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Abstract— We introduce the concept of Distributed Model
Predictive Control (DMPC) with Acceleration-Weighted Neigh-
borhooding (AWN) in order to synthesize a distributed and
symmetric controller for high-speed flocking maneuvers (angu-
lar turns in general). Acceleration-Weighted Neighborhooding
exploits the imbalance in agent accelerations during a turning
maneuver to ensure that actively turning agents are prioritized.
We show that with our approach, a flocking maneuver can
be achieved without it being a global objective. Only a small
subset of the agents, called initiators, need to be aware of the
maneuver objective. Our AWN-DMPC controller ensures this
local information is propagated throughout the flock in a scale-
free manner with linear delays. Our experimental evaluation
conclusively demonstrates the maneuvering capabilities of a
distributed flocking controller based on AWN-DMPC.

I. INTRODUCTION

We have recently shown how the problem of flight
formation for multi-agent systems can be formulated in terms
of distributed model-predictive control (DMPC) [1]–[4]. Our
results are specifically for V-formation and flocking, but our
approach is applicable to any flight-formation problem that
has a cost-function characterization. This simply means that
the desired formation has been collectively attained when a
(distributed) cost function is minimized.

An additional benefit of this cost-function-based approach
is that in the case of flocking, it proved rather straightforward
to derive additional cost-function terms that capture other
flight-formation goals, including obstacle avoidance, predator
avoidance, target-location seeking, and leader following. Due
to the high-level nature of this approach, we sometimes refer
to it as declarative flocking (DF), in contrast to the classic
rule-based approaches in [5], [6].

This paper presents a significant extension of the DF
framework in the form of a symmetric and distributed
controller for high-speed turning maneuvers. Realizing this
capability requires two significant extensions of DF and
even DMPC itself. The first of these is what we refer to
as DMPC with Acceleration-Weighted Neighborhooding. In
AWN-DMPC, a Velocity Matching (VM) term is added to
the flocking distributed cost function [1], causing an agent
to produce an acceleration that aligns its velocity with that
of its neighbors, with priority given to neighbors with larger
accelerations in the previous time step. We show that this
technique allows a turn initiated by a small number of agents
(even just one) to propagate rapidly through the flock in a

scale-free manner with linear delays. Our method does not
require any communication between agents; agents interact
only by sensing the positions and velocities of their neighbors.

The second extension of DF we introduce to achieve high-
speed flocking maneuvers is, as alluded to in the above
discussion of AWN-DMPC, the concept of turn initiators. As
with starlings [7], a high-speed, flock-wide turning maneuver
is initiated by a small number of agents in close spatial
proximity to one another, typically located at the elongated
tips of the flock.

As the initiators start to turn, their neighbors (thanks
to AWN-DMPC) sense the change in their velocities and
respond by velocity-aligning with them. Since the velocities
of all agents in a stable, pre-turn flocking formation are
essentially equal, even a small change in the initiators’
velocities induces a significant velocity-matching effect in
neighboring agents. The neighbors of the initiators then
influence their own neighbors, and so on, causing the turning
maneuver to propagate throughout the flock. Technically,
initiator agents have an additional target velocity term in their
cost functions, causing them to initiate the desired flock-wide
turning maneuver.

We conducted an extensive experimental evaluation of our
AWN-DMPC-based framework. The presented experiments
are numerical simulations. Results are presented for flocks
consisting of 20, 30, and 40 agents. Both single-turn maneu-
vers and maneuvers spanning a series of turns (e.g., u-turns
and zigzag turns) are considered. Using a technique known
as Statistical Model Checking, we also conducted a statistical
analysis of our approach’s convergence rate, for both flock
convergence and maneuver convergence. The results establish
high confidence in our approach.

The rest of the paper is organized as follows. Section II
reviews the declarative flocking framework. Section III
introduces our DMPC-based approach to high-speed flock-
ing maneuvers. Sections IV showcases the results of our
experimental evaluation. Section V presents our Statistical
Model Checking results. Section VI considers related work.
Section VII offers our concluding remarks and directions for
future research.

