
Mining Attribute-Based Access Control Policies
from RBAC Policies

Zhongyuan Xu

Computer Science Department
Stony Brook University

Stony Brook, USA

Scott D. Stoller

Computer Science Department
Stony Brook University

Stony Brook, USA

Abstract—Role-based access control (RBAC) is very widely
used but has notable limitations, prompting a shift towards
attribute-based access control (ABAC). However, the cost of
developing an ABAC policy can be a significant obstacle to
migration from RBAC to ABAC. This paper presents the first
formal definition of the problem of mining ABAC policies from
RBAC policies and attribute data, and the first algorithm
specifically designed to mine an ABAC policy from an RBAC
policy and attribute data.

Keywords: role mining; role-based access control; attribute-
based access control;

1. INTRODUCTION

Role-based access control (RBAC) [1] is very widely used
but has notable limitations, prompting a shift towards attribute-
based access control (ABAC) [2], which allows policies to be
written in a more flexible and higher-level way. However, the
cost of developing an ABAC policy can be a significant
obstacle to migration from RBAC to ABAC. Policy mining
algorithms can significantly reduce this cost, by partially
automating the construction of an ABAC policy from an
RBAC policy with accompanying data about attributes of users
and resources.

The main contributions of this paper are (1) the first formal
definition of the problem of mining ABAC policies from
RBAC policies and attribute data, and (2) the first algorithm
specifically designed to mine an ABAC policy from an RBAC
policy and attribute data.

An important feature of our problem definition is that it
requires that some aspects of the structure of the RBAC policy
be preserved in the ABAC policy. This is important, because
the structure of the RBAC policy may reflect expert design
decisions by the policy author.

To evaluate the effectiveness of our algorithm at producing
intuitive, high-level ABAC policies from RBAC policies, we
manually wrote case study policies in RBAC and ABAC,
applied our algorithm to the RBAC policy and accompanying
attribute data, and compared the generated ABAC policy to the
manually written one. Our algorithm successfully generates
ABAC policies identical or similar to the manually written
ABAC policies. The user can optionally supply some guidance
to our algorithm, by indicating that some attributes are

important. In our case studies, appropriate guidance can easily
be determined based on the obvious importance of some
attributes, or from examination of the policy generated with no
guidance. With a small amount of such guidance, our algorithm
generates ABAC policies identical or very similar to the
manually written ones.

In practice, the available attribute data is often incomplete.
To evaluate the effectiveness of our algorithm in such cases,
we also performed experiments in which we omitted some
relevant attribute data, and demonstrated that our algorithm
uses role membership information effectively as a substitute for
missing attribute data.

To demonstrate the significance of preserving the structure
of the RBAC policy, we wrote variants of some RBAC
policies, with the same semantics (i.e., same user-permission
relation) but different structure (i.e., different roles), and
showed that our algorithm generates a different ABAC policy
with corresponding structure for each variant.

2. RBAC POLICY LANGUAGE

An RBAC policy is a tuple 〈U, Res, Op, Roles, UA, PA,
RH〉, where U is a set of users, Res is a set of resources, Op is a
set of operations, Roles is a set of roles, UA ⊆ U × Roles is the
user-role assignment, PA ⊆ Roles × Perm is the permission-
role assignment, and the role hierarchy RH is an acyclic
transitive binary relation on roles. A permission is a pair
containing a resource and an operation, and Perm = Res × Op.
A tuple 〈r, r’〉 in RH means that r is junior to r’ (or,
equivalently, r’ is senior to r). This means that r inherits
members from r’, and r’ inherits permissions from r. The
authorized users of a role include the role’s directly assigned
users and its inherited users. The authorized permissions of a
role are defined similarly. These ideas are expressed in the
equations below.

asgndU(r)={u∈U | 〈u, r〉 ∈ UA}

asgndP(r)={p∈Perm | 〈r, p〉 ∈ PA}

ancestors(r)={r’∈ Roles | 〈 r, r’〉 ∈ RH}

descendants(r)={r’∈ Roles | 〈 r’, r〉 ∈ RH}

authU(r)= asgndU(r)∪)(' rancestorsr ∈ asgndU(r’)

authP(r)= asgndP(r) ∪)(' rsdescendantr ∈ asgndP(r’)

The user-permission assignment induced by a role r and an
RBAC policy π with the above form are defined by authUP(r)

= authU(r) × authP(r) and M(π) = Rolesr∈ authUP(r),

respectively.

