
Noname manuscript No.
(will be inserted by the editor)

Collision Avoidance for Mobile Robots with Limited
Sensing and Limited Information about Moving
Obstacles

Dung Phan · Junxing Yang · Radu Grosu ·
Scott A. Smolka · Scott D. Stoller

Received: date / Accepted: date

Abstract This paper addresses the problem of safely navigating a mobile robot
with limited sensing capability and limited information about stationary and mov-
ing obstacles. We consider two sensing limitations: blind spots between sensors and
limited sensing range. We study three notions of safety: (1) static safety, which
ensures collision-freedom with respect to stationary obstacles, (2) passive safety,
which ensures collision-freedom while the robot is moving, and (3) passive friendly
safety, which ensures the robot leaves sufficient room for obstacles to avoid colli-
sions. We present a runtime approach, based on the Simplex architecture, to ensure
these safety properties. To obtain the switching logic for the Simplex architecture,
we identify a set of constraints on the sensor readings whose satisfaction at time
t guarantees that the robot will still be able to ensure the safety property at time
t+∆t, regardless of how it navigates during that time interval. Here, ∆t is the pe-
riod with which the switching logic is executed and is bounded by a function of the
maximum velocity and braking power of the robot and the range of the sensors. To
the best of our knowledge, this work is the first that provides runtime assurance
that an autonomous mobile robot with limited sensing can navigate safely with

Dung Phan
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
E-mail: dphan@cs.stonybrook.edu

Junxing Yang
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
E-mail: junyang@cs.stonybrook.edu

Radu Grosu
Department of Computer Science, Vienna University of Technology, Vienna, Austria
E-mail: radu.grosu@tuwien.ac.at

Scott A. Smolka
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
E-mail: sas@cs.stonybrook.edu

Scott D. Stoller
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
Tel.: +1-631-632-1627
Fax: +1-631-632-8334
E-mail: stoller@cs.stonybrook.edu

2 Dung Phan et al.

limited information about obstacles. The limited information about obstacles is
used to derive an over-approximation of the set of nearby obstacle points.

Keywords Mobile robots · Simplex architecture · Collision avoidance · Blind
spots

1 Introduction

Autonomous mobile robots are becoming increasingly popular. They are used in
homes, warehouses, hospitals and even on the roads. In most applications, collision
avoidance is a vital safety requirement. Ideally, the robots would have 360◦ field-of-
view. One approach to achieve this is to closely place a sufficient number of sensors
(e.g., infrared, laser, or ultrasound) on the robot. The biggest problem with this
approach is interference between sensors. It is difficult to install the sensors close
enough to achieve 360◦ sensing while at the same time avoiding interference.1 In
addition, the use of numerous sensors increases cost, power consumption, weight,
and size of the robot. Another option is to use sensors that have wide angle of ob-
servation, such as the Hokuyo URG-04LX laser range finder with 240◦ range. This
approach, however, adds thousands of dollars to the cost. Due to these difficul-
ties, 360◦ sensing capability is often not a practical option. Consequently, many
well-known cost-effective mobile robots, such as E-puck, Khepera III, Quickbot
and AmigoBot, lack this capability. These robots have a small number of narrow-
angle infrared or ultrasound sensors that do not provide 360◦ field-of-view. The
resulting blind spots between sensors make the robot vulnerable to collision with
undetected obstacles that are narrow enough to fit in the blind spots.

One approach to prevent such collisions is for the robot to repeatedly stop or
slow down (depending on the sensor range), rotate back and forth to sweep its
sensors across the original blind spots, and then continue (this assumes the robot
can rotate without moving too much). This approach, however, is inefficient: it
significantly slows the robot and wastes power. A similar approach is to mount the
sensors so that they can rotate relative to the robot. Unfortunately, this approach
adds hardware and software complexity, increases power usage, and limits the
maximum safe speed of the robot (depending on the rotation speed of the sensors).

In this paper, we present a runtime approach based on the Simplex archi-
tecture [18,19] to ensure safety of robots with limited field-of-view and limited
sensing range in environments where obstacles are polyhedral and satisfy reason-
able assumptions about minimum internal angle and minimum edge length. One
example of such an environment is an automated warehouse, where some informa-
tion is known about the shapes and sizes of shelving racks, pallets, etc. Our work
is also applicable to robots designed with 360◦ sensing capability that temporarily
acquire blind spots due to of one or more sensor failures. Our approach does not
suffer from the above disadvantages; i.e., the robot does not have to rotate the
sensors or repeatedly stop and rotate itself. The trade-off is that our approach
requires some assumptions, albeit weak ones, about obstacles.

1 Cameras, i.e., sensing based on computer vision, do not interfere with each other but
are less common as a basis for navigation due to other disadvantages: cameras depend on
good lighting; accurate ranging from stereoscopic vision is impossible on small robots and is
generally less accurate than and requires significantly more computational power than ranging
from lasers, ultrasound, infrared, etc.

Collision Avoidance for Mobile Robots 3

We consider three safety properties: (1) static safety, which ensures collision-
freedom with respect to stationary obstacles; (2) passive safety, which ensures
collision-freedom while the robot is moving; and (3) passive friendly safety, which
ensures the robot leaves sufficient room for obstacles to avoid collisions. The no-
tions of passive safety and passive friendly safety we use are adopted from those
introduced in [10]. Passive safety ensures that if a collision is imminent, the robot
can brake and stop before the collision occurs. It is passive in the sense that the
robot never actively collides with an obstacle. While the robot may stop in time,
it may also create a situation in which the obstacle is left with no choice but to
collide with the robot. Passive friendly safety prevents these situations by ensur-
ing that after the robot stops, the obstacle always has enough braking distance to
avoid a collision.

Our approach allows one to determine the information needed about obstacles
to guarantee a desired safety property. Specifically, to guarantee static safety, no
information about an obstacle’s movement is needed. If one wants to guarantee
passive safety w.r.t. moving obstacles, then an upper bound on the overall velocity
of obstacle points is required. If passive friendly safety is desired, then a lower
bound on the braking power and an upper bound on the reaction time of obstacles
are also needed.

Many navigation algorithms have been proposed for autonomous mobile robots.
Few of these algorithms, however, have been verified to ensure the safety of the
robot. One consequence of this situation is that potentially superior but uncertified
navigation algorithms are not deployed in safety-critical applications. The Simplex
architecture allows these uncertified algorithms, which in Simplex terms are called
advanced controllers (ACs), to be used along side a pre-certified controller, called
the baseline controller (BC). The Simplex architecture contains a decision module
that periodically executes switching logic that determines whether to leave the AC
in control for another time step or switch control to the BC.

To obtain the switching logic, we identify a set of conservative constraints on
sensor readings whose satisfaction at time t guarantees that, regardless of what the
AC does between time t and time t+∆t, the specified safety property holds during
that period, and the BC will be able to ensure that it continues to hold after that,
if it is given control at time t+∆t. The decision period ∆t is the period with which
the decision module makes the switching decision. The constraints are obtained
under assumptions about minimum internal angle and minimum edge length of
polyhedral obstacles as well as the limits on the maximum velocity, maximum
reaction time and minimum braking power of obstacles for passive safety and
passive friendly safety. Our simulation results illustrate how our design avoids
collisions.

Another distinguishing feature of our work is the manner in which the switching
condition is computed, using extensive geometric reasoning. Existing approaches
to computation of switching condition are based on Lyapunov stability theory
(e.g., [18,19]) or, more recently, state-space exploration (e.g., [3]). These existing
approaches cannot be applied to the problem at hand, because of the incomplete
knowledge of the shapes and locations of the obstacles in the robot’s environment.
To the best of our knowledge, our study is the first to provide runtime assurance
that a mobile robot with limited sensing can safely navigate in such an environ-
ment.

4 Dung Phan et al.

A preliminary version of this paper appeared in [14]. This is the full version
and has the following significant differences.

