
Policy Analysis for Security-Enhanced Linux∗

Beata Sarna-Starosta Scott D. Stoller

March 1, 2004

Abstract

Security-Enhanced Linux (SELinux) extends Linux with a flexible mandatory access control
mechanism that enforces security policies expressed in SELinux’s policy language. Determin-
ing whether a given policy meets a site’s high-level security goals can be difficult, due to the
low-level nature of the policy language and the size and complexity of SELinux policies. We
propose a logic-programming-based approach to analysis of SELinux policies. The approach is
implemented in a tool that helps users determine whether a policy meets its goals.

1 Introduction

Security-Enhanced Linux (SELinux) is a version of Linux developed with the support of the National
Security Agency. SELinux extends Linux with a flexible mandatory-access-control mechanism.
SELinux is entering the Linux mainstream: version 2.6 of the standard Linux kernel, currently
available as a beta release, contains the SELinux module. As argued in [LS01b], the traditional
discretionary access controls in UNIX are inadequate as a foundation for highly secure systems.
Mandatory access controls are in some ways inherently more difficult to bypass than discretionary
access controls, and SELinux allows access control decisions to depend on the current role of the
user and on the particular executables and data files involved in an operation, while traditional
UNIX security mechanisms consider only user identity and ownership.

The mandatory-access-control mechanism enforces security policies expressed in a language
based on domain and type enforcement, extended with elements of role-based access control and
multi-level security. For example, SELinux can support separation-of-duty policies, containment
policies that limit the effect of compromised applications, and invocation policies that guarantee
data is processed by specified sequences of programs [LS01a].

Much of the example policy distributed with SELinux and described in [SF01, Sma03a] is
devoted to fine-grained enforcement of the principle of least privilege for operating system processes
(e.g., login processes, and daemons), server processes (e.g., web servers), and client processes (e.g.,
web browsers). Walker et al. nicely illustrate the benefits of such a policy, by describing how their
version of BSD UNIX enhanced with domain and type enforcement protects itself from Rootkit, a
hacker toolkit that attempts to overwrite system binaries [WSB+96]. SELinux can protect itself in
the same way.

∗This work is supported in part by NSF under Grants CCR-9876058 and CCR-0205376 and by ONR under Grants
N00014-01-1-0109 and N00014-02-1-0363. Address: Computer Science Dept., State University of New York at Stony
Brook, Stony Brook, NY 11794-4400. Contact author’s email: stoller@cs.sunysb.edu

1



Experiments show that the run-time overhead of SELinux’s enforcement mechanisms is low
[LS01a]. However, the difficulty of developing and managing security policies is a significant barrier
to wide-spread use of SELinux. This issue has been noted several times in the SELinux mailing
list (archived at http://www.nsa.gov/SELinux). Even after a site has developed a security policy
(e.g., by combining and customizing policy fragments, based on the site’s supported services and
applications) intended to meet its security goals, determining whether the policy actually meets
those goals can be difficult, due to the low-level nature of the policy language and the size and
complexity of the policy: the SELinux example policy is thousands of lines before macro expansion
and significantly larger afterwards. This is motivating the development of policy analysis tools:
Gokyo [JEZ03, JSZ03] from IBM T. J. Watson Research Center, SLAT (Security-Enhanced Linux
Analysis Tools) [GHR03a, GHR03b] from MITRE, and Apol [Tre] from Tresys.

This paper presents a logic-programming-based approach to policy analysis, implemented in
a new tool, called PAL (Policy Analysis using Logic-Programming). PAL translates a SELinux
policy into a logic program. Simple logic programs (“queries”) are used to analyze the policy. PAL
is implemented in XSB [XSB], a logic-programming system based on tabled resolution. This logic-
programming approach has three main benefits: flexibility, efficiency, and justification of results.

Flexibility. Queries in PAL are written in a high-level, mostly declarative, general-purpose lan-
guage, namely, the logic-programming language of XSB. A wide variety of queries can be expressed
easily and concisely in this language. Use of a special-purpose (domain-specific) query language
is limiting unless the language designer foresees all of the kinds of queries that will be of interest
to users. Of course, we expect that most policy analysts will not be programmers. Users with
no programming skills can easily use a library of existing queries; by adding some syntactic sugar,
queries can be given a user-friendly syntax, like a (embedded) domain-specific language. Users with
a minimal knowledge of logic programming can create new variants of existing queries. Experienced
programmers can create new queries from scratch and, most importantly, they can do this much
faster than they could extend a system implemented in a lower-level language, such as C or C++.
Section 5 describes a variety of queries that PAL can answer; a few of them can be answered by
other existing analysis tools, but several cannot.

