
Invariants in Distributed Algorithms∗

Yanhong A. Liu Scott D. Stoller Saksham Chand Xuetian Weng

Computer Science Department, Stony Brook University, Stony Brook, NY 11794, USA
{liu,stoller,schand,xweng}@cs.stonybrook.edu

Abstract

We will discuss making invariants explicit in specification of distributed algorithms. Clearly
this helps prove properties of distributed algorithms. More importantly, we show that this helps
make it easier to express and to understand distributed algorithms at a high level, especially
through direct uses of message histories. We will use example specifications in TLA+, for
verification of Paxos using TLAPS, as well as complete executable specifications in DistAlgo, a
high-level language for distributed algorithms.

1 Specification and verification of distributed algorithms

Distributed algorithms must deal with failures of processes and communication channels to provide
correct distributed system functions. They can be subtle and difficult to understand even when
they appear simple. Therefore, it is important to be able to specify these algorithms precisely, at
a high level, to better understand them, and to execute them precisely and rigorously verify their
correctness properties.

Many formal specification languages have been developed for specifying distributed algorithms,
for example, IOA (for Input/Output Automata) [18, 4], TLA+ (for Temporal Logic of Actions) [8,
20], and PlusCal [9]. IOA and TLA+ are based on state machines, whereas PlusCal provides
higher-level control flows.

TLA+ has the advantage that it needs only ordinary mathematics to specify system actions over
states and only minimum temporal logic to describe temporal properties. While PlusCal supports
higher-level control flows, its restriction on labels for expressing the grain of atomicity makes it less
useful for distributed algorithms.

We show that even with state-machine based specifications, distributed algorithms can be ex-
pressed at a higher level, by using high-level queries over message history variables, capturing
important invariants explicitly. We further show that higher-level control flows can be supported
allowing any grain of atomicity in the specification.

We have developed a language, DistAlgo [16], that supports both and is directly executable.
DistAlgo has a formal operational semantics and an efficient implementation extending Python.
We have written corresponding specifications and abstract specifications in TLA+ for Multi-Paxos
and variants and developed proofs of safety properties using the proof system TLAPS. We have
also built automatic translators from DistAlgo to TLA+ for model checking by TLC.

∗This work was supported in part by NSF under grants CCF-1414078, IIS-1447549, and CNS-1421893, and ONR
under grant N000141512208.

1



2 A high-level language

For expressing distributed algorithms at a high level, DistAlgo [16] supports four main concepts
by building on an object-oriented procedural language, such as Python: (1) distributed processes
that can send messages, (2) control flow for handling received messages, (3) high-level queries for
synchronization conditions, and (4) configuration for setting up and running. Appendix A shows
Lamport’s algorithm for distributed mutual exclusion in English and a high-level specification of it
in a complete executable program in DistAlgo.

In particular, a run definition specifies the main flow of control of a process. Received mes-
sages are handled either synchronously, by querying received messages in await statements, or
asynchronously, by running receive handlers at yield points. A yield point is labeled with -- or is
implicit before any await statement. A synchronization condition using message history variables
is an explicit invariant asserting that the condition is true when passing that program point.

For efficient implementation, results of expensive queries are maintained incrementally as mes-
sages are sent and received [17, 12, 16]. High-level specifications and systematic incrementaliza-
tion have allowed us to discover simplifications and improvements to some algorithms we stud-
ied [15, 16, 13].

3 Formal semantics

We give an abstract syntax and operational semantics for a core language for DistAlgo [16]. The
operational semantics is a reduction semantics with evaluation contexts [23, 21]. The core language
supports definition of classes containing methods and receive handlers. Expressions and statements
include set comprehensions and quantifications with tuple patterns in membership clauses, object
creation, method calls, start (for starting process), send (for sending messages), and assignments
to local variables and object fields. Control structures include await statement, if statement, while
loops, for loops that iterate over sets, and sequential composition. Processes are objects, so object
creation subsumes dynamic process creation.

A state consists of the local state of each process plus the contents of the communication
channels between each pair of processes. The local state of a process consists mainly of a heap and
a statement representing the remaining code to be executed by that process. Intuitively, a transition
removes the part of the statement that was just executed and updates the contents of the heap and
message channels appropriately. For example, if the remaining code for process P1 is x:=1; y:=2,
then a transition by P1 leads to a state in which x equals 1 and the remaining code for P1 is y:=2.
Evaluation contexts are used to identify the sub-expression or sub-statement of the remaining code
to be evaluated next. For example, for if statements, the evaluation context indicates that the
condition expression should be evaluated next, unless it has already been evaluated to a Boolean
literal. Loops are handled by unrolling. Method calls are handled by inlining the statement
produced by substituting the arguments for the parameters in the method body.

An execution is a sequence of transitions starting from an initial state. An execution may
terminate (i.e., there is no remaining code for any process to execute), get stuck (e.g., due to an
unsatisfied await statement), or run forever due to an infinite loop or infinite recursion.