– In Section 4.1, we extend [14] to take into account the limits on how rapidly
the robot can accelerate and turn. We describe how to use this information
to calculate a more accurate region that the robot can reach within ∆t time
units. This results in a tighter switching condition, allowing the robot to go
past obstacles that would make the robot stop under the switching condition
in [14]. In Section 5, we illustrate this difference via simulation results involving
a ground-rover case study.

– In [14], we assume that the robot can stop instantaneously. In Section 4.2, we
revise the switching logic to take the robot’s finite braking power into account.
This makes the approach more realistic.

– In addition to the notion of safety with respect to stationary obstacles consid-
ered in [14], we now also investigate the switching conditions needed to ensure
safety with respect to moving obstacles.

The rest of the paper is organized as follows. Section 2 considers related work
on provable collision avoidance. Section 3 provides background on the Simplex
architecture. Section 4 contains a detailed derivation of the switching condition.
Section 5 discusses our implementation and experimental results. Section 6 offers
our concluding remarks and directions for future work.

2 Related Work

Collision avoidance is a well-studied problem. We refer the reader to a recent
survey [8] for an extensive review of the literature on collision avoidance for both
static and moving obstacles. In this section, we consider related work on provable
collision avoidance, i.e., algorithms whose collision-freedom property is formally
proven. Prior work [1,4,12,13] has focused on establishing collision-freedom for
specific navigation algorithms. In contrast, we employ the Simplex architecture to
ensure the safety of the robot in the presence of any navigation algorithm, however
faulty it may be. We consider each of these approaches in turn.

Theorem-proving techniques are used in [12] to establish two safety proper-
ties of the Dynamic Window algorithm for collision avoidance: passive safety and
passive friendly safety, both of which apply to stationary and moving obstacles.
Infinite sensor detection range and 360◦ sensing are assumed. Our approach, in
contrast, accounts for blind spots between sensors and limited sensing range. Our
assumptions about the movement of the obstacles for ensuring passive safety and
passive friendly safety are similar to [12].

In [4], the authors present the PassAvoid navigation algorithm, which avoids
“braking-inevitable collision states” to achieve passive safety. In [17], a biologi-
cally inspired navigation algorithm for a unicycle-like robot moving in a dynamic
environment is presented. Both algorithms assume 360◦ sensing capability. We do
not make this assumption, and instead rely on certain weak assumptions about
the shapes of obstacles.

In [1], the authors propose an algorithm that constrains the velocity of a mobile
robot moving on a known trajectory such that it stops before colliding with moving
obstacles. They assume 360◦ field-of-view and a pre-planned trajectory that guides

Collision Avoidance for Mobile Robots 5

the robot through an environment with known static obstacles. We do not make
any of these assumptions.

A method is presented in [13] for computing a smooth, collision-free path from
a piecewise linear collision-free trajectory produced by sampling-based planners.
They assume the given sampling-based trajectory is collision-free and use cubic
B-splines to generate a smooth trajectory that guarantees collision-freedom. We
do not make any assumptions about robot trajectories.

A reachable-set approach is presented in [20] to assure that a robot safely visits
a sequence of targets while avoiding moving obstacles. The robot and obstacles
are treated as points. The initial locations, dynamics, and the set of control inputs
of the obstacles are assumed known. The robot pre-computes a time-optimal path
that remains unchanged during the mission. As such, this approach does not need
to consider sensor readings and the computed path is necessarily conservative.

3 The Simplex Architecture

The Simplex architecture [18,19] was developed to allow sophisticated control soft-
ware to be used in safety-critical systems. This sophisticated software, called an
advanced controller, is designed to achieve high performance according to spec-
ified metrics (e.g., maneuverability, fuel economy, mission completion time). As
a result, it might be so complex that it is difficult to achieve the desired level of
safety assurance in all possible scenarios. Its complexity might also prevent it from
achieving required certifications (e.g., RTCA DO-178C for flightworthiness). The
Simplex architecture allows such advanced controllers to be used safely, by pairing
them with a simpler baseline controller for which the desired level of safety assur-
ance can be achieved, and with a decision module that determines which controller
is in control of the plant.

While the system is under the control of the advanced controller, the decision
module monitors the system state and periodically checks whether the system
is in imminent danger of violating a given safety requirement. If so, the decision
module switches control of the system from the advanced controller to the baseline
controller. The period with which the decision module makes the switching decision
is called the decision period and denoted∆t. The condition on the system state that
it evaluates to determine whether to switch to the baseline controller is called the
switching condition. The switching condition depends on the safety requirements,
the system dynamics, and the decision period. A state is correct if it satisfies the
given safety requirements. A state is recoverable if, starting from that state, the
baseline controller can ensure that the system remains correct; i.e., remains in
correct states.

The correctness requirement for the switching condition is: If the switching
condition is false (i.e., “don’t switch”), then the system is guaranteed to remain
in recoverable states for the next ∆t time units, regardless of the control inputs to
the plant produced by the advanced controller during that interval. The quantifi-
cation over all possible control inputs to the plant is needed because we make no
assumptions about the advanced controller’s behavior. If the baseline controller
and switching condition are correct, then correctness of the system is ensured,
regardless of the advanced controller’s behavior.

6 Dung Phan et al.

4 Switching Logic

Our approach uses the Simplex architecture with a baseline controller that im-
mediately applies full braking power to stop the robot. To simplify the derivation
of the switching condition slightly, we make the following assumptions: (1) the
execution time of the decision module is negligible; (2) the switching latency is
negligible (i.e., the baseline controller can take over immediately); (3) the robot’s
shape is a single point, as in [12]. The robot point is the center of motion of the
robot, which is the midpoint between the left and right driving wheels in the case
of robots with two-wheel differential-drive. None of these assumptions are essen-
tial. Our derivation can easily be extended to eliminate them: (1) and (2) can be
eliminated by simply adding DM’s execution time and switching latency to ∆t;
(3) can be eliminated, for instance, by using the approach given in [11] to take the
shape of the rover into account.

We assume that the robot starts in a state in which the switching condition is
false. At time t, if DM lets the advanced controller remain in control for ∆t time,
it must ensure that the robot will not collide with an obstacle during this period
of time, and that if the decision module switches to the baseline controller at the
next time step, the baseline controller will be able to bring the robot to a full stop
without any collisions. Based on this reasoning, our switching logic comprises the
following steps:

1. Determine the set of positions that the robot can reach during the next time
step. We call this set the reachable region.

2. Expand the reachable region by some margin to account for braking distance
and moving obstacles. We call the expanded reachable region the safety region,
denoted Ssafe .

3. Find the set of possible obstacle points that are closest to the robot, based on
the current sensor readings. We denote this set Sobstacle.

4. The switching condition is then a check of whether the safety region contains
any possible obstacle points, i.e., whether Ssafe ∩ Sobstacle 6= ∅.

Steps 1 and 2 can be carried out statically. Steps 3 and 4 need to be performed
at runtime. Note that steps 1 and 2 can be done at runtime provided the time it
takes to finish these tasks is acceptable and does not exceed the decision period
if we take DM’s execution time into account. In steps 1, 2, and 3, the regions are
over-approximations of the points in question. In the following, we describe these
steps in more detail. In doing so, we show that the more we know about the robot,
the more accurate and complex the switching condition is. Additionally, if we
do not know anything about movement of obstacles, then we can only guarantee
collision-freedom w.r.t. static obstacles.

If we have an upper bound on the overall velocity, i.e., taking into account
both translational and rotational motions, of every obstacle point, then we can
additionally guarantee passive safety w.r.t. moving obstacles. This means that the
robot will be at rest if and when a collision occurs. If we also have a lower bound
on the braking power and an upper bound on the reaction time of the obstacles,
then we can offer the stronger passive friendly safety for moving obstacles. This
means that when the robot stops, it leaves sufficient room for obstacles to avoid
colliding with the robot. This hierarchical approach to defining safety allows one to

Collision Avoidance for Mobile Robots 7

design a safety guarantee based on how much information about the environment is
available and to construct a suitable switching logic to ensure that safety property.

