
Type Inference for Parameterized Race-Free
Java?

Rahul Agarwal and Scott D. Stoller

Computer Science Dept., SUNY at Stony Brook, Stony Brook, NY 11794-4400

Abstract. We study the type system introduced by Boyapati and Ri-
nard in their paper “A Parameterized Type System for Race-Free Java
Programs” and try to infer the type annotations (“lock types”) needed
by their type checker to show that a program is free of race conditions.
Boyapati and Rinard automatically generate some of these annotations
using default types and static inference of lock types for local variables,
but in practice, the programmer still needs to annotate on the order of 1
in every 25 lines of code. We use run-time techniques, based on the lock-
set algorithm, in conjunction with some static analysis to automatically
infer most or all of the annotations.

1 Introduction

Type systems are well established as an effective technique for ensuring at
compile-time that programs are free from a wide variety of errors. New type
systems are being developed by researchers at an alarming rate. Many of them
are very elaborate and expressive.
Types provide valuable compile-time guarantees, but at a cost: the program-

mer must annotate the program with types. Annotating new code can be a
significant burden on programmers. Annotating legacy code is a much greater
burden, because of the vast quantity of legacy code, and because a program-
mer might need to spend a long time studying the legacy code before he or she
understands the code well enough to annotate it.
Type inference reduces this burden by automatically determining types for

some or all parts of the program. A type inference mechanism is complete if it
can infer types for all typable programs.
Traditional type inference is based on static analysis. A common approach is

constraint-based type inference, which works by constructing a system of con-
straints (of appropriate forms) that express relationships between the types of
different parts of the program and then solving the resulting constraints.
Unfortunately, complete type inference is impossible or infeasible for many

expressive type systems. This motivates the development of incomplete type in-
ference algorithms. These algorithms fall on a spectrum that embodies a trade-off
? This work was supported in part by NSF under Grant CCR-
9876058 and ONR under Grants N00014-01-1-0109 and N00014-02-
1-0363. Authors’ Email: {ragarwal,stoller}@cs.sunysb.edu Web:
http://www.cs.sunysb.edu/˜{ragarwal,stoller}



between computational cost and power. Roughly speaking, we measure an algo-
rithm’s power by how many annotations the user must supply in order for the
algorithm to succesfully infer the remaining types. For some important type sys-
tems, even incomplete algorithms designed to infer most types for most programs
encountered in practice may have prohibitive exponential time complexity.

We have developed a new run-time approach to type inference that, for some
type systems, appears to be more effective in practice than traditional static type
inference. We monitor some executions of the program and infer (one might say
“guess”) candidate types based on the observed behavior.

A premise underlying this work is that data from a small number of simple
executions is sufficient to infer most or all of the types. In particular, it is not

necessary for the monitored executions collectively to achieve—or even come
close to—full statement coverage in order to support successful inference of types
for the entire program. Another premise is that the type inference is relatively
insensitive to the choice of test inputs. Experience with Daikon [Ern00] supports
this idea.

This approach has some obvious theoretical limitations. It is not complete,
because the process of generalizing from relationships between specific objects
in a particular execution to static relationships between expressions or state-
ments in the program is based in part on (incomplete) heuristics. Run-time type
inference is unsound (i.e., the inferred types might not satisfy the type check-
ing rules), because the observed behavior is not necessarily characteristic of all
possible behaviors of the program, and correct types express properties that
should hold for all possible behaviors of the program. We transform this un-
soundness into incompleteness by running the type-checker after type inference.
If the type-checker signals an error, we report that type inference failed. This is
not a problem in practice, provided it is rare.

Despite these theoretical limitations, from a pragmatic point of view, the
most important question for a given type system is whether run-time type infer-
ence, traditional static type inference, or a combination of them will provide the
greatest overall reduction of users’ annotation burden. As a first step towards
the empirical evaluation of run-time type inference, we developed and imple-
mented a run-time type inference algorithm for a recently proposed type system
for concurrent programs.

