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Abstract. The Distributed Simplex Architecture (DSA) extends the Simplex con-
trol architecture of Sha et al. to provide runtime safety assurance for multi-agent
systems under distributed control. In this paper, we show how DSA can be used to
ensure collision-free 3D flocking behavior, such that agents avoid colliding with
each other and with cuboid-shaped obstacles.
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1 Introduction

The Distributed Simplex Architecture (DSA), is a new runtime assurance technique
that provides safety guarantees for multi-agent systems (MASs) under distributed con-
trol [1]. DSA is inspired by Sha et al.’s Simplex Architecture [2, 3], but differs from
it in significant ways. The Simplex Architecture provides runtime assurance of safety
by switching control from an unverified (hence potentially unsafe) advanced controller
(AC) to a verified-safe baseline controller (BC), if the action produced by the AC could
result in a safety violation in the near future. The switching logic is implemented in a
verified decision module (DM).

The applicability of the traditional Simplex architecture is limited to systems with
a centralized control architecture, or to those under decentralized control to ensure a
“local” safety property that does not depend on the outputs of other controllers. DSA
addresses this limitation by re-engineering the traditional Simplex architecture to widen
its scope to include MASs. Also, as in [4], it implements reverse switching by reverting
control back to the AC when it is safe to do so.

This paper provides a brief overview of DSA and then presents a significant DSA
application: collision-free 3D flocking, where agents form a flock and navigate through
an obstacle field to reach a target location without colliding with each other nor with
cuboid-shaped obstacles. Fig. 1 highlights some of the key findings of the case study,
showing how a flock of eight agents, initially positioned near the origin, is able to safely
navigate around a cuboid to reach a target location. In particular, our results show that
DSA prevents all potential collisions. A much simpler version of this case study (2D,
no obstacles, no target location) was considered in [1].
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We conducted this case study in conjunction with the Klaus Havelund Festschrift.
Klaus is an esteemed colleague and friend, and a pioneer in the runtime verification
community. We are honored to contribute to the proceedings.

(a) 3D view (b) X-Y view (c) X-Z view (d) Y-Z view

Fig. 1: DSA ensures inter-agent collision avoidance and obstacle avoidance. A flock of
eight agents, initialized near the origin, is able to safely navigate to the target location
shown as a blue diamond. We represent initial and final positions as red dots, velocities
as blue lines, and the trajectory segments where the AC/BC is in control are shown in
grey/blue. They grey cuboid is the obstacle.

2 Distributed Simplex Architecture

This section provides a brief overview of the Distributed Simplex Architecture (DSA).
For further details please refer to [1]. We formally introduce the MAS safety problem
and then briefly discuss the main components of DSA, namely, the distributed baseline
controller (BC) and the distributed decision module (DM).

Consider a MAS consisting of k homogeneous agents, denoted asM = {1, ..., k},
where the nonlinear control affine dynamics for the ith agent are:

ẋi = f(xi) + g(xi)ui (1)

where xi ∈ D ⊂ Rn is the state of agent i and ui ∈ U ⊂ Rm is its control input.
For an agent i, we define the set of its neighbors Ni ⊆ M as the agents whose state is
accessible to i either through sensing or communication. We denote a combined state of
all of the agents in the MAS as the vector x = {xT1 , xT2 , ...xTk }T and denote a state of
the neighbors of agent i (including i itself) as xNi . DSA uses discrete-time control: the
DMs and controllers execute every η seconds. We assume that all agents execute their
DM and controllers simultaneously; this assumption simplifies the analysis.

The set of admissible states A ⊂ Rkn consists of all states that satisfy the safety
constraints. A constraint C : Dk → R is a function from k-agent MAS states to the re-
als. In this paper, we are primarily concerned with binary constraints (between neigh-
boring agents) of the form Cij : D × D → R, and unary constraints of the form
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Fig. 2: DSA for the MAS on the right. Agents are homogeneous and operate under
DSA; the figure zooms in on DSA components for agent i. Sensed state of agent i’s jth

neighbor is denoted as Si,j . AC, BC, and DM take as input the state of the agent and its
neighbors.

Ci : D → R. Hence, the set of admissible states, A ⊂ Rkn are the MAS states of
x ∈ Rkn such that all of the unary and binary constraints are satisfied.

