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Abstract

This paper describes a general approach for optimized live heap space and live heap space-bound
analyses for garbage-collected languages. The approach is based on program analysis and transformations
and is fully automatic. In our experience, the space-bound analysis generally produces accurate (tight)
upper bounds in the presence of partially known input structures. The optimization drastically improve
the analysis efficiency. The analyses have been implemented and experimental results confirm their
accuracy and efficiency.

1 Introduction

Time and space analysis of computer programs is important for virtually all computer applications, especially
in embedded systems, real-time systems, and interactive systems. In particular, space analysis is becoming
important due to the increasing uses of high-level languages with garbage collection, such as Java [26], the
importance of cache memories in performance [32], and the stringent space requirements in the growing area
of embedded applications [29]. For example, space analysis can determine exact memory needs of embedded
applications; it can help determine patterns of space usage and thus help analyze cache misses or page faults;
and it can determine memory allocation and garbage collection behavior.
Space analysis is also important for accurate prediction of running time [12]. For example, analysis of

worst-case execution time in real-time systems often uses loop bounds or recursion depths [25, 2] both of which
are commonly determined by the size of the data being processed. Also, memory allocation and garbage
collection, as well as cache misses and page faults, contribute directly to the running time. This is increasingly
significant as the processor speed increases, leaving memory access as the performance bottleneck.
Much work on space analysis has been done in algorithm complexity analysis and systems. The former

is in terms of asymptotic space complexity in closed forms [19]. The latter is mostly in the form of tracing
memory behavior or analyzing cache effects at the machine level [24, 32]. What has been lacking is analysis
of space usage for high-level languages, in particular, automatic and accurate techniques for live heap space
analysis for languages with garbage collection, such as Java, ML or Scheme.
This paper describes a general approach for automatic accurate analysis of live heap space based on

program analysis and transformations. The analysis determines the maximum size of the live data on the
heap during execution. This is the minimum amount of heap space needed to run the program even if
garbage collection is performed whenever garbage is created. This metric is useful for evaluating other
garbage collection schemes, just like the performance of an optimal cache replacement algorithm is useful for
evaluating other replacement algorithms. The analysis can easily be modified to determine related metrics,
such as space usage when garbage collection is performed only at fixed points in the program. It can also
be used to help analyze the space usage of some continuously running processes that have cyclic behavior.
Our approach starts with a given program written in a high-level functional language with garbage

collection. We construct (i) a space function that takes the same input as the original program and returns
the amount of space used and (ii) a space-bound function that takes as input a characterization of a set of
inputs of the original program and returns an upper bound on the space used by the original program on
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any input in that set. A key problem is how to characterize the input data and exploit this information in
the analysis.
In traditional complexity analysis, inputs are characterized by their size. Accommodating this requires

manual or semi-automatic transformation of the time or space function [21, 33]. The analysis is mainly
asymptotic. A theoretically challenging problem that arises in this approach is optimizing the time-bound
or space-bound function to a closed form in terms of the input size [21, 28, 8]. Although much progress has
been made in this area, closed forms are known only for subclasses of functions. Thus, such optimization
can not be automatically done for analyzing general programs.
Rosendahl proposed characterizing inputs using partially known input structures [28]. For example,

instead of replacing an input list l with its length n, we simply use as input a list of n unknown elements.
A special value uk (“unknown”) is introduced for this purpose. It represents unknown primitive values; if it
represented constructed data, we wouldn’t know how much space it used. At control points where decisions
depend on unknown values, the maximum space usage of all branches is computed. Rosendahl concentrated
on proving the correctness of this transformation for time-bound analysis. He relied on optimizations to
obtain closed forms, but closed forms can not be obtained for all bound functions.
Our analysis and transformations are performed at source level. This allows implementations to be

independent of compilers and underlying systems and allows analysis results to be understood at source level.
Our space bound analysis is an abstract interpretation, expressed conveniently as a program transformation.
Profiling, like space functions, measures the program’s behavior on one input at a time; space-bound functions
can efficiently analyze the program’s behavior on a set of inputs at once. They can thus be used to determine
worst-case space usage of a program, given a particular metric such as input size. Alternatively, worst-case
space usage may be determined by applying the space function to a worst-case input. But in general, it is
non-trivial to determine such an input. Finding space bounds is undecidable, so space-bound functions may
diverge. In our experience, this is rare.
While our approach can be applied to imperative languages, the analysis in this paper enjoys multiple

benefits due to the functional nature of the source language. Associating reference counts with partially
known structures forms an accurate basis for determining liveness. With reference counting, the heap
never has to be examined in its entirety. In contrast, garbage collection algorithms for imperative languages
generally examine the whole heap at once which is costly. Space-bound functions sometimes have to evaluate
both branches of conditionals due to unknown values. Our analysis does not need to maintain multiple copies
of the heap while evaluating the two branches exactly because of the absence of imperative update. Copying
the heap would add significant complexity and overhead. It is necessary to keep the results of both branches.
This could lead to loose bounds in a naive analysis, since both results seem live. Our analysis handles this
by examining selected parts of the heap at a limited number of program points. If the source language were
imperative, the analysis would need to examine much larger parts of the heap and do so more frequently.

2 Language

We use a first-order, call-by-value functional language that has literal values of primitive types (e.g., Boolean
and integer constants), structured data, operations on primitive types (e.g., Boolean and arithmetic oper-
ations), testers, selectors, conditionals, bindings, and function calls. These are fundamental program con-
structs that have analogues in all programming languages. A program is a set of mutually recursive function
definitions of the form f(v1, ..., vn) = e, where an expression e is given by the grammar

e ::= v variable reference
| l literal
| c(e1, ..., en) constructor application
| p(e1, ..., en) operation on primitive types
| c?(e) tester application
| c−i(e) selector application
| if e1 then e2 else e3 conditional expression
| let v = e1 in e2 binding expression
| f(e1, ..., en) function application
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We sometimes use infix notation for primitive operations.
For brevity, we assume the language contains only two kinds of primitive operations that take data

constructions as arguments. A tester application c?(v) returns true iff v has outermost constructor c. A
selector application c−i(v) returns the i’th component of a data construction v with outermost constructor
c. Our analysis can easily be extended to handle other similar operations such as equality predicates.
Input programs to our analysis are assumed to be purely functional, but transformed programs use

arrays and imperative update. A sequential composition e1; e2 returns the value of e2. In examples, we use
a constructor cons with arity 2.

3 Live Heap Space Function

To analyze the live heap space used by a program on a known input, we transform the program into one
that performs all the computations of the original program and keeps track of the total amount of live data.
Liveness of data is ascertained using reference counts. The reference count for a data construction v is the
number of pointers to v. These may be pointers on the stack, created by let bindings or bindings to formal
parameters of functions, or pointers on the heap, created by data constructions. Data construction v is live
if its reference count is greater than 0 or if it is the result of the expression just evaluated. Note that in the
latter situation, v is still accessible to the program even though there are no references to it.
A constructor count vector v has one element v[ic] corresponding to each data constructor c used in a

given program. Let P [ic] be the size of an instance of c. Let · denote dot product of vectors. The maximum
max(v1, v2) of constructor count vectors v1 and v2 is v1 if v1 · P ≥ v2 · P and is v2 otherwise.
The transformation L in Figure 1 produces live heap space functions. It introduces two global variables,

live and maxlive, that satisfy: (1) for each constructor c, live[ic] is the number of live instances of c; (2)
maxlive is the maximum value of live so far during execution. The maximum live space used during evaluation
of function f is at mostml ·P whereml is the value of maxlive after evaluation of the space or bound function
for f .
Our implementation of reference counting is based on an abstract data type (ADT) that defines five

functions. new(c(x1, . . . , xn)) returns a value v representing a new data construction c(x1, . . . , xn), whose
reference count is initialized to zero. data(v) returns the data construction c(x1, . . . , xn). rc(v) returns the
reference count associated with v. incrc(v) and decrc(v) increment and decrement, respectively, the reference
count associated with v. incrc and decrc are no-ops if the argument is a primitive value.

Updating Reference Counts. rc(v), for a data construction v, is incremented when v is bound to a
variable or function parameter, or a data construction containing v as a child is created. rc(v) is decremented
when the scope of a let binding for v ends, a function call with an argument bound to v returns, or a data
construction containing v as a child becomes garbage.