3. ABAC POLICY LANGUAGE

ABAC policies refer to attributes of users and resources.
Given a set U of users and a set Au of user attributes, user
attribute data is represented by a function du such that du (u, a)
is the value of attribute a for user u. There is a distinguished
user attribute uid that has a unique value for each user.
Similarly, given a set Res of resources and a set Ar of resource
attributes, resource attribute data is represented by a function
dr such that dr (r, a) is the value of attribute a for resource r.
There is a distinguished resource attribute rid that has a unique
value for each resource. Let Vals be the set of possible atomic
(i.e., non-set) values of attributes. We assume Vals includes a
distinguished value ⊥ used to indicate that an attribute’s value
is unknown (or irrelevant). We assume the set Au of user
attributes can be partitioned into a set Au,1 of single-valued
user attributes, whose values are in Vals, and a set Au,m of
multi-valued user attributes, whose values are in Valm =
Set(Vals\{⊥})∪⊥ , where Set(S) is the powerset of set S.
Similarly, we assume the set Ar of resource attributes can be
partitioned into a set Ar,1 of single-valued resource attributes
and a set Ar,m of multi-valued resource attributes.

Attribute expressions are used to express the sets of users
and resources associated with rules. A user-attribute
expression (UAE) e is a function such that, for each user
attribute a, e(a) is either a set (interpreted as a disjunction) of
possible values of a excluding ⊥ (i.e., a subset of Vals\{⊥} or
Valm\{⊥}, depending on whether a is single-valued or multi-
valued) or ⏉ . The symbol ⏉ indicates that the expression
imposes no constraint on the value of the attribute. We refer to
the set e(a) as the conjunct for attribute a. We say that
expression e uses an attribute a if e(a) ≠ ⏉. Let attr(e) denote
the set of attributes used by e. Let attr1(e) and attrm(e) denote
the sets of single-valued and multi-valued attributes,
respectively, used by e.

A user u satisfies a user-attribute expression e, denoted u
|= e, iff (∈∀a Au,1. e(a) = ⏉ ∈∃∨ v e(a). du(u, a) = v) and
(∈∀a Au,m. e(a) = ⏉ ∈∃∨ v e(a). du(u, a) ⊇ v). For multi-
valued attributes, we use the condition du(u, a) ⊇ v instead of
du(u, a) = v because elements of a multi-valued user attribute
typically represent some type of capabilities of a user, so using
⊇ expresses that the user has the specified capabilities (and
possibly more).

For example, if Au = {dept, position}, the function e with
e(dept) = {CS} and e(position) = {grad, ugrad} and e(courses)
= {{CS101, CS102}} is a user-attribute expression satisfied by
users in the CS department who are either graduate or
undergraduate students and whose courses include CS101 and

CS102 (and possibly other courses).

We introduce a concrete syntax for use in examples.
Suppose e(a) ≠ ⏉. Let v = e(a). When a is single-valued, we
write the conjunct for a as a∈v; as syntactic sugar, if v is a
singleton set {s}, we may write the conjunct as a = s. When a
is multi-valued, we write the conjunct for a as a supseteqIn v
(indicating that a is a superset of a set in v); as syntactic sugar,
if v is a singleton set {s}, we may write the conjunct as a ⊇ s.
For example, the above expression may be written as dept =
CS ∧ position ∈ {ugrad, grad} ∧ courses ⊇ {CS101,
CS102}.