4.1 Step 1: Determine the Reachable Region

Depending on how much knowledge we have about the robot, we can determine the
reachable region to different levels of accuracy. We consider two cases: (1) we know
only the upper bound on the linear velocity of the robot; (2) we know the upper
bounds on the linear velocity, linear acceleration, angular velocity, and angular
acceleration of the robot.

4.1.1 Case 1

If we do not assume any limits on how rapidly the robot can turn or accelerate, the
robot may immediately move in any direction at its maximum speed vmax. Velocity
bound vmax and the decision period ∆t define the robot’s reachable region, a
circular disk with radius R = vmax∆t centered at the robot. While this reachable
region is conservative, its simple shape allows us to derive a simple switching
condition, as discussed in Section 4.4.

4.1.2 Case 2

If we have upper bounds on the linear velocity, linear acceleration, angular velocity
and angular acceleration, then we can compute the reachable region from the
current state and the kinematics of the robot. Eq. 1 provides general kinematics
for mobile robots.

ẋ = v cos θ
ẏ = v sin θ
v̇ = a

θ̇ = ω
ω̇ = γ

(1)

where x and y are the Cartesian coordinates of the robot position, θ is the heading
angle, v and a are the linear velocity and linear acceleration, and ω and γ are the
angular velocity and angular acceleration of the robot. In Eq. 1, a and γ are
implicitly functions of time. We want to find the reachable states based on Eq. 1
augmented with the constraints ‖v‖ ≤ vmax, ‖a‖ ≤ amax, and ‖γ‖ ≤ γmax. Thus,
a non-trivial region is reachable even from a single initial state.

Reachability analysis tools can use Eq. 1 to find the region reachable within
∆t time units from a given initial state or range of initial states. We use HyCreate
[2] for this purpose. HyCreate outputs the reachable region as a set of overlapping
rectangles. We use Matlab to merge these rectangles into an equivalent polygon.
Note that Eq. 1 does not have any constraints that relate v and ω. Many robots,
however, have such constraints. For example, two-wheel differential-drive robots,
like the one used in our study, can turn only by making one wheel rotate slower
than the other. That means the bound on linear velocity is smaller than vmax
while the robot is turning. The above computation ignores this constraint and

8 Dung Phan et al.

hence produces an over-approximation of the reachable region. To capture this
constraint, consider the kinematics of the two-wheel differential drive robot used
in our study. The equations are:

ẋ = (ωl+ωr)r
2 cos θ

ẏ = (ωl+ωr)r
2 sin θ

θ̇ = (ωr−ωl)r
l

ω̇l = γl
ω̇r = γr

(2)

where x and y are the Cartesian coordinates of the robot position, θ is the heading
angle, ωl and γl are the angular velocity and angular acceleration of the left wheel,
ωr and γr are the angular velocity and angular acceleration of the right wheel, r
is the radius of the wheels, and l is the distance between the centers of the two
wheels.

Compared to Eq. 1, linear velocity v and angular velocity ω of the robot are
coupled because they are both expressed in terms of ωl and ωr. This eliminates
infeasible combinations of values of v and ω and yields a more accurate reachable
region. Note that we only use this specific model of differential-drive robots to get
an accurate reachable region. We are not forced to use Eq. 2 for other purposes
such as designing a baseline controller that can do more than just stop the robot.
For those purposes, we can use Eq. 1 or any suitable kinematic models.

To pre-compute the reachable regions using HyCreate, we partition the state
space into regions and compute a reachable region for each of these regions. We
use initial values of (0, 0, 0) for (x, y, θ). We do not need to consider different initial
values for (x, y, θ) because the set of possible obstacle points Sobstacle is computed
in the robot’s frame of reference. We partition the range of ωl and ωr into small
uniform intervals. The Cartesian product of these intervals induces a grid over
the state space. We use HyCreate to find the reachable region for each grid block
based on Eq. 2 augmented with the constraints ‖ωl‖ ≤ ωmax, ‖ωr‖ ≤ ωmax,
‖γl‖ ≤ γmax, and ‖γr‖ ≤ γmax. When evaluating switching condition at runtime,
we determine the region (grid block) corresponding to the current values of ωl and
ωr and then look up the associated pre-computed reachable region.

4.2 Step 2: Expand the Reachable Region

Depending on what assumptions we have about the robot and the environment
(obstacles), we can obtain different safety regions and offer different levels of safety.
We prove in Appendix A that the safety regions discussed below are sound.

4.2.1 Braking Power

Let b be the braking power of the robot, i.e., the maximum magnitude of decel-
eration. Let vRRmax be the maximum velocity reachable in ∆t time units. If we do
not assume a limit on how rapidly the robot can accelerate then vRRmax = vmax.
If we assume a maximum acceleration amax then from a range of initial values
[v0min, v0max] of velocity, the robot can achieve a maximum velocity vRRmax =
min (vmax, v0max + amax∆t) after ∆t time units. In our case, because we use

Collision Avoidance for Mobile Robots 9

Eq. 2 to compute the reachable region, vRRmax must be inferred from ωmax, γmax
and the ranges of initial values of ωl and ωr. Suppose the ranges of initial values
of ωl and ωr used for computing the reachable region are [ωl0min, ωl0max] and
[ωr0min, ωr0max], respectively. Eq. 3 shows how we compute v0max, amax, vmax
and vRRmax. Note that we assume the wheels can freely move backward or forward.

v0max = max (|ωl0min + ωr0min| , |ωl0max + ωr0max|) r/2
amax = γmaxr
vmax = ωmaxr

vRRmax = min (vmax, v0max + amax∆t)

(3)

The worst case is when the robot starts braking from vRRmax. In that case, the

braking time is tb = vRRmax/b and the braking distance is db =
(
vRRmax

)2
/2b. That

means that if the robot applies braking power b, it will be able to come to a
full stop within distance db. The reachable region must be expanded by db in all
directions to take braking distance into account. If the reachable region is circular,
we expand it simply by increasing the radius by db. If the reachable region is a
polygon, we use Matlab to expand it.

4.2.2 Stationary Obstacles

If we assume all obstacles are stationary, then the safety region is the expanded
reachable region obtained above. We use SSS to denote the safety region for static
safety w.r.t. stationary obstacles.

4.2.3 Passive Safety for Moving Obstacles

Passive safety ensures collision-freedom while the robot is moving, which means
the robot must be at rest before a collision occurs. While this is a weak safety
guarantee, it helps reduce the effects of a collision, such as the force of a head-on
collision. If we assume a known upper bound V on the overall velocity of every
obstacle point, then in the worst-case, the closest point of the obstacle approaches
the robot in a straight line at maximum velocity V . Within ∆t+ tb time units, the
maximum distance that the obstacle can travel is do = V (∆t+ tb). The reachable
and braking region must be expanded by do so that the robot can stop before a
collision occurs. This expanded region, denoted by SPS , is the safety region for
ensuring passive safety in the presence of moving obstacles.

4.2.4 Passive Friendly Safety for Moving Obstacles

Passive safety may create a situation in which the robot stops at a position that
leaves the obstacle no choice but to collide with it. Passive friendly safety re-
quires that the robot leaves enough room for the obstacle to avoid the collision.
Informally, if a collision occurs after the robot stops, the obstacle is to blame. To
ensure passive friendly safety, we further assume a known lower bound bo on the
braking power and a known upper bound τ on the reaction time of obstacles. In
the worst-case, the closest obstacle approaches the robot on a straight line at max-
imum speed V during ∆t time units; it continues at that speed during the braking
time vRRmax/b of the robot; after the robot has stopped, it then starts braking with

10 Dung Phan et al.

braking power bo after its maximum reaction time τ has passed. The worst-case
braking distance of the obstacle is then dbo = V 2/2bo. The safety region for passive
safety must be expanded by V τ + dbo to account for reaction time and braking
distance. We use SPFS to denote the safety region for ensuring passive friendly
safety.