Efficiency. Three main aspects of PAL’s design contribute to its efficiency. First, PAL’s trans-
lation of the SELinux policy retains the policy’s structure. In particular, macros, many with
parameters, are used extensively as abstractions in the example policy. We translate macro defini-
tions into XSB rules. This avoids unnecessary expansion of macros. In effect, macros get expanded
on demand during analysis. We refer to such a model as macro-preserving. All three of the other
policy tools mentioned above work with a fully macro-expanded version of the policy. Archer et
al.’s model of SELinux in an automated theorem prover preserves part of the policy structure (rule
macros are expanded; other macros are not expanded) [ALP03], but they have not developed a
policy analysis infrastructure on top of their model. We also implemented a version of PAL that
works with fully macro-expanded policies and did experiments to compare the performance of the

2



two approaches.
Second, PAL benefits from XSB’s goal-directed query evaluation, which avoids exploring irrel-

evant parts of the policy. For example, when evaluating an information-flow query like “find all
types to which information can flow from type T”, parts of the information-flow graph not reachable
from T are not analyzed.

Third, constraints [SSR03] allow negation to be handled efficiently. For example, a policy might
contain a statement like “allow (processes with) type src all access permissions to type target except
permissions {p1, p2}”. Similarly, a query might ask “find all information-flow paths from X to Y

that do not pass through Z”. A straightforward treatment of negation expands such a statement
into many structures (facts, nodes, edges, or whatever), one for each allowed value (permission,
type, or whatever). A constraint-based treatment of negation translates such a statement into
a single statement that uses a variable and disequality (i.e., not-equal-to) constraints. Sets of
disequality constraints are propagated during the analysis. PAL currently uses constraints for
efficient representation of queries but not yet in the representation of policies.

Justification of Results. We plan to combine PAL with work on justification in XSB [GRR02].
In general, justification shows the user the computation paths of a logic program that led to
the result. In the case of policy analysis, this will allow PAL to provide the user with feedback
(“evidence”) explaining why the policy does or does not satisfy a specified property. For example,
consider an information-flow property like “All information flow from type t0 to type t2 passes
through type t1.” If the policy violates this property, the justifier shows the user a computation
path that corresponds to a counterexample; recent work on justification in XSB supports showing
all counterexamples when a property is violated [BSLS03]. If the policy satisfies the property, the
justifier shows the user computation paths that correspond to all information-flow paths from t0 to
t2, so the user can see that they all pass through t1.

The rest of the paper is organized as follows. Section 2 compares with related work. Sections 3
and 4 describe our model of SELinux security policies and information flow, respectively. Section
5 describes a variety of queries that PAL can answer.

2 Related Work

SLAT’s model of information flow [GHR03a, GHR03b] is the basis for ours. Following SLAT, we
consider information flow between security contexts, which summarize the security-relevant status
of resources. The most significant difference between SLAT and PAL is in their query languages.

Queries to SLAT are written in a special-purpose language. A SLAT query is, roughly speaking,
a kind of regular expression that specifies the expected form of information-flow paths between two
specified security contexts. SLAT determines whether all information-flow paths between those
endpoints and allowed by the policy have the specified form. If the answer is “no”, SLAT provides
a counterexample, i.e., an allowed path that does not have the specified form. SLAT queries can be
converted into finite automata that can easily be expressed as logic programs. Thus, PAL can also

3



answer such queries and supply counterexamples. The translation could be automated if desired.
PAL, unlike SLAT, can answer queries whose results are sets of security contexts, relations

between security contexts, etc. For example, PAL can answer queries like “find all security contexts
from which information can flow to security context c without passing through security context d”.
Several examples of such queries appear in Section 5.

Apol [Tre] can compute an information-flow relation and the transitive closure of that relation.
It displays those relations with a graphical user interface. Apol does not have a query language, so
it is not as flexible as SLAT or PAL.