II. BACKGROUND

We consider a set of N dynamic agents A = {1, . . . , N}.
Let pi(k) ∈ R3, vi(k) ∈ R3, ai(k) ∈ R3 be the position,



velocity, and acceleration of agent i ∈ A at time step k. The
discrete-time equations of motion for agent i are:

pi(k + 1) = pi(k) + dt · vi(k), |vi(k)| < v̄

vi(k + 1) = vi(k) + dt · ai(k), |ai(k)| < ā
(1)

where dt ∈ R+ is the duration of the time step. The
magnitudes of velocities and accelerations are bounded by v̄
and ā, respectively. Acceleration ai(k) is the control input
for agent i at time step k. The acceleration is updated after
every ct time steps; i.e., ct · dt is the control period. The
neighborhood of agent i, denoted by Ni ⊆ A, contains its
N -nearest neighbors, i.e., the N other agents closest to it.

A. Model Predictive Control

Model Predictive Control (MPC) [8] is a well-known
control technique that has been applied to the flocking
problem [1], [9], [10]. At each time step, an optimization
problem is solved to find the optimal sequence of control
actions (agent accelerations in our case) that minimizes a
given cost function with respect to a predictive model of
the system. The first control action of the optimal control
sequence is then applied to the system; the rest is discarded.
In the computation of the cost function, the predictive model
is evaluated for a finite prediction horizon of T control steps.

MPC-based flocking models can be categorized as cen-
tralized or distributed [1]. A centralized model assumes that
complete information about the flock is available to a single
“global” controller, which uses the states of all agents to com-
pute their optimal accelerations. The following optimization
problem is solved by a centralized MPC controller at each
time step k:

arg min
a(k|k),...,a(k+T−1|k)

T−1∑
t=0

J(k + t | k)

+ λ·
T−1∑
t=0

‖a(k + t | k)‖2 (2)

J(k + t | k) is the predicted value of the centralized (global)
cost function J at time step k + t given the current state
at time k. The first term is the sum of the centralized cost
function, evaluated for T control steps (this embodies the
predictive aspect of MPC), starting at time step k. It encodes
the control objective of minimizing the cost function. The
second term, scaled by a weight λ > 0, penalizes large control
inputs; the a(k + t | k)’s are the predictions made at time
step k for the (bounded) accelerations at time step k + t.

In distributed MPC, each agent computes its acceleration
based only on its own state and its local knowledge, e.g.,
information about its neighbors. The following optimization
problem is solved by a distributed MPC controller at each
time step k:

arg min
ai(k|k),...,ai(k+T−1|k)

T−1∑
t=0

Ji(k + t | k)

+ λ·
T−1∑
t=0

‖ai(k + t | k)‖2 (3)

Ji(k + t | k) is the distributed cost function for agent i,
analogous to J(k + t | k) in the centralized case, and the
ai(k+ t | k)’s are the predictions made at time step k for the
accelerations of agent i at time step k + t. Distributed cost
function Ji(k) is based on the simplifying assumption that
each of agent i’s neighbors has zero acceleration during the
prediction horizon T . Other approaches are possible, such as
assuming that a neighboring agent maintains its acceleration
at time step k − 1 over the prediction horizon.

B. Declarative Flocking

Declarative flocking (DF) is a high-level approach to
designing flocking algorithms based on defining a suitable cost
function for MPC [1]. This is in contrast to the operational
approach, where a set of rules are used to capture flocking
behavior, as in Reynolds model [5], [6]. The cost function
JC for centralized DF at time k is:

JC (k) =
1

Z
·
∑
i∈A

∑
j∈A,i<j

ωc · ‖pij‖2 +
ωs
‖pij‖2

(4)

where ‖pij‖ is the Euclidean distance between agents i and
j, ωc and ωs are the weights of the cohesion and separation
terms. The cost function is normalized by the number of agent
pairs Z = N ·(N−1)

2 ; as such, the cost does not depend on the
size of the flock. Agent i’s cost function JDi for distributed
DF is computed over its set of neighbors Ni at time k:

JD
i (k) =

ωc
|Ni|

·
∑
j∈Ni

‖pij‖2 +
ωs
|Ni|

·
∑
j∈Ni

1

‖pij‖2
(5)

III. DMPC WITH ACCELERATION-WEIGHTED
NEIGHBORHOODING

This section presents our control-theoretic approach to
flocking maneuvers based on the new concept of Acceleration-
Weighted Neighborhooding (AWN). We formulate AWN in
the context of our DMPC controller to achieve high-speed
flight maneuvers, using only a subset of agents to initiate a
maneuver.

