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Abstract—This tutorial examines well-known algorithms for
distributed consensus problems, from classical consensus to
blockchain consensus. We discuss exact algorithms that are high-
level as in pseudocode and directly executable as programs at the
same time, focusing on how to quickly program, configure, run,
and check these algorithms as well as distributed algorithms and
systems in general.

I. INTRODUCTION

Distributed consensus is at the core of distributed systems
and services, which are increasingly indispensable in daily life.
There is an increasing interest in algorithms for both classical
consensus and blockchain consensus, especially the exact al-
gorithms for deeper understanding and possible improvements
by researchers, practitioners, and students.

Especially desired is the ability to quickly program, con-
figure, run, and check these algorithms, through methods and
languages for expressing distributed algorithms and protocols
precisely at a very high level, to facilitate the design and
implementation, as well as analysis and verification, of these
algorithms and protocols.

This tutorial examines well-known algorithms for dis-
tributed consensus problems, from classical consensus to
Byzantine consensus to blockchain consensus. We discuss
exact algorithms that are high-level as in pseudocode and
directly executable at the same time, focusing on how to
quickly program, configure, run, and check these algorithms
as well as distributed algorithms and systems in general. The
tutorial consists of five parts:

1) An introduction to different distributed consensus prob-
lems, from classical consensus to Byzantine consensus
to blockchain consensus.

2) An overview of well-known algorithms, from Paxos
for classical consensus to the Bitcoin algorithm for
blockchain consensus, including important variants such
as Viewstamped Replication and Virtual Synchrony, as
well as Proof-of-Stake vs. Proof-of-Work and Byzantine
fault tolerance (BFT) protocols.

3) An overview of a method and language, DistAlgo, for
expressing distributed algorithms precisely at a high-
level as pseudocode and having them be directly exe-
cutable at the same time, and be easily configured and
checked for safety and liveness properties.

4) A study of exact algorithms expressed at a high
level for the most extensively studied algorithm vari-
ants, including Lamport’s Paxos for classical consensus,
Nakamoto’s Bitcoin algorithm for blockchain consensus,
and more recent BFT protocols, focusing on their exact
programming, configuration, execution, and checking.

5) A demo of direct execution and checking of these
algorithms running as distributed processes.

A closely related tutorial was given at PODC 2019
(on PODC’19 page: http://www.podc.org/podc2019/workshops-and-tutorials/

tutorial-descriptions; in PODC’19 proceedings: https://dl.acm.org/doi/10.

1145/3293611.3338022).1 This new tutorial focuses on ease of pro-
gramming, configuration, running, and checking, and will
include a variety of new and old concensus algorithms, es-
pecially including BFT algorithms.

II. DISTRIBUTED CONSENSUS

Distributed consensus is the problem of having a set of
distributed processes—also knowns as servers, parties, players,
agents, entities, etc.—agree on a single value or a continuing
sequence of values in the presence of faulty processes and
communication channels.

• Classical consensus considers benign failures where pro-
cesses may crash and may later recover, and where
messages may be lost, delayed, reordered, and duplicated.

• Byzantine consensus considers arbitrary failures, where
processes may also perform malicious actions, such as
sending arbitrary messages.

• Blockchain consensus further considers Sybil attacks
where a system is subverted by forging process identities.

Different consensus problems are for very different application
senarios.

• Classical consensus is essential for distributed services
using replications to provide fault tolerance, where repli-
cas must agree on the system state or the sequence of
system actions. This is by far the vast majority of uses
of consensus protocols.

1The Google site created for the tutorial, containing programs, speci-
fications, and proofs, became unavailable last year when Google stopped
supporting advanced features we used for the site, but the tutorial slides are
available at https://distalgo.cs.stonybrook.edu/tutorial.

http://www.podc.org/podc2019/workshops-and-tutorials/tutorial-descriptions
http://www.podc.org/podc2019/workshops-and-tutorials/tutorial-descriptions
https://dl.acm.org/doi/10.1145/3293611.3338022
https://dl.acm.org/doi/10.1145/3293611.3338022
https://distalgo.cs.stonybrook.edu/tutorial


• Byzantine consensus is needed for fault tolerance against
potentially malicious processes, such as services involv-
ing external entities, or processes being taken over by
intruders.

• Blockchain consensus is used for transactions involving
entities that are totally anonymous and where all of them
can be malicious.

Because failures are inevitable, consensus algorithms have
to pay to be fault tolerant. Generally, blockchain consensus
is drastically more costly than Byzantine consensus, and
Byzantine consensus is significantly more costly than classical
consensus.

The pursuit of consensus algorithm design is exactly to
minimize the cost to provide maximum reliability. As a
result, efficient consensus algorithms are highly nontrivial and
challenging to understand and to design.

III. DISTALGO LANGUAGE

DistAlgo is developed exactly for easy and clear expression
of complex distributed algorithms—expressing them at a high
level as with pseudocode languages, but precisely as with
formal specification languages, and directly executable as with
programming languages.