Gokyo is a tool for manipulating and graphically displaying sets of permissions, called access
control spaces. Gokyo was used to check integrity of a proposed trusted computing base (TCB)
for SELinux [JSZ03]. Integrity of the TCB holds if there is no type that can be written by a type
outside the TCB and read by a type inside the TCB, except for special cases in which a designated
trusted program sanitizes untrusted data when it enters the TCB [CW87]. Gokyo can identify
where untrusted data may enter the TCB, but it does not analyze the use of trusted programs to
sanitize the data. Gokyo can also evaluate completeness of policies [JEZ03]. The idea (simplified a
bit) is that permissions that are neither allowed nor explicitly prohibited by a policy embody a kind
of ambiguity or incompleteness in the policy. Gokyo can enumerate such permissions and calculate
the number of such permissions as a fraction of all permissions. Such integrity and completeness
properties can also be expressed conveniently as logic programs and analyzed with PAL.

3 Model of SELinux Policies

SELinux associates a security context with each resource (process, file, etc.). A security context is
a tuple that identifies a user, a role, and a type.1 The notion of user is similar to that in ordinary
Linux. For example, the user in a security context associated with a file or process is the owner of
the file or process.2 The notion of role is an abstraction designed to make policies more concise.
If many users require the same permissions, a role R can be introduced, and the policy can state
that those users may enter role R, and it can (indirectly, as discussed below) associate permissions
with role R.

Types are defined in a policy to represent collections of resources with common access-control
requirements (i.e., the resources may access and be accessed by the same resources in the same
ways). For example, the SELinux example policy defines a type fixed disk device t. It assigns
to each file whose name matches /dev/hd* or /dev/sd* a security context containing this type. As
another example, the policy defines a “filesystem administrator” type fsadm t, which is associated
with processes running one of a specified set of executables used for filesystem administration. The
policy allows fsadm t to directly access resources with type fixed disk device t. Note that a

1It optionally also contains information relevant to multi-level-security, which we ignore hereafter, because we do
not consider any properties that depend on it.

2The SELinux module keeps track by itself of which user owns each process, etc., so the ordinary Linux mechanisms
for this do not need to be trusted for enforcement of SELinux policies.

4



resource has a single security context and therefore a single type. There is no notion of subtyping.
Attributes, discussed below, provide some of the convenience of subtyping.

The heart of SELinux is a security server, implemented as a kernel subsystem, that loads a
security policy at boot time and is invoked by the kernel whenever a security-relevant operation is
about to be performed. The operation is identified by two pieces of information: a class (e.g., file,
directory, process, socket) and a permission (e.g., read, unlink, signal, sendto). SELinux defines
28 classes and about 120 permissions. The security server is passed (1) the class and permission
of the requested operation, (2) the security context of the “source” of the operation (typically a
process), and (3) the security context of the “target” of the operation (the target is a resource in
the specified class). The security server decides, based on the loaded policy, whether to allow the
operation and whether to audit (i.e., log) it.

We describe several of the relations defined by a SELinux policy, ignoring the concrete syntax
of the policy language. Details of the policy language are in [Sma03a]. PAL translates policies into
logic programs that define these relations. A logic program is a sequence of facts and rules. A fact
has the form “r(args).”. A rule has the form

r(args) : − r1(args1), ..., rn(argsn).

and corresponds to a logical implication r1(args1) ∧ · · · ∧ rn(argsn) ⇒ r(args). Arguments may
contain variables, which must start with upper-case letters, and literals, which start with lower-
case letters. In our model of a policy, variables and rules are used only in the representation of
macros; thus, the macro-expanded model of a policy contains only facts with literals (not variables)
as arguments.

Lists are written in XSB as comma-separated sequences delimited with square brackets. A
security context is represented as a 3-element list: [Type, RoleId, UserId].

Role declarations define a relation role(RoleId, Type). A security context [Type, RoleId,
UserId] is consistent only if role(RoleId, Type) (and some other conditions) hold. If a process
tries to enter an inconsistent security context (e.g., by attempting to transition to a type that is not
compatible with its role), the security server denies the attempted operation. Note that permissions
are not granted directly to roles. Roles are associated with types (as described here), and permis-
sions are granted to types (as described below). A role declaration in the policy language has the
form roleSet(RoleId , {Type1,Type2, . . .}); we translate it into multiple facts: role(RoleId ,Type1),
role(RoleId ,Type2), . . .. Making the arguments individuals rather than sets improves the perfor-
mance of the analysis.