Fig. 1 illustrates the relationship between the three safety regions SSS , SPS ,
and SPFS .

Fig. 1 Relationship between safety regions. The robot currently at O and heading in the
direction of the arrow. SRR is the region reachable within ∆t time units. SSS , SPS , SPFS are
safety regions for ensuring static safety, passive safety, and passive friendly safety, respectively

4.3 Step 3: Find the set of possible obstacle points

The robot is equipped with N distance sensors with angle of detection βs and
maximum range Rs, as shown in Fig. 2. For simplicity, we assume the sensors are
evenly spaced; it is easy to analyze other spacings in a similar way. The angle
(in radians) of the gap between the fields-of-view of adjacent sensors is βg =
(2π−Nβs)/N . We assume N and βs are such that βg > 0 and β = βg+2βs ≤ π/3.

Fig. 2 The robot has N evenly spaced sensors s1, s2, ..., sN with angle of detection βs and
maximum range Rs. The angle of the gap between two adjacent sensors is βg

Collision Avoidance for Mobile Robots 11

When an obstacle intersects a sensor’s cone of observation at multiple distances,
depending on the exact nature of the sensor, it may report the closest distance to
the obstacle, the farthest distance, or something in between. Our derivation of the
switching condition is based on the worst-case (from the perspective of collision
avoidance) assumption about sensor behavior, namely, that the sensor reports the
farthest distance from the obstacle.

We derive the set of possible obstacle points closest to the robot from sen-
sor readings under the following assumptions about obstacles: (1) obstacles are
polyhedra; (2) there is a known lower bound α on the internal angles between
edges and α > β, where β is the angle between two adjacent sensors including the
sensors’ detection angles (i.e., β = βg + 2βs); (3) there is a known lower bound
lmin on obstacle edge lengths and lmin ≥ L, where L is defined below; and (4) the
separation between obstacles is such that whenever two adjacent sensors detect
an obstacle, they are detecting the same obstacle. Intuitively, the lower bound on
internal angles ensures that vertices of obstacles are wide enough so that they will
be detected by the robot’s sensors despite blind spots.

Denote EαAB = {P | 6 APB = α} the α-equiangular arcs of AB, i.e., the locus
of points that see the line segment AB under angle α. Geometrically, EαAB forms
two circular arcs that pass through A and B, shown as the boundary of the shape
in Fig. 3. Let SαAB be the set of points that lie within the area enclosed by α-
equiangular arcs of AB including the boundary. It is easy to show that SαAB =
{C | 6 ACB ≥ α}, which means SαAB is the locus of all possible vertices with angle
at least α such that one edge passes through A and the other edge passes through
B.

Fig. 3 Illustration of SαAB . The α-equiangular arcs of AB is the boundary

For sensor si, i = 1..N , we define two points A−i and A+
i on the left and right

edges of si’s cone of detection such that OA−i = OA+
i = lmin if si does not detect

any obstacle, and OA−i = OA+
i = min{OBi, lmin} if si detects an obstacle at Bi.

Consider a sensor si′ , where i′ = (i mod N) + 1, that is adjacent to si. We define
Ai = A−i and Ai′ = A+

i′ . That means Ai is on the left edge of si’s cone while
Ai′ is on the right edge of si′ ’s cone. The definition of Ai and Ai′ in conjunction
with the assumption β ≤ π/3 implies there is at most one obstacle vertex inside
triangle OAiAi′ . Because of the assumption that minimum internal angle is α,
SαAiAi′

contains all possible obstacle points between si and si′ and are closest to
the robot. However, SαAiAi′

is the union of two identical circular disks that mirror
each other over the line AiAi′ . As such, SαAiAi′

also contains possible obstacle
points that are not of our interest, that is the points farther away from the robot
than min(OAi, OAi′). To be less conservative, we only consider the circular disk

12 Dung Phan et al.

that is closer to the robot, denoted CαAiAi′
. Algorithm 1 finds the center and radius

of CαAiAi′
. The union of CαAiAi′

for all pair of adjacent sensors (si, si′) gives us the
set of all possible obstacle points closest to the robot.

Input: OAi, OAi′ , α, 6 AiOAi′

// Distance between points Ai and Ai′

AiAi′ =
√
OA2

i +OA2
i′ − 2 ·OAi ·OAi′ · cos 6 AiOAi′ ;

// Radius of the α-equiangular arcs for AiAi′, i.e., points P such that
6 AiPAi′ = α

Rarc = (AiAi′/2)/ sinα;
// Find the centers of those two arcs. Their position is defined by the

following geometric constraints, whose solution amounts to finding the
third vertex of a triangle, given the other two vertices (namely, Ai and
Ai′) and the internal angle at the third vertex 6 AiOAi′.

Oarc,1, Oarc,2 = the points Oarc satisfying OarcAi=OarcAi′ ∧ 6 AiOarcAi′ =2α;
// Between those two points, choose the one corresponding to the arc that is

closer to the robot.
Oarc = α ≤ π/2 ? min{OOarc,1, OOarc,2} : max{OOarc,1, OOarc,2};

Algorithm 1: Computation of the center and radius of the α-equiangular arc
of AiAi′ that is closer to the robot

4.4 Step 4: Check if the safety region contains any possible obstacle points

Let Ssafe be the safety region for ensuring the safety property of interest. Ssafe

could be SSS , SPS , or SPFS as described in Section 4.2. Let Sii
′

safe be the set of
points in the safety region and in or between the cones of observation of sensors
si and si′ , as illustrated in Fig. 4.

Fig. 4 Illustration of Sii
′

safe , the set of points in the safety region and in or between the cones

of observation of sensors si and si′

The switching condition is simply a check of whether the safety region contains
any possible obstacle points. We prove in Appendix A that the constraints SαAiAi′

∩
Sii

′

safe = ∅ for i = 1..N , where i′ = (i mod N) + 1, imply Sobstacle ∩ Ssafe = ∅ and
hence guarantee that after ∆t time units, the robot will be in a state where it can

Collision Avoidance for Mobile Robots 13

still be able to ensure the safety property. For the reason described in Section 4.3,
we use CαAiAi′

instead of SαAiAi′
to derive the switching condition.

4.4.1 Circular safety region

If we make no assumptions about how rapidly the robot can turn or accelerate,
then the safety region Ssafe will be a circular disk with radius R = vmax∆t +
vmax/2b centered at the robot. We can use an algorithm like Algorithm 2 to check

if CαAiAi′
∩Sii

′

safe 6= ∅. However we can obtain a computationally cheaper algorithm
by checking the more conservative alternative CαAiAi′

∩ Ssafe 6= ∅. The switching
condition is then a check of whether two circular disks—Ssafe and CαAiAi′

— overlap.
This check can be done simply by checking if the sum of two radii is less than the
distance between two centers. We went further and found that in the case when
only one of si and si′ detects an obstacle within lmin, we can derive an even
simpler check of whether the distance to the obstacle is less than a constant. We
use the following property to derive the switching condition in this case.

Let OX,OY be two readings by sensor si such that OX < OY . Let OZ be the
reading of sensor si′ that is adjacent to si.

