g(n))

g(n) = if n = 0 then nil else cons(n, g(n− 1))

len(l) = if null?(l) then 0 else 1 + len(cdr(l))

Our analysis yieldsSf (ns) = ns, i.e., the maximum live heap
space used byf is n cons cells, reflecting that the cells allocated by

the first call tog(n) become garbage before the second call tog(n).
The method of [1, 2] does not recognize this (since cells allocated
in g escape it) and yields a bound of2n on the space usage off .
Albert et al.’s paper in the same proceedings analyzes live heap
space (as opposed to total heap allocation and active heap space)
in the presence of garbage collection [3]. The methods used in our
analysis to solve composite recurrences can be enhanced by the
techniques in [1] to solve non-deterministic cost relations and those
in [15] to handle disjunctive invariants.

14. Conclusions and Future Work
In summary, this paper describes a method that aims to determine
worst-case live heap space usage of functional programs automati-
cally and accurately using source-level program analysis and trans-
formations. Specific technical contributions include a framework
for deriving bound (S, N , andR) functions that describe the live
heap space usage of functional programs, the identification and for-
mulation of conditions (tests MC1, MC2, and MC3) that are nec-
essary to ensure soundness of the analysis, and the templates used
to solve recurrences and check part of the monotonicity condition
(namely, MC3). The results reported in Section 11 suggest that the
analysis usually produces tight bounds in practice. Although these
example programs are small, they have non-trivial patterns of heap
allocation and garbage collection. In part, this is because they are
functional programs and must allocate new data structures instead
of updating existing data structures.

Future work on live heap analysis for functional programs in-
cludes modifying the analysis to reflect the effect of optimization of
tail recursion, incorporating techniques for analysis of higher-order
functions [23, 20], and evaluating the accuracy and scalability of
the analysis more extensively. Another important direction for fu-
ture work is to modify the analysis to handle imperative update.

References
[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic inference

of upper bounds for recurrence relations in cost analysis. InProc.
15th International Static Analysis Symposium (SAS 2008), pages
221–237, 2008.

[2] E. Albert, S. Genaim, and M. Ǵomez-Zamalloa. Heap space analysis
for java bytecode. InProc. 6th International Symposium on Memory
Management (ISMM 2007), pages 105–116, 2007.

[3] E. Albert, S. Genaim, and M. Gomez-Zamalloa. Live heap space
analysis for languages with garbage collection. InProc. 7th
International Symposium on Memory Management (ISMM ’09),
2009.

[4] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark.
Mobile resource guarantees for smart devices. InProceedings of the
International Workshop on Construction and Analysis of Safe, Secure
and Interoperable Smart Devices (CASSIS), volume 3362 of LNCS,
pages 1–26. Springer, 2005.

[5] D. F. Bacon. Realtime garbage collection.Queue, 5(1):40–49, 2007.

[6] R. Bagnara, A. Pescetti, A. Zaccagnini, E. Zaffanella, and T. Zolo.
PURRS: The Parma University’s recurrence relation solver.http:
//www.cs.unipr.it/purrs.

[7] G. Barthe, M. Pavlova, and G. Schneider. Precise analysis of memory
consumption using program logics. InSEFM ’05: Proceedings of the
Third IEEE International Conference on Software Engineering and
Formal Methods, pages 86–95, Washington, DC, USA, 2005. IEEE
Computer Society.

[8] V. Braberman, F. Ferńandez, D. Garbervetsky, and S. Yovine.
Parametric prediction of heap memory requirements. InISMM
’08: Proceedings of the 7th international symposium on Memory
management, pages 141–150, New York, NY, USA, 2008. ACM.

[9] D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified
memory usage analysis. InFormal Methods 05, volume 3582 of
LNCS, pages 91–106. Springer-Verlag, 2005.

[10] W.-N. Chin, H. H. Nguyen, C. Popeea, and S. Qin. Analysing memory
resource bounds for low-level programs. InISMM ’08: Proceedings
of the 7th international symposium on Memory management, pages
141–150, New York, NY, USA, 2008. ACM.

[11] W.-N. Chin, H. H. Nguyen, S. Qin, and M. Rinard. Memory usage
verification for oo programs. InSAS 05, pages 70–86. Springer, 2005.

[12] K. Crary and S. Weirich. Resource bound certification. InConference
Record of the 27th Annual ACM Symposium on Principles of
Programming Languages. ACM Press, 2000.

[13] W. Fu and C. Hauser. A real-time garbage collection framework
for embedded systems. InSCOPES ’05: Proceedings of the 2005
workshop on Software and compilers for embedded systems, pages
20–26, New York, NY, USA, 2005. ACM.

[14] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: A
compiler framework for analyzing and tuning memory behavior.
ACM Trans. Program. Lang. Syst., 21(4):703–746, July 1999.

[15] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: precise and
efficient static estimation of program computational complexity.
In Proc. 36th Annual Symposium on Principles of Programming
Languages (POPL 2009), 2009.

[16] M. Hofmann and S. Jost. Static prediction of heap space usage for
first-order functional programs. InPOPL03 Symposium on Principles
of Programming Languages, pages 185–197. ACM Press, 2003.

[17] J. Hughes and L. Pareto. Recursion and dynamic data-structures
in bounded space: Towards embedded ML programming. In
Proceedings of the 1999 ACM SIGPLAN International Conference on
Functional Programming, pages 70–81. ACM Press, Sept. 1999.

[18] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. InConference Record of the 23rd Annual
ACM Symposium on Principles of Programming Languages, pages
410–423. ACM Press, 1996.

[19] D. Le Métayer. Ace: An automatic complexity evaluator.ACM Trans.
Program. Lang. Syst., 10(2):248–266, Apr. 1988.

[20] Y. A. Liu and G. Ǵomez. Automatic accurate time-bound analysis
for high-level languages. InProceedings of the ACM SIGPLAN
1998 Workshop on Languages, Compilers, and Tools for Embedded
Systems, volume 1474 ofLecture Notes in Computer Science, pages
31–40. Springer-Verlag, 1998.

[21] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M.
Vorkoetter, J. McCarron, and P. DeMarco.Maple 10 Programming
Guide. Maplesoft, 2005.

[22] M. Rosendahl. Automatic complexity analysis. InProceedings of the
4th International Conference on Functional Programming Languages
and Computer Architecture, pages 144–156. ACM Press, Sept. 1989.

[23] D. Sands. Complexity analysis for a lazy higher-order language. In
N. D. Jones, editor,Proceedings of the 3rd European Symposium on
Programming, volume 432 ofLecture Notes in Computer Science,
pages 361–376. Springer-Verlag, Berlin, May 1990.

[24] L. Unnikrishnan. Automatic Live Memory Bound Analysis for
High-Level Languages. PhD thesis, Stony Brook University, 2008.
Available athttp://www.cs.sunysb.edu/~leena/thesis.pdf.

[25] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized live heap
bound analysis. InProceedings of the 4th International Conference
on Verification, Model Checking and Abstract Interpretation, Jan.
2003.

[26] B. Wegbreit. Mechanical program analysis.Communications of the
ACM, 18(9):528–538, Sept. 1975.

[27] R. Wilhelm and C. Ferdinand. On predicting data cache behaviour
for real-time systems. InProceedings of the ACM SIGPLAN
1998 Workshop on Languages, Compilers, and Tools for Embedded
Systems, volume 1474 ofLecture Notes in Computer Science, pages
16–30. Springer-Verlag, 1998.