User declarations define a relation user(UserId, Role) meaning that user UserId is allowed to
assume a role Role. Here again, in the policy language, the second argument of the relation may
be a set, and we translate a single user declaration into multiple facts, one for each element of the
set.

Role allow rules specify allowed role transitions. They define a relation role allow(RoleSet,
NextRoleSet). This means that a process with a role in RoleSet is allowed to transition to roles in

5



NextRoleSet. Our translation simply leaves the arguments of this relation as sets, because of the
small number of role allow rules in the example policy.

Type declarations introduce new types, specify a set of attributes possessed by each new type,
and specify a set of aliases for each new type. Specifically, they define a relation type(TypeId,
AliasSet, AttributeSet). Attributes are used (in other rules) to represent the set of types with that
attribute. For example, a rule might grant a specified permission to all types with a specified
attribute. In all of the following kinds of rules, an argument described as a set of types may
actually contain types and attributes.

Access vector rules specify which operations are allowed and whether attempted operations
(whether allowed or denied) should be audited (i.e., logged). Unless specified otherwise by an
access vector rule, all operations are denied, and denied operations are audited. Access vector rules
define a relation access vector(AVKind, SourceType, TargetType, Class, Perm). If AVKind
is allow, the meaning is: resources (typically processes) with type SourceType are allowed to
perform the operation Perm on resources with class Class and type TargetType. If AVKind is
auditallow, the meaning is the same, except that the operation will be audited. If AVKind is
dontaudit, the meaning is that such accesses are not audited even if they are denied (dontaudit
rules do not affect which accesses are allowed). In the policy language, each of the last four
arguments of the relation may be a given set or the negation of a given set, denoted ∼Set . Each
access vector rule is translated into multiple facts, one for each combination of elements of the
sets, except that negations are not expanded during translation: a negation ∼Set is translated into
except(Set) and handled appropriately during policy analysis.

Constraints are additional conditions that must hold for an attempted operation to be al-
lowed. They relate all of the arguments to the security server. Thus, the constraints define a
relation constrain(ClassSet, PermSet, SrcType, SrcRole, SrcUser, TargetType, TargetRole,
TargetUser). For example, the SELinux example policy contains a constraint that allows only
processes with certain types to create files owned by a different user than the process.

Neverallow rules (also called assertions) have similar structure to access vector rules, but they
have the opposite meaning. They define a relation neverallow(SourceTypeSet, TargetTypeSet,
ClassSet, PermSet). The meaning is that the policy should not contain access vector rules that
allow the indicated operations. This condition is checked by the checkpolicy program that comes
with SELinux. PAL can perform similar tests, as illustrated in Section 5.2. Neverallow rules help
ensure that modifications to a policy do not accidentally allow dangerous operations.

Macros are used in the SELinux example policy to define names for sets of classes, permissions,
types, and rules (“rules” here means policy rules, not XSB rules). The following translations of
macros are used in producing the macro-preserving model. A macro named MacroName that
defines a set Set of classes, permissions, or types has no variable parameters and is translated into
set macro(MacroName, Set). Relations defined in terms of set macro are used to determine
membership in sets; member type in Section 5 is an example. A macro named MacroName with
parameters Params that defines a set of parameterized policy rules R1 ,R2 , . . . (i.e., Ri may contain
uses of Params) is translated into

6



R1 :- MacroName(Params).
R2 :- MacroName(Params).
. . .

Declarations (related to multi-level security) in the policy indicate which operations are read-like
and which are write-like, in terms of the information flow they cause. These declarations define two
relations, read like(Class, Perm) and write like(Class, Perm). An operation may be both
read-like and write-like, e.g., removing a directory, which is obviously write-like and is read-like
because it can be used to determine whether a directory is empty. An operation may be neither
read-like nor write-like (i.e., it may cause no information flow), e.g., acquiring a lock on a file.