2



4 Proofs using TLAPS

We present our work [2, 1] on specification and verification of distributed algorithms in TLA+ and
TLAPS. As case study, we use Paxos [6]—the most famous algorithm for distributed consensus—and
its variants. Building on Lamport et al.’s TLA+ specification of Paxos [10], we specified Multi-Paxos
in [2] and presented its formal proof of correctness written in and checked by TLAPS. Experiences
gained from this work and the presence of high-level executable languages like DistAlgo, led us
to explore a unique style of writing specifications in [1], using only message history variables. We
observed that not using and maintaining other state variables yields simpler specifications that are
more declarative and easier to understand. It also allows easier proofs to be developed by needing
fewer invariants and facilitating proof derivations. We observed that the sizes of specifications
and proofs were reduced by 25% and 27%, respectively, for Basic Paxos, and 46% (from about
100 lines to about 50 lines) and 48% (from about 1000 lines to about 500 lines), respectively, for
Multi-Paxos. Overall we needed 54% fewer manually written invariants and our proofs had 46%
fewer obligations.

We also wrote TLA+ specifications corresponding to complete DistAlgo programs for Multi-
Paxos and variants and developed their safety proofs in TLAPS [13]. The specification and proof
sizes are much larger. We are developing systematic methods to generate abstract specifications in
DistAlgo from complete DistAlgo programs before translation to TLA+.

5 Translation to TLA+ and model checking using TLC

We built two automatic translators from DistAlgo to TLA+. The first one translates DistAlgo
program in a straightforward method by lowering each DistAlgo statement to one or more cor-
responding TLA+ actions. It closely follows the semantics of DistAlgo and handles all DistAlgo
features. It generates sub-optimal TLA+ specification [22]. In the second, improved translator,
we introduced a lower-level intermediate representation and exploited the approaches used in tra-
ditional compilers, such as dead code elimination and constant propagation. This allowed us to
generate much simpler specifications, comparable to hand-written TLA+ specification.

As case study, we translated Lamport’s distributed mutual exclusion algorithm [5] in DistAlgo
and compared the generated TLA+ specifications generated by our two translators with two hand-
written TLA+ specifications. One is written in TLA+ by Lamport [7], and the other one is written
in PlusCal by Merz [19]. We used TLC to check the safety property for all four specifications,
with the same configuration (number of processes, etc.). The numbers of distinct states found by
TLC are 28,358 for the TLA+ version by Lamport; 37,978 for the specification generated by the
improved translator; 1,180,688 for the PlusCal version by Merz; and 2,052,276 for the specification
generated by the first translator.

References

[1] Saksham Chand and Yanhong A Liu. Simpler specifications and easier proofs of distributed al-
gorithms using history variables. In NASA Formal Methods Symposium, pages 70–86. Springer,
2018.

3



[2] Saksham Chand, Yanhong A Liu, and Scott D Stoller. Formal verification of multi-paxos
for distributed consensus. In International Symposium on Formal Methods, pages 119–136.
Springer, 2016.

[3] Vijay K. Garg. Elements of Distributed Computing. Wiley, 2002.

[4] Stephen J. Garland and Nancy A. Lynch. Using I/O automata for developing distributed
systems. In Foundations of Component-Based Systems, chapter 13, pages 285–312. Cambridge
University Press, 2000.

[5] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21:558–565, 1978.

[6] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS),
16(2):133–169, 1998.

[7] Leslie Lamport. Distributed algorithms in TLA+. PODC 2000 Tutorial https://www.podc.
org/podc2000/lamport.html, 2000.

[8] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley, 2002.

[9] Leslie Lamport. The PlusCal algorithm language. In Proceedings of the 6th International
Colloquium on Theoretical Aspects of Computing, pages 36–60. Springer, 2009.

[10] Leslie Lamport, Stephan Merz, and Damien Doligez. Paxos.tla. https://github.com/

tlaplus/v1-tlapm/blob/master/examples/paxos/Paxos.tla. Last modified Fri Nov 28
10:39:17 PST 2014 by Lamport. Accessed Feb 6, 2018.

[11] Bo Lin and Yanhong A. Liu. DistAlgo: A language for distributed algorithms. http://

github.com/DistAlgo, 2017. Beta release September 27, 2014, latest release November 23,
2017.

[12] Yanhong A. Liu, Jon Brandvein, Scott D. Stoller, and Bo Lin. Demand-driven incremental
object queries. In Proceedings of the 18th International Symposium on Principles and Practice
of Declarative Programming, pages 228–241. ACM Press, 2016.

[13] Yanhong A. Liu, Saksham Chand, and Scott D. Stoller. Moderately complex Paxos made
simple: High-level specification of distributed algorithm. Computing Research Repository,
arXiv:1704.00082 [cs.DC], Mar. 2017 (Revised July 2017). http://arxiv.org/abs/1704.

00082.

[14] Yanhong A. Liu, Bo Lin, and Scott Stoller. DistAlgo Language Description. distalgo.cs.

stonybrook.edu, 2017. Last revised March 24, 2017.

[15] Yanhong A. Liu, Scott D. Stoller, and Bo Lin. High-level executable specifications of dis-
tributed algorithms. In Proceedings of the 14th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, pages 95–110. Springer, 2012.