Property 1
∣∣∣SαXZ ∩ Sii′safe

∣∣∣ = 1→ SαY Z ∩ Sii
′

safe = ∅

Fig. 5 Illustration of Property 1. SαXZ touches Sii
′

safe at C. SαY Z ∩ S
ii′
safe = ∅

Proof By contradiction. Suppose
∣∣∣SαXZ ∩ Sii′safe

∣∣∣ = 1 and SαY Z ∩ Sii
′

safe 6= ∅. Let

C ∈ SαXZ∩Sii
′

safe as shown in Fig. 5 (C is the point where SαXZ touches Sii
′

safe). Since

C lies on the boundary of SαXZ , we have 6 XCZ = α. Let D ∈ SαY Z∩Sii
′

safe . Because

14 Dung Phan et al.

OY is strictly greater than OX, the geometry implies 6 XDZ > 6 Y DZ ≥ α. This

means D ∈ SαXZ and D 6≡ C, therefore
∣∣∣SαXZ ∩ Sii′safe

∣∣∣ > 1, a contradiction.

Suppose sensor s1 detects an obstacle at point A1, where OA1 = d1, and
adjacent sensors do not detect any obstacle within distance lmin, as shown in
Fig. 6. In this case, we assume the adjacent sensor s2 detects an obstacle at distance
OA2 = lmin, as described above. The switching condition φ1(s1) in this case is of
the form d1 ≤ d1switch, for the threshold d1switch defined below.

Fig. 6 Illustration of case 1. Sensor s1 detects an obstacle at distance OA1 < lmin. Adjacent
sensor s2 does not detect any obstacle within distance lmin so we assume OA2 = lmin

If we can find a point AT such that
∣∣SαATA2

∩ Ssafe

∣∣ = 1 (i.e., SαATA2
touches

Ssafe), then by Property 1, we can let d1switch = OAT . This switching condition
is more conservative than the constraint SαA1A2

∩S12
safe = ∅ because there are some

cases when SαATA2
touches Ssafe at a point outside the wedge S12

safe . The benefit is
that the switching threshold d1switch = OAT can be computed statically, resulting
in a very simple switching condition.

The point AT must satisfy the following equations, where Oarc is the center
of the α-equiangular arc of ATA2 as shown in Fig. 7.

ATA2 =
√
OA2

T + l2min − 2 ·OAT · lmin · cosβ (4)

Rarc = (ATA2/2)/ sinα (5)

OOarc = Rarc +R (6)

Given lmin, α, β and R, all of which are known statically, the switching thresh-
old OAT can be obtained by straightforward solution of these equations using
algebraic geometry. We use Matlab to automate this.

4.4.2 Polygonal safety region

If the safety region is polygonal, then Algorithm 2 is used to check whether CαAiAi′
∩

Sii
′

safe 6= ∅. Note that we use the algorithm in [9], which is O(n) where n is the

Collision Avoidance for Mobile Robots 15

Fig. 7 Illustration of switching threshold OAT calculation

number of vertices of the polygon, because the reachable regions outputted by
HyCreate are not convex as shown in Fig. 11. If safety regions are convex, we can
use a O(logn) algorithm (e.g., [15]) instead.

Algorithm 2 checks whether a circle overlaps with a polygon based on [5]. A
circle C is defined by its center C.O and its radius C.R. A polygon is defined by a
list of vertices [P0, P1, ..., PN]. A point P is defined by its x and y coordinates P.x
and P.y. A circle overlaps a polygon if one of the following condition is satisfied:

1. the shortest distance between any edge of the polygon and the circle’s center
is less than its radius;

2. the center of the circle is in the polygon.

4.4.3 Lower bounds on α and lmin

The assumption α > β is needed because if α ≤ β, then 6 AiOAi′ = β ≥ α, i.e.,
O ∈ CαAiAi′

for any pair Ai, Ai′ . That means CαAiAi′
always intersects the safety

region and we cannot guarantee the safety of the robot.
Fig. 8 shows the lower bound L on lmin. Let Oarc be the center of the α-

equiangular arc of AiLAi′L as shown in Fig. 8. Let R be the radius of the circle
centered at the robot and enclosed the largest safety region. Similar to the com-
putation of OAT described above, L can be derived from the following equations.

AiLAi′L =
√

2 · L2 − 2 · L2 · cosβ (7)

Rarc = (AiLAi′L/2)/ sinα (8)

OOarc = Rarc +R (9)

The assumption lmin ≥ L ensures that if adjacent sensors si and si′ both
detect an obstacle at distances greater than lmin, then no obstacle point appears
within the wedge Sii

′

safe . We prove this in Appendix A (case 1c).

16 Dung Phan et al.

Input: Circle C, Polygon Poly
return EdgeInCircle(C,Poly) ∨ PointInPolygon(C.O, Poly);

// Check if there is an edge of the polygon whose shortest distance to the
center of the circle is less than its radius.

Function EdgeInCircle(Circle C, Polygon Poly)
foreach edge PiPj of Poly do

// The following code computes the shortest distance d between C.O
and the edge PiPj, using the algorithm in [6].

t =
(Pj−Pi)·(C.O−Pi)

||Pj−Pi||2
;

if t ≤ 0 then
d = ||C.O − Pi||

else if t ≥ 1 then
d = ||C.O − Pj ||

else
d = ||C.O − (Pi + t · (Pj − Pi))||

end
if d ≤ C.R then

return True
end

end
return False

// Use even-odd rule [9] to check if a point is inside a polygon. The idea
is to draw a ray that starts from the point and goes in any direction,
and count how many times it intersects the edges of the polygon. The
number is odd when the point is inside the polygon.

Function PointInPolygon(Point P, Polygon Poly)
isInside = false;
foreach edge PiPj of Poly do

if ((Pi.y > P.y) 6= (Pj .y > P.y)) ∧ (P.x <
(Pj .x−Pi.x)·(P.y−Pi.y)

(Pj .y−Pi.y)
+ Pi.x) then

isInside = ¬isInside
end

end
return isInside;

Algorithm 2: Checking whether a circle overlaps with a polygon.

Fig. 8 Lower bound L on lmin such that the α-equiangular arcs of AiLAi′L touch the circle
that enclosed the safety region

Collision Avoidance for Mobile Robots 17

5 Implementation and Experimental Results

We implemented the Simplex architecture with the baseline controller and switch-
ing conditions described in Section 4 in the Matlab simulator for the Quickbot
ground robot [16]. The robot has sensor architecture as in Fig. 2 with the follow-
ing parameters: (1) number of sensors N = 8; (2) angle of detection of the sensors
βs = 5o; (3) maximum range of the sensors Rs = 0.8m; (4) maximum rotational
speed of the wheels ωmax = 7π rad/s; (5) maximum rotational acceleration of the
wheels γmax = 16π rad/s2; (6) braking power b = 30m/s2; (7) radius of the wheels
r = 0.0325m; (8) distance between the centers of the two wheels l = 0.09925m;
(9) maximum linear velocity vmax = ωmaxr = 0.715m/s; (10) maximum acceler-
ation amax = γmaxr = 1.634m/s2, and decision period ∆t = 0.1s.

5.1 Circular Safety Region

The radius of the circular safety region is R = vmax∆t + v2max/2b = 0.08m.
We tested the switching condition in the following two scenarios; snapshots from
simulations of these scenarios appear in Fig. 9. Both scenarios involve an obstacle
with lower bound on internal angles α = 70◦. For the scenario in Fig. 9(a), we place
the obstacle such that when the robot approaches the obstacle and the vertex with
angle α is about to enter the safety disk, only one sensor detects an edge with lmin
and the other edge barely misses the cone of observation of an adjacent sensor. This
is the worst-case scenario for the case when only one sensor detects an obstacle at
distance less than lmin as described in Section 4.4. For the scenario in Fig. 9(b),
we place the obstacle such that when the robot approaches the obstacle and the
vertex with angle α is about to enter the safety disk, the vertex is in the gap of
two adjacent sensors and both sensors detect an edge of the obstacle within lmin.