4 Information Flow

We adopt SLAT’s notion of information flow. Detailed definitions appear in [GHR03a, GHR03b],
so we just give informal descriptions. All system resources are divided into subjects (processes)
and objects. We identify process types as those declared with the domain attribute. We represent
security contexts as tuples [T,R, U ], where T , R, and U represent a type, role, and user,respectively.
We say that a security context [T,R, U ] is consistent with respect to a given policy if (1) either
role(R,T) holds, or R is object r and T is not a process type, and (2) either user(U,R) holds,
or R is object r. The special role object r is implicitly declared by SELinux; it is a “placeholder”
used as the role in security contexts associated with objects other than processes [Sma03a, page 5].

The authorization relation characterizes the operations allowed by a given policy. auth(C,P, T1,

R1, U1, T2, R2, U2) holds if [T1, R1, U1] and [T2, R2, U2] are consistent security contexts, and a
resource with type T1 has (according to the access vector relation) permission P for targets with
class C and type T2 , and the constraint imposed by the constrain relation holds.

The information-flow graph characterizes information flow caused by allowed operations for a
given policy. It does not reflect possible information flow through covert channels. The nodes are
consistent security contexts. There is an edge from [T1, R1, U1] to [T2, R2, U2] labeled with [C,P ],
denoted flow trans([T1, R1, U1], C, P, [T2, R2, U2]), if (i) auth(C,P, T1, R1, U1, T2, R2, U2) and
write like(C,P ) hold, or (ii) auth(C,P, T2, R2, U2, T1, R1, U1) and read like(C,P ) hold.

By default, we use the read like and write like relations defined by the policy, but other
notions of read-like and write-like may be appropriate for some queries [Tre]. For example, the
getattr operation should be classified as read-like only if file meta-data (such as last modification
time) is considered sensitive information.

Defining nodes of the information-flow graph to be security contexts is natural, but other choices
are equally reasonable. For example, omitting the user and role from each node is reasonable, be-
cause most of the interesting information-flow constraints depend only on the types. This definition,
used in Apol 1.0, leads to a smaller graph that can be analyzed faster, but which might contain
spurious information flows. A subsequent version of Apol includes a class (and a type) in nodes
[Mac03]. This allows their analysis to reflect the fact that information flow is not possible when

7



the source can write a resource of type T and class C1 and the target can read a resource of type
T and class C2 with C1 6= C2 (because the source and target are accessing different resources).3

We believe that PAL is a good platform for experimenting with different definitions of informa-
tion flow. In PAL, the implementation of the authorization relation and information-flow graph in
terms of the relations in Section 3 is about 20 lines of XSB code. Adding or removing components
of nodes requires changing only a few lines of code.

5 Sample Queries

This section describes a variety of queries that can be handled easily using our approach. We
implemented two translators from SELinux policies to logic programs and applied them to version
1.1 of the SELinux example policy. The translator that produces the macro-preserving model
consists of about 1500 lines of XSB code and generates an 8,400-line model of the SELinux example
policy in 4.89 seconds. The translator that produces the macro-expanded model consists of about
500 lines of XSB code; its input is a macro-expanded policy, produced by the checkpolicy program.
This translator generates a roughly 23,000-line model of the same policy in 4.28 seconds. All of our
experiments were done on a laptop with a 1.4 GHz Pentium-M processor and 512 MB RAM.

5.1 Information Flow

Information-flow queries are questions about paths in the information-flow graph. In general, we
formulate the queries as automata that accept the paths of interest. The automata are expressed
as logic programs that define relations init, final, and trans, which correspond to the initial
states, the final states, and the transition relation, respectively. The transition relation specifies
the state change that occurs when a given information-flow edge is traversed. A standard reach-
ability construction, implemented in about 25 lines of XSB code as in [SSR03], finds paths in the
information-flow graph that are accepted by the automaton. The reachability computation is per-
formed on-demand, so if such a path is found, the computation can halt without exploring the
entire graph. The entire graph is explored if no such path exists, or if the set of all such paths is
requested.

Consider the following example from the SLAT (version 1.0.1) user manual [GHR03b]. The goal
is to check whether the SELinux example policy appropriately restricts accesses to raw disk data.
Such accesses correspond to operations on targets with type fixed disk device t. The hypothesis
is that information flow from a standard user’s security context to fixed disk device t may occur
only if the information passes through the filesystem administrator type fsadm t. Specifically,
the goal is to check whether there is an information-flow path from a security context satisfying
T =user t ∧ R=user r ∧ U 6=jadmin to a security context satisfying T =fixed disk device t

3Stephen Smalley points out that this argument needs to be amended to reflect implicit relationships between
resources of the same type and different classes (e.g., between a process and the corresponding file in /proc), and
that relying on a class distinction (rather than a type distinction) to prevent information flow is arguably a design
flaw in the policy [Sma03b].