Updating live and maxlive. Whenever new data is constructed, live is incremented, and maxlive is
recomputed. An auxiliary function gc (“garbage collect”) is called whenever data can become garbage. For
a data construction v, gc(v) decrements rc(v) and then, if rc(v) is not positive, it decrements the appropriate
element of live and calls gc recursively on the children of v. A data construction may become garbage (1)
because of a decrement of its reference count or (2) because it is created in the argument of a selector or
tester and is lost to the program after the result of the selection or test is obtained. For example, cons(0, 1)
is garbage after the application of cons−2 in cons(cons−2 (cons(0, 1)), 2); note that its reference count is
always 0.

gcExcept(u, v) is called when u should be garbage collected, v should not be garbage collected and v
might be a descendant of u. At the end of function calls and let expressions, values bound to parameters
and variables should be garbage collected without garbage collecting the result of the function call or the
let expression. Similarly, after selector applications, data selected from should be garbage collected without
garbage collecting the selected part, even if the reference count of that part becomes 0. Figure 5 contains
an example of a live heap space function.
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fL(v1, . . . , vn) = L [[e]] where e is the body of function f , i.e., f(v1, . . . , vn) = e

L [[v]] = v

L [[l]] = l

L [[c(e1, . . . , en)]] = live[ic]++; if (P · live > P ·maxlive)
then for c ∈ Constructors maxlive[ic] := live[ic];

let r1 = L [[e1]] , . . . , rn = L [[en]] in

incrc(r1); . . . ; incrc(rn);new(c(r1, . . . , rn))

L [[p(e1, . . . , en)]] = p(L [[e1]] , . . . ,L [[en]])

L [[c?(e)]] = let x = L [[e]] in

let r = c?(data(x)) in

(if not(isPrim(x)) and rc(x) = 0 then gc(x)); r

L
[[

c−i(e)
]]

= let x = L [[e]] in

let r = c−i(data(x)) in

(if not(isPrim(x)) and rc(x) = 0 then gcExcept(x, r)); r

L [[if e1 then e2 else e3]] = if L [[e1]] then L [[e2]] else L [[e3]]

L [[let v = e1 in e2]] = let v = L [[e1]] in

incrc(v);
let r = L [[e2]] in

gcExcept(v, r); r

L [[f(e1, . . . , en)]] = let r1 = L [[e1]] , . . . , rn = L [[en]] in

incrc(r1); . . . ; incrc(rn);
let r = fL(r1, . . . , rn) in

gcExcept(r1, r); . . . ; gcExcept(rn, r); r

gc(v) = if not(isPrim(v))
then decrc(v);

if rc(v) ≤ 0
then live[conType(v)]−−;

for i = 1..arity(v) gc(c−i(data(v)))
gcExcept(u, v) = incrc(v); gc(u); decrc(v)

Figure 1: Transformation that produces live heap space functions fL. isPrim(v) returns true iff v is primitive.
conType(v) returns an integer ic that uniquely identifies the outermost constructor c in data(v). arity(v)
returns the arity of the outermost constructor in data(v).

4 Live Heap Space Bound Function

The transformation Lb in Figures 2-3 produces live heap space-bound functions. We sometimes refer to
space-bound functions simply as bound functions. At every point during the execution of Lb [[f ]] (x), the
value of live is an upper bound on the possible values of live at the corresponding point in executions of
L [[f ]] (x′), for all x′ in the set represented by x. As before, maxlive contains the maximum value of live so
far during execution. The presence of partially known inputs in bounds analysis causes uncertainty. For
conditional expressions whose tests evaluate to uk , both branches are evaluated to determine the maximum
live heap space usage.
Correctness of live heap bound analysis depends on keeping track of all references and reference counts

meticulously. Summarizing the results of two branches into a single partially known structure that represents
both results, as is done in timing analysis [22] and stack space and heap allocation analysis [31], does not
work for live heap analysis because it would be impossible to keep track of reference counts accurately. So
the result of a conditional whose test evaluates to uk is a separate entity, a join-value, that points to both
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possible results and has its own reference count. By keeping both results live, we run the risk of obtaining
loose bounds, since live might include the sizes of both results when only one of them is live. To keep live

as tight as possible, we examine join-values at appropriate points of execution and manipulate live so that
it includes the size of only a single largest data structure pointed to by each join-value.

4.1 Abstract Data Types

Two abstract data types (ADTs), the join-value type and the con-value (“constructed-value”) type, are
used. A join-value represents a set of possible results. Join-values are created by conditional expressions
whose tests evaluate to uk and by selectors applied to join-values. Each join-value j has a list branches(j)
containing references to con-values and/or join-values. Primitive values, if any, in the set represented by j are
not stored in j. Thus, if branches(j) has only one element, j represents a choice between that element and
some primitive value. j has an associated constructor count vector exs(j). Parts of the data constructions
represented by j may be live regardless of j. Of the other parts, only those occurring in a single largest
branch are live in a worst case (i.e., maximal live heap space) execution of the original program. The sum of
the other parts that are not in the largest branch is an excess and is stored in exs(j), as discussed in Section
4.3. live does not include exs(j). When j becomes garbage, exs(j) is added to live just before garbage
collecting the branches of j.
The con-value type is an extension of the ADT described in Section 3. con-values and join-values have

a reference count and a list of join-parents. A join-value j is a join-parent of v if branches(j) references v.
Functions rc, incrc, decrc, joinParents , addJoinParent , and delJoinParent apply to both ADTs; the names
indicate their meanings. newjoin(b) creates a join-value j with a list b of branches, and with rc(j) initialized
to 0, joinParents(j) initialized to nil, and exs(j) initialized to the zero vector, denoted V0.

4.2 Conditionals, Selectors and Testers

Consider a conditional expression (if e1 then e2 else e3)
† whose condition evaluates to uk . Suppose l1, l2

and l3 are the values of live after evaluating e1, e1; e2 and e1; e3, respectively. The value of live at † is set
to max(l2, l3). The result r of the conditional expression is computed by join(r2, r3), where r2 and r3 are
the results of e2 and e3, respectively. If r2 and r3 are primitive, then r is r2 if r2 = r3 and uk otherwise. If
r2 and r3 are not primitive and are the same, then r is r2. Otherwise, r is a join-value, and exs(r) is set to
min(l2 − l1, l3 − l1). l2 − l1 and l3 − l1 are the amounts of new data in r2 and r3, i.e., the amounts of data
created by e2 and e3. r2 and r3 may contain old data too, i.e., data created before evaluating e2 and e3. Old
data are live regardless of r. Between the sets of new data in r2 and r3, only one set is live. We keep the
larger set live; the size of the other set is exs(r).
Observe that in the transformation of conditional (if e1 then e2 else e3), we evaluate e2 and then e3,

making copies of only live in between. We do not have to copy the entire heap before or after evaluating
either expression because the source language does not contain imperative update. Thus, if h1 is the heap
after the evaluation of e1, then e2 and e3 modify h1 only by adding new con-values to it. Informally, h2,
the heap after evaluation of e2, is just (h1 + r2), where r2 is the result of e2. Similarly, h3 is (h1 + r3),
h3 and r3 having the expected meanings. In other words, the heap after evaluation of the conditional is
(h1+ (r2 or r3)). The choice between r2 and r3 is conveniently represented using a join-value that points to
them both.
Selectors and testers return uk if given uk arguments. For join-values with two non-primitive branches,

the selector or tester is first applied to the branches and the join of the results is returned. The exs field of
a join-value j that is the result of applying a selector to another join-value j ′ is set to V0, because when j is
created, j′ is live, and exs(j′) already takes care of any excess. In fact, computing exs(j) would yield V0 as
the result, because j′ references j’s children and as a result, none of the descendants of j are contained-in j.
Applying any tester other than null? to join-values with one primitive branch and one non-primitive

branch, results in the join of (a) false (the result of applying any tester other than null? to any primitive
branch) and (b) the result of applying the tester to the non-primitive branch. Recall that join-values do not
save the values of their primitive branches. Applying null? to an unknown primitive branch yields uk , since
the set of primitive values contains both a null value nil and non-null elements. So, the result of null? on
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fLb(v1, . . . , vn) = Lb [[e]] where e is the body of function f , i.e., f(v1, . . . , vn) = e

Lb [[v]] = v

Lb [[l]] = l

Lb [[c(e1, . . . , en)]] = live[ic]++; if (P · live > P ·maxlive)
then for c ∈ Constructors maxlive[ic] := live[ic];

let r1 = Lb [[e1]] , . . . , rn = Lb [[en]] in

incrc(r1); . . . ; incrc(rn);new(c(r1, . . . , rn))

Lb [[p(e1, . . . , en)]] = pu(Lb [[e1]] , . . . ,Lb [[en]])

pu(v1, . . . , vn) = if v1 = uk or · · · or vn = uk then uk else p(v1, . . . , vn)

Lb [[c?(e)]] = let x = Lb [[e]] in

let r = c?u(x) in

(if not(isPrim(x)) and rc(x) = 0 then gc(x)); r

c?u(v) = if v = uk then uk

else if isJoin(v) then if length(branches(v)) = 1
then join(false, c?u(first(branches(v))))
else join(c?u(first(branches(v))), c?u(second(branches(v))))

else c?(data(v))

