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Abstract. This paper describes a general approach for optimized live
heap space and live heap space-bound analyses for garbage-collected lan-
guages. The approach is based on program analysis and transformations
and is fully automatic. In our experience, the space-bound analysis gen-
erally produces accurate (tight) upper bounds in the presence of partially
known input structures. The optimization drastically improves the anal-
ysis efficiency. The analyses have been implemented and experimental
results confirm their accuracy and efficiency.

1 Introduction

Time and space analysis of computer programs is important for virtually all
computer applications, especially in embedded systems, real-time systems, and
interactive systems. Space analysis is becoming important due to the increasing
use of high-level languages with garbage collection, such as Java, the importance
of cache memories in performance [28], and the stringent space requirements of
embedded applications [25]. For example, space analysis can determine exact
memory needs of embedded applications; it can help determine patterns of space
usage and thus help analyze cache misses or page faults; and it can determine
memory allocation and garbage collection behavior.
Space analysis is also important for accurate prediction of running time [11].

For example, analysis of worst-case execution time in real-time systems often uses
loop bounds or recursion depths [21, 2] both of which are commonly determined
by the size of the data being processed. Also, memory allocation and garbage
collection, as well as cache misses and page faults, contribute directly to the
running time. This is increasingly significant as the processor speed increases,
leaving memory access as the performance bottleneck.
Much work on space analysis has been done in algorithm complexity analysis

and systems. The former is in terms of asymptotic space complexity in closed
forms [5]. The latter is mostly in the form of tracing memory behavior or analyz-
ing cache effects at the machine level [20, 28]. What has been lacking is analysis
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of space usage for high-level languages, in particular, automatic and accurate
techniques for live heap space analysis for languages with garbage collection,
such as Java, ML or Scheme.

This paper describes a general approach for automatic accurate analysis of
live heap space based on program analysis and transformations. The analysis
determines the maximum size of the live data on the heap during execution. This
is the minimum amount of heap space needed to run the program if garbage
collection is performed whenever garbage is created. This metric is useful for
evaluating other garbage collection schemes, just like the performance of an
optimal cache replacement algorithm is useful for evaluating other replacement
algorithms. The analysis can easily be modified to determine related metrics,
such as space usage when garbage collection is performed only at fixed points in
the program.

Our approach starts with a program written in a high-level functional lan-
guage with garbage collection. We construct (i) a space function that takes the
same input as the original program and returns the amount of space used and
(ii) a space-bound function that takes as input a characterization of a set of
inputs of the original program and returns an upper bound on the space used
by the original program on any input in that set. Finding tight space bounds
is undecidable, so space-bound functions may diverge. In our experience, this is
rare.

A key problem is how to characterize the input data and exploit this informa-
tion in the analysis. In traditional complexity analysis, inputs are characterized
by their size. Accommodating this requires manual or semi-automatic transfor-
mation of the time or space function [17, 29]. The analysis is mainly asymptotic.
A challenging problem that arises in this approach is optimizing the time-bound
or space-bound function to a closed form in terms of the input size [17, 24, 7]. But
closed forms are known only for subclasses of functions. Thus, such optimization
can not be done automatically for analyzing general programs.

Rosendahl proposed characterizing inputs using partially known input struc-

tures [24]. For example, instead of replacing an input list l with its length n, we
simply use as input a list of n unknown elements. A special value uk (“unknown”)
is introduced for this purpose. It represents unknown primitive values; if it rep-
resented constructed data, we wouldn’t know how much space it used. At control
points where decisions depend on unknown values, the maximum space usage of
all branches is computed. Rosendahl concentrated on proving the correctness of
this transformation for time-bound analysis. He relied on optimizations to obtain
closed forms, but closed forms can not be obtained for all bound functions.

Our analysis and transformations are performed at source level. Our goal
is a language-based analysis that abstracts from details of particular language
implementations. For a particular language implementation, lower-level issues
may need to be considered to determine the exact minimum heap space needed
to run a given program.