Our AWN-DMPC formulation of flocking maneuvers is an
extension of the DF framework presented in Section II-B. The
AWN-DMPC cost function Ji(k) for agent i (at time step
k) is obtained by adding an AWN-based velocity matching
(VM) term to JDi (k) defined in Eq. 5.

Ji(k) = JDi (k) +
∑
j∈Ni

γij · ‖vij‖ (6)

where γij is the AWN-based weight for neighbor j of agent
i, and ‖vij‖ is the difference in velocities between agents i
and j. The centralized version J(k) of Ji(k), which we will
use in Section V for experimental evaluation purposes, can
be similarly defined by adding the AWN-based VM term to
JC(k) (Eq. 4).

To define the weights γij , we use a softmax formulation
based on the exponential function, normalized so that they



sum to 1 over agent i’s neighborhood Ni. Weight γij for
neighbor j is defined as:

γij =
eη·∆vj(k)∑
j∈Ni

eη·∆vj(k)
(7)

where ∆vj(k) = ‖vj(k)− vj(k − 1)‖ is the change in the
magnitude of agent j’s velocity between the two most recent
time-steps (a measure of its acceleration), and η is a large
constant used to stabilize the softmax function by amplifying
the values of ∆vj(k). The factor η is needed as the magnitude
of ∆vj(k) is almost always less than 1; it thus needs to be
amplified for the softmax function to generate weights large
enough to create a preferential bias among the neighbors.

Let Ji(k + t | k) denote the local cost computed by agent
i at time step k + t given the current state at time k. The
optimization problem defined in Eq. 3 is solved by an AWN-
DMPC controller at each control step k to generate the control
action ai(k) for each agent i.

Turn Initiators: As with starlings [7], a high-speed, flock-
wide turning maneuver is initiated by a small number of
agents in close spatial proximity to one another, typically
located at the sides of the flock. Moreover, these “initiators”
are the only agents aware of the turn objective, including
the desired turn angle. Since the velocities of all agents in a
stable, pre-turn flocking formation are essentially equal, even
a small change in the initiators’ velocities causes a significant
preferential imbalance in their neighboring agents. This forces
these agents to velocity-align themselves with the initiators,
leading to a cascading effect that spreads throughout the flock.
The net effect is that the entire flock eventually (and rapidly)
turns in the new direction.

Let agent i ∈ I be an initiator. The distributed cost function
used by i to compute its accelerations upon the start of a
turn is obtained by adding a weighted target velocity term
ωt ·

∥∥vi − v̄θi ∥∥ to Eq. 6, where ωt is the weight of the target-
velocity term, vi is initiator i’s current velocity, and v̄θi is
the average velocity of agent i’s subflock when the turn is
initiated, rotated by the desired turning angle θ. Agent i’s
subflock comprises i itself and its N -nearest neighbors. The
target velocity vector v̄θi for agent i is such that the angle
between the new heading and the prior heading (average
velocity vector of agent i’s subflock at the start of the turn)
is θ. The net effect of this new term is to put agent i on a
trajectory towards completing a θ-degree turn with respect
to the prior heading of its subflock.

IV. EXPERIMENTAL EVALUATION

In our experimental setup, the AWN-DMPC control prob-
lem defined in Eqs. 3 and 6 is solved using the MATLAB
fmincon optimizer. We use a flock of size N = 20 agents
whose initial positions and velocities are uniformly sampled
from [−3, 3]3 and [0, 1]3, respectively. The simulation time
is 500 time steps, dt= 0.05, and ct = 2, where (recall) ct ·dt
is the control period. Agent velocity and acceleration bounds
are v̄= 2.0 and ā= 1.0.