8



that does not pass through a security context satisfying T =fsadm t. The following XSB program
defines a property automaton that accepts such paths. The first argument of each relation is a
literal identifying the automaton. The last argument of each relation is a list of constraints that
must be satisfied. Recall that identifiers starting with upper-case letters are variables.

init(fdisk_automaton, [user_t,user_r,U], [neq(U,jadmin)]).

trans(fdisk_automaton, [T0,R0,U0], (Class,Perm), [T1,R1,U1], [neq(T1,fsadm_t)]).

trans(fdisk_automaton, [T0,R0,U0], (Class,Perm), [fixed_disk_device_t,R1,U1], []).

final(fdisk_automaton, [fixed_disk_device_t,_R,_U], []).

The SLAT user manual reports a counterexample for the above property. PAL finds the same
counterexample (and a few others). The running time is 0.94 seconds for the macro-preserving
model and 2.33 seconds for the macro-expanded model.

An information-flow query that cannot be expressed in SLAT’s language is: find the security
contexts from which information can flow into shadow t (which contains sensitive password-related
information). To do this in PAL, we use the standard definition of transitive information flow

transitive_flow(X,Y) :- flow_trans(X,Y).

transitive_flow(X,Y) :- flow_trans(X,Z), transitive_flow(Z,Y).

and then query the system with:

transitive_flow(SourceContext, [shadow_t, Role, User]).

This query causes XSB to display, one by one, all instantiations (of the variables) that satisfy the
formula. With a slight variation of the query, XSB will store all such instantiations in a list. The
query returns 53 security contexts authorized to send information into shadow t. The running time
is 1.02 seconds for the macro-preserving model and 2.67 seconds for the macro-expanded model.

In systems containing some “trusted” types that are allowed to produce almost arbitrary infor-
mation flow, such queries will return many results. To avoid this, we can modify the query to ignore
paths that involve trusted types. For example: find the security contexts to which information can
flow from netscape t without passing through admin t. Such queries can easily be done with PAL.

Sometimes we may be interested in information flow that can occur without active participation
by the “owner” of the information. This is analogous to Snyder’s notion of stealing [Sny77]. For
example, if we regard the type httpd admin t as the “owner” of information in files with type
httpd config t, we might want to find the security contexts to which information can flow from
httpd config t along paths that do not involve write-like operations performed by httpd admin t

(i.e., paths that do not contain an edge with source type httpd admin t and labeled with a write-
like operation).

5.2 Integrity

The information-flow queries in Section 5.1 are integrity properties that depend on multiple steps
of information flow. The properties in this section consider single steps of information flow.

9



Consider showing integrity of a proposed trusted computing base (TCB) for SELinux, expressed
as a set of trusted types, as in [JSZ03]. The following relation can be queried to find all potential
integrity violations, i.e., types OutType outside the TCB such that information can flow from
OutType to some type TCBType in the TCB. The designer can examine the potential integrity
violations, if any, to determine whether they are acceptable.

integrity_violation(TCB, TCBType, OutType) :-

flow_trans([OutType,OutRole,OutUser], Class, Perm, [TCBType,TCBRole,TCBUser]),

member_type(TCBType,TCB), not_member_type(OutType,TCB).

where member type(T, List) checks whether type T is a member of List, taking macros and type
attributes into account (since List may contain types and type attributes), and not member type

is the negation of member type. This property can be expressed in SLAT’s language, but SLAT
provides the user with at most one potential violation (as a counterexample). For the TCB in
[JSZ03, Table 3], PAL processes the query in 0.31 seconds for the macro-preserving model and 1.15
seconds for the macro-expanded model. PAL reports numerous potential violations, as expected.
Jaeger et al. [JSZ03] discuss how to resolve the potential violations.

Many integrity properties have the form “no information flows from lower-integrity types to
higher-integrity types”. Instead of an explicit list of higher or lower integrity types, we may char-
acterize them by a predicate. For example, if we consider types that directly receive network input
as being more vulnerable (hence lower integrity) than others, then we might check whether infor-
mation flow is possible from those types to specified higher-integrity types, such as shadow t. Such
queries can easily be done with PAL.