The snapshots in Fig. 9 show the moment when the switching condition be-
comes true and the robot stops. One observation is that, in both scenarios, the
switching condition is correct: the obstacle does not enter the safety disk. Of course,
this is expected. A more interesting observation is that, in both scenarios, the
switching condition is tight (not unnecessarily conservative): the robot does not
stop until the obstacle is about to enter the safety disk. The actual simulations
leading to these snapshots can be viewed at https://www.youtube.com/watch?v=
iQpOZgYyhqQ

Fig. 10 shows how the switching threshold OAT depends on various parameters
in the case when only one sensor detects an obstacle at distance less than lmin .
Fig. 10(a) shows how OAT decreases as α increases. It is clear from the worst-case
scenario of case 1 that when an obstacle with a sharper corner, i.e., a smaller α,
touches the safety disk, the sensor detects its edge at a greater distance than one
with a flatter corner, and this necessitates a larger OAT . Fig. 10(b) shows how
OAT increases as β increases. Intuitively, a larger β means a larger gap between
the cones of observation of two adjacent sensors, so the edge of the obstacle is
detected at a larger distance when the vertex is at the boundary of the safety disk.
Fig. 10(c) shows how OAT decreases as lmin increases. This can be seen from the
worst-case scenario: the edge of the obstacle that is not detected within lmin will
make a smaller angle with the edge of the cone if lmin is larger, so the other edge is
detected at a smaller distance. Fig. 10(d) shows how OAT increases as R increases

https://www.youtube.com/watch?v=iQpOZgYyhqQ
https://www.youtube.com/watch?v=iQpOZgYyhqQ

18 Dung Phan et al.

(a) (b)

Fig. 9 Snapshots from simulations showing the robot correctly stops to ensure no obstacles
in the safety disk. The green disk around the robot represents the safety disk. The red region
represents the obstacle. The blue wedges represent the robot’s cones of observation. (a) Snap-
shot from scenario for case 1: a sensor detects an obstacle within lmin; adjacent sensors do
not. (b) Snapshot from scenario for case 2: two adjacent sensors detect an obstacle within lmin

(note: it doesn’t matter whether the increase in R is due to an increase in vmax
or ∆t, or a decrease in b). This directly reflects the fact that a robot with a larger
safety disk needs to stop farther from obstacles.

5.2 Polygonal Safety Region

Fig. 11 shows an example of the reachable region obtained from HyCreate and the
three safety regions we get by expanding the reachable region. We compare the
switching conditions of using circular safety region and polygonal safety region;
snapshots from simulations of the comparison appear in Fig. 12. We consider a
static obstacle with lower bound on internal angles α = 70◦. For the scenario of
using circular safety region in Fig. 12(a), we place the obstacle such that when
two sensors both detect an edge, the α-equiangular arc will intersect the safety
disk so that the robot has to stop. Note that one sensor detects an edge at a
distance greater than lmin, and we use lmin as the detected distance of the edge.
The snapshot shows the moment when the switching condition becomes true and
the robot stops. For the scenario of using polygon safety region in Fig. 12(b), the
placement of the obstacle is the same as in the previous scenario. The snapshot
shows the moment when the sensors detect the obstacle at the same distances as
in Fig. 12(a). In this case, however, the α-equiangular arc does not intersect the
polygonal safety disk so that the switching condition remains false and the robot
keeps moving. The robot moves from the left to the right in this scene without stop-
ping. The comparison shows that using polygonal safety region instead of circular
safety region leads to a less conservative switching condition. The actual simula-
tions leading to these snapshots can be viewed at https://youtu.be/dZewt0PO_KI.

https://youtu.be/dZewt0PO_KI

Collision Avoidance for Mobile Robots 19

(a) (b)

(c) (d)

Fig. 10 Graphs of the switching threshold OAT as a function of various parameters. (a)
OAT as a function of α, with β = π/4, lmin = 80 and R = 8. (b) OAT as a function of β,
with α = π/2, lmin = 80 and R = 8. (c) OAT as a function of lmin, with α = π/2, β = π/4,
and R = 8. (d) OAT as a function of R, with α = π/2, β = π/4, and lmin = 80

Additionally, a simulation of passive-safety for moving obstacles is available at
https://youtu.be/SLB1hME3Z10.

6 Conclusions

In this paper, we have shown how it is possible to use the Simplex architecture,
equipped with a sophisticated geometric-based switching condition, to ensure at
runtime that mobile robots with limited field-of-view and limited sensing range
navigate safely with only limited information about moving obstacles.

Future work includes extending our approach to take into account the size and
shape of the robot and the minimum detection distance of the sensors. We will
also consider more powerful baseline controllers. In particular, we plan to extend
the Dynamic Window algorithm (DWA) [7] with our geometric analysis. DWA
has been verified [12] to guarantee collision-freedom under the assumption of 360◦

sensing. Our geometric analysis would enable DWA to work with limited sensing.

https://youtu.be/SLB1hME3Z10

20 Dung Phan et al.

Fig. 11 Illustration of Quickbot’s reachable region and different safety regions. The reachable
and safety regions are computed with ωl0 = ωr0 = [5π, 7π] rad/s, ωmax = 7π rad/s, γmax =
16π rad/s2, b = 30m/s2, ∆t = 0.1s, V = 0.715m/s, τ = 0.02s, bo = 20m/s2, where ωl0 and
ωr0 are the range of initial values of ωl and ωr for computing the reachable region

We also plan to investigate an extension of the Simplex architecture that would
allow control of the plant to be given back to AC after a failover to BC has occurred,
thereby allowing AC’s performance benefits to come back into play. Such a ”reverse
switching condition” would most likely need to take into account the following:
(1) the AC-to-BC switching condition is false, and (2) the AC-to-BC switching
condition will not be true anytime soon, to avoid excessive switching. Another
direction of future work is to perform a theoretical analysis of the conservativeness
of the over-approximations of the reachable region and the set of nearby obstacle
points.

We also plan to develop algorithms that would allow the robot to learn about
its environment, enabling it to replace worst-case assumptions with more detailed
information about obstacles it has encountered; this in turn would allow tighter
switching conditions. The geometric analysis that we developed to derive and
verify the switching condition can also be used as a basis for the design of collision-
avoidance logic in navigation algorithms for mobile robots.

Acknowledgements We thank Denise Ratasich for her helpful comments on earlier drafts
of the manuscript. We also thank our anonymous reviewers for their comments that help to
improve the manuscript. This material is based upon work supported in part by AFOSR Grant
FA9550-14-1-0261, NSF Grants IIS-1447549, CNS-1421893, CNS-1446832, CCF-1414078, ONR
Grant N00014-15-1-2208, and Artemis EMC2 Grant 3887039. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of these organizations.

Collision Avoidance for Mobile Robots 21

(a) (b)

Fig. 12 Snapshots from simulations showing the comparison of using circular safety region vs.
polygonal safety region. The red region represents the obstacle. The blue wedges represent the
robot’s cones of observation. The yellow circles represent the α-equiangular arcs. (a) Snapshot
of using circular safety disk represented by the green disk. The robot stops at this moment as
the α-equiangular arc intersects the safety region. (b) Snapshot of using polygonal safety disk
represented by the green polygon. The robot does not stop at this moment as the α-equiangular
arc does not intersect the safety region

References

1. Alami, R., Krishna, K.M.: Provably safe motions strategies for mobile robots in dynamic
domains. In: in Autonomous Navigation in Dynamic Environment: Models and Algo-
rithms. in C. Laugier, R. Chatila (Eds.), Springer Tracts in Advanced Robotics (2007)

2. Bak, S.: Hycreate: A tool for overapproximating reachability of hybrid automata (2013).
URL http://stanleybak.com/projects/hycreate/hycreate.html

3. Bak, S., Manamcheri, K., Mitra, S., Caccamo, M.: Sandboxing controllers for cyber-
physical systems. In: Proc. 2011 IEEE/ACM International Conference on Cyber-Physical
Systems ICCPS, pp. 3–12. IEEE Computer Society (2011)