We choose the set of initiators I at time-step k = 200,
which is almost always enough time for the agents to have

(a) Trajectories using
AWN-DMPC

(b) Starling Trajectories [7] (c) Trajectories w/out
using AWN-DMPC

Fig. 1: Agent trajectories

reached a flocking configuration. We use the following
additional parameters: |I| = 4, |Ni| = 6, ωc = 20, ωs = 30,
ωt = 80, η = 100, and θ = 170◦. To compute the target
velocity v̄θi for an agent i ∈ I, we generate a target velocity
vector whose magnitude is the same as the magnitude of
the average velocity vector of agent i’s subflock immediately
prior to the start of the turn, and the angle between these two
vectors is θ. For experiments involving multiple turns, a new
set of initiators is chosen at the beginning of each turn.

Results: Fig. 1(a) depicts the trajectories of a 20-agent
flock executing a 170◦ turn using AWN-DMPC. Fig. 1(b),
from [11], shows the trajectories (recorded using high-
speed video) for the same maneuver executed by a flock
of 176 starlings in Rome, Italy. Fig. 1(c) depicts the failed
trajectories of a 20-agent flock attempting a 170◦ turn using
DMPC without AWN. The similarities between the two torus-
shaped plots (Figs. 1(a) and (b)) are worth noting. Fig. 1(c)
demonstrates the importance of AWN for the successful
execution of the turning maneuver.

A pair of YouTube videos [12], [13] highlights the impor-
tant role AWN plays in the successful execution of this turning
maneuver. The first video shows the AWN-DMPC simulation
that produced the flock-wide trajectories of Figure 1(a). The
second video shows what happens when the AWN effect
is turned off (something that is easily accomplished in our
framework by setting η to zero in Eq. (7)). In this case, we
have a traditional VM term with all neighbors treated equally.
The effects are striking, with the initiators initiating the turn
and then breaking away from the rest of the flock.

We use average pairwise distance and velocity convergence
as performance metrics to evaluate the flocking quality of
the AWN-DMPC controller. At any time step k, the average
pairwise distance is:

PDavg(k) =
2

N · (N − 1)

∑
(i,j)∈A

‖pij‖ (8)

At any time step k, velocity convergence is defined as:

VC(k) =
1

N

∑
i∈A
‖vi −

1

N

N∑
j=1

vj‖2
 (9)

VC is the average of the squared magnitude of the discrepancy
between each agent’s velocities and the flock’s average
velocity. For these two metrics, lower values are better,
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Fig. 2: Performance eval. of AWN-DMPC controller averaged
over 100 runs. Turning maneuver commences at k = 200

indicating a more coherent flock. All inter-agent distances,
however, should be greater than dmin, the cutoff below
which it is assumed that an inter-agent collision has occurred.
Starting from a random initial configuration, a successful
flocking controller ensures that the PDavg and VC metrics
stabilize for the flock. Similarly, such a controller ensures
stabilization of these metrics for the post-maneuver flock.

Figs. 2(a)-(b) show the PDavg and VC values for 20, 30, and
40 agents averaged over 100 runs with each runs executing
a turning maneuver of 170◦ starting at time step k = 200.
The vertical line in each of the plots indicates the start of the
turn. There is no change in PDavg after the start of the turn
as the flock maintains its coherent structure. We also did not
observe any flock fragmentation after initiating the turn. The
VC value, however, shows a slight increase after the start of
the turn, as the flock velocity undergoes a significant change
due the flock’s new heading. This effect is not long-lasting,
with VC quickly converging once the turn is completed.

We use the average flock velocity Vavg and θ̂-distributions
as metrics for evaluating AWN-DMPC’s performance in
executing flock-wide turns. Here θ̂ is the final turn angle
achieved by the flock; i.e., the angle between the average
velocity vector of the flock at the time of the turn and the
average velocity vector of the flock at time step 500.

By plotting the average flock velocity Vavg before, during,
and after a turn, we can show that the AWN-DMPC controller
achieves high-speed flock maneuvers. In particular, Fig. 2(c)
shows that Vavg slightly decreases after the start of the turn;
the dip, however, is minimal and the flock quickly returns to
its pre-turn velocity.