Concurrent programs are notorious for containing errors that are difficult
to reproduce and diagnose at run-time. This inspired the development of type
and effect systems (for brevity, we will call them “type systems” hereafter) that
statically ensure the absence of some common kinds of concurrent programming
errors. Flanagan and Freund [FF00] developed a type system that ensures that
a Java program is race-free, i.e., contains no race conditions; a race condition

occurs when two threads concurrently access a shared variable and at least one
of the accesses is a write. The resulting programming language (i.e., Java with
their extensions to the type system) is called Race Free Java. Boyapati and
Rinard [BR01] modified and extended Flanagan and Freund’s type system to
make it more expressive. The resulting programming language is called Param-



eterized Race Free Java (PRFJ). Hereafter, we assume that programs contain
all type information required by the standard Java type-checker, and we use the
word “types” to refer only to the additional type information required by these
extended type systems.

These type systems encode programming patterns that experienced program-
mers often use to avoid these errors. Specifically, these type systems track the use
of locks to “protect” (i.e., prevent concurrent access to) shared data structures.
Although these type systems are occasionally undesirably restrictive, experience
indicates that they are sufficiently expressive for many programs.

The cost of expressiveness is that type inference for these type systems is
difficult. In Flanagan and Freund’s experiments with three medium or large pro-
grams, well-chosen defaults, in combination with some potentially unsafe (but
usually safe in practice) “escapes” from the type system, reduce the number of
annotations needed to about 12 annotations/KLOC (KLOC denotes “thousand
lines of code”) on average [FF00]. For a fair comparison with type inference for
PRFJ (discussed below), note that PRFJ programs typically require more an-
notations than this, primarily because the PRFJ type system is more expressive
and does not rely on potentially unsafe escapes.

Flanagan and Freund subsequently developed a simple type inference algo-
rithm for their type system. Roughly speaking, it starts with a set of candidate
types for each expression, runs the type checker, deletes some of the candidate
types based on the errors (if any) reported by the type checker, and repeats this
process until the type checker reports no errors [FF01]. However, this algorithm
infers types only for a restricted version of the type system—specifically, a ver-
sion without external locks. Elimination of external locks significantly reduces
the expressiveness of the type system.

Boyapati and Rinard [BR01] use carefully-chosen defaults and local type in-
ference to reduce the annotation burden on users of PRFJ. The user provides
type annotations on selected declarations of classes, fields, and methods, and
selected object allocation sites (i.e., calls to new). Default types are used where
annotations are omitted. A simple intra-procedural constraint-based type in-
ference algorithm is used to infer types for local variables of each method. In
their experiments with several small programs, users needed to supply about 25
annotations/KLOC [BR01].

We believe that type systems like PRFJ are a promising practical approach to
verification of race-freedom for programs that use locks for synchronization, ex-
cept that the annotation burden is currently too high. We attempted to develop
static inter-procedural type inference algorithms for PRFJ, using abstract inter-
pretation [CC77] and constraint-based analysis (e.g., instantiation constraints
[AKC02]), but the analysis algorithms were computationally expensive, and we
did not believe they would scale to large programs.

This motivated us to develop and implement a run-time type inference algo-
rithm for PRFJ. The program is instrumented by an automatic source-to-source
transformation. The instrumented program writes relevant information (mainly
information about which locks are held when various objects are accessed) to



a log file. Analysis of the log, together with a simple static program analysis
that identifies unique pointers [AKC02], produces type annotations at selected
program points. Boyapati and Rinard’s simple intra-procedural type inference
algorithm is then used to propagate the resulting types to other program points.
This has the crucial effect of propagating type information into branches of the
program that were not exercised in the monitored executions. Our experience,
reported in detail in Section 6, is that run-time type inference provides a signif-
icant further reduction in the annotation burden.
If multiple types for (say) a field declaration are consistent with the logged

information, we use heuristics to prioritize them. If the candidate type with the
highest priority is rejected by the type checker (because it is inconsistent with
the types at other program points), we try the next one. In our experiments so
far, the highest-priority choice has always worked, so this iterative approach has
not been needed (or implemented).