Lb

[[

c−i(e)
]]

= let x = Lb [[e]] in

let r = c−i
u (x) in

(if not(isPrim(x)) and rc(x) = 0 then gcExcept(x, r); recomputeExs(r)); r

c−i
u (v) = if v = uk then uk

else if isJoin(v)
then if length(branches(v)) = 1 then c−i(false)

else join(c−i
u (first(branches(v))), c

−i
u (second(branches(v))))

else c−i(data(v))

Lb [[if e1 then e2 else e3]] =
let b = Lb [[e1]] in

if b = uk then let l1 = copy(live) in

let r2 = Lb [[e2]] in

let l2 = copy(live) in

live := l1; let r3 = Lb [[e3]] in

let l3 = copy(live) in

live := max(l2, l3); let r = join(r2, r3) in

setexs(r,min(l2 − l1, l3 − l1)); r
else if b then Lb [[e2]] else Lb [[e3]]

Lb [[let v = e1 in e2]] = let v = Lb [[e1]] in

incrc(v); let r = Lb [[e2]] in (gcExcept(v, r); recomputeExs(r); r)

Lb [[f(e1, . . . , en)]] = let r1 = Lb [[e1]] , . . . , rn = Lb [[en]] in

incrc(r1); . . . ; incrc(rn);
let r = fLb(r1, . . . , rn) in

gcExcept(r1, r); . . . ; gcExcept(rn, r); recomputeExs(r); r

Figure 2: Transformation that produces live heap space-bound functions fLb. copy copies a vector. + and
−, when applied to vectors, denote component-wise sum and difference.
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join-values with a primitive branch is uk , irrespective of whether the result of null? on the non-primitive
branch is true or false.
When a selector c−i is applied to a join-value j with a primitive branch, it simply aborts by attempting to

apply the selector to an arbitrary primitive value. However, if we assume that the given program never applies
selectors to primitive values, then the occurrence of c−i(j) in the analysis corresponds to the application
of c−i to the non-primitive branch of j in the original program. Some test in a conditional in the original
program must prevent c−i from being applied to the primitive branch. Thus, with this assumption, we could
use the following alternative definition of c−i

u .

c−i
u (v) = if v = uk then uk

else if isJoin(v)
then if length(branches(v)) = 1 then c−i

u (first(branches(v)))
else join(c−i

u (first(branches(v))), c
−i
u (second(branches(v))))

else c−i(data(v))

Applications of selectors to join-values with primitive branches is in fact seen in only one of our examples,
namely quicksort. For all of our examples, it is easy to see that for the expected input, selectors are never
applied to primitive values. Hence, it is safe to use the above definition of c−i

u for all these examples. In
general, a simple static analysis could be used to automatically ascertain such program properties.

4.3 Achieving Tightness of live in the Presence of Join-values

The following example illustrates why live may not be as tight as desired.

let u = cons(1,nil) in

let v = cons(2,nil) in

(if uk then cons(3, v) else cons(4, cons(5, u)))
(1)

Let r be the result of the conditional. Let ci denote the data construction with cons
−1 (ci) = i. Just after

the conditional is evaluated, live includes the sizes of both c1 and c2. live excludes the size of c3 because
the result of the alternative branch containing c4 and c5 is larger; so live includes the latter instead of the
former. Once v goes out of scope, c2 is live only through the reference from r. At this point in any execution
of the original program, either c2 and c3 are live or c4 and c5 are live; c1 is definitely live because of the
binding for u. But in the analysis, because of the reference from r, c2 is kept live and its size is included in
live. Thus, join-value r causes live to be loose by one cons.
In general, at any point at which all references to a data construction v are lost except for references from

a join-value j, there is a possibility that live is loose because it includes the size of v when it should not.
These points arise immediately after decrements to rc(v) caused by (1) a variable or parameter going out
of scope or (2) parts of data becoming garbage after the application of a selector. v may then be an excess
in live caused by a join-value j which in case (1), is in the result of the function call or the let expression
and in case (2), is in the result of the selector. recomputeExs, defined in Figure 3, is called on the results of
function calls, let expressions and selectors to compute the exs attributes of join-values in the results and
adjust the value of live appropriately.
Observe that v may be a part of a join-value j ′ that is not in the result of the function call or let expression

or selector application. It can be shown that loss of references to v at the completion of the function call,
let expression or selector application, has no effect on exs(j ′) and so we do not call recomputeExs(j ′). This
applies to tester applications also. Further, results of testers are boolean and hence may not contain any
join-values. So, recomputeExs is not called after tester applications. Note that recomputeExs is used only
to obtain tighter bounds, so calling or not calling it at any point in the analysis is safe, i.e., still yields an
upper bound on the space usage.
We now formally define the exs attribute of join-values. Consider the stack and live heap as a graph: con-

values and join-values in the heap and formal parameters of functions and let-bound variables on the stack
are vertices; references from variables, con-values and join-values to con-values and join-values, including
references in branches attributes but excluding references in joinParents attributes, are edges. We say that
u is contained-in v if v is an ancestor of u in every path from a node for a parameter or variable to u. For a
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join(v1, v2) = if eq?(v1, v2) then v1

else if isPrim(v1)
then if isPrim(v2) then uk

else let result = newjoin([v2]) in

incrc(v2); addJoinParent(v2, result); result
else if isPrim(v2)

then let result = newjoin([v1]) in

incrc(v1); addJoinParent(v1, result); result
else let result = newjoin([v1, v2]) in

incrc(v1); addJoinParent(v1, result);
incrc(v2); addJoinParent(v2, result);
result

gc(v) = if not(isPrim(v))
then decrc(v);

if rc(v) ≤ 0
then if isJoin(v)

then live = live + exs(v);
for u in branches(v)
delJoinParent(u, v); gc(u)

else live[conType(v)]−−;
for i = 1..arity(v) gc(c−i(data(v)))

recomputeExs(v) = if not(isPrim(v)) then

if isJoin(v)
then if length(branches(v)) = 2 and containedIn0(branches(v))

then let newexs = computeExs(v) in

if newexs > exs(v)
then live = live + exs(v)− newexs; setexs(v, newexs)

else for u in branches(v) recomputeExs(u)
else for i = 1..arity(v) recomputeExs(c−i(data(v)))

containedIn0(ls) = if null(ls) then true

else if rc(cons−1(ls)) = length(joinParents(cons−1(ls))) = 1
then containedIn0(cons−2(ls))
else false

Figure 3: Auxiliary functions join, gc, recomputeExs and containedIn0. For brevity, we leave out the
definition of computeExs which is based on (2) in Section 4.3.

join-value j, let Cj denote the set of all con-values and join-values contained-in j, and let Gj denote the graph
comprising vertices and edges reachable from j. A join-path of j is a connected subgraph of Gj containing
j and constructed from Gj by selecting at every join-value j ′ reachable from j, exactly one branch of j ′

and then, after all selections have been made, eliminating unreachable vertices and edges. Figure 4 contains
examples of join-paths. Join-paths of j correspond to data structures represented by j. conCountVec(u)
for a con-value u is a constructor count vector in which the count of the constructor type of u is 1 and all
other counts are 0. maxJoinPath(j) is the maximum of the sizes of all join-paths of j, where size(P ) for a
join-path P of j is defined as

size(P ) =
∑

u is a con-value in P ∩ Cj

conCountVec(u)

exs(j) is then defined as follows if both branches of j are non-primitive and contained-in j (otherwise, exs(j)
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Figure 4: Examples of join-paths. G1, G2 and G3 are join-paths of join-value j1. Circles denote join-values
and rectangles denote con-values.

is V0).

exs(j) = total(j)− sub(j)−maxJoinPath(j) (2)

total(j) =
∑

u is a con-value in Cj

conCountVec(u) (3)

sub(j) =
∑

u is a join-value in Cj

exs(u) (4)

The sums and differences of constructor count vectors are computed component-wise. (2) does not result
in vectors with negative counts, since sub(j) and maxJoinPath(j) count data in disjoint subsets of Cj . This
is justified as follows : if the join-path P which contributes to maxJoinPath(j) contains a join-value j ′, then
P contains a largest join-path of j ′ and exs(j′) counts data in the other join-paths of j ′. Hence, exs(j′),
for any descendant join-value j ′ of j, counts data in join-paths that are not part of P . Informally, (2) says
“subtract from live everything except a largest join-path and nodes that have already been subtracted from
live”. In our implementation, exs(j) is computed using (2) if the elements in branches(j) have reference
counts equal to 1; exs(j) is conservatively set to V0 otherwise.
A recomputed value v2 of exs(j) can be less than the existing value v1 of exs(j). This happens only if

after the computation of v1, selectors are applied to j creating a new join-value j ′ that references parts of j
and a subsequent garbage collection leads to the recomputation of exs(j) yielding v2. The references from j′

to parts of j cause these parts to not be contained-in j and so (2) produces a smaller value than the existing
exs(j). But selection from j does not alter the fact that only one of the data constructions represented by j
is live, so the new smaller value of exs(j) is artificial and is ignored. Figure 5 contains an example of a live
heap space-bound function.