The meaning of a user-attribute expression e, denoted
Mu(e) is the set of users in U that satisfy it:
Mu(e) = {u∈ U | u |= e}. User attribute data is an implicit
argument to Mu(e). We say that e characterizes the set Mu(e).

A resource-attribute expression (RAE) is defined
similarly, except using the set Ar of resource attributes instead
of the set Au of user attributes. The semantics of RAEs is
defined similarly to the semantics of UAEs, except simply
using equality, not ⊇ , in the condition for multi-valued
attributes in the definition of “satisfies”, because we do not
interpret elements of multi-valued resource attributes in any
particular way (e.g., as capabilities).

An atomic constraint is a formula f of the form au,m

⊇ ar,m, au,m ∋ ar,1, or au,1 = ar,1, where au,1∈Au,1, au,m ∈Au,m,
ar,1∈Ar,1, and ar,m∈Ar,m. The first two forms express that user
attributes contain specified values. This is a common type of
constraint, because user attributes typically represent some
type of capabilities of a user. Other forms of atomic constraint
are possible (e.g., au,m ⊆ ar,m) but less common, so we do not
consider them in this paper. Let uAttr(f) and rAttr(f) refer to
the user attribute and resource attribute, respectively, used in f.
User u and resource r satisfy an atomic constraint f, denoted 〈u, r〉 |= f, if du(u, uAttr(f)) ≠ ⊥ and dr(r, rAttr(f)) ≠ ⊥ and
formula f holds when the values du(u, uAttr(f)) and dr(r,
rAttr(f)) are substituted in it.

A constraint is a set (interpreted as a conjunction) of
atomic constraints. User u and resource r satisfy a constraint c,
denoted 〈u, r〉 |= c, if they satisfy every atomic constraint in c.

A user-permission tuple is a pair 〈u, 〈r, o〉〉 containing a
user and a permission. As in RBAC, a permission is a pair
containing a resource and an operation. A user-permission
relation is a set containing such tuples.

A rule is a tuple 〈eu, er, O, c 〉, where eu is a user-attribute
expression, er is a resource-attribute expression, O is a set of
operations, and c is a constraint. For a rule ρ = 〈eu, er, O, c 〉, let
uae(ρ) = eu, rae(ρ) = er, ops(ρ) = O, and con(ρ) = c. User u and
permission 〈r, o〉 satisfy a rule ρ, denoted 〈u, 〈r, o〉〉|=ρ, if u |=
uae(ρ) ∧ r |= rae(ρ) ∧ o ∈ops(ρ) ∧ 〈u, r〉 |= con(ρ).

An ABAC policy is a tuple 〈U, Res, Op, Au, Ar, du, dr,
Rules〉 where U, Res, Au, Ar, du and dr are as described above,
Op is a set of operations, and Rules is a set of rules.

The user-permission relation induced by a rule ρ is M(ρ) =
{〈u, 〈r, o〉〉∈U×Res×Op | 〈u, 〈r, o〉〉 |= ρ}. Note that U, Res,

du and dr are implicit arguments to M(ρ).

The user-permission relation induced by a policy π with
the above form is M(π) Rules∈

=
ρ

ρ)(M .

4. PROBLEM DEFINITION

An RBAC policy RBACπ is semantically consistent with

an ABAC policy π if M(RBACπ) = M(π).

