
Policy Analysis for

Security-Enhanced Linux

Beata Sarna-Starosta and Scott D. Stoller

Computer Science Department

State University of New York at Stony Brook

http://www.cs.sunysb.edu/˜stoller/

1



Security-Enhanced Linux (SELinux)

SELinux = Linux plus a kernel module that enforces security

policies expressed in SELinux policy language.

Implements mandatory access control: security administrator

imposes an access-control policy that other users cannot modify.

Example: Apache configuration file can be modified only by

Apache executables executed by the user Apache Administrator.

Example: finger daemon can modify only a specified log file.

Traditional discretionary access controls in UNIX are inade-

quate for highly secure systems.

2



The Outlook for SELinux

Run-time overhead of policy enforcement is low (a few per

cent).

SELinux is going mainstream: it is incorporated in version 2.6

of the Linux kernel.

The difficulty of policy development is a significant hurdle to

widespread use of SELinux.

SELinux developers created an example policy. It is large and

low-level. Users will need to combine and customize policies

for different applications and services.

Determining whether an SELinux policy meets high-level secu-

rity goals is hard.

3



Outline

Overview of PAL: Policy Analysis using Logic-Programming

Benefits of PAL

Related Work

Model of SELinux Policies

Information Flow

Queries

Future Work

4



Our Approach to SELinux Policy Analysis

PAL: Policy Analysis using Logic-Programming

Goal: Help user determine whether an SELinux policy meets

high-level security goals.

Methodology:

1. Automatically translate SELinux policy into a logic program.

2. Use simple logic programs to query (ask questions about) the

policy.

5



Benefits of PAL: Flexibility

Logic programs are more flexible and expressive than typical

special-purpose query languages.

Novice users can use a library of query templates.

Intermediate users can also create simple variants of queries

in library.

Advanced users can also develop new queries quickly in the

high-level, mostly-declarative logic-programming language.

6



Benefits of PAL: Efficiency

PAL is implemented in XSB, an efficient tabulation-based logic

programming system developed at SUNY at Stony Brook.

XSB’s goal-directed query evaluation avoids analyzing irrelevant

parts of the query.

Our translation of the policy preserves (doesn’t expand) macros,

which are used extensively as a form of abstraction in SELinux

policies. In effect, macros are expanded on-demand during pol-

icy analysis.

We translated the original policy (yielding 8.4 KLOC) and the

macro-expanded policy (yielding 23 KLOC) and ran queries on

both, to compare performance.

7



Benefits of PAL: Justification

XSB’s justifier can help explain query results to the user.

The justifier displays computation paths that led to the result.

Example: Consider information-flow property “All information

flow from X to Y passes through Z.”

If the policy violates this property, the justifier shows the user one

or all computation paths that correspond to counterexamples.

If the policy satisfies this property, the justifier shows the user

computation paths that correspond to all information-flow paths

from X to Y , so the user can see that they all pass through Z.

We have not yet integrated the justifier and PAL.

8



Related Work: SLAT

SLAT: Security-Enhanced Linux Analysis Tools

SLAT is from J. Guttman, A. Herzog, and J. Ramsdell at MITRE.

PAL adopts SLAT’s model of information flow.

SLAT has a special-purpose regular-expression-based language
for expressing information flow properties.

SLAT gives “yes” or “no” answers. A “no” answer is accompa-
nied by one counterexample.

PAL can show all counterexamples and can give sets, relations,
etc., as answers.
Example: Find all X such that information can flow from X to
Y without passing through Z.

9



Related Work: Apol and Gokyo

Apol, from Tresys Technology, provides a policy browser and

graphical display of a type transition graph and an information-

flow graph.

Apol does not support a language for expressing properties or

queries.

The Gokyo project at IBM Watson focuses on identifying and

achieving specific policy design goals, including integrity of the

TCB and completeness of the policy.

Gokyo’s policy analysis tool supports this by manipulating and

graphically displaying sets of permissions.

Gokyo does not analyze (transitive) information flow.

10



SELinux Security Contexts

security context: security-relevant information about a resource

(file, process, socket, etc.), specifically, [Type, Role, User].

user: similar to ordinary UNIX notion of user. Tracked separately

by the SELinux module.

role: A user (e.g., a system administrator) may act in different

roles, depending on the task at hand. A “dummy” role, object r,

is used for resources that are not processes.

type: set of resources with the same access-control requirements

Example: files whose names match /dev/hd* or /dev/sd* have

type fixed disk device t. Processes running executables used for

filesystem administration have type fsadm t.

11



SELinux Policies

policy: a sequence of rules that define several relations.

role(R, T): a process with role R may have type T.

user(U, R): a process of user U may enter role R.

A security context [T,R,U] is consistent if

(1) role(R, T) and user(U, R) hold, or

(2) R is object r and T is not a process type.

Inconsistent security contexts are prohibited at run-time.