5 Optimizations

We use two optimizations that reduce the asymptotic complexity of live heap analysis for many programs.
The first optimization avoids calls to recomputeExs on data without join-value descendants. This is done by
adding to con-values and join-values a boolean attribute that indicates the presence of join-value descendants.
The second optimization reduces some join-values to con-values, thus avoiding expensive manipulations

of the former. At any point p during the execution of a space-bound function, a join-value j with branches b1

and b2 and without any join-value descendants may be reduced to b1 if b1 leads to equal or greater live heap
usage as compared to b2. The following discussion also holds with b1 and b2 interchanged. Our optimization
is conservative and reduces j to b1 if b1 and b2 have the same shape, contain equal primitive values at
corresponding locations, and for every descendant d1 of b1 that is not contained-in j, the corresponding
descendant d2 of b2 is the same as d1. If these conditions are true and additionally, if eq? is not used on j or
on data selected from j, then at point p and thereafter, b1 contributes as much or more to live as compared
to b2. In the following subsections, we formalize the notion of reducibility of join-values and prove that
reduction of join-values is safe, i.e., the optimized space-bound analysis provides upper bounds on live heap
usage.
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reverse(ls, revls) = if null(ls) then revls
else reverse(cons−2 (ls), cons(cons−1 (ls), revls))

reverseL(ls, revls) = if ( let l = ls in

let lnull? = null(data(l)) in

if not(isPrim(l)) and rc(l) = 0 then gc(l);
lnull?)

then revls
else let arg1 = ( let l = ls in

let lcdr = cons−2 (data(l)) in

if not(isPrim(l)) and rc(l) = 0
then gcExcept(l, lcdr);
lcdr)

∗

arg2 = ( live[icons]++;maxlive := max(live,maxlive);
let lscar = sub-expression ∗ with cons−2 replaced by cons−1

revl = revls in

incrc(lscar); incrc(revl);new(cons(lscar, revl))) in

incrc(arg1); incrc(arg2);
let r = reverseL(arg1, arg2) in

gcExcept(arg1, r); gcExcept(arg2, r); r

reverseLb
(ls, revls) = let lsnull? = ( let l = ls in

let lnull? = nullu(l) in

if not(isPrim(l)) and rc(l) = 0 then gc(l);
lnull?) in

if lsnull? = uk

then let l1 = copy(live) in

let branch1 = revls in

let l2 = copy(live) in

live := l1;
let branch2 =

(let arg1 = ( let l = ls in

let lcdr = cons−2
u(l) in

if not(isPrim(l)) and rc(l) = 0
then incrc(lcdr); gc(l); decrc(lcdr);
lcdr)

∗

arg2 = ( live[icons]++;maxlive := max(live,maxlive);
let lscar = sub-expression ∗ with

cons−2
u replaced by cons

−1
u

revl = revls in

incrc(lscar); incrc(revl);new(cons(lscar, revl))) in

incrc(arg1); incrc(arg2);
let r = reverseLb

(arg1, arg2) in

gcExcept(arg1, r); gcExcept(arg2, r); recomputeExs(r); r)† in

let l3 = copy(live) in

live := max(l2, l3);
let r = join(branch1, branch2) in

setexs(r,min(l2 − l1, l3 − l1)); r
else if lsnull?

then revls
else sub-expression †

Figure 5: Examples of space and space-bound functions. reverseL and reverseLb
are the space and space-

bound functions, respectively, of reverse.
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An edge-ordered rooted directed acyclic graph (DAG) is a tuple 〈V,E, r〉 where V is a set of vertices, E
is a set of edges and r is the root of the DAG, i.e, a node from which all other nodes in the DAG are reached.
An edge in E is a tuple 〈x, y, i〉, where x is the source node, y is the destination node, and i is the index of
the edge amongst the out-edges of x.
Recall that the stack and live heap may be viewed as a graph. The subgraph Gx = 〈Vx, Ex, x〉 comprised

of nodes and edges reachable from a node x is an edge-ordered rooted DAG. It is acyclic because we are
dealing with a first-order functional language without imperative update. The ordering of fields in data
constructions imposes an ordering on the out-edges from nodes. For example, if x is an instance of cons and
cons−2 (x) = y and y is not a primitive value, then Gx contains the edge 〈x, y, 2〉.
Two edge-ordered rooted DAGs G1 = 〈V1, E1, r1〉 and G2 = 〈V2, E2, r2〉 are isomorphic if there exists a

one-to-one, onto mapping f : V1 → V2 such that 〈x, y, i〉 ∈ E1 iff 〈f(x), f(y), i〉 ∈ E2, and x and f(x) are
data constructions of the same type. If f(x) = y, we say that x corresponds to y and vice versa.

Reducibility of Join-values. j = join(b1, b2) is reducible to b1 at a point p0 during execution of a
space-bound function if at p0

R0. j does not have any join-value descendants.

R1. Gb1 and Gb2 , the DAGs rooted at b1 and b2, are isomorphic.

R2. Corresponding primitive values in b1 and b2 and their descendants are equal, taking uk = uk.

R3. For every node d1 of Gb1 , if d1 is not contained-in j, then d1 and f(d1) are the same node.

R0 implies that j represents exactly two data structures: b1 and b2. R1 and R2 state that b1 and b2 have the
same structure and contents. For example, b1 and b2 may be two lists of the same length and containing the
same primitive values. The only possible difference between b1 and b2 is the particular heap locations they
use. No operation in our language can distinguish b1 and b2; recall that we don’t consider eq?. Thus, R1, R2
and R4 ensure that the program’s execution is the same regardless of whether b1 or b2 is used, except for the
heap space used by b1 and b2; specifically, using b1 vs. b2 does not affect any other heap allocations or live
heap usage of the program. R3 asserts that b1 always contributes at least as much to the live heap space as
b2. For example, this happens if b2 references data constructions that are live even without references from
b2 and the corresponding data constructions in b1 are live only because of the references from b1.
As an example, consider the following expression.

let v = cons(uk ,nil) in

if uk then cons(uk , cons(uk ,nil)) else cons(uk , v)

The abstract heap at the point just after evaluating the conditional is shown above. Con-values c1 through

c2 c4

c1c3

j v

c4 are numbered according to the order of creation. The result j of the conditional satisfies conditions R0
through R4, and hence may be reduced to its left branch.

Theorem 1 If j = join(b1, b2) is reducible to b1 at a point p0 during execution of a space-bound function,

then it is safe to replace all references to j with references to b1, i.e., in the presence of these replacements

the space-bound analysis still returns an upper bound on live heap usage.
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Proof: Based on the above arguments, it suffices to show that b1 contributes at least as much to the live
heap space as b2.
Let Gb1 = 〈Vb1 , Eb1 , b1〉 and Gb2 = 〈Vb2 , Eb2 , b2〉 be the edge-ordered DAGs rooted at b1 and b2, respec-

tively. Let Cj be the set of nodes contained-in j at p0. The contribution of bi to live is the amount of data
contained-in j and referenced by bi. Observe that data not contained-in j is live regardless of whether a
replacement of j with b1 or b2 is performed. The contribution of j to live is the maximum of the contributions
of b1 and b2. At p0,

contrib. of b1 to live =
∑

x∈(Vb1

⋂

Cj)

conCountVec(x) (5)

contrib. of b2 to live =
∑

x∈(Vb2

⋂

Cj)

conCountVec(x) (6)

First, we show that (5) is at least as large as (6). R1 states thatGb1 andGb2 are isomorphic. Let f : Vb1 → Vb2

be the isomorphism. We show that at p0, for every node y ∈ (Vb2

⋂

Cj), f
−1(y) ∈ (Vb1

⋂

Cj). By definition,
f−1(y) ∈ Vb1 . We prove by contradiction that f

−1(y) ∈ Cj . Suppose not. Then, according to R3, f
−1(y) = y.