4. Bouraine, S., Fraichard, T., Salhi, H.: Provably safe navigation for mobile robots with lim-
ited field-of-views in dynamic environments. Autonomous Robots 32(3), 267–283 (2012).
DOI 10.1007/s10514-011-9258-8. URL https://hal.inria.fr/hal-00733913

5. Chen, Y., Smith, T.R.: Finitely representable spatial objects and efficient computation.
In: Algorithms and Computation, pp. 181–189. Springer (1994)

6. Eberly, D.: Distance between point and line, ray, or line segment. Geometric Tools (1999).
URL http://www.geometrictools.com/Documentation/DistancePointLine.pdf

7. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance.
IEEE Robotics Automation Magazine 4(1), 23–33 (1997). DOI 10.1109/100.580977

8. Hoy, M., Matveev, A.S., Savkin, A.V.: Algorithms for collision-free navigation of mobile
robots in complex cluttered environments: a survey. Robotica 33(3), 463–497 (2015).
DOI 10.1017/S0263574714000289

9. Hughes, J.F., Van Dam, A., Foley, J.D., Feiner, S.K.: Computer graphics: principles and
practice. Pearson Education (2013)

10. Macek, K., Vasquez Govea, D.A., Fraichard, T., Siegwart, R.Y.: Towards Safe Vehicle
Navigation in Dynamic Urban Scenarios. Automatika (2009). URL https://hal.inria.
fr/inria-00447452

11. Minguez, J., Montano, L., Santos-Victor, J.: Abstracting vehicle shape and kinematic
constraints from obstacle avoidance methods. Autonomous Robots 20(1), 43–59 (2006).
DOI 10.1007/s10514-006-5363-5. URL http://dx.doi.org/10.1007/s10514-006-5363-5

http://stanleybak.com/projects/hycreate/hycreate.html
https://hal.inria.fr/hal-00733913
http://www.geometrictools.com/Documentation/DistancePointLine.pdf
https://hal.inria.fr/inria-00447452
https://hal.inria.fr/inria-00447452
http://dx.doi.org/10.1007/s10514-006-5363-5

22 Dung Phan et al.

12. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous
robotic ground vehicles. In: P. Newman, D. Fox, D. Hsu (eds.) Robotics: Science and
Systems. Berlin, Germany (2013)

13. Pan, J., Zhang, L., Manocha, D.: Collision-free and smooth trajectory computation in
cluttered environments. Int. J. Rob. Res. 31(10), 1155–1175 (2012). DOI 10.1177/
0278364912453186. URL http://dx.doi.org/10.1177/0278364912453186

14. Phan, D., Yang, J., Ratasich, D., Grosu, R., Smolka, S., Stoller, S.D.: Collision avoidance
for mobile robots with limited sensing and limited information about the environment. In:
Proc. 15th International Conference on Runtime Verification (RV 2015), Lecture Notes in
Computer Science. Springer-Verlag (2015)

15. Preparatat, F., Shamos, M.: Computational geometry: An introduction. pp. 41–67.
Springer-Verlag (1985)

16. QuickBot MOOC v2 (2014). URL http://o-botics.org/robots/quickbot/mooc/v2/
17. Savkin, A.V., Wang, C.: A reactive algorithm for safe navigation of a wheeled mobile robot

among moving obstacles. In: Proceedings of the 2012 IEEE International Conference on
Control Applications (CCA), pp. 1567–1571. IEEE (2012)

18. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The Simplex architecture for safe online control
system upgrades. In: Proc. 1998 American Control Conference, vol. 6, pp. 3504–3508
(1998). DOI 10.1109/ACC.1998.703255

19. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001). DOI
10.1109/MS.2001.936213

20. Takei, R., Huang, H., Ding, J., Tomlin, C.J.: Time-optimal multi-stage motion planning
with guaranteed collision avoidance via an open-loop game formulation. In: Robotics
and Automation (ICRA), 2012 IEEE International Conference on, pp. 323–329 (2012).
DOI 10.1109/ICRA.2012.6225074

A Proof of Correctness of the Switching Conditions

We prove the following:

P1: If no obstacle points are inside the safety region described in Section 4.2 then after ∆t
time units, the robot will still be able to guarantee the corresponding safety property.
Specifically:

P1.1: Static safety property: after ∆t time units, the robot will be able to brake to a full
stop without colliding with any static obstacles.

P1.2: Passive safety property: after ∆t time units, the robot will be able to brake to a
full stop before any collisions with an obstacle can happen.

P1.3: Passive friendly safety: after ∆t time units, the robot will be able to brake to a full
stop before any collision with an obstacle can happen, and after the robot stops,
any moving obstacle can brake to a full stop without colliding with the robot.

P2: If the constraints SαAiAi′
∩Sii′safe = ∅, for i = 1..N where i′ = (i mod N) + 1, hold, then

there are no obstacle points inside the safety region Ssafe . In other words, the switching
conditions in Section 4.4 are sound.

We define CP,r as the set of points that are within Euclidean distance r from a point P ,
i.e., CP,r = {Q | PQ ≤ r}. In other words, CP,r is a circular disk of radius r centered at P . It
is trivial to show that Q ∈ CP,r → P ∈ CQ,r.

A.1 Proof of P1

P1 means that if no obstacle points are inside the safety region corresponding to the safety
property of interest, then the robot does not need to begin braking now; it has enough room
to start braking at the next time step if necessary to ensure the safety property.

In the following proofs, we assume that the computed reachable region, denoted SRR is
a conservative approximation to the actual reachable region. This is justified when we use
safety disk with radius vmax∆t, whose correctness follows immediately from the definitions,
and when we use the region computed by HyCreate, which uses a sound algorithm based on
face lifting.

http://dx.doi.org/10.1177/0278364912453186
http://o-botics.org/robots/quickbot/mooc/v2/

Collision Avoidance for Mobile Robots 23

A.1.1 Proof of P1.1

As described in Section 4.2, the safety region SSS corresponding to this safety property is
obtained by expanding the reachable region SRR by the worst-case braking distance db =
vmax/2b. Since there are no obstacle points inside the reachable region, the robot never comes
into contact with any obstacles during ∆t time units. We prove by contradiction that, if the
robot starts braking at the next time step, it will come to a full stop without colliding with
any static obstacles.

By definition, the SSS is obtained by expanding SRR by db. That means CA,db ⊆ SSS ∀A ∈
SRR.

Suppose after ∆t time units, the robot reaches point A ∈ SRR then starts braking at
maximum braking power b and collides with an obstacle point B 6∈ SSS , meaning B is on the
braking trajectory of the robot. In the worst-case scenario, the robot starts braking from its
maximum speed vmax and comes to a full stop after traveling a distance db = vmax/2b. That
means all possible braking trajectories are contained inside CA,db . Since obstacle point B is a
point on the braking trajectory, we have B ∈ CA,db . But CA,db ⊂ SSS , therefore B ∈ SSS , a
contradiction.

A.1.2 Proof of P1.2

By definition, the safety region SPS for ensuring passive safety for moving obstacles is obtained
by expanding SSS by do = V (∆t+ tb), where V is the maximum speed of obstacles, and tb is
the worst-case braking time of the robot. That means CA,do ⊆ SPS ∀A ∈ SSS .

We will prove that the robot can start to brake after ∆t time units and then come to a
full stop without colliding with any obstacles. Let T be the set of all trajectories on which the
robot move during the next time step and then brake to a full stop. The definition of SSS
implies it contains T . Suppose there is a collision before the robot can come to a full stop, i.e.,
there is an obstacle point B outside SPS that collides with the robot at point C after some
time t <= ∆t+ tb while the robot is moving on some trajectory in T . Since maximum speed
of obstacles is V , the maximum distance that B can travel in t time units is V t ≤ do. That
means C ∈ CB,do , which in turns means B ∈ CC,do . Because C ∈ SSS , we have CC,do ⊆ SPS .
Therefore, B ∈ SPS , a contradiction.