Recall that neverallow rules explicitly prohibit permissions, to help ensure that policy modifica-
tions do not accidentally allow dangerous operations. To better understand what the neverallow

rules ensure, we can evaluate integrity and information-flow queries based on authorization and
information-flow relations that allow all operations not prohibited by neverallow. Adding support
for such queries to PAL requires only a few lines of code.

Integrity properties may assert that certain operations should be audited. For example, PAL
can easily be used to check whether all write-like operations with target type shadow t are audited.

5.3 Separation of Duty

Separation of duty is a classic security concept. “Perhaps the most basic separation of duty rule is
that any person permitted to create or certify a well-formed transaction may not be permitted to
execute it” [CW87, page 187]. In the context of SELinux, this rule can be interpreted as separation
of the types allowed to modify (e.g., write or create) executables from the types allowed to execute
those executables.

A property of this kind is described in [WSB+96, Section 3.2.1]. Daemons are notorious sources
of security vulnerabilities. To prevent compromised daemons from creating and running modified
executables (as RootKit tries to do), their policy contains no type of file for which daemons have

10



both execute permission and a write-like permission. We can use PAL to find such types (if any)
in a SELinux policy by examining the relation

daemon_can_execute_and_write(DaemonType, FileType) :-

is_daemon_type(DaemonType),

auth(Class, execute, DaemonType, Role1, User1, FileType, Role2, User2),

auth(Class, Perm, DaemonType, Role3, User3, FileType, Role4, User4),

write_like(Perm).

where the predicate is daemon type is true for daemon types; we defined this predicate to hold for
types whose names end with crond t, klogd t, sshd t, or syslogd t. For the macro-preserving
and macro-expanded models, PAL processes the query in less than a second and finds no violations
of this property.

5.4 Completeness

Recall from Section 2 that Gokyo [JEZ03] can find permissions that are neither allowed nor explicitly
prohibited by a policy. Such permissions reflect a kind of incompleteness in the policy. To find
such permissions with PAL, we examine the relation

unspecified_permissions(SrcType,TargetType,Class,Perm) :-

is_type(SrcType), is_type(TargetType),

perm_valid_for_class(Perm,Class),

\+ access_vector(SrcType,TargetType,Class,Perm),

\+ neverallow1(SrcType,TargetType,Class,Perm).

where is type is generated from declarations in the policy, perm valid for class ensures that the
permission is appropriate for given class, \+ denotes negation, and neverallow1 takes individuals
rather than sets as arguments:

neverallow1(SrcType,TargetType,Class,Perm) :-

neverallow(SrcTypeSet,TargetTypeSet,ClassSet,PermSet),

member_type(SrcType,SrcTypeSet), member_type(TargetType,TargetTypeSet),

member_class(Class,ClassSet), member_perm(Perm,PermSet).

where member class(C,List) and member perm(P,List) check whether the first argument is a
member of the second argument, taking macros into account.

5.5 Sanity Checks

PAL can be used to perform simple sanity checks, in the spirit of lint. A simple consistency test,
similar to that performed by the checkpolicy program, can be done with the query

assertion_violation(SrcType1,TargetType1,C1,P1, SrcType2,TargetType2,C2,P2) :-

neverallow1(SrcType1,TargetType1,C1,P1),

11



access_vector(AVKind,SrcType2,TargetType2,C2,P2),

(AVKind = allow ; AVKind = auditallow),

compat_type(SrcType1,SrcType2), compat_type(TargetType1,TargetType2),

compat_class(C1,C2), compat_perm(P1,P2).

compat type(T1,T2) checks “compatibility” of its arguments with consideration of macros and
attributes; specifically, T1 and T2 are “compatible” if (i) T1 = T2, or (ii) one is an attribute of the
other, or (iii) neither is an element of the except list of the other. compat class and compat perm

perform analogous checks for classes and permissions, respectively. PAL evaluates this query in
1.44 seconds for the macro-preserving model and 0.32 seconds for the macro-expanded model. PAL
finds no violations of this consistency requirement.