Hence, y 6∈ Cj . This contradicts the assumption that y ∈ (Vb2

⋂

Cj), so f−1(y) ∈ Cj . Also, y and f−1(y)
are data constructions of the same type. Thus, for each element of the sum in (6), there is a corresponding
and equal element of the sum in (5), so (5) is at least as large as (6).
Now, consider a point p1 after p0. If j is dead at p1, then the replacement has no more effect on the

execution of the space-bound function; the indirect effect through parts of j that were selected out and that
are still live, is considered below. Suppose j is live at p1. Observe that Gb1 and Gb2 do not change between
p0 and p1, due to the absence of imperative update, and that f is still an isomorphism between Gb1 and
Gb2 . We use Cp

x to refer to the set of nodes contained-in node x at point p; p is omitted when it is clear
from context. We show that, for every node y ∈ (Vb2

⋂

Cp1

j ), f−1(y) ∈ Cp1

j . Case 1: f−1(y) 6∈ Cp0

j . Then,

according to R3, f−1(y) = y. By hypothesis, y ∈ Cp1

j , so f−1(y) ∈ Cp1

j . Case 2: f−1(y) ∈ Cp0

j . We prove by

contradiction that f−1(y) ∈ Cp1

j . f−1(y) ∈ Cp0

j implies that after p0, the only way to create references to

f−1(y) from outside Gj (the DAG rooted at j) is through selector applications to j. This is thus the only way
for f−1(y) to become not contained-in j after p0. Since selector applications to j return join-values whose
branches are corresponding nodes in Vb1 and Vb2 , such join-values that reference f−1(y) must also reference
y. So, if f−1(y) 6∈ Cj (as hypothesized for the proof by contradiction), then y 6∈ Cj . This contradicts the
assumption y ∈ (Vb2

⋂

Cp1

j ). Hence, f
−1(y) ∈ Cp1

j .
We now show that after p0, the result of a selector application to b1 also contributes at least as much to

live as compared to the result of the same selector application to b2. Let the result of c−i1
1 (...(c−in

n (j))) be
j′ = join(b′1, b

′
2) where b′1 ∈ Vb1 and b′2 ∈ Vb2 , and let p1 be a point equal to or after p0 at which j′ is live.

At p1,

contrib. of b′1 to live =
∑

x∈(Vb′

1

⋂

Cj′ )

conCountVec(x) (7)

contrib. of b′2 to live =
∑

x∈(Vb′

2

⋂

Cj′ )

conCountVec(x) (8)

Observe that the restriction of f to any subgraph G of Gb1 is an isomorphism between G and the correspond-
ing subgraph of Gb2 . So, the restriction of f to Gb′

1
is an isomorphism between Gb′

1
and Gb′

2
. We refer to this

restriction of f as just f . We prove that for every y ∈ (Vb′

2

⋂

Cp1

j′ ), f−1(y) is in (Vb′

1

⋂

Cp1

j′ ). We consider

two cases. Case 1: f−1(y) 6∈ Cp0

j . Then, f−1(y) = y, because of R3. y is in Cp1

j′ , so f−1(y) is in Cp1

j′ . Case

2: f−1(y) ∈ Cp0

j . We prove by contradiction that f−1(y) ∈ Cp1

j′ . Suppose this is not so. Then, there exist

references to f−1(y) from outside G′
j , the DAG rooted at j′. At p0, f

−1(y) ∈ Cj , so any references to f−1(y)
from outside G′

j are created after p0, implying p1 is after (not equal to) p0. Furthermore, these references

must be due to selector applications to j. Thus, at p1, references to f−1(y) from outside Gj′ are either from
j or from the results of selector applications to j. Since both j and results of selector applications to j are
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join-values that reference corresponding nodes in Vb1 and Vb2 , there exist references from outside Gj′ to y
also, so y 6∈ Cp1

j′ . This contradicts the assumption y ∈ (Vb′

2

⋂

Cp1

j′ ). Hence, f−1(y) is in Cp1

j′ . Thus, for each
element of the sum in (8), there is a corresponding and equal element of the sum in (7), so (7) is at least as
large as (8).

6 Handling Tail Call Optimization

In some languages, the environment of the caller is discarded only after the completion of all function calls
in its body, even if the body contains a function call in tail position. An expression is in tail position if it is
the last thing that the function does before returning. A tail call is a function call in tail position. Tail call
optimization [1] allows the caller’s environment to be discarded right before executing a tail call. We have
extended our analysis to reflect the effect of tail call optimization. In the presence of this optimization, the
analysis described in Sections 3 and 4 yields safe but perhaps loose bounds on space usage.
Our extended analysis recognizes function calls in tail position and at the sites of these calls, garbage

collects all variables in the current scope. In the original analysis, rc’s of arguments are incremented just
before function calls and arguments are garbage collected on return from the calls. In the extended analysis,
both operations are performed within the function body: increments are done at the start of the function
and garbage collection is done just before the result is returned. The latter is performed either just before a
tail call or on completion of the last non-call expression in the function body. This structure provides for a
simple transformation as well as simpler and more efficient space and bound functions. Figure 6 contains the
new transformation that yields space functions. The right hand side uses quasi-quotes ‘...’; all expressions
within quotes, except those of the form “Lx [[e]] . . .”, are to be taken literally. We make the exception to
minimize clutter.
Figures 7, 8 and 9 contain the transformation that yields bound functions. The transformation of

conditionals is more involved than Lb. Consider a conditional (if uk then e2 else e3) that is in tail position.
Both e2 and e3 need to be evaluated. Suppose both e2 and e3 contain tail calls. During the evaluation
of e2, all environment variables u1, . . . , um are garbage collected just before the tail call. But at the start
of evaluation of e3, u1, . . . , um are live, so the effects of the earlier garbage collection have to be reversed
before evaluating e3. This is done by using recIncrc to increment rc’s of u1, . . . , um and all their descendants.
Further, during the evaluation of e3, u1, . . . , um are garbage collected just before the tail call in e3. Care
needs to be taken to ensure that references from the result r2 of e2 to u1, . . . , um do not cause the latter to
be counted as live after this garbage collection. So, before evaluating e3, the rc’s of r2 and all its descendants
are decremented. Similar issues arise when only one of the two branches contain tail calls. Consider the
case when neither of the branches contain tail calls. In each branch, u1, . . . , um are garbage collected after
the evaluation of the last non-call expression in the branch. Instead of garbage collecting u1, . . . , um at the
end of e2, and again incrementing their rc’s and those of their descendants before evaluating e3, we simply
evaluate e2 and e3 as if they were not in tail position and garbage collect u1, . . . , um just before returning
the result of the conditional.

tlrec? in Figure 9 is used to determine whether or not a given expression contains tail calls. More
precisely, given an expression e in tail position, tlrec?(e) determines if all variables in the scope of e are
garbage collected in Lb [[e]] itself or if they have to be garbage collected after Lb [[e]]. This more precise definion
is particularly relevant to conditionals. Consider a conditional e = (if e1 then e2 else e3) in which one
branch, say e2, contains a tail call and the other does not. In e2, u1, . . . , um are garbage collected before the
tail call. l2 in Lxb [[e]] is the value of live after the evaluation of e2. We need to garbage collect u1, . . . , um at
the end of e3 in order to ensure that the value of live after the evaluation of e3 (l3 in Lxb [[e]]) corresponds to
the same “execution point” as l2. If neither e2 nor e3 contained tail calls it would be sufficient to garbage
collect u1, . . . , um after the entire conditional is evaluated. Therefore, tlrec?(e) is true exactly when either
tlrec?(e2) or tlrec?(e3) is true.
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fLx
(v1, . . . , vn) = incrc(v1); . . . ; incrc(vn);

Lx [[e]] true

where e is the body of function f , i.e., f(v1, . . . , vn) = e
Lx [[v]] tailpos? = if tailpos? then ‘gcExcept(u1, v); . . . ; gcExcept(um, v); v’ else ‘v’

Lx [[l]] tailpos? = if tailpos? then ‘gc(u1); . . . ; gc(um); l’ else ‘l’

Lx [[c(e1, . . . , en)]] tailpos? = ‘live[ic]++; if (P · live > P ·maxlive)
then for c ∈ Constructors maxlive[ic] := live[ic];

let r1 = ’Lx [[e1]] false‘, ’ . . . , ‘rn = ’Lx [[en]] false ‘in
incrc(r1); . . . ; incrc(rn); ’
if tailpos?
then ‘let r = new(c(r1, . . . , rn)) in

‘gcExcept(u1, r); . . . ; gcExcept(um, r); r’
else ‘new(c(r1, . . . , rn))’

Lx [[p(e1, . . . , en)]] tailpos? = if tailpos? then ‘let r = p(Lx [[e1]] false, . . . ,Lx [[en]] false) in

gc(u1); . . . ; gc(um);
r’

else ‘p(Lx [[e1]] false, . . . ,Lx [[en]] false)’

Lx [[c?(e)]] tailpos? = ‘let x = ’ Lx [[e]] false ‘in
let r = (if isPrim(x) then c?(x) else c?(data(x))) in

(if not(isPrim(x)) and rc(x) = 0 then gc(x)); ’
if tailpos? then ‘gc(u1); . . . ; gc(um); r’
else ‘r’

Lx

[[

c−i(e)
]]

tailpos? = ‘let x = ’ Lx [[e]] false ‘in
let r = c−i(data(x)) in

(if not(isPrim(x)) and rc(x) = 0 then gcExcept(x, r)); ’
if tailpos? then ‘gcExcept(u1, r); . . . ; gcExcept(um, r); r’
else ‘r’

Lx [[if e1 then e2 else e3]] tailpos? = ‘if Lx [[e1]] false then Lx [[e2]] tailpos? else Lx [[e3]] tailpos?’