Future Work. In the short term, we plan to implement a type checker for PRFJ;
our current lack of a type checker limited our experiments to programs small
enough for us to type-check manually. The run-time overhead of our instru-
mentation is already moderate (see Section 6) but could perhaps be reduced
by incorporating ideas from [vPG01]. In the longer term, we are investigating
type inference for race-free variants of C, such as [Gro03]. We expect run-time
type inference to be even more beneficial in this context. Boyapati and Rinard’s
defaults in PRFJ are very effective, in part because Java provides built-in locks,
so this is a very good guess at the identity of the protecting lock in many cases.
Devising equally effective defaults for variants of C seems difficult.

2 Related Work

Run-time type inference is very similar in spirit to Daikon [Ern00]. During ex-
ecution of a program, Daikon evaluates a large syntactic class of predicates at
specified program points and determines, for each of those program points, the
subset of those predicates that always held at that program point during the
monitored executions. Among those predicates, those that satisfy some addi-
tional criteria are reported as candidate invariants. Daikon cannot infer PRFJ
types, because the invariants expressed by PRFJ types are not expressible in
Daikon’s language for predicates. Daikon infers predicates that can be evalu-
ated at a single program point. In contrast, a single PRFJ type annotation can
express an invariant that applies to many program points. For example, if the
declaration of a field f in a class C is annotated with the PRFJ type self, it
means (roughly): for all instances o of class C, for all objects o′ ever stored in
field f of o, o′ is protected by its own lock, i.e., the built-in lock associated (by
the Java language semantics) with o′ is held whenever any field of o′ is accessed.
Such accesses may occur throughout the program.
Naik and Palsberg developed an expressive type system for ensuring that an

interrupt-driven program will handle every interrupt within a specified deadline



[NP03]. Their type system is equivalent to model checking, in the sense that
a program is typable exactly when their model checker, applied to a specified
abstraction of the program, verifies that all deadlines are met. Due to this close
connection, types for a program can be inferred from the output of the model
checker. Our goal is quite different than theirs: we aim to show that inexpensive
run-time techniques (in contrast to relatively expensive model checking) can
provide an effective basis for type inference.
Static analyses such as meta-compilation [HCXE02] and type qualifiers [FTA02]

have been used to check or verify simple lock-related properties of concurrent
programs, e.g., that a lock is not acquired twice by the same thread without an
intervening release. Such analyses cannot easily be used to check more difficult
properties such as race-freedom.

3 Overview of Parameterized Race Free Java (PRFJ)

The PRFJ type system is based on the concept of object ownership. Each object
is associated with an owner which is specified as part of the type of the variables
that refer to that object. Each object is owned by another object, or by special
values thisThread, self, unique or readonly. Since an object can be owned by
another object which in turn could be owned by another object, the ownership
relation can be regarded as a forest of rooted trees, where the roots may have self
loops. Ownership information expresses a synchronization discipline: to safely
access an object o, a thread must hold the lock associated with the root r of the
ownership tree containing o; r is called o’s root owner.
An object with root owner thisThread is unshared. Such objects can be ac-

cessed without synchronization. This is reflected in the type system by declaring
that every thread implicitly holds the lock associated with thisThread. An ob-
ject with owner self is simply owned by itself. If an object o has owner unique,
there is a single (unique) reference to o. Only the thread currently holding that
reference can access o, so there is no possibility of race conditions involving o,
and no lock needs to be held when accessing o. An object with owner readonly
cannot be updated and can be accessed without any locks.
Every class in PRFJ is parameterized with one or more parameters. Param-

eterization allows the programmer to specify appropriate ownership information
separately for each use of the class. The first parameter always specifies the
owner of the this object. The remaining parameters, if any, may specify the
owners of fields or parameters or return values of methods. The first parameter
of a class can be a formal owner parameter or one of the special values discussed
above; the remaining parameters must be formal owner parameters. When the
class is used in the program, its formal owner parameters are instantiated with
final expressions or the above special values. Final expressions are expressions
whose value does not change; using them to represent owners ensures that an
object’s owner does not change from one object to another. Syntactically, final
expressions are built from final variables, including the implicit this variable,
final fields, and static final fields. Ownership changes that do not lead to race



public class MyThread<thisThread> extends Thread<thisThread> {

public ArrayList<self,readonly> ls;

public MyThread(ArrayList<self,readonly> ls) {

this.ls = ls;