Our goal is to mine an ABAC policy that is semantically
consistent with a given RBAC policy and preserves the
structure of the RBAC policy. A first thought is to require a 1-
to-1 correspondence between roles and rules; in other words,
for each role r, the mined policy contains a rule that covers the
same user-permission tuples. However, this requirement is too
strict, for two reasons. First, some roles cannot be expressed
as a single rule, because the set of permissions granted by a
rule must be expressible as the Cartesian product of a set of
resources and a set of operations, while the set of permissions
granted by a role can be arbitrary (although, in practice, it is
often expressible as a Cartesian product). Second, it is often
desirable to express multiple related roles by a single rule; for
example, a set of roles, each granting certain permissions to
staff in a particular department, can be expressed more
concisely by a single rule that uses a constraint to ensure that
each user is granted permissions appropriate to his or her
department. Therefore, we relax this requirement in two ways.
First, we split the given roles, so that each role’s set of
assigned permissions is the Cartesian product of a set of
resources and a set of operations, and we require a
correspondence between the resulting split roles and the
mined rules. Second, we allow multiple roles to correspond to
a single rule.

Given a set P of permissions, we want to express P as a
sum (union) of Cartesian products. Let ops(P) be the set of
operations that appear in P. Let resources(o, P) be the set of
resources associated with o in P, i.e., {r∈Res | 〈r, o〉 ∈P}.
Define two operations to be equivalent if they are associated
with the same resources in P, i.e., o P≡ o’ iff resources(o, P)
= resources(o’, P). Let S be a partition of ops(P) containing
the equivalence classes of O with respect to P≡ . Define

SOP(P) = SO∈ {〈resources(O), O〉 }, where resources(O) is

the set of resources associated with any operation in O (by
definition, all operations in O are associated with the same

resources). Note that)(, PSOPOR
ORP

∈
×= .

Given an RBAC policy RBACπ = 〈U, Res, Op, Roles, UA,

PA, RH〉, the sum-of-products policy SOP(RBACπ) is 〈U, Res,

Op, Roles’, UA’, PA’, RH’〉, where

Roles’ = },,{))(asgndP(},{ ∈∈ ORrrSOPORRolesr

UA’ = },,{)asgndU(',, ×∈ ORrrRolesORr

PA’ =)(},,{',, ORORrRolesORr ××∈

RH’ = }',|''',',',,,{ RHrrRolesRolesORrORr ∈×∈

Note that we use tuples of the form 〈r, R, o〉 as role names

in the sum-of-products policy. Note that M(RBACπ) =

M(SOP(RBACπ)). For a role r in a sum-of-products RBAC

policy, let asgndRes(r) =)asgndP(,
}{

ror
r

∈
 and asgndOp(r)

=)asgndP(,
}{

ror
o

∈
.

Given an RBAC policy RBACπ = 〈U, Res, Op, Roles, UA,

PA, RH〉 and an ABAC policy π = 〈U, Res, Op, Au, Ar, du, dr,

Rules〉, a structural correspondence between RBACπ and π is

an onto function κ from the roles in SOP(RBACπ) whose

authUP is non-empty to the rules in π such that, for each rule

ρ, M(ρ) =
)(1 ρκ −∈r authUP(r), where κ -1 is the inverse of κ,

i.e., κ -1(ρ) is the set of roles that map to rule ρ.

An ABAC policy is structurally consistent with an RBAC
policy if there exists a structural correspondence between
them.

Among ABAC policies semantically and structurally
consistent with a given RBAC policy RBAC, which ones are
preferable? One criterion is that policies that do not use the
attributes uid and rid are preferable, because policies that use
uid and rid are partly identity-based, not entirely attribute-
based. Thus, an initial idea is to require that each of these
attributes is used in the ABAC policy only if necessary, i.e.,
only if every ABAC policy that is semantically and

structurally consistent with RBACπ contains rules that use that

attribute.

We refine this initial idea as follows. According to this
initial idea, uid is used only when the information available
from other attributes is insufficient to “explain” parts of the
permission assignment, i.e., insufficient to characterize the
sets of users that appear in the RBAC policy. In practice, this
is likely to occur fairly often, because the available attribute
information is often incomplete. However, rules that use uid to
enumerate sets of users by their user identifiers are likely to be
lower-level and harder to understand than the corresponding
parts of the original RBAC policy. Therefore, we prohibit use
of uid in the ABAC policy, introduce a user attribute that
expresses role membership, and allow this new user attribute
to be used (instead of uid) when necessary to achieve semantic
and structural consistency with the RBAC policy.