A single type should generally not be used for resources of different classes [Sma03b]. Violations
of this convention can be found by examining the relation (note that \= means “not equal”)

type_used_with_two_classes(TargetType,Class1,Class2) :-

access_vector(AVKind1, SourceType1, TargetType, Class1, Perm1),

access_vector(AVKind2, SourceType2, TargetType, Class2, Perm2),

C1 \= C2.

References

[ALP03] Myla Archer, Elizabeth Leonard, and Matteo Pradella. Analyzing Security-Enhanced
Linux policy specifications. In Proc. IEEE 4th International Workshop on Policies for
Distributed Systems and Networks (POLICY), pages 158–172, June 2003.

[BSLS03] Samik Basu, Diptikalyan Saha, Yow-Jian Lin, and Scott A. Smolka. Generation of all
counter-examples for push-down systems. In Proc. 23rd IFIP WG 6.1 International
Conference on Formal Techniques for Networked and Distributed Systems (FORTE),
volume 2767 of Lecture Notes in Computer Science, pages 79–94. Springer-Verlag, 2003.

[CW87] David D. Clark and David R. Wilson. A comparison of commercial and military security
policies. In Proc. 1987 IEEE Symposium on Security and Privacy, pages 184–194. IEEE
Computer Society Press, 1987.

[GHR03a] Joshua D. Guttman, Amy L. Herzog, and John D. Ramsdell. Information flow in
operating systems: Eager formal methods. In Proc. 2003 Workshop on Issues in the
Theory of Security (WITS), 2003.

[GHR03b] Joshua D. Guttman, Amy L. Herzog, and John D. Ramsdell. SLAT: Information flow
in Security Enhanced Linux, 2003. Included in the SLAT distribution, available from
http://www.nsa.gov/SELinux.

[GRR02] Haifeng Guo, C.R. Ramakrishnan, and I.V. Ramakrishnan. Justification based on pro-
gram transformation. In Proc. 12th International Workshop on Logic-based Program

12



Synthesis and Transformation (LOPSTR), volume 2664 of Lecture Notes in Computer
Science, pages 158–159. Springer-Verlag, October 2002.

[JEZ03] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. Policy management using access
control spaces. In ACM Transactions on Information Systems Security, August 2003.

[JSZ03] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. Analyzing integrity protection in the
SELinux example policy. In Proc. USENIX Security Symposium, August 2003.

[LS01a] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies
into the Linux operating system. In Proc. FREENIX Track of the 2001 USENIX Annual
Technical Conference, 2001. Available from http://www.nsa.gov/SELinux/docs.html.

[LS01b] Peter A. Loscocco and Stephen D. Smalley. Meeting critical security objectives with
Security-Enhanced Linux. In Proceedings of the 2001 Ottawa Linux Symposium, 2001.
Available from http://www.nsa.gov/SELinux/docs.html.

[Mac03] Karl MacMillan. Message to SELinux mailing list on Dec 8, 2003. Available from
http://www.nsa.gov/SELinux.

[SF01] Stephen Smalley and Timothy Fraser. A security policy configuration for the Security-
Enhanced Linux, 2001. Available from http://www.nsa.gov/SELinux/docs.html.

[Sma03a] Stephen Smalley. Configuring the SELinux policy, 2003. Available from
http://www.nsa.gov/SELinux/docs.html.

[Sma03b] Stephen Smalley. Messages to SELinux mailing list on Dec 11, 2003. Available from
http://www.nsa.gov/SELinux.

[Sny77] Lawrence Snyder. On the synthesis and analysis of protection systems. In Proc. Sixth
ACM Symposium on Operating Systems Principles (SOSP), pages 141–150. ACM Press,
1977.

[SSR03] Beata Sarna-Starosta and C. R. Ramakrishnan. Constraint-based model checking of
data-independent systems. In Proc. 5th International Conferene on Formal Engineering
Methods (ICFEM), volume 2885 of Lecture Notes in Computer Science, pages 579–598.
Springer-Verlag, 2003.

[Tre] Tresys Technology. Apol. Available from http://www.tresys.com/selinux/.

[WSB+96] Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger, Michael J. Petkac, David L.
Sherman, and Karen A. Oostendorp. Confining root programs with domain and type
enforcement (DTE). In Proc. 6th USENIX UNIX Security Symposium, 1996.

[XSB] XSB. Available at http://xsb.sourceforge.net/.

13