}

public void run() {

synchronized(this.ls) { ls.add(new Integer<readonly>(10)); }

}

public static void main(String args[]) {

ArrayList<self,readonly> ls = new ArrayList<self,readonly>();

MyThread<unique> m1 = new MyThread<unique>(ls);

MyThread<unique> m2 = new MyThread<unique>(ls);

m1--.start();

m2--.start();

}

}

Fig. 1. A Sample PRFJ Program.

conditions are allowed; for example, an object’s owner may change from unique

to any other owner.

Every method is annotated with a clause of the form “requires e1, . . . , en,
where the ei are final expressions. Locks on the root owners of the objects listed
in the requires clause must be held at each call site.

The type checking rules ensure that in a well-typed program, an object that
is not readonly can be accessed only by a thread that either holds the lock on
the root owner of the object or has a unique reference to the object. This implies
that the program is race-free.

To illustrate the PRFJ system, consider the program in Figure 1. The defini-
tion of class ArrayList is not shown, but it has two owner parameters: the first
specifies the owner of the ArrayList itself, and the second specifies the owner of
the objects stored in the ArrayList. The MyThread constructor returns a unique
reference to the newly allocated object. Thus, the main thread has unique refer-
ences to the two instances of MyThread until they are started. After an instance of
Mythread is started, it is accessed by only one thread (namely, itself) and hence
is unshared. Thus, the owner of each MyThread object changes from unique to
thisThread. The occurrences of -- in the main method indicate that the main
thread relinquishes its unique references to m1 and m2 when it starts them. These
occurrences of -- are required by the type checking rules, and we consider them
to be, in effect, type annotations.



The two instances of MyThread share a single ArrayList object a. The lock
associated with a is held at every access to a, so a has owner self, and the first
parameter of ArrayList is instantiated with self. Instances of the Integer

class are immutable, so they have owner readonly. All objects stored in a have
owner readonly, so the second owner parameter of ArrayList is instantiated
with readonly.
PRFJ defaults are unable to determine the unique, self, and readonly

owners used in this program. Our type-inference algorithm described in Section
4 infers all of the types correctly for this program. [AS03] shows in detail how
our algorithm works for this program.

4 Type Inference for PRFJ

Our algorithm has three main steps.
First, the static analysis in [AKC02] is used to infer unique and !e (“ not

escaping”) annotations for fields, method parameters, return values, and local
variables (PRFJ’s !e annotation corresponds to the lent annotation in [AKC02]).
We use static analysis for this because it is usually adequate and because run-
time determination of which objects have unique references would be expensive.
Second, run-time information is used to infer owners for fields, method pa-

rameters and return values. Owners in class declarations are inferred next. For
a class whose first owner is inferred to be a constant (i.e., anything other than
a formal owner parameter), all occurrences of that class in the program are
instantiated with that constant as the first owner.
Third, the intra-procedural type inference algorithm in [BR01, Section 7.1] is

applied, to infer the types of local variables whose types have not already been
determined.
Few classes need multiple owner parameters, and most of the classes that

do are library classes, which can be annotated once and re-used, so we do not
attempt to infer which classes C need multiple owner parameters or how those
parameters should be used in the declarations of fields and methods of C. We
assume this information is given. We do try to infer how to instantiate those
owner parameters in all uses of C.

4.1 Inferring Unique Owners

The static uniqueness analysis in [AKC02] is a fairly straightforward flow-sensitive
context-insensitive inter-procedural data-flow analysis whose running time is lin-
ear in the size of the program. For details, see [AKC02].