A policy quality metric is a function from ABAC policies
to a totally-ordered set, such as the natural numbers. The
ordering is chosen so that small values indicate high quality;
this might seem counter-intuitive at first glance but is natural
for metrics based on policy size.

The ABAC-from-RBAC policy mining problem is: give

an RBAC policy RBACπ = 〈U, Res, Op, Roles, UA, PA, RH〉,

attribute data 〈Au, Ar, du, dr 〉, and a policy quality metric Qpol,
find a set Rules of rules such that the ABAC policy π = 〈U,
Res, Op, Au∪{roles}, Ar, d’u, dr, Rules〉 (1) is semantically and

structurally consistent with RBACπ , (2) does not use uid, (3)

uses roles and rid only when necessary, and (4) has the best
quality, according to Qpol, among policies that satisfy
conditions (1) through (3). Here, d’u is du extended with a user
attribute "roles" defined by: d’u (u, roles) = {r ∈ Roles’ |
u∈authU(r)}. For simplicity, we assume roles∉Au.

For the policy quality metric, we use weighted structural
complexity [3], a generalization of policy size. The WSC of an
ABAC policy is the WSC of the set Rules of rules in the
policy, defined by

WSC(e) = ∈)(
|)(|

eattra l
ae + ∈∈)(),(

||
aeseattra m

s

WSC(cOee ru ,,,) = w1WSC(eu) + w2WSC(er) + w3|O| +
w4|c|

WSC(Rules) = ∈Rulesρ
WSC(ρ)

where |s| is the cardinality of set s, and the wi are user-
specified weights. In the experiments in Section 6, all weights
equal 1.

5. POLICY MINING ALGORITHM

At a high level, our algorithm works as follows. First, it
splits the roles in the given RBAC policy so that each role's
assigned permissions are the Cartesian product of a set of
resources and a set of operations. Second, it constructs an
ABAC policy rule corresponding to each role (the splitting in
the first step is necessary to ensure that each role can be
translated into a single rule). Finally, it attempts to improve the
policy by merging and simplifying rules.

Let the inputs to the algorithm be denoted as in the problem
statement. Let RBAC'π = 〈U, Res, Op, Roles’, UA’, PA’, RH’〉
be the sum-of-products policy for RBAC. Top-level pseudo-
code for our policy mining algorithm appears in Figure 1. It
calls several functions, described next.

The function computeUAE(s, U) computes a user-attribute
expression eu that characterizes the set s of users. Preference is
given to attribute expressions that do not use uid, as discussed
in Section 4. After constructing a candidate expression e, it
calls elimRedundantSets(e), which attempts to lower the WSC
of e by examining the conjunct for each multi-valued user
attribute, and removing each set that is a superset of another
set in the same conjunct; this leaves the meaning of the rule
unchanged, because ⊇ is used in the condition for multi-
valued attributes in the semantics of user attribute expressions.
The expression eu returned by computeUAE might not be
minimum-sized among expressions that characterize s: it is
possible that some attributes mapped to a set of values by eu
can instead be mapped to ⊤.

The function computeRAE is defined in the same way as
computeUAE, except using resource attributes instead of user

// Rules is the set of rules

Rules = ø
// κ is the structural correspondence

κ = ø
for r in Roles’

if authUP(r).isEmpty
continue

end if
// create a rule corresponding to r
eu = computeUAE(authU(r))
er = computeRAE(asgndRes(r))
O = asgndOp(r)

cc =)asgndRes(r),(∈∈ srauthUu candConstr(u, s)

ρ = 〈eu, er, O, cc 〉
Rules.add(ρ)
κ.add(〈 r, ρ〉)

end for
// Rules is semantically and structurally consistent with

// RBACπ . Try to improve its quality, by repeatedly merging

// and simplifying rules, until this has no effect.
mergeRules(Rules, κ)
while simplifyRules(Rules, κ)
 if not mergeRules(Rules, κ)
 break

end if
end while
useRoleAttribute(Rules, κ)
return 〈Rules, κ〉

Figure 1. Top-level pseudocode for policy mining algorithm and
computeUAE(s) that computes a user-attribute expression that characterizes
set s of users

attributes, and the call to elimRedundantSets is omitted.