Permissions are associated with types (see next slide). Thus,

the role and user relations indirectly (through types) limit the

permissions available to a process with a given role and user.

12



SELinux Policies (cont’d)

type(T, Aliases, Attributes). Attributes are used in other rules

to represent the set of types with that attribute.

access vector(allow, SourceT, TargetT, Class, Perm): resources

(typically processes) with type SourceT are allowed to perform

operation Perm on resources with class Class and type TargetT.

class: file, directory, process, socket, etc.

permission: read, unlink, signal, sendto, etc.

role allow(RoleSet, NextRoleSet): a process with a role in Role-

Set is allowed to transition to roles in NextRoleSet.

macros are used to define names for sets of classes, permissions,

and rules.

13



Information Flow Graph [SLAT]

Nodes: consistent security contexts.

Edges: [T1, R1, U1]
[C,P ]
−→ [T2, R2, U2] if

(1) a resource with security context [T1, R1, U1] is allowed to

perform a write-like operation P on a resource with class C and

type T2, or

(2) a resource with security context [T2, R2, U2] is allowed to

perform a read-like operation P on a resource with class C and

type T1.

Declarations in the policy indicate which operations are read-like

and which are write-like.

14



Queries: Information Flow

Information-flow queries ask about paths in the information-

flow graph. We formulate such queries as logic programs repre-

senting automata that accept the paths of interest.

Example from SLAT: Check whether the policy adequately re-

stricts access to raw disk data, i.e., accesses to fixed disk device t.

Hypothesis: information flow from a standard user’s security

context to fixed disk device t may occur only if the information

passes through the filesystem administrator type fsadm t.

SLAT shows 1 counter-example. PAL shows it and a few others.

Running time: 0.9 sec. With macro-expanded policy: 2.3 sec.

15



Details of fixed disk device t Info-Flow Query

Check whether there is an information-flow path from a security

context satisfying T = user t ∧ R = user r ∧ U 6= jadmin to a

security context satisfying T =fixed disk device t that does not

pass through a security context satisfying T =fsadm t.

init(fdisk_aut, [user_t,user_r,U], [neq(U,jadmin)]).
trans(fdisk_aut, [T0,R0,U0], (C,P), [T1,R1,U1], [neq(T1,fsadm_t)]).
trans(fdisk_aut, [T0,R0,U0], (C,P), [fixed_disk_device_t,R1,U1], []).
final(fdisk_aut, [fixed_disk_device_t,_R,_U], []).

16



Queries: Information Flow 2

Find all security contexts from which information can flow into

shadow t (which contains sensitive authentication information).

PAL finds 53 such security contexts.

Running time: 1.0 sec. With macro-expanded policy: 2.7 sec.

This query returns a set and hence cannot be done with SLAT.

transitive_flow(X,Y) :- flow_trans(X,Y).
transitive_flow(X,Y) :- flow_trans(X,Z), transitive_flow(Z,Y).
transitive_flow(SourceContext, [shadow_t, Role, User]).

17



Queries: Integrity

Check integrity of Jaeger et al.’s initial proposal for a Trusted

Computing Base (TCB) for SELinux, expressed as a set of

trusted types. In other words, find types outside the TCB from

which information can flow into the TCB in 1 step.

PAL, like Gokyo, reports numerous potential violations.

Running time: 0.3 sec. With macro-expanded policy: 1.1 sec.

integrity_violation(TCB, TCBType, OutType) :-
flow_trans([OutType,OutRole,OutUser], Class, Perm, [TCBType,TCBRole,TCBUser]),
member_type(TCBType,TCB), not_member_type(OutType,TCB).

18



Queries: Separation of Duty

“Perhaps the most basic separation of duty rule is that any per-

son permitted to create or certify a well-formed transaction may

not be permitted to execute it” [Clark and Wilson, 1987].

Find all file types for which some daemon type has execute

permission and a write-like permission.

PAL indicates that there are none in less than a second.

This implies that compromised daemons cannot infect

executables, foiling RootKit and similar attacks.

19



Queries: Completeness

neverallow rules in a policy have the same format as allow rules

but the opposite meaning. Policy compiler checks for consistency

of the allow and neverallow rules.

Find permissions that are neither allowed nor explicitly prohibited

by the policy. Gokyo pointed out that such permissions reflect a

kind of incompleteness in the policy.

This query is easy to do with PAL or Gokyo.

unspecified_permissions(SrcType,TargetType,Class,Perm) :-
is_type(SrcType), is_type(TargetType),
perm_valid_for_class(Perm,Class),
\+ access_vector(SrcType,TargetType,Class,Perm),
\+ neverallow1(SrcType,TargetType,Class,Perm).

20



Future Work

Policy Analysis using Logic-Programming is flexible and

efficient, but there is still work to do:

incremental policy analysis, as the policy changes.

compositional policy analysis, since policy fragments

associated with different applications may interact.

implementation and analysis of trust management policies.

21