4.2 Inferring Owners for Fields, Method Parameters and Return

Values

Let x denote a field, method parameter, or method return type with reference
type (i.e., not a base type). To infer the owner of x (i.e., the first-owner in the



type of x), we monitor accesses to a set S(x) of objects associated with x. If x

is a field of some class C, S(x) contains objects stored in the f field of instances
of C. For a method parameter x, S(x) contains arguments passed through that
parameter. For a method return type x, S(x) contains objects returned from
the method. Let FE(x) denote the set of final expressions that are syntactically
legal (i.e., in scope) at the program point where x is declared.
After an object o is added to S(x), every access (read or write) to o is

intercepted and some information is recorded. Specifically, at the end of run-
time monitoring, the following information is available for each object o in S(x):
lkSet(x, o), the set of locks that were held at every access to o after o was inserted
in S(x) [SBN+97]; rdOnly(x, o), a boolean that is true iff no field of o was written
(updated) after o was inserted in S(x); shar(x, o), a boolean that is true iff o is
“shared”, i.e., multiple threads accessed non-final fields of o after o was inserted
in S(x); val(x, o, e), the value of final expression e at an appropriate point for x

and o, for each e ∈ FE(x). If x is a field, the appropriate point is immediately
after the constructor invocation that initialized o. If x is a parameter of a method
m, the appropriate point is immediately before calls to m at which o is passed
through parameter x. If x is a return type of a method m, the appropriate point
is immediately after calls to m at which o is passed as the return value of m.
The owner of x is determined by the first applicable rule below.

1. If the Java type of x is an immutable class (e.g., String or Integer), then
owner(x)=readonly.

2. If (∀o ∈ S(x) : ¬shar(x, o)), then owner(x)=thisThread.
3. If (∀o ∈ S(x) : rdOnly(x, o)), then owner(x)=readonly.
4. If (∀o ∈ S(x) : o ∈ lkSet(x, o)), then owner(x)=self.
5. Let E(x) be the set of final expressions e in FE(x) such that, for each object o

in S(x), val(x, o, e) is a lock that protects o; that is, E(x) = {e ∈ FE(x) | ∀o ∈
S(x) : val(x, o, e) ∈ lkSet(x, o)}. If E(x) is non-empty, take owner(x) to be
an arbitrary element of E(x).

6. Take owner(x) to be a formal owner parameter of the class containing x,
normally thisOwner.1

To reduce the run-time overhead, we restrict S(x) to contain only selected
objects associated with x. This typically does not affect the inferred types. We
currently use the following heuristics to restrict S(x). For a field x with type
C, S(x) contains at most one object created at each allocation site for C. For a
method parameter or return type x, S(x) contains at most one object per call
site of that method. Also, we restrict FE(x) to contain only the values of final
expressions of the form this or this.f , where f is a final field.

4.3 Inferring Values of Non-First Owner Parameters

If the Java type of x is a class C with multiple owner parameters, for each
formal owner parameter P of C other than the first, we need to infer ownerP (x),

1 This rule is not needed for the examples in Section 6.



the value with which P should be instantiated for x. Let SP (x) denote a set of
objects o′ associated with P for x and such that P denotes the first owner of o′. In
particular, for each o in S(x): (1) for each field f of C declared with P as the first
owner of f (i.e., class C<..., P, ...> { ... D<P> f; ... }), objects stored in
o.f are added to SP (x); (2) for each parameter p of a methodm of C such that the
first owner of p is P (i.e., class C<..., P, ...> { ... m(...,D<P> p,...) ...

}), add to SP (x) arguments passed through parameter p when o.m is invoked;
(3) for each method m of C whose return type has first owner P , add to SP (x)
objects returned from invocations of o.m. We instrument the program to monitor
accesses to objects in SP (x) and infer an owner based on that, just as in Section
4.2. As an optimization, we may restrict SP (x) to contain a subset of the objects
described above.

4.4 Inferring Owners in Class Declarations

Let owner(C) denote the first owner in the declaration of class C (i.e., it denotes
o in class C<o,...>). Let S(C) contain instances of C. We monitor accesses to
elements of S(C) as in Section 4.2 and then use the following rules to determine
owner(C).