Formally, DSA is solving the following problem. Given a MAS defined as in Eq. (1)
and x(0) ∈ A, design a BC and DM to be used by all agents such that the MAS remains
safe; i.e. x(t) ∈ A, ∀ t > 0.

In DSA, illustrated in Fig. 2, for each agent, there is a verified-safe BC and a verified
switching logic such that if all agents operate under DSA, then safety of the MAS is
guaranteed. The BC and DM along with the AC are distributed and depend only on local
information. DSA itself is distributed in that it involves one local instance of traditional
Simplex per agent such that the conjunction of their respective safety properties yields
the desired safety property for the entire MAS. For example, consider our flocking case
study, where we want to establish collision-freedom for the entire MAS. This can be ac-
complished in a distributed manner by showing that each local instance of Simplex, say
for agent i, ensures collision-freedom for agent i and its neighboring agents. Moreover,
DSA allows agents to switch their mode of operation independently. At any given time,
some agents may be operating in AC mode while others are operating in BC mode.

2.1 Baseline Controller

Our approach to the design of the BC and DM leverages Control Barrier Functions
(CBFs), which have been used to synthesize safe controllers [5, 6, 7], and are closely
related to Barrier Certificates used for safety verification of closed dynamical sys-
tems [8, 9]. A CBF is a mapping from the system’s (i.e., plant’s) state space to a real
number, with its zero level-set partitioning the state space into safe and unsafe regions.
If certain inequalities on the derivative of the CBF in the direction of the state trajec-
tories (also known as the Lie derivative) are satisfied, then the corresponding control
actions are considered safe (admissible). For binary safety constraints, the correspond-
ing inequalities on the Lie derivative of the CBF are conditions on the control actions of
a pair of agents. The distributed control of the two agents cannot independently satisfy
the binary constraint without running an agreement protocol.

In accordance with [7], we solve the problem of the satisfaction of binary constraints
by partitioning a binary constraint into two unary constraints such that the satisfaction
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of the unary constraints by agents i and j implies the satisfaction of the binary constraint
(but not necessarily vice versa).

Pijui ≤ bij/2
Qijuj ≤ bij/2

}
⇒
[
Pij Qij

] [ui
uj

]
≤ bij (2)

In DSA, the BC is designed as an optimal controller with the goal of increasing a
utility function based on the Lie derivatives of the CBFs. As CBFs are a measure of
the safety of a state, optimizing for control actions with higher Lie derivative values
provides a direct way to make the state safer. The safety of the BC is further guaranteed
by constraining the control action to remain in a set of admissible actions that satisfy
certain inequalities on the Lie derivatives of the CBFs. CBFs are also used in the design
of the switching logic, as they provide an efficient method for checking whether an
action could lead to a safety violation during the next time step.

2.2 Decision Module

Each agent’s DM implements the switching logic for both forward and reverse switch-
ing. Control is switched from the AC to the BC if the forward switching condition
(FSC) is true. Similarly, control is reverted back to the AC (from the BC) if the reverse
switching condition (RSC) is true.

We derive the switching conditions from the CBFs as follows. To ensure safety, the
FSC must be true in a state xNi

(t) if an unrecoverable state is reachable from xNi
(t)

in one time step η. For a CBF in a given state, we define a worst-case action to be an
action that minimizes the CBF’s Lie derivative. The check for one-step reachability of
an unrecoverable state is based on the minimum value of the Lie derivative of the CBFs,
which corresponds to the worst-case actions by the agents. Hence, for each CBF h, we
define a minimum threshold value λh(xNi

) equal to the magnitude of the minimum of
the Lie derivative of the CBF times η, and we switch to the BC if, in the current state,
the value of any CBF h is less than λh(xNi). This directly ensures that none of the
CBFs can decrease enough to become negative during the next control period.