Lx [[let v = e1 in e2]] tailpos? = ‘let v = Lx [[e1]] false in

incrc(v); ’
if tailpos? then ‘Lx [[e2]] true’
else ‘let r = Lx [[e2]] false in

gcExcept(v, r); r’

Lx [[f(e1, . . . , en)]] tailpos? = if tailpos?
then ‘let r1 = Lx [[e1]] false, . . . , rn = Lx [[en]] false in

incrc(r1); . . . ; incrc(rn);
gc(u1); . . . ; gc(um);
decrc(r1); . . . ; decrc(rn);
fLx
(r1, . . . , rn)’

else ‘fLx
(Lx [[e1]] false, . . . ,Lx [[en]] false)’

Figure 6: Transformation that produces live heap space functions fLx
handling tail call optimization. u1,

..., um are variables in the current scope.

7 Experiments

We implemented the analyses and measured the results for several standard list and tree processing programs.
Comparisons of results of space functions and bound functions show that bound functions produce accurate
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fLxb
(v1, . . . , vn) = ‘incrc(v1); . . . ; incrc(vn);

Lxb [[e]] true’

where e is the body of function f , i.e., f(v1, . . . , vn) = e
Lxb [[v]] tailpos? = if tailpos? then ‘gcExcept(u1, v); . . . ; gcExcept(um, v); v’ else ‘v’

Lxb [[l]] tailpos? = if tailpos? then ‘gc(u1); . . . ; gc(um); l’ else ‘l’

Lxb [[c(e1, . . . , en)]] tailpos? = ‘live[ic]++; if (P · live > P ·maxlive)
then for c ∈ Constructors maxlive[ic] := live[ic];

let r1 = ’Lxb [[e1]] false‘, ’ . . . , ‘rn = ’Lxb [[en]] false ‘in
incrc(r1); . . . ; incrc(rn); ’
if tailpos?
then ‘let r = new(c(r1, . . . , rn)) in

‘gcExcept(u1, r); . . . ; gcExcept(um, r); recomputeExs(r); r’
else ‘new(c(r1, . . . , rn))’

Lxb [[p(e1, . . . , en)]] tailpos? = if tailpos? then ‘let r = pu(Lxb [[e1]] false, . . . ,Lxb [[en]] false) in

gc(u1); . . . ; gc(um);
r’

else ‘pu(Lxb [[e1]] false, . . . ,Lxb [[en]] false)’

pu(v1, . . . , vn) = if v1 = uk or · · · or vn = uk then uk else p(v1, . . . , vn)

Lxb [[c?(e)]] tailpos? = ‘let x = ’ Lxb [[e]] false ‘in
let r = c?u(x) in

(if not(isPrim(x)) and rc(x) = 0 then gc(x)); ’
if tailpos? then ‘gc(u1); . . . ; gc(um); r’
else ‘r’

c?u(v) = if v = uk then uk

else if isJoin(v) then if length(branches(v)) = 1
then join(false, c?u(first(branches(v))))
else join(c?u(first(branches(v))), c?u(second(branches(v))))

else c?(data(v))

Lxb

[[

c−i(e)
]]

tailpos? = ‘let x = ’ Lxb [[e]] false ‘in
let r = c−i

u (x) in

(if not(isPrim(x)) and rc(x) = 0 then gcExcept(x, r)); ’
if tailpos? then ‘gcExcept(u1, r); . . . ; gcExcept(um, r); recomputeExs(r) r’
else ‘recomputeExs(r) r’

c−i
u (v) = if v = uk then uk

else if isJoin(v)
then if length(branches(v)) = 1 then c−i(false)

else join(c−i
u (first(branches(v))), c

−i
u (second(branches(v))))

else c−i(data(v))

Lxb [[let v = e1 in e2]] tailpos? = ‘let v = Lxb [[e1]] false in

incrc(v); ’
if tailpos? then ‘Lxb [[e2]] true’
else ‘let r = Lxb [[e2]] false in

gcExcept(v, r); recomputeExs(r); r’

Lxb [[f(e1, . . . , en)]] tailpos? = if tailpos?
then ‘let r1 = Lxb [[e1]] false, . . . , rn = Lxb [[en]] false in

incrc(r1); . . . ; incrc(rn);
gc(u1); . . . ; gc(um);
decrc(r1); . . . ; decrc(rn);
recomputeExs(r1); . . . ; recomputeExs(rn);
fLxb

(r1, . . . , rn)’
else ‘fLxb

(Lxb [[e1]] false, . . . ,Lxb [[en]] false)’

Figure 7: Transformation that produces live heap space-bound functions fLxb
handling tail call optimization.
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Lxb [[if e1 then e2 else e3]] tailpos? =

if tailpos?
then if tlrec?(e2)

then if tlrec?(e3)
then ‘let b = Lxb [[e1]] false in

if b = uk then let l1 = copy(live) in

let r2 = Lxb [[e2]] true in

let l2 = copy(live) in

recincrc(u1); . . . ; recincrc(um);
recdecrc(r2);
live := l1; let r3 = Lxb [[e3]] true in

let l3 = copy(live) in

live := max(l2, l3);
recincrc(r2); let r = join(r2, r3) in

setexs(r, computeExs(r)); r
else if b then Lxb [[e2]] true else Lxb [[e3]] true’

else ‘let b = Lxb [[e1]] false in

if b = uk then let l1 = copy(live) in

let r3 = Lxb [[e3]] false in

let l3 = copy(live) in

recdecrc(r3);
live := l1; let r2 = Lxb [[e2]] true in

let l2 = copy(live) in

live := max(l2, l3);
recincrc(r3); let r = join(r2, r3) in

setexs(r, computeExs(r)); r
else if b then Lxb [[e2]] true else Lxb [[e3]] true’

else if tlrec?(e3)
then ‘let b = Lxb [[e1]] false in

if b = uk then let l1 = copy(live) in

let r2 = Lxb [[e2]] false in

let l2 = copy(live) in

recdecrc(r2);
live := l1; let r3 = Lxb [[e3]] true in

let l2 = copy(live) in

live := max(l2, l3);
recincrc(r2); let r = join(r2, r3) in

setexs(r, computeExs(r)); r
else if b then Lxb [[e2]] true else Lxb [[e3]] true’

else ‘let b = Lxb [[e1]] false in

if b = uk then let l1 = copy(live) in

let r2 = Lxb [[e2]] false in

let l2 = copy(live) in

live := l1; let r3 = Lxb [[e3]] false in

let l3 = copy(live) in

live := max(l2, l3);
let r = join(r2, r3) in

setexs(r,min(l2 − l1, l3 − l1));
gcExcept(u1, r); . . . ; gcExcept(um, r);
r

else if b then Lxb [[e2]] true else Lxb [[e3]] true’
else ‘let b = Lxb [[e1]] false in

if b = uk then let l1 = copy(live) in

let r2 = Lxb [[e2]] false in

let l2 = copy(live) in

live := l1; let r3 = Lxb [[e3]] false in

let l3 = copy(live) in

live := max(l2, l3); let r = join(r2, r3) in

setexs(r,min(l2 − l1, l3 − l1)); r
else if b then Lxb [[e2]] false else Lxb [[e3]] false’

Figure 8: Transformation that produces live heap space-bound functions fLxb
handling tail call optimization.
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recincrc(v) = incrc(v);
if (rc(v) ≤ 1)
then if isJoin(v)

then for u in branches(v) recincrc(u)
else for i = 1..arity(v) recincrc(c−i(data(v)))

recdecrc(v) = decrc(v);
if (rc(v) ≤ 0)
then if isJoin(v)

then for u in branches(v) recdecrc(u)
else for i = 1..arity(v) recdecrc(c−i(data(v)))

tlrec?(e) = case e of

l : false
v : false
p(e1, ..., en) : false
c(e1, ..., en) : false
c?(e) : false
c−i(e) : false
if e1 then e2 else e3 : tlrec?(e2) ∨ tlrec?(e3)
let v = e1 in e2 : tlrec?(e2)
f(e1, ..., en) : true