For expressing distributed algorithms at a high level,
DistAlgo supports four key concepts:

1) distributed processes that can send messages,
2) high-level control flows for handling received messages,

both synchronously and asynchronously,
3) high-level queries for synchronization conditions, and
4) declarative configuration for setting up and running.

DistAlgo minimally extends the Python programming lan-
guage to support these concepts.

• DistAlgo has been used to express a wide variety of
important distributed algorithms, including over 20 well-
known algorithms and variants for classical consensus,
Byzantine consensus, and blockchain consensus.

• DistAlgo has been used in over 100 different course and
research projects at Stony Brook and elsewhere, including
by high school students, implementing the core of net-
work protocols, distributed graph algorithms, distributed
coordination services, distributed hash tables, distributed
file systems, distributed databases, parallel processing
platforms, security protocols, and more.

• The algorithms and systems can be programmed much
more easily and clearly compared to using conventional
programming languages, e.g., in 20 lines instead of 200
lines, or 300 lines instead of 3000 lines or more.

DistAlgo is open-source (https://github.com/DistAlgo/distalgo; it is also
being extended to support Datalog rules and more for advanced
analysis and optimizations https://github.com/DistAlgo/alda) [1].

IV. CONCENSUS ALGORITHMS: QUICKLY PROGRAM,
CONFIGURE, RUN, AND CHECK

The tutorial content is based on our studies of distributed
consensus algorithms, e.g., [2]–[5], especially by using the

DistAlgo language [6], [7] that has enabled the study of many
more algorithms and protocols, e.g., [8]–[10]. Students in var-
ious course projects and research projects have implemented
essentially all interesting distributed agorithms we could find,
including a wide variety of Byzantine consensus protocols
from oldest to newest. The most relevant references are:

• From Clarity to Efficiency for Distributed Algorithms [6]
(OOPSLA 2012) — DistAlgo language, compilation,
optimization, implementation, and experiments with a
dozen examples including Basic Paxos and Byzantine
Paxos

• High-Level Executable Specifications of Distributed Al-
gorithms [8] (SSS 2012) — Methods for writing high-
level specifications, with parts of Multi-Paxos as a main
example. Best Student Paper Award

• From Clarity to Efficiency for Distributed Algorithms [7]
(TOPLAS 39(3) 2017) — Extended description of
DistAlgo language and optimization method, with a for-
mal operational semantics

• Moderately Complex Paxos Made Simple: High-Level
Specification of Distributed Algorithms [3] (PPDP 2019)
— Basic Paxos and Multi-Paxos algorithms for dis-
tributed consensus written at a high level in DistAlgo

• What’s Live? Understanding Distributed Consensus [11],
long version of [4] (PODC 2021) with a video —
Specifications of a wide range of liveness properties for
over 30 consensus algorithms and variants

• Specification and Runtime Checking of Derecho, A Pro-
tocol for Fast Replication for Cloud Services [5] (Ap-
PLIED 2023 at PODC 2023) — A complete specifica-
tion that is directly executable, after fixing some issues
discovered in the pseudocode

We have not written about our studies of algorithms for
Byzantine consensus and blockchain consensus for publica-
tion, but our results have been used in continued teaching and
research. For example, exact algorithms for Bitcoin backbone
were discussed in the PODC 2019 tutorial [12] (with slides at
https://distalgo.cs.stonybrook.edu/tutorial).

The tutorial introduces consensus problems, the DistAlgo
language, and consensus algorithms at a level accessible to a
broad audience:

• The tutorial is for all of researchers, practitioners, and
students interested in programming, configuring, running,
and checking distributed algorithms and systems.

• At the same time, the tutorial is aimed to be accessible
to anyone who has basic algorithm background and
programming skills.

• The tutorial may also be of interest to people interested in
verification of distributed algorithms, because high-level
programming allows properties of programs to be much
more easily proved.

• The tutorial may be of interest to compiler builders, be-
cause high-level programming creates more opportunities
for optimization and code generation.

For complex distributed algorithms, especially consensus
algorithms, our experience is that precise high-level executable

https://github.com/DistAlgo/distalgo
https://github.com/DistAlgo/alda
http://www.cs.stonybrook.edu/~liu/papers/DistPL-OOPSLA12.pdf
http://www.cs.stonybrook.edu/~liu/papers/DistSpec-SSS12.pdf
http://www.cs.stonybrook.edu/~liu/papers/DistSpec-SSS12.pdf
http://arxiv.org/pdf/1412.8461.pdf
https://arxiv.org/pdf/1704.00082.pdf
https://arxiv.org/pdf/1704.00082.pdf
https://arxiv.org/abs/2001.04787
https://www.youtube.com/watch?v=jAJjyENR2rA
https://arxiv.org/abs/2305.12040
https://arxiv.org/abs/2305.12040
https://distalgo.cs.stonybrook.edu/tutorial