The function candConstr(u, r), mnemonic for "candidate
constraint", returns a set containing all atomic constraints that
hold between user u and resource r.

The function mergeRules(Rules, κ) attempts to reduce the
WSC of Rules, while preserving semantic and structural
consistency, by removing redundant rules and merging pairs
of rules. A rule ρ is subsumed by a role ρ’ if M(ρ) ⊆ M(ρ’). A
rule ρ in Rules is redundant if it is subsumed by another rule in
Rules. Informally, rules ρ1 and ρ2 are merged by taking, for
each attribute, the union of the conjuncts in ρ1 and ρ2 for that
attribute. If adding the resulting rule ρmerge and removing rules
subsumed by ρmerge (including ρ1 and ρ2) preserves structural
consistency, then these changes are made to Rules, and the
structural correspondence κ is updated accordingly.
mergeRules(Rules, κ) updates Rules and κ in place, and it
returns a Boolean indicating whether any rules were merged.

The function simplifyRules(Rules, κ) attempts to simplify the
rules in Rules. It updates its arguments Rules and κ in place,
replacing rules in Rules with simplified versions when
simplification succeeds. It returns a Boolean indicating
whether any rules were simplified. It attempts to simplify each
rule in several ways, which are embodied in the following

simplification functions that it calls. Generally, each of these
simplification functions returns a Boolean indicating whether
changes were made; this information is used in the top-level
pseudocode in Figure 1 to determine whether another iteration
of merging and simplification is necessary. The function
elimRedundantSets is described above. It returns false, even if
some redundant sets were eliminated, because elimination of
redundant sets does not affect the meaning or mergeability of
rules, so it should not trigger another iteration of merging and
simplification. The function elimConjuncts(ρ, Rules, κ, UP)
attempts to increase the quality of rule ρ by eliminating some

conjuncts. Based on our primary goal of minimizing the
generated policy’s WSC, the quality of rule ρ is |M(ρ)| /
WSC(ρ). A set of unremovable attributes can be specified,
containing attributes that should not be eliminated, typically
because eliminating them increases the risk of generating an
overly general policy, i.e., a policy that might grant
inappropriate permissions when new users or new resources
(hence new permissions) are added to the system. The function
elimConstraints(ρ, Rules, κ, UP) attempts to improve the
quality of ρ by removing unnecessary atomic constraints from
ρ’s constraint. An atomic constraint is unnecessary in a rule ρ
if removing it from ρ’s constraint leaves ρ valid. The function
elimElements(ρ, Rules, κ, UP) attempts to decrease the WSC
of rule ρ by removing elements from sets in conjuncts for
multi-valued user attributes, if removal of those elements
produces a rule ρ’ that can replace the rules it subsumes; note
that, because ⊇ is used in the semantics of user attribute
expressions, the set of user-permission pairs that satisfy a rule
is unchanged or increased (never decreased) by such removals.

The function useRoleAttribute(Rules, κ) replaces uses of
“uid” with uses of the user attribute “roles”, which is defined
in the policy mining problem definition in Section 4.

6. EVALUATION

We evaluated our algorithm on manually written case
studies. Experiments with a real RBAC policy and real
attribute data would be better, but unfortunately, we do not
have access to such information. The policies are small but
non-trivial and realistic. Brief descriptions of the case studies
are included here. Full details are available at
http://www.cs.stonybrook.edu/~stoller/abac-from-rbac/.
The ABAC policies for the case studies are similar to those in
[4].