Figure 9: Auxiliary functions recincrc, recdecrc and tlrec?.

results (i.e., tight bounds) for all these examples. The results are consistent with the expected asymptotic
space complexities of the programs. We measured the running times of space and bound functions of all
examples. For most of the examples, the bound functions have the same asymptotic time complexities as
the corresponding space functions. For all examples, a comparison of the running times of bound functions
and the running times of space functions multiplied by the number of represented inputs showed that the
bound functions are asymptotically faster than applying the corresponding space functions to all represented
inputs. The non-termination issue mentioned in Section 1 is not a problem for any of these examples.
Figure 10 contains the results of live heap space analysis on some examples. For all examples except

quicksort, we show only the results of bound functions on partially known inputs, because they are the same
as the results of the space functions on worst-case input. Reversal using append is the standard quadratic-
time version. The version of merge sort tested is the one that splits the input list into sublists containing the
elements at odd and even positions. Dynamic programming algorithms [5] are used for binomial coefficient,
longest common subsequence and string edit. Binary-tree insertion involves insertion of an item into a
complete binary tree in which each node is a list containing an element and left and right subtrees.
The partially known inputs for the bound functions of reversal and sorting are lists of known lengths n

where all elements are uk; those for longest common subsequence and string edit are two such lists of equal
length n. The bound function for binary-tree insertion inserts uk into a complete binary tree of known height
h with unknown elements. For binomial coefficient we use integer arguments, n and n−2, since it was found
that for a given n, a value of n− 2 for the second argument leads to maximum live heap usage.
The difference between the results of the space and bound functions of quicksort is explained as follows.

Quicksort selects a pivot element p from the given list ls and splits the list into two lists : one containing all
elements of ls that are lesser than or equal to p and the other containing elements that are greater than p.
Suppose ls has size n. Since all elements in ls are uk , the bound function incorrectly concludes that each of
the two lists has worst-case size n− 1. In reality, the sum of the sizes of the two lists is n− 1. Further, since
quicksort is called recursively on the two lists, inaccuracies at every recursion level quickly add up resulting
in the exponential growth of the bound function results.
In time analysis [22] and stack space analysis [31], the bound functions of quicksort run into the non-
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termination problem. This is because results of conditionals are summarized into partially known structures
and the recursion in quicksort depends on an unknown aspect of such a partially known structure. In live
heap analysis, we retain more information about the results of branches of conditionals by using join-values
rather than partially known structures. The mentioned recursion in quicksort now has sufficient information
to terminate.

reversal
w/append

insertion
sort

selection
sort

merge
sort

quick
sort

binomial
coefficient

longest
common
subseq.

string edit
binary tree

insert

n result n result n result n result n space bound n result n result n result h n result
50 149 50 149 50 1325 2 5 1 1 1 50 194 50 202 50 500 1 3 18

100 299 100 299 100 5150 5 16 2 6 6 100 394 100 402 100 1000 2 7 33
250 749 250 749 250 31625 10 31 5 24 51 250 994 250 1002 250 2500 4 31 111
500 1499 500 1499 500 125750 12 36 6 32 100 500 1994 500 2002 500 5000 7 255 792

1000 2999 1000 2999 1000 501500 15 45 7 41 197 1000 3994 1000 4002 1000 10000 9 1023 3102

Figure 10: Results of live heap space analysis. n is the input size except in the case of binomial coefficient,
in which n is the first argument. For binary tree insert, h is the height of the complete binary tree and n is
the number of nodes in the tree.

reversal w/append insertion sort selection sort merge sort
n S B Bopt n S B Bopt n S B Bopt n S B Bopt

101 1.0 m 0 1.0 m 101 1.0 m 1.0 M 9.0 m 101 0 37.3 s 10.0 m 101 2.0 m 0.9 s 0.7 s
102 0.1 s 0.3 s 0.1 s 102 0.1 s 5.1 s 102 0.2 s 5.0 s 102 40.0 m
103 10.7 s 3.5 M 11.9 s 103 12.8 s 1.5 H 103 27.3 s 1.5 H 103 0.7 s

binomial coefficient longest common subseq. string edit binary tree insert
n S B Bopt n S B Bopt n S B Bopt h n S B Bopt

101 5.0 m 1.0 m 5.0 m 101 10.0 m 0.8 s 44.0 m 101 15.0 m 25.0 m 20.0 m 2 7 0 3.0 m 3.0 m
102 0.1 s 0.4 s 0.1 s 102 6.6 s 24.0 s 102 7.1 s 13.5 s 7.4 s 6 127 4.0 m 0.1 s 0.1 s
103 11.6 s 4.7 M 11.6 s 103 2.0 H 7.1 H 103 2.2 H 3.7 H 2.3 H 9 1023 34.0 m 1.2 s 1.2 s

Figure 11: Running times of live heap space and live heap space-bound functions. Columns S, B and Bopt
contain times of space, unoptimized space-bound and optimized space-bound functions, respectively. n and
h are as in Figure 10. m is milliseconds, s is seconds, M is minutes and H is hours. Blank fields in B columns
indicate analyses that were aborted after 7 days. Blank fields in Bopt columns indicate analyses that were
aborted after 2 days.

The results in Figure 10 include the space used by top-level arguments since these arguments are indeed
live throughout the execution of the program. Figure 11 contains running times of live heap space analysis
on a sampling of input sizes. For all examples, the live heap space function has the same asymptotic
time complexity as the original function. The time complexities of the live heap space-bound functions of
reverse using append, binomial coefficient, string edit and longest common subsequence are the same as
the complexities of the corresponding original functions. The time complexities of the bound functions of
insertion sort and selection sort are a linear factor more than those of the original functions. The linear
factor is due to the computation involved in the reduction of join-values. The running time of the bound
function of merge sort is more than polynomial in the size of the input. This is because the analysis examines
all (n+m)!/(n!×m!) ways in which two sorted lists of sizes n and m may be merged in sorted order. The
running time of the bound function of binary tree insert is polynomial in the size of the input.
The first optimization in Section 5 improves the asymptotic complexities of reverse using append and

binomial coefficient by a linear factor. The second optimization improves the asymptotic complexities of
insertion sort, selection sort and longest common subsequence from greater than polynomial to polynomial.
These speedups are shown in Figure 11.
Figure 12 shows the results of the space analysis that deals with tail call optimization. The corresponding

space-bound analysis is not yet implemented. List reversal is the standard linear-time version. The optimized
Ackermann function example [23] is a systematically derived program which has much better time complexity
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than the classical version. In all of these examples, the main function is tail recursive. The inputs for the
first three examples are known lists of length n that lead to the worst-case space usage. The inputs for
Ackermann’s function are known integers, n and m. The space complexity of this program was worked out
by hand to be O(n), but it is hard to see this because of the complicated space usage of the program. For
each value of n for Ackermann’s function in Figure 12, all values of the second argument in the range [2, 10]
produced the same space usage. While this does not prove O(n) space usage, it does help confirm that, for
a given n, the space usage is independent of m. Computing Ackermann’s function for n > 3 is famously
expensive.

tail recursive
list reversal

tail recursive
insertion sort

tail recursive
selection sort

optimized
Ackermann

n result n result n result n result
50 51 50 100 50 100 0 2

100 101 100 200 100 200 1 8
250 251 250 500 250 500 2 15
500 501 500 1000 500 1000 3 25

1000 1001 1000 2000 1000 2000

Figure 12: Results of live heap space functions handling tail call optimization. n is the input size except in
the case of optimized Ackermann function, in which n is the first argument; the second argument m ranges
over the interval [2, 10], for each n.

Comparing the results in Figure 12 with the space usage of the corresponding non-tail-recursive programs,
shown in Figure 10, we see that the tail recursive versions use less live heap space. For example, tail-recursive
selection sort uses only O(n) space, while non-tail-recursive selection sort uses O(n2) space. We also applied
our extended analysis to the examples of Figure 10. The results were either the same or differed by a constant
amount of 1 or 2 cons cells. The differences occur because the programs do contain some function calls in
tail position.
Figure 13 contains closed forms or recurrence relations for the live heap space used by the examples. We

obtained closed forms by using Matlab to fit polynomials, wherever applicable, to the data in Figure 10. The
recurrence relation for merge sort and the closed form for binary tree insert were obtained by hand from the
results in Figure 10.

tail recursive reversal n + 1

reversal w/append
0, n = 0

3n − 1, n > 0

insertion sort
0, n = 0

3n − 1, n > 0

tail rec. insertion sort 2n, n > 0

selection sort n(n+3)
2

tail rec. selection sort 2n

merge sort
n, n = 0, 1

S(dn
2 e) + 2n − dn

2 e, n > 1

binomial coefficient
1, m = 0, n

2m + 2, m = n − 1

4m + 2, otherwise

longest common subseq.
n + m + 1, n = 0 or m = 0

2m + 3, n = 1 and m > 0

n + 3m + 2, otherwise

string edit
3n + 3m + 1, n = 0 or m = 0

5n + 5m, otherwise

binary tree insert 3(2h+1 + h + 1)

Figure 13: Closed forms or recurrence relations for live heap space used by example programs. n and m are
the sizes of the first and second (if any) arguments. For binomial coefficient, n and m are themselves the
first and second arguments. For binary tree insert, h is the height of the complete binary tree.