We derive the RSC using a similar approach, except the inequalities are reversed
and an m-time-step reachability check with m > 1 is used; the latter prevents frequent
back-and-forth switching between the AC and BC. The RSC holds if in the current state,
the value of each CBF h is greater than the threshold mλh(xNi

). This results in an FSC
and RSC of the following form:

FSC(xNi) = (hi < λhi(xNi)) ∨ (∃j ∈ Ni | hij < λhij (xNi)) (3)
RSC(xNi) = (hi > mλhi(xNi)) ∧ (∀j ∈ Ni | hij > mλhij (xNi)) (4)

3 Collision-Free Flocking

We evaluate DSA on the distributed flocking problem with the goal of preventing
inter-agent collisions and collisions with stationary cuboid-shaped obstacles. Consider
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a MAS consisting of k robotic agents with double integrator dynamics, indexed by
M = {1, . . . , k}: [

ṗi
v̇i

]
=

[
0 I3×3
0 0

] [
pi
vi

]
+

[
0

I3×3

]
ai (5)

where pi, vi, ai ∈ R3 are the position, velocity and acceleration of agent i ∈ M,
respectively. The magnitudes of velocities and accelerations are bounded by v̄ and ā,
respectively. Acceleration ai is the control input for agent i. There are l static cuboid-
shaped obstacles, indexed by O = {1, ..., l}.

As DSA is a discrete-time protocol, the state of the DM and the ai’s are updated
every η seconds. The state of an agent i is denoted by the vector si = [pTi v

T
i ]T . The

state of the entire flock at time t is denoted by the vector s(t) = [p(t)T v(t)T ]T ∈ R6k,
where p(t) = [pT1 (t)···pTk (t)]T and v(t) = [vT1 (t)···vTk (t)]T are the vectors respectively
denoting the positions and velocities of the flock at time t. For ease of notation, we
sometimes use s and si to refer to the state variables s(t) and si(t), respectively, without
the time index.

We assume that an agent can accurately sense the positions and velocities of ob-
jects in a sphere of radius r. The sensed objects include the other agents and the
static cuboid-shaped obstacles. The set of spatial neighbors of agent i is defined as
Ni(p) = {j ∈M | j 6= i ∧ ‖pi − pj‖ < r}, where ‖ · ‖ denotes the Euclidean norm.
The obstacles which are completely or partially within the sensing range of agent i are
denoted by the set Oi.

The MAS is characterized by a set of operational constraints which include physical
limits and safety properties. States that satisfy the operational constraints are called
admissible, and are denoted by the set A ∈ R6k. The desired safety property is that no
agent is in a “state of collision” with any other agent or any obstacle. A pair of agents
is considered to be in a state of collision if the Euclidean distance between them is less
than a threshold distance dα ∈ R+, resulting in binary safety constraints of the form:
‖pi − pj‖ − dα ≥ 0 ∀ i ∈ M, j ∈ Ni. Similarly, an agent is considered to be in a
state of collision with an obstacle if the shortest Euclidean distance between the agent
and the obstacle is less than a threshold distance dβ ∈ R+, resulting in unary safety
constraints of the form: ‖pi − po‖ − dβ ≥ 0 ∀ i ∈M, o ∈ O. A state s is recoverable
if all agents can brake (de-accelerate) relative to each other and relative to the stationary
obstacles without colliding. Otherwise, s is considered unrecoverable.

3.1 Synthesis of Control Barrier Function

For an agent i, CBFs are defined for all its neighboring agents and for all the obstacles
in its sensing range. We assume the following two conditions on the sensing range:

r > v̄η +
v̄2

4ā
+ dα

r > v̄η +
v̄2

2ā
+ dβ

(6)

These conditions ensure collision freedom, during the next decision period η, with the
agents and obstacles outside the sensing range, respectively. Hence CBFs are not needed
for objects outside the sensing range.
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For each agent i, the local admissible set Ai ⊂ R6 is the set of states si ∈ R6

which satisfy all the unary obstacle avoidance constraints. The set Si ⊂ Ai is defined
as the super-level set of the CBF hi : R6 → R, which is designed to ensure forward-
invariance of Ai. Similarly, for a pair of neighboring agents i, j where i ∈ M, j ∈ Ni,
the pairwise admissible set Aij ⊂ R12 is the set of pairs of states which satisfy all
the binary inter-agent collision avoidance constraints. The set Sij ⊂ Aij is defined as
the super-level set of the CBF hij : R12 → R designed to ensure forward-invariance
of Aij . The recoverable set Rij ⊂ R12, for a pair of neighboring agents i, j where
i ∈M, j ∈ Ni, is defined in terms of Si, Sj and Sij .