Fig. 2(d) plots the agent turning delay metric for flocks of
20, 30 and 40 agents, averaged over 100 runs. Let agent 0 be
the first agent in the flock to initiate the turn, which it does
at say time t0. Then the turning delay for agent i is the time
when i initiates its turn relative to t0. Fig. 2(d) demonstrates
that information about the maneuver propagates across the
flock according to a linear dispersion law. Our results are

(a) 20 agents (b) 30 agents

(c) 40 agents

Fig. 3: θ̂-distributions for AWN-DMPC, 100 runs, θ = 170◦

TABLE I: θ̂-statistics for AWN-DMPC, 100 runs, θ = 170◦

Agents µθ̂ σθ̂
20 168.53◦ 0.91
30 167.86◦ 1.34
40 166.91◦ 1.60

consistent with the linear dispersion law observed in starling
flocks during high-speed turns [11].

Fig. 3 shows the θ̂-distributions for 20, 30 and 40 agents
where the desired flock turning angle θ = 170◦ and Nrun
is the number of runs. The θ̂-histograms (each divided into
10 bins) demonstrate that the final turn angles achieved by
the flocks are statistically very close to θ. Table I captures
the mean and standard deviation for the turn achieved by the
flocks over 100 runs for 20, 30 and 40 agents.

Fig. 4 depicts the trajectories of a 20-agent flock exe-
cuting multiple turns, thus demonstrating the wide-ranging
maneuvering capabilities of an AWN-DMPC controller. In our
experiments, although the initiators are chosen from among
the agents located on the sides of the flock at the start of a
turn, we also observed that successful flock-wide turns are
possible independent of the distribution of the initiators.

V. STATISTICAL MODEL CHECKING

We use Monte Carlo (MC) approximation as a form of
Statistical Model Checking [14], [15] to compute confidence
intervals for AWN-DMPC’s flock convergence rate and
maneuver convergence rate. The flock convergence rate is the
fraction of successful flocks over M runs. We consider two
types of flock convergence: pre-maneuver flock convergence
(at time k = 199) and post-maneuver flock convergence
(at time k = 500). The multi-agent system is said to have
converged to a flock if J(k) ≤ φ, where recall that J(k)
is the centralized variant (see Section III) of the distributed
cost function defined in Eq. 6. We used φ = 72, a value
obtained empirically by examining distribution plots for J
similar in nature to those for θ̂ given in Fig. 3. The maneuver
convergence rate is the fraction of successful maneuvers



(a) s-turn (b) u-turn (c) zigzag turn

Fig. 4: Agent trajectories with multiple turns

over M runs. A maneuver is considered to be successful if
θ̂ ∈ θ ± α, where α = 5◦ is the angular error threshold.

The main idea of MC approximation is to use M random
variables (RVs) Z1, . . . , ZM , also called samples, independent
and identically distributed according to a random variable Z
with mean µZ , and to take the expression µ̃Z = (Z1 + . . .+
ZM )/M as the value approximating the mean µZ . Since an
exact computation of µZ is almost always intractable, an MC
approach is used to compute an (ε, δ)-approximation of this
quantity.

Additive Approximation [16] is an (ε, δ)-approximation
scheme where the mean µZ of a RV Z is approximated with
absolute error ε and probability 1− δ:

Pr[µZ − ε ≤ µ̃Z ≤ µZ + ε] ≥ 1− δ (10)

where µ̃Z is an approximation of µZ . An important issue
is to determine the number of samples M needed to ensure
that µ̃Z is an (ε, δ)-approximation of µZ . If Z is a Bernoulli
variable whose value is expected to be large, one can use the
Chernoff-Hoeffding instantiation of the Bernstein inequality
and take M to be M = 4 ln(2/δ)/ε2, as in [16]. This results
in the additive approximation algorithm [15].