A.1.3 Proof of P1.3

By definition, the safety region SPFS for ensuring passive friendly safety for moving obstacles
is obtained by expanding SPS by dbo = V τ + V 2/2bo, where V is the maximum speed of
obstacles, τ is the upper bound on the reaction time of the obstacles, and bo is the lower
bound on the braking power of the obstacles. That means CA,dbo ⊆ SPFS ∀A ∈ SPS .

Since SPFS is bigger than SPS , it follows from the passive safety proof that the robot
can come to a full stop before a collision can occur. We prove that after the robot comes to
a full stop, the obstacle can brake to a full stop without colliding with the robot. Specifically,
we show that applying any braking power greater than or equal to bo brings the obstacle to a
complete stop without colliding with the robot.

Suppose the robot stops at point A ∈ SSS . For a collision to occur, A must belong to some
trajectory of some obstacle point. Suppose there are no obstacle points inside SPFS and after τ
time units following the time when the robot stops, an obstacle starts braking but collides with
the robot before the obstacle comes to a full stop. Let B denote the location of the obstacle
point at the beginning of the current time step and later collides with the robot. From the
assumptions, we have B 6∈ SPFS . The worst-case time for the robot to move during the next
time step time units and then brake to a full stop is ∆t+ tb. During the time ∆t+ tb and the
worst-case reaction time τ , the obstacle can travel a maximum distance of do = V (∆t+tb+τ).
The worst-case braking distance of the obstacle is dbo = V 2/2bo. That means for A to belong
to a trajectory of the obstacle point starting at B, A must be in CB,do+dbo . That in turns
means B ∈ CA,do+dbo . But the definition of SPFS implies SA,do+dbo ∈ SPFS , which means
B ∈ SPFS , a contradiction.

24 Dung Phan et al.

A.2 Proof of P2

The derivation of the switching conditions Section 4 shows that the switching conditions are

designed to imply the constraints SαAiAi′
∩Sii′safe = ∅ for i = 1..N where i′ = (i mod N)+1. We

prove by contradiction that, if these constraints hold, there are no obstacle points inside the
safety region Ssafe. Ssafe could be SSS , SPS , or SPFS . The proof relies on the assumptions
about obstacles presented in Section 4.

The high-level idea of the proof is that since SαAiAi′
∩ Sii′safe = ∅, and SαAiAi′

contains all

possible vertices whose edges pass through Ai and Ai′ , it would be contradictory if an obstacle

point is in Sii
′

safe .

Suppose the above constraints are satisfied and there is an obstacle point in Ssafe, i.e.,

SαAiAi′
∩ Sii′safe = ∅ for i = 1..N where i′ = (i mod N) + 1, and Sobstacle ∩ Ssafe 6= ∅. Let

C ∈ Sobstacle ∩ Ssafe be an obstacle point that lies within the safety region. Since the wedges

Sii
′

safe cover the safety region, C must belong to at least one wedge. Without loss of generality,

assume C ∈ Sobstacle ∩ S12
safe . We consider three cases, based on the distances OA1 and

OA2: (1) OA1 = OA2 = lmin; (2) OA1 < OA2 = lmin ∨ OA2 < OA1 = lmin; and (3)
OA1, OA2 < lmin. Case 1 covers three sub-cases: (1a) neither sensors detects the obstacle;
(1b) exactly one sensor detects the obstacle at a distance of at least lmin; and (1c) both sensors
detect the obstacle at distances of at least lmin. Case 2 covers two sub-cases: (2a) exactly one
sensor detects the obstacle at a distance less than lmin; (2b) one sensor detects the obstacle
at a distance less than lmin, the other at a distance of at least lmin. Case 3 covers the only
case when both sensors detect the obstacle at distances less than lmin. In all cases, the proof
relies on the fact that there is at most one vertex of the obstacle within the triangle OA1A2

(because OA1, OA2 ≤ lmin and 6 A1OA2 < π/3).

A.2.1 Case 1: OA1 = OA2 = lmin

As shown in Fig. 13, case 1 comprises three sub-cases. The proof is the same for these sub-
cases. For C to be in S12

safe , there must be a vertex that fits between the sensors and intersects

the safety disk. Let E1 and E2 be the intersections between line segment A1A2 and the
edges of the obstacle. Let D be the vertex of the obstacle. The geometry implies 6 A1CA2 ≥
6 E1CE2 ≥ 6 E1DE2. We know from our assumptions that 6 E1DE2 ≥ α, so 6 A1CA2 ≥ α.
This means C ∈ SαA1A2

, therefore C ∈ SαA1A2
∩ S12

safe . This contradicts the assumption that

SαA1A2
∩ S12

safe = ∅.

A.2.2 Case 2: OA1 < OA2 = lmin ∨OA2 < OA1 = lmin

Without loss of generality, assume OA1 < OA2 = lmin. There is a trivial sub-case when A1 is
inside the safety disk. In that case, we can choose C to be A1 and that leads to C ∈ SαA1A2

,

contradicting the assumption SαA1A2
∩ S12

safe = ∅. Consider two sub-cases when A1 is outside

the safety disk as shown in Fig. 14. The proof for both sub-cases is as follows. For C to be
in S12

safe , there must be a vertex D of the obstacle that intersects the safety disk and has one

edge that passes through A1. Let E2 be the intersection between line segment A1A2 and the
obstacle’s other edge incident on D. We have 6 A1CA2 ≥ 6 A1CE2 ≥ 6 A1DE2 ≥ α. Therefore
C ∈ SαA1A2

, contradicting the assumption SαA1A2
∩ S12

safe = ∅.

A.2.3 Case 3: OA1 < lmin ∧OA2 < lmin

Suppose sensors s1 and s2 detect the obstacle at A1 and A2, respectively. We consider two
sub-cases: (3a) A1 and A2 lie on the same edge of the obstacle; and (3b) A1 and A2 lie on
different edges of the obstacle. It is easy to see the contradiction for case (3a), as shown in
Fig. 15. Consider case (3b). As shown in Fig. 16, for C to be in S12

safe , there must be a vertex

D of the obstacle that intersects the safety disk and has one edge that passes through A1. Let
E be the intersection between A1A2 and the obstacle’s other edge incident on D. We have

Collision Avoidance for Mobile Robots 25

(a)

(b)

(c)

Fig. 13 Illustration of case 1. (a) Neither s1 nor s2 detects the obstacle. (b) Exactly one of
s1 and s2 detects the obstacle at distance greater than lmin. (c) Both s1 and s2 detect the
obstacle at distances greater than lmin. OB1 and OB2 are the actual distances detected by s1
and s2 respectively

6 A1CA2 ≥ 6 A1CB ≥ 6 A1DB ≥ α. Therefore C ∈ SαA1A2
, contradicting the assumption

that SαA1A2
∩ S12

safe = ∅.

26 Dung Phan et al.

(a)

(b)

Fig. 14 Illustration of case 2. (a) Exactly one of s1 and s2 detects the obstacle within distance
lmin. (b) One sensor detects the obstacle at distance less than lmin, the other detects the
obstacle at distance greater than lmin. OB2 is the actual distance detected by s2

Fig. 15 Sensors s1 and s2 detect the obstacle at distances less than lmin.A1 andA2 both lie on
the same edge. For C to be in S12

safe , A1A2 must intersect S12
safe . That means SαA1A2

∩S12
safe 6= ∅,

a contradiction

Collision Avoidance for Mobile Robots 27

Fig. 16 Sensor s1 detects the obstacle at A1, sensor s2 detects the obstacle at A2 where
OA1, OA2 ≤ lmin

	Introduction
	Related Work
	The Simplex Architecture
	Switching Logic
	Implementation and Experimental Results
	Conclusions
	Proof of Correctness of the Switching Conditions