6.1 Experiments with Full Attribute Data

These experiments demonstrate that, when all relevant
attribute data is available, our algorithm successfully produces
an intuitive high-level ABAC policy from an RBAC policy.
We manually wrote semantically consistent case study policies
in RBAC and ABAC, applied our algorithm to the RBAC
policy and accompanying attribute data, and compared the
generated ABAC policy with the manually written one.

University Case Study Our university case study is a policy
that controls access to applications (for admission),
gradebooks, transcripts, and course schedules. There are roles

for students in each course, TAs of each course, instructor of
each course, chairman of each department, registrar staff,
admissions staff, and applicants for admission. The permission
assignment allows a student to read his/her transcript, an
instructor to assign grades for courses he/she teaches, etc.

Health Care Case Study Our health care case study is a
policy that controls access to electronic health records (HRs)
and HR items (i.e., entries in health records). There are roles
for nurses in each ward (e.g., oncology ward), each medical
team, each medical specialty on each medical team (e.g.,
oncologists on team 1), each patient, and agents for each
patient. The permission assignment allows a nurse to add note
items in health records for patients in the ward he/she works
in, a patient and his/her agents to read note items in the
patient's medical record, members of a medical team to read
items appropriate to their medical specialty in health records
of patients treated by that team, etc.

Project Management Case Study Our project management
case study is a policy that controls access to budgets,
schedules, and tasks associated with projects. There are roles
for the manager of each department; for the accountants,
auditors, planners, leaders, designers, and coders working on
each project; and for the designers and coders assigned to each
task. The roles also distinguish employees from non-
employees (contractors). Role hierarchy is used to combine
the roles for users of each specialty working on a project into a
role for all users working on the project. The permission
assignment allows a user working on a project to read the
project schedule, a user working on a task to update the status
of the task, a non-employee working on a project to read
information about non-proprietary tasks in that project that
match his/her technical expertise, etc.

For each case study, with no guidance (i.e., no attributes are
declared unremovable), the generated ABAC policy is almost
identical to the manually written ABAC policy, with a 1-to-1
correspondence between rules in the two policies, and with
small differences between some corresponding rules. If
resource type is specified as an unremovable attribute, then the
generated policy is identical to the manually written ABAC
policy for university case study, and the generated policy has
only one additional conjunct in one rule for health care and
project management case studies (the additional conjunct
reduces overlap between rules).

6.2 Experiments with Incomplete Attribute Data

These experiments demonstrate that, when some relevant
attribute information is unavailable, our algorithm successfully
produces an intuitive high-level ABAC policy that uses the
available attribute data and uses role membership information
as a substitute for missing attribute data.

For the health care case study, we deleted the user
attribute data specifying which users are agents for which
patients; this data seems less essential to the hospital’s IT
system, and hence more likely to be unavailable, than
employee-related user attribute data. With this input, the
generated ABAC policy is mostly identical to the ABAC
policy generated with full attribute data (as described above):
rules unrelated to agents are unaffected, while rules granting

permissions to agents are replaced with similar rules that use
agent roles instead of the “agent for” attribute. The number of
agent-related rules increases, because a separate rule is needed
for each patient's agents.

For the university case study, we deleted the user attribute
data specifying whether a user is a department chair. As
expected, only the rule granting permissions to department
chairs is affected, and the only change in that rule is
replacement of the conjunct “isChair=true” in the user
attribute expression with the conjunct “role supseteqIn
{{eeChair}, {csChair}}”.