Algorithm 1: Additive Approximation Algorithm
Input: (ε, δ) with 0 < ε < 1 and 0 < δ < 1
Input: Random variables Zi, IID
Output: µ̃Z approximation of µZ
M = 4 ln(2/δ)/ε2;
for (i=0; i ≤M ; i++) do

S = S + Zi;
µ̃Z = S/M ; return µ̃Z ;

We use Algorithm 1 to obtain (ε, δ)-approximations of
AWN-DMPC’s mean pre- and post-maneuver flock conver-
gence rate (µ̃FC1

and µ̃FC2
, respectively) and its mean

maneuver convergence rate (µ̃MC). In each of these three
cases, a sample Zi is based on the result of executing the
N -agent system starting from a random initial state. We take
Z = B, where B is a Boolean variable indicating whether or
not the agents converged accordingly. The assumptions about
Z required for the applicability of the additive-approximation
scheme hold, as RV B is a Bernoulli variable, the success
rate is expected to be large (i.e., closer to 1 than to 0) in all
three cases.

In our experiments using Algorithm 1, initial states are
sampled from the same uniform random distributions used

TABLE II: SMC results for AWN-DMPC over M = 3,961
runs for θ = 170◦

Agents µ̃FC1 µ̃FC2 µ̃MC

20 0.999 0.999 0.998
30 0.974 0.974 0.971
40 0.953 0.952 0.946

TABLE III: AWN-DMPC statistics for M = 3,961 runs,
θ = 170◦

Agents µJpre σJpre µJpost σJpost µθ̂ σθ̂
20 70.17 0.35 70.18 0.35 168.51◦ 0.95
30 70.76 0.40 70.78 0.41 167.65◦ 1.41
40 71.14 0.46 71.15 0.46 166.83◦ 1.66

in Section IV. Also ε = 0.1 and δ = 0.0001, giving us
M = 3,961 samples. We perform the required number of M
simulations for 20, 30 and 40 agents.

Table II presents our SMC results, namely (ε, δ)-
approximations µ̃FC1

, µ̃FC2
, and µ̃MC . The results demon-

strate that AWN-DMPC performs very well over a range of
flock sizes, even without changing the number of initiators
or the size of an agent’s neighborhood.

Table III presents the mean and standard deviation (over M
runs) of the centralized cost function J upon pre-maneuver
flock convergence (Jpre) and upon post-maneuver flock
convergence (Jpost). Also given are the µ and σ of the
achieved turn angle θ̂. Jpre is computed at the time step
prior to the start of maneuver (k = 199), and Jpost and θ̂
are computed at the final time step (k = 500). The results
of Table III demonstrate AWN-DMPC’s high performance
in executing substantial turning maneuvers over a range of
flock sizes. They also showcase AWN-DMPC’s ability to
restabilize the flock post-maneuver.

VI. RELATED WORK

A general distributed receding-horizon control framework
for multi-agent systems is given in [17]. It does not specif-
ically consider flocking or associated turning maneuvers.
Prior work addresses the flock maneuvering problem using
systems of dynamical equations to directly model such
maneuvers. In [18], [19], a form of “distance-weighted
neighborhooding” is used to generate agent accelerations; i.e.,
greater importance is given to closer neighbors. In contrast, we
prioritize higher-accelerating neighbors. A flocking model for
actual drones [20] incorporating an evolutionary optimization
framework with carefully chosen order parameters and fitness
functions is capable of performing flight maneuvers. The
approach of [7], [11] analyzes the motion of flocks occurring
in nature to create a model in the form of a Hamiltonian
which follows a linear dispersion law for flock maneuvers.
Multi-agent theory and finite-time control is used in [21] for
flight maneuvers. They use finite-time disturbance observers
to develop a finite-time distributed formation control strategy.
Formation maneuver control is achieved in [22] using directed
interaction graphs and leader-following.



VII. CONCLUSION

We introduced the concept of acceleration-weighted neigh-
borhooding to synthesize a symmetric and distributed MPC
controller for high-speed flocking maneuvers. Moreover, only
a small number of agents are needed to initiate a maneuver,
with the turning information propagating though the flock
in a scale-free manner with linear delays. Our experimental
evaluation used Statistical Model Checking to show that our
controllers are capable of high-speed flocking maneuvers
with high flock and maneuver convergence rates. We also
demonstrated the scalability of our approach by successfully
applying AWN-DMPC controllers on flocks of increasing
size (number of agents).

For future work, we plan to implement AWN-DMPC on
realistic quadrotor models. We also plan to apply AWN-
DMPC to additional control objectives, such as predator and
obstacle avoidance.
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