4



[16] Yanhong A. Liu, Scott D. Stoller, and Bo Lin. From clarity to efficiency for distributed
algorithms. ACM Transactions on Programming Languages and Systems, 39(3):12:1–12:41,
May 2017.

[17] Yanhong A. Liu, Scott D. Stoller, Bo Lin, and Michael Gorbovitski. From clarity to efficiency
for distributed algorithms. In Proceedings of the 27th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications, pages 395–410, 2012.

[18] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[19] Stephan Merz. Lamport’s algorithm, May 8 2010. Email communication with Yanhong Annie
Liu.

[20] Microsoft Research. The TLA Toolbox. http://lamport.azurewebsites.net/tla/toolbox.
html, Last modified January 30, 2018.

[21] Traian Florin Serbanuta, Grigore Rosu, and Jose Meseguer. A rewriting logic approach to
operational semantics. Information and Computation, 207:305–340, 2009.

[22] Xuetian Weng. Verification of distributed algorithms. Research proficiency exam report, Stony
Brook University, Aug. (Revised Mar. 17, 2015) 2014.

[23] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115:38–94, 1994.

A Lamport’s algorithm for distributed mutual exclusion

Lamport developed an algorithm for distributed mutual exclusion to show the logical clock he
invented [5].

The problem is that n processes access a shared resource, and need to access it mutually
exclusively, in what is called a critical section (CS), i.e., there can be at most one process in a
critical section at a time. The processes have no shared memory, so they must communicate by
sending and receiving messages. Lamport’s algorithm assumes that communication channels are
reliable and first-in-first-out (FIFO).

Figure 1-left shows Lamport’s original description of the algorithm, except with the notation <
instead of −→ in rule 5 (for comparing pairs of logical time and process id using lexical ordering:
(t,p)< (t2,p2) iff t< t2 or t= t2 and p< p2) and with the word “acknowledgment” added in
rule 5 (for simplicity when omitting a commonly omitted [18, 3] small optimization mentioned in a
footnote). This description is the most authoritative, is at a high level, and uses the most precise
English we found.

The algorithm is safe in that at most one process can be in a critical section at a time. It is
live in that some process will be in a critical section if there are requests. It is fair in that requests
are served in the order of the logical times (paired with process ids) of the request messages. Its
message complexity is 3(n− 1) in that 3(n− 1) messages are required to serve each request.

Figure 1-right shows a high-level specification of Lamport’s algorithm in a complete executable
program in DistAlgo [14, 11]. It is obtained by first expressing Lamport’s algorithm directly and
then applying simplification and improvement enabled by systematic incrementalization to removed
the need to maintain request queues [16].

5



The algorithm is then defined by the following
five rules. For convenience, the actions defined
by each rule are assumed to form a single event.

1. To request the resource, process Pi sends
the message Tm:Pi requests resource to every
other process, and puts that message on its re-
quest queue, where Tm is the timestamp of the
message.

2. When process Pj receives the message
Tm:Pi requests resource, it places it on its request
queue and sends a (timestamped) acknowledg-
ment message to Pi.

3. To release the resource, process Pi removes
any Tm:Pi requests resource message from its re-
quest queue and sends a (timestamped) Pi re-
leases resource message to every other process.

4. When process Pj receives a Pi releases re-
source message, it removes any Tm:Pi requests
resource message from its request queue.

5. Process Pi is granted the resource when the
following two conditions are satisfied: (i) There is
a Tm:Pi requests resource message in its request
queue which is ordered before any other request
in its queue by the relation <. (To define the re-
lation < for messages, we identify a message with
the event of sending it.) (ii) Pi has received an
acknowledgment message from every other pro-
cess timestamped later than Tm.
Note that conditions (i) and (ii) of rule 5 are
tested locally by Pi.

process P:

def setup(s): # set of other procs

self.s := s

def mutex(task): # do task in mutex

-- request

self.t := logical_time() #1

send ("request", t, self) to s #1

await each received("request",t2,p2) has #5

(not received("release",=t2,=p2) #5

implies (t,self) < (t2,p2)) #5

and each p2 in s has #5

some received("ack",t2,=p2) has t2>t #5

task()

-- release

send ("release", logical_time(), self) to s #3

receive ("request", _, p2): #2

send ("ack", logical_time(), self) to p2 #2

def run(): # main flow of proc

... # other tasks of proc

def task(): ... # define some task

mutex(task) # do task with mutex

... # other tasks of proc

def main(): # main of application

... # other tasks of appl

configure channel = {reliable, fifo}
configure clock = Lamport # use Lamport clock

ps := 50 new P # create 50 P procs

for p in ps: p.setup(ps-{p}) # pass in other procs

for p in ps: p.start() # start run of procs

... # other tasks of appl

Figure 1: Lamport’s algorithm for distributed mutual exclusion.
Left: Lamport’s original description in English. Right: Simplified algorithm (lines ended with a
number in comment indicated by #) in a complete executable program in DistAlgo.

6