Si = {si ∈ R6|hi(si) ≥ 0} (7)

Sij = {(si, sj) ∈ R12|hij(si, sj) ≥ 0} (8)
Rij = (Si × Sj) ∩ Sij (9)

The recoverable set R ⊂ A for the entire MAS is defined as the set of system states in
which (si, sj) ∈ Rij for every pair of agents i, j.

In accordance with [10], the inter-agent collision avoidance CBF function hij(si, sj)
is based on a safety constraint over a pair of neighboring agents i, j. The safety con-
straint ensures that for any pair of agents, the maximum deceleration can always keep
the agents at a distance greater than dα from each other. As introduced earlier, dα is the
threshold distance that defines an inter-agent collision. Considering that the tangential
component of the relative velocity, denoted by ∆v, causes a collision, the constraint
regulates ∆v by application of maximum acceleration to reduce ∆v to zero. Hence, the
safety constraint can be represented as the following condition on the inter-agent dis-
tance ‖∆pij‖ = ‖pi − pj‖, the stopping distance (∆v)2/4ā, and the safety threshold
distance dα:

∥∥∆pij
∥∥− (∆v)2

4ā
≥ dα (10)

hij(si, sj) =
√

4ā(
∥∥∆pij

∥∥− dα)−∆v ≥ 0 (11)

The stopping distance is the distance covered while the relative speed reduces from
∆v to zero under a deceleration of 2ā. As introduced earlier, ā is the upper limit on
the magnitude of accelerations for all agents. The constraint in Eq. (10) is re-arranged
to get the CBF hij given in Eq. (11). Similarly, the obstacle avoidance CBF h

(j)
i (si)

is defined for the agent i and (stationary) obstacle j where the obstacle is within the
sensing range of the agent:

h
(j)
i (si) =

√
2ā(‖Oij‖ − dβ)− vTi

Oij
‖Oij‖

≥ 0 (12)

where ‖Oij‖ is the shortest distance between the agent i and the obstacle j. The vector
Oij = pi−o(i)j , where o(i)j is the point on obstacle j closest to the agent i. The zero-level

set of h(j)i separates the states from which the agent can brake to a stop, maintaining a
distance of at least dβ from the obstacle j.
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The admissible control space for the BC is defined by constraining the Lie deriva-
tives of the CBFs. For the CBF hij , linear constraint on the accelerations for agents i
and j, are obtained by constraining the Lie derivative of the CBF hij to be greater than
−α(hij), where α : R→ R is an extended class K function i.e., strictly increasing and
α(0) = 0. We set α(hij) = γh3ij , as in [10], where γ ∈ R+, resulting in the following
constraint on the accelerations of agents i, j:

∆pTij(∆aij)

‖∆pij‖
−

(∆vTij∆pij)
2

‖∆pij‖3
+
‖∆vij‖2

‖∆pij‖

+
2ā∆vTij∆pij

‖∆pij‖
√

4ā(‖∆pij‖ − dα)
≥ −γh3ij

(13)

where the left-hand side is the Lie derivative of the CBF hij and ∆pij = pi − pj ,
∆vij = vi − vj , and ∆aij = ai − aj are the vectors representing the relative position,
the relative velocity, and the relative acceleration of agents i and j, respectively. We fur-
ther note that the binary constraint (13) can be reformulated as [ Pij Qij ] [ aiaj ] ≤ bij , and
hence can be split into two unary constraints Pijui ≤ bij/2 andQijuj ≤ bij/2, follow-
ing the convention in Eq. (2). Constraints similar to Eq. (13) are also computed for the
obstacle avoidance CBF h(j)i which can be denoted as B(j)

i ui ≤ c
(j)
i . The set of safe

accelerations for an agent i, denoted by Ki(si) ⊂ R3, is defined as the intersection of
the half-planes defined by the Lie-derivative-based constraints, where each neighboring
agent and each obstacle within the sensing range contributes a single constraint:

Ki(si) =
{
ai ∈ R2 | Pijui ≤ bij/2 ∀j ∈ Ni ∧B(j)

i ui ≤ c(j)i ∀j ∈ Oi
}

(14)

With the CBFs for collision-free flocking defined in (11) and (12) and the admissible
control space defined in (14), the FSC, and RSC follow from (3), and (4), respectively.
The BC is designed as a constrained optimal controller as defined in Section 2.1.