1. If C is a subclass of a class C ′ with owner(C ′)=self, then owner(C)=self.

2. If S(C) = ∅ (i.e., there are no instances of C), then owner(C)=thisOwner.2

3. If (∀o ∈ S(C) : ¬shar(x, o)), then owner(C)=thisThread.

4. If (∀o ∈ S : o ∈ lkSet(x, o)), then owner(C)=self.

5. Take owner(C)=thisOwner.

For efficiency, we restrict S(C) to contain only a few instances of C. Currently,
we arbitrarily pick two fields or method parameters or return values of type C

and take S(C) to contain the objects stored in or passed through them.

4.5 Inferring requires Clauses

We infer requires clauses basically as in [BR01], except we use run-time moni-
toring instead of user input to determine which classes C have owner thisThread
(i.e., each instance of C is accessed by a single thread).

Each method declared in each class with owner thisThread is given an empty
requires clause. For each method in each other class, the requires clause
contains all method parameters p (including the implicit this parameter) such
that m contains a field access p.f (for some field f) outside the scope of a
synchronized(p) statement; as an exception, the run() method of classes that
implement Runnable is given an empty requires clause, because a new thread
holds no locks.

2 For example, in many programs, the class containing the main method is never
instantiated.



4.6 Static Intra-Procedural Type Inference

The last step is to infer the types of local variables whose types have not al-
ready been determined, using the intra-procedural type inference algorithm in
[BR01, Section 7.1]. Each incomplete type (i.e., each type for which the values
of some owner parameters are undetermined) is filled out with an appropriate
number of fresh distinct owner parameters. Equality constraints between owners
are constructed in a straightforward way from each assignment statement and
method invocation. The constraints are solved in almost linear time using the
standard union-find algorithm. For each of the resulting equivalence classes E, if
E contains one known owner o (i.e., an owner other than the fresh parameters),
then replace the fresh owner parameters in E with o. If E contains multiple
known owners, then report failure. If E contains only fresh owner parameters,
then replace them with thisThread. This heuristic is adequate for the examples
we have seen, but if necessary, we could instrument the program to obtain run-
time information about objects stored in those local variables, and then infer
their owners as in Section 4.2.

5 Implementation

This section describes the source-to-source transformation that instruments a
program so that it will record the information needed by the type inference
algrithm in Section 4. The transformation is parameterized by the set of classes
for which types should be inferred.
All instances of Thread are replaced with ThreadwithLockSet, a new class

that extends Thread and declares a field locksHeld. Synchronized statements
and synchronized methods are instrumented to update locksHeld appropriately;
a try/finally statement is used in the instrumentation to ensure that excep-
tions are handled correctly. For each field, method parameter and return type
x being monitored, a distinct IdentityHashMap is added to the source code.
The hashmap for x is a map from objects o in S(x) to the information recorded
for o, as described in Section 4, except the lockset. We store all locksets in a
single IdentityHashMap. Thus, even if an object o appears in S(x) for multiple
x, we maintain a single lockset for o. Object allocation sites, method invocation
sites, and field accesses are instrumented to update the hashmaps appropriately.
Which sites and expressions are instrumented depends on the set of classes spec-
ified by the user.

6 Experience

To evaluate the inference engine, we ran our system on the five multi-threaded
server programs used in [BR01]. C. Boyapati kindly sent us the annotated PRFJ
code for these servers. The programs are small, ranging from about 100 to 600
lines of code. We compare the number of annotations in that code—this is also
the number of annotations needed for the mechanisms in [BR01] to successfully



infer the remaining types—with the number of annotations needed with our type-
inference algorithm. Recall that our type-inference algorithm is also incomplete
and hence might be unable to infer some types. In these experiments, we infer
types only for the application (i.e., server) code; we assume PRFJ types are
given for Java API classes used by the servers.

In summary, our type-inference mechanism successfully inferred complete and
correct typings for all five server programs, with no user-supplied annotations.
Also, slowdown due to the instrumentations was typically about 20% or less.