1 process Proposer:
2 def setup(acceptors): # take in set of acceptors
3 self.majority := acceptors # any majority of acceptors; we use all
4 def run():
5 n := self # Phase 1a: select proposal num n
6 send (’prepare’,n) to majority # send prepare n to majority
7 await count {a: received (’respond’,=n,_) from a} # Phase 2a: wait for response to n
8 > (count acceptors)/2: # from a majority of acceptors
9 v := any ({v: received (’respond’,=n,(n2,v)), # find val in accepted prop, if any
10 n2 = max {n2: received (’respond’,=n,(n2,_))} } # having max prop num
11 or {any 1..100}) # or any value; use any in 1..100
12 responded := {a: received (’respond’,=n,_) from a} # find responded
13 send (’accept’,n,v) to responded # send accept for proposal n,v
14 process Acceptor:
15 def setup(learners): pass # take in set of learners
16 def run(): await false # wait for nothing, only to handle messages
17 receive (’prepare’,n) from p: # Phase 1b: receive prepare n
18 if each sent (’respond’,n2,_) has n > n2: # if n > each responded n2
19 max_prop := any {(n,v): sent (’accepted’,n,v), # find accepted proposal, if any,
20 n = max {n: sent (’accepted’,n,_)} } # having max prop num
21 send (’respond’,n,max_prop) to p # respond with n,max_prop
22 receive (’accept’,n,v): # Phase 2b: receive proposal n,v
23 if not some sent (’respond’,n2,_) has n2 > n: # if not responded with larger n2
24 send (’accepted’,n,v) to learners # send accepted proposal n,v
25 process Learner:
26 def setup(acceptors): pass # take in set of acceptors
27 def run():
28 await some received (’accepted’,n,v) has # wait for some accepted proposal
29 count {a: received (’accepted’,=n,=v) from a} # that has been accepted by
30 > (count acceptors)/2: # a majority of acceptors
31 output(’chosen’,v) # output chosen value v
32 def main():
33 acceptors := 3 new Acceptor # create 3 Acceptor processes
34 proposers := 3 new Proposer(acceptors) # create 3 Proposer procs, pass in acceptors
35 learners := 3 new Learner(acceptors) # create 3 Learner procs, pass in acceptors
36 acceptors.setup(learners) # to acceptors, pass in learners
37 (acceptors + proposers + learners).start() # start acceptors, proposers, learners

Fig. 1. A high-level specification of Basic Paxos in DistAlgo, including setting up and running 3 each of Proposer, Acceptor, and Learner
processes and outputting the result.

specifications are critical. They have allowed us to understand
the algorithms drastically better and then to improve both
correctness and efficiency much more easily than was possible
before.

• For example, for Multi-Paxos, our DistAlgo specification
improves over the original pseudocode in several ways
and also led us to easily discover liveness violations when
messages can be lost [3].

• For complex algorithms, high-level specification and ex-
ecution of checkers for safety and liveness properties, as
enabled by the power of DistAlgo [13], help significantly
too, e.g., in finding buffer overwriting and leader-election
deadlock in Derecho pseudocode [5].

In fact, for almost all algorithms we have studied, we have
found issues and improvements not known before, even for
simple algorithms, e.g., [9].

V. EXAMPLE: BASIC PAXOS

Figure 1 shows Lamport’s Basic Paxos in DistAlgo’s ideal
syntax, as specified in [3]. The comments aligned with the
right # signs paraphrase Lamport’s English description. Fig-
ure 2 shows the same specification in DistAlgo’s Python
syntax.
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0 def anyof(s): return next(iter(s)) if s else None
1 class Proposer(process):
2 def setup(acceptors):
3 self.majority = acceptors
4 def run():
5 n = self
6 send((’prepare’, n), to= majority)
7 if await(len(setof(a, received((’respond’, _n, _),

from_= a)))
8 > len(acceptors)/2):
9 v = anyof(setof(v, received((’respond’, _n, (n2,v))),
10 n2==max(setof(n2, received((’respond’,

_n,
(n2,_))))))

11 or {randint(1,100)})
12 responded = setof(a, received((’respond’, _n, _),

from_= a))
13 send((’accept’, n, v), to= responded)
14 class Acceptor(process):
15 def setup(learners): pass
16 def run(): await(False)
17 def receive(msg= (’prepare’, n), from_= p):
18 if each(sent((’respond’, n2, _)), has= n > n2):
19 max_prop = anyof(setof((n,v), sent((’accepted’, n, v)),
20 n==max(setof(n, sent((’accepted’,

n, _))))))
21 send((’respond’, n, max_prop), to= p)
22 def receive(msg= (’accept’, n, v)):
23 if not some(sent((’respond’, n2, _)), has= n2 > n):
24 send((’accepted’, n, v), to= learners)
25 class Learner(process):
26 def setup(acceptors): pass
27 def run():
28 if await(some(received((’accepted’, n, v)), has=
29 len(setof(a, received((’accepted’, _n, _v),

from_= a)))
30 > len(acceptors)/2)):
31 output(’chosen’, n, v)
32 def main():
33 acceptors = new(Acceptor, num= 3)
34 proposers = new(Proposer, (acceptors,), num= 3)
35 learners = new(Learner, (acceptors,), num= 3)
36 setup(acceptors, (learners,))
37 start(proposers | acceptors | learners)

Fig. 2. Basic Paxos in DistAlgo’s Python syntax.
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