3.2 Advanced Controller

We extend the Reynolds flocking model [11] to include target seeking behaviour and
use it as the AC. In the Reynolds model, the acceleration ai for an agent is a weighted
sum of three acceleration terms based on simple rules of interaction with neighboring
agents: separation (move away from your close-by neighbors), cohesion (move towards
the centroid of your neighbors), and alignment (match your velocity with the average
velocity of your neighbors). We add two more terms for the target seeking behaviour: A
goto target term which forces the agent to move towards the fixed target location, and a
velocity damping term, which brings the agent to a stop at the target location, preventing
it from overshooting the target and oscillating about it. The mathematical expressions
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for the acceleration terms are

asi =
1

|N i|
·

∑
j∈N i

pi − pj
‖pi − pj‖2


aci =

 1

|N i|
·
∑
j∈N i

pj

− pi
aali =

 1

|Ni|
·
∑
j∈Ni

vj

− vi
agti =

t− pi
‖t− pi‖

adpi = − vi
‖t− pi‖2

(15)

where t ∈ R3 is the target location and asi , a
c
i , a

al
i , a

gt
i , a

dp
i ∈ R3 are the acceleration

terms corresponding to separation, cohesion, alignment, goto target, and velocity damp-
ing, respectively.

The acceleration for agent i is ai = wsa
s
i + wca

c
i + wala

al
i + wgta

gt
i + wdpa

dp
i ,

where ws, wc, wal, wgt, wdp ∈ R+ are scalar weights. We note that the Reynolds model
does not guarantee collision avoidance; see Fig 3(a). Nevertheless, when the flock sta-
bilizes, the average distance between an agent and its closest neighbors is determined
by the weights of the interaction terms.

3.3 Experimental Results

The number of agents in the MAS is k = 8. The other parameters used in the experi-
ments are r = 4, ā = 5, v̄ = 2.5, dα = dβ = 2, η = 0.2s, γ = 0.5, and m = 2. There
are three cuboid-shaped obstacles in the path to the target location. The length of the
simulations is 50 seconds. The initial positions and the initial velocities are uniformly
sampled from [−10, 10]2 and [0, 1]2, respectively, and we ensure that the initial state
is recoverable. The weights of the Reynolds model terms are chosen experimentally to
ensure that no pair of agents are in a state of collision in the steady state. They are set
to ws = 3.0, wc = 1.5, wal = 1.2, wt = 0.3, and wdp = 3.0.

We performed two simulations, starting from the same initial configuration. In the
first simulation, Reynolds model is used to control all of the agents for the duration of
the simulation. In the second simulation, Reynolds model is wrapped with a verified
safe BC and DM designed using DSA.

To recall, the safety property is that agents maintain a distance greater than dα from
each other and distance greater than dβ from the obstacles. Figs. 3(a) and (b) plot, for the
duration of the simulations, the distance between each agent and its closest neighbor. As
evident from Fig. 3(a), Reynolds model results in safety violations. In contrast, as shown
in Fig. 3(b), DSA preserves safety, maintaining a separation greater than dα between
all agents. Figs. 3(c) and 3(d) plot, for the duration of the simulations, the distance
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(d) Reynolds Model with DSA

Fig. 3: DSA is able to avoid all inter-agent collisions and obstacle collisions for a flock
of eight agents.

between each agent and the closest point on the closest obstacle. As Reynolds model is
not designed for obstacle avoidance, it results in a number of agent-obstacle collisions,
whereas DSA completely prevents them. We further observe that the average time the
agents spent in BC mode is only 7.8 percent of the total duration of the simulation,
demonstrating that for this case study, DSA is largely non-invasive.

4 Conclusion

The Distributed Simplex Architecture is a runtime safety assurance technique for multi-
agent systems. DSA is distributed in the sense that it involves one local instance of tradi-
tional Simplex per agent such that the conjunction of their respective safety properties
yields the desired safety property for the entire MAS. In this paper, we have demon-
strated the effectiveness of the DSA approach by successfully applying it to collision-
free 3D flocking.
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