Four of the server programs did not come with clients, so we wrote very
simple clients for them. One server program (PhoneServer) came with a simple
client. We modified the servers slightly so they terminate after processing one
or two requests (in our current implementation, termination triggers writing of
collected information to the log). A single execution of each server with its simple
client provided enough information for successful run-time type inference. This
supports our conjecture (in Section 1) that data from a small number of simple
executions is sufficient.

The original PRFJ code for GameServer requires 7 annotations. Our algo-
rithm infers types for the program with no annotations. We wrote a simple client
with two threads. This program is sensitive to the scheduling of threads. Different
interleavings of the threads caused different branches to be taken, leaving other
branches in the code unexercised in that execution. We applied our run-time
type inference algorithm to each of the possible executions, and it sucessfully
inferred the types in every case.

The original ChatServer code contains 13 annotations. We wrote a simple
client with two threads. One class (read from connection) in the server pro-
gram has only final fields, and the class declaration can correctly be typed with
owner self or thisThread. The original code contains a manual annotation of
self, while our algorithm infers thisThread. The ChatServer, like the other
servers, uses Boyapati’s modified versions of Java API classes (e.g., Vector),
from which synchronization has been removed. The benefit is that synchroniza-
tion can be omitted in contexts where it is not needed; the downside is that,
when synchronization is necessary, it must be included explicitly in the appli-
cation code. We also considered a variant of this server that uses unmodified
Java library classes. Our algorithm infers a complete and correct typing for both
variants, with no assistance from the user.

The original QuoteServer code contains 15 annotations, PhoneServer code
contains 12 annotations across 4 classes and HTTPServer contains 23 annota-
tions across 7 classes. Our algorithm infers types for each of these programs
with no annotations. Most of the annotations in QuoteServer were unique an-
notations, and static analysis of uniqueness is able to infer the annotations. For
the HTTPServer program the inferred types are not exactly the same as those
in the original code, as was the case with ChatServer.

Encouraged by these initial results, we plan to apply our system to much
larger examples as soon as we have implemented a type-checker for PRFJ.



Acknowledgement. We thank Chandra Boyapati for many helpful comments
about PRFJ.

References

[AKC02] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annota-
tions for program understanding. In Proc. 17th ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA).
ACM Press, 2002.

[AS03] Rahul Agarwal and Scott D. Stoller. Type inference for parameterized race-
free Java. Technical Report DAR 03-10, Computer Science Department,
SUNY at Stony Brook, October 2003.

[BR01] Chandrasekar Boyapati and Martin C. Rinard. A parameterized type system
for race-free Java programs. In Proc. 16th ACM Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA),
volume 36(11) of SIGPLAN Notices, pages 56–69. ACM Press, 2001.

[CC77] Patrick Cousot and Radhia Cousot. A unified lattice model for static analy-
sis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM Symposium on Principles of Program-
ming Languages, pages 238–252, 1977.

[Ern00] Michael D. Ernst. Dynamically Discovering Likely Program Invariants. PhD
thesis, University of Washington, Department of Computer Science and En-
gineering, 2000.

[FF00] Cormac Flanagan and Stephen Freund. Type-based race detection for Java.
In Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 219–232. ACM Press, 2000.

[FF01] Cormac Flanagan and Stephen Freund. Detecting race conditions in large
programs. In Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE), pages 90–96. ACM Press, June 2001.

[FTA02] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type
qualifiers. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM Press, 2002.

[Gro03] Dan Grossman. Type-safe multithreading in Cyclone. In Proc. ACM SIG-
PLAN International Workshop on Types in Languages Design and Imple-
mentation (TLDI), pages 13–25. ACM Press, 2003.

[HCXE02] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system
and language for building system-specific, static analyses. In Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), pages 69–82. ACM Press, 2002.

[NP03] Mayur Naik and Jens Palsberg. A type system equivalent to a model checker.
Master’s thesis, Purdue University, 2003.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas E. Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Systems, 15(4):391–
411, November 1997.

[vPG01] Christoph von Praun and Thomas R. Gross. Object race detection. In
Proc. 16th ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), volume 36(11) of SIGPLAN No-
tices, pages 70–82. ACM Press, October 2001.