We applied our analysis to a 600-line calendar benchmark. The partially known inputs used are par-
tially known dates. The analysis takes only a few seconds to complete and yields tight bounds, providing
preliminary evidence for the scalability of our method. We plan to analyze more benchmarks. We have also
used the analysis in teaching programming languages courses.
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8 Discussion

Scalability. For large programs or programs with sophisticated control structures, the analysis is efficient
if the input parameters are small, but for larger parameters, efficiency might be a challenge. However,
from the results of bound analysis on smaller inputs, we may semi-automatically derive closed forms and/or
recurrence relations that describe the program’s space usage, by fitting a given functional form to the analysis
results. Also, when closed forms or recurrence relations are known, we may use the results of the analysis to
determine exact coefficients. The closed forms or recurrence relations may then be used to determine space
bounds for large inputs.

Termination. The space function terminates iff the original program terminates. The bound function
might not terminate, even when the original program does if the recursive structure of the original program
directly or indirectly depends on unknown parts of a partially known input structure. For example, if the
given partially known input structure is uk , then the bound function for any recursive program does not
terminate; if such a bound function counts new space, then the original program might indeed take an
unbounded amount of space. Indirect dependency on unknown data can be caused by an imprecise join
operation. Making the join operation more precise eliminates this source of non-termination.
Although there are methods to deal with non-termination, incorporating such methods in our analysis

could result in loose bounds on space usage, even for programs for which non-termination is not a problem.
Further, non-termination is not a problem in any of the examples we analyzed.

Inputs to Bound Functions. To analyze space usage with respect to some property of the input, we
need to formulate sets of partially known inputs that represent all actual inputs with that characteristic,
e.g., all lists with length n, all binary trees of height h or all binary trees with n nodes. As an example,
{(uk , (uk , nil, nil), nil), (uk , nil, (uk , nil, nil)), (uk , (uk , nil, nil), (uk , nil, nil))} represents all binary trees of
height 1, each node being a list of the element and left and right subtrees. Often, formulating such sets of
partially known inputs is straightforward but tedious for the user to do by hand. However, it is easy to write
programs that generate such sets of partially known inputs.

Imperative Update and Higher-Order Functions. The ideas in this paper may be combined with
reference-counting garbage collection extended to handle cycles [3] or with other garbage collection algo-
rithms, such as mark and sweep, to obtain a live heap space analysis for imperative languages. They may
also be combined with techniques for analysis of higher-order functions [30, 11].

Correctness A complete proof of correctness of the analysis is yet to be formulated. Included below is
one part of the proof.

Lemma 1 For a join-value j, it is safe to ignore a smaller recomputed value of exs(j).

Proof: Suppose exs(j) is computed at point p and then recomputed at point q and exs(j) at q is less than
exs(j) at p. We prove that this may happen only if after p, a selector is applied to j, thus creating a new
join-value j′ which references parts of j. The referenced parts of j are no longer contained-in j and when
exs(j) is recomputed at q, it is smaller than the earlier value of exs(j). It is indeed safe to ignore any
decrease in exs(j) caused by selector application because selection does not alter the fact that only one of
the data constructions represented by j is live. We keep only one such data construction live by recording the
excess in the exs field of j and setting exs(j ′), for any j′ selected from j, to V0. This ensures that excesses
are treated as such exactly once. From the definition of exs (2), exs(j) decreases only if one or more of the
following occurs :

1. total(j) decreases : this happens if some con-value c ∈ Cp
j is not contained-in j at q. Since c is

contained-in j at p, there is no way to create a new reference to c other than by applying a selector to
j. As we explained earlier, we may safely ignore decreases of exs(j) caused by selection from j.
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2. max(j) increases : this can happen only if some con-value c 6∈ Cp
j is contained-in j at q and c is in a

maximum-sized join-path of j at q. By definition, the size of c is also included in total(j) at q. Thus,
c being contained-in j at q (and not p) causes atleast as much increase in total(j) as in max(j). Thus,
an increase in max(j) doesn’t actually contribute to a decrease in exs(j).

3. sub(j) increases : sub(j) increases only if (a) for some join-value j ′ ∈ Cp
j

⋂

Cq
j , exs(j′) increases (after

p) or (b) there exists a join-value j ′ ∈ Cq
j /Cp

j such that exs(j′) > V0.

(a) j′ ∈ Cp
j implies that from point p onwards, it is impossible to obtain a direct reference to j ′, i.e.,

no expression may evaluate to j ′. Expressions may evaluate to results that contain j ′ but even
then every path from such a result r to j ′ must contain a join-value, either j itself or a join-value
obtained by selection from j. The analysis calls recomputeExs only on results of expressions.
Thus, after point p, recomputeExs is never called directly on j ′. It may be called on a result r
that satisfies the constraints just described. By definition, recomputeExs(r) recomputes the exs
fields of any join-value ancestors of j ′ but does not recompute exs(j ′). Hence, for all j′ ∈ Cp

j ,
exs(j′) at p′ = exs(j′) at p, for any point p′ > p. (3a) does not cause any increase in sub(j).

(b) Let j′ be a join-value in Cq
j \C

p
j such that exs(j′) at q > V0. exs(j′) includes only the sizes of con-

values contained-in j′. Since j′ is contained-in j, any con-value c ∈ C ′q
j is also contained-in j at q.

Therefore, total(j) at q also includes the size of c. Thus, any increase in sub(j) is accompanied by
atleast an equal increase in total(j), effectively leaving exs(j) unchanged or larger than before.

9 Related Work

There has been a large amount of work on analyzing program cost or resource complexities, but the majority
of it is on time analysis, e.g., [21, 28, 30, 22]. Stack space and heap allocation analysis [31] is similar to
time analysis [22]. Analysis of live heap space is different because it involves explicit analysis of the graph
structure of the data.
Most of the work related to analysis of space is on analysis of cache behavior, e.g., [32, 10], much of which

is at a lower language level, for compiler generated code, while our analyses are at source level and can serve
many purposes, as discussed in Section 1. Live heap space analysis is also a first step towards analyzing
cache behavior in the presence of garbage collection.
Persson’s work on live memory analysis [26] for an object-oriented language requires programmers to

give annotations, including specific numbers as bounds for the size of recursive data structures. His work is
preliminary: the presentation is informal, with a few formulas summarizing sizes of data in bytes based on
the annotations, and only one example, summing a list, is given. Our analysis is able to compute bounds
based on input size only, without program annotations.
Unlike static reference counting used in analysis for compile-time garbage collection [18, 16], our analysis

uses a reference counting method similar to that in run-time garbage collection. While the former keeps
track of pointers to memory cells that will be used later in the execution, the latter maintains pointers
reachable from the stack at the current point in execution. Our analysis could be modified so that decrc(v)
is called when a parameter or let-variable won’t be used again (instead of waiting until v goes out of scope).
Our current analysis corresponds to the garbage collection behavior in, e.g., JVMs from Sun, IBM, and
Transvirtual. Inoue and others [15] analyze functional programs to detect run-time garbage conservatively
at compile-time. Their result is an approximation without any information about the input. Also, they do
not compute the size of live space.
Several type systems [14, 13, 6] have been proposed for reasoning about space and time bounds, and

some of them include implementations of type checkers [14, 6]. They require programmers to annotate their
programs with cost functions as types. Furthermore, some programs must be rewritten to have feasible types
[14, 13].
Chin and Khoo [4] propose a method for calculating sized types by inferring constraints on size and then

simplifying the constraints using Omega [27]. Their analysis results do not correspond to live heap space in
general. Further, Omega can only reason about constraints expressed as linear functions.
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To summarize, this work is a first attempt to analyze live heap space automatically and accurately using
source-level program analysis and transformations. The analysis can be modified to reflect the effect of
optimization of tail recursion. The ideas in this paper may be combined with reference-counting garbage
collection extended to handle cycles [3] or with other garbage collection algorithms, such as mark and sweep,
to obtain a live heap space analysis for imperative languages. They may also be combined with techniques
for analysis of higher-order functions [30, 22].
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