6.3 Experiment with Varying Policy Structure

This experiment demonstrates how the structure of the
RBAC policy propagates into the structure of the generated
ABAC policy. As a small example, consider two similar
RBAC polices 1Rπ and 2Rπ . 1Rπ has three roles: csStudent,
eeStudent, and student, where members of csStudent role have
permission to run applications on cs department server,
members of eeStudent role have permission to run applications
on ee department server, and members of student role have
permission to run applications on a central university server.
The student role is a junior role to both csStudent and
eeStudent. The difference between 1Rπ and 2Rπ is that 2Rπ
does not have the student role, and the permission to run
applications on a central university server is assigned to both
csStudent and eeStudent roles. 2Rπ has lower WSC than

1Rπ , but 1Rπ might be preferable for other reasons, for
example, if rules that grant permissions on university servers
are administered by the IT Department, and rules that grant
permissions on a departmental server is administered by the
owning department. Assuming suitable attribute data (a user
attribute “dept” indicating the user’s department, etc.), our
algorithm applied to 1Rπ produces an ABAC policy 1Aπ ,

which has the same structure as 1Rπ and hence can be
administered in the same way. In contrast, our algorithm
applied to 2Rπ produces an ABAC policy 2Aπ , which has

lower WSC than 1Aπ but cannot be administered in the same

way as 1Aπ .

7. RELATED WORK

To the best of our knowledge, this paper presents the first
algorithm specifically designed to mine ABAC policies from
RBAC policies and attribute data, and the only prior work on
mining ABAC policies is the Xu and Stoller's algorithm [4]
that mines ABAC policies from ACLs and attribute data. The

algorithm in [4] can be used to mine ABAC policies from
RBAC policies and attribute data, by expanding RBAC
policies into ACLs. However, that approach has significant
disadvantages compared to the algorithm presented in this
paper, mainly (1) the generated ABAC policy is less likely to
have the desired structure, because the structure of the RBAC
policy is not used to guide the structure of the ABAC policy,
and (2) role membership information is not used to substitute
for unavailable attribute information, leading to lower-level
policies that use user identity instead of role membership
information where the available attribute information is
insufficient.

The next most closely related work is Xu and Stoller's
algorithm for mining parameterized RBAC (PRBAC) policies
from ACLs and attribute data [5]. Their PRBAC framework
supports a simple form of ABAC, but quite limited compared
to our ABAC framework. Most importantly, our framework
supports multi-valued (also called “set-valued”) attributes and
allows attributes to be compared using set membership, subset,
and equality; their PRBAC framework does not support multi-
valued attributes, and it allows attributes to be compared using
only equality.

Less closely related work includes policy mining algorithms
that take attribute data into account when mining RBAC
policies (without parameters) from ACLs, e.g., [3, 6, 7].

8. ACKNOWLEDGEMENTS

This material is based upon work supported by ONR
under Grant N00014-07-1-0928 and NSF under Grant CNS-
0831298.

9. BIBLIOGRAPHY

[1] Ravi Sandhu and Edward Coyne. “Role-based access control models,”
IEEE Computer, pp. 38-47, 1996.

[2] Ravi Sandhu. “The authorization leap from rights to attributes:
maturation or chaos?,” In Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies (SACMAT), 2012.

[3] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa
Bertino, Seraphin B. Calo, and Jorge Lobo. “Mining roles with multiple
objectives,” ACM Trans. Inf. Syst. Secur, vol. 13(4), 2010,

[4] Zhongyuan Xu and Scott D. Stoller. “Mining attribute-based access
control policies,” Submitted for publication. Available at
http://arxiv.org/pdf/1306.2401.pdf, 2013.

[5] Zhongyuan Xu and Scott D. Stoller. “Mining parameterized role-based
policies,” In Proc. Third ACM Conference on Data and Application
Security and Privacy (CODASPY), 2013.

[6] Alessandro Colantonio, Roberto Di Pietro, and Nino Vincenzo Verde.
“A business-driven decomposition methodology for role mining,”
Computer & Security, vols. 31(7), pp. 844-855, 2012,

[7] Zhongyuan Xu and Scott D. Stoller. “Algorithms for mining meaningful
roles,” In Proc. 17th ACM Symposium on Access Control Models and
Technologies (SACMAT), pp. 57-66, 2012.