Profiling, like space functions, measures the program’s behavior on one input
at a time; space-bound functions can efficiently analyze the program’s behavior



on a set of inputs at once. They can thus be used to determine worst-case space
usage of a program. Alternatively, worst-case space usage may be determined by
applying the space function to a worst-case input. But in general, it is non-trivial
to determine such an input.
Our approach combines program analysis and model checking and is called

model analysis.
Live heap space-bound analysis is an abstract interpretation of live heap

space analysis. While the latter works in the domain of concrete heaps, the for-
mer works in the domain of abstract heaps that represent the different possible
heaps at a program point. Instead of performing a fixed-point computation of
the abstract function like traditional abstract interpretations, we simply exe-
cute the abstract space-bound function on a given partially known input. Our
analysis could be cast as a fixed-point calculation. While this may help achieve
termination, the memory needs would be far greater due to the large number of
required subcomputations and the large size of abstract heaps.
Space-bound analysis may also be viewed as a specialized model checking al-

gorithm that searches a program’s state space to determine its worst-case space
usage. Our analysis is similar in some ways to an explicit-state model-checker
applied to a program in which primitive values have been abstracted. But there is
an important difference: traditional model checkers work on unstructured transi-
tion systems and can check a large range of properties, while our analysis works
directly on programs in a high-level language and incorporates optimizations
that exploit program structure and are possible only because the analysis is
specifically targeted to determine heap space usage. In particular, it is easy to
see that the two states resulting from the two branches of a conditional in a
space-bound function are the same in all ways, except for a well-delineated re-
gion of their heaps. Our analysis uses a join operation that merges such states
into a single state. This reduces the number of states and the space needed to
store them. It also reduces the number of transitions that need to be explored,
since they may now be explored from a single merged state.
A main contribution of this paper is an extremely effective optimization in

space-bound analysis that limits the state space search to paths leading to max-
imal heap usage. For many examples, this optimization improves the asymptotic
complexity of the analysis from greater than polynomial to polynomial.

2 Language

We use a first-order, call-by-value functional language that has literal values of
primitive types, structured data, operations on primitive types, testers, selec-
tors, conditionals, bindings, and function calls. These are fundamental program
constructs that have analogues in all programming languages. A program is a
set of mutually recursive function definitions of the form f(v1, ..., vn) = e, where
an expression e is given by the grammar in Figure 1. We sometimes use infix
notation for primitive operations. A tester application c?(v) returns true iff v
has outermost constructor c. A selector application c−i(v) returns the i’th com-



e ::= v variable reference
| l literal
| c(e1, ..., en) constructor application
| p(e1, ..., en) operation on primitive types
| c?(e) tester application
| c−i(e) selector application
| if e1 then e2 else e3 conditional expression
| let v = e1 in e2 binding expression
| f(e1, ..., en) function application

Fig. 1. Input language.

ponent of a data construction v with outermost constructor c. Input programs
to our analysis are assumed to be purely functional, but transformed programs
use arrays and imperative update. A sequential composition e1; e2 returns the
value of e2.

3 Live Heap Space Functions

To analyze the live heap space used by a program on a known input, we transform
the program into one that performs all the computations of the original program
and keeps track of the total amount of live data. Liveness is ascertained using
reference counts. The reference count for a data construction v is the number of
pointers to v. These may be pointers from the stack, created by let bindings or
bindings to formal parameters of functions, or pointers from the heap, created
by data constructions. Data construction v is live if its reference count is greater
than 0 or if it is the result of the expression just evaluated.

A constructor count vector v has one element v[ic] corresponding to each data
constructor c used in a given program. Let P [ic] be the size of an instance of c.
Let · denote dot product of vectors. The maximum max(v1, v2) of constructor
count vectors v1 and v2 is v1 if v1 · P ≥ v2 · P and is v2 otherwise.

The transformation L in Figure 2 produces live heap space functions. The
transformation of testers and let expressions is elided for brevity. The com-
plete transformation appears in [27]. L introduces two global variables, live and
maxlive, that satisfy: (1) for each constructor c, live[ic] is the number of live
instances of c; (2) maxlive is the maximum value of live so far during execution.
The maximum live space used during evaluation of function f is at most ml ·P ;
ml is the value of maxlive after evaluation of the space or bound function for f .

Our implementation of reference counting is based on an abstract data type
(ADT) called con-value (“constructed-value”) that defines five functions. new(c(x1,
. . . , xn)) returns a value v representing a new data construction c(x1, . . . , xn),
whose reference count is initialized to zero. data(v) returns the data construction
c(x1, . . . , xn). rc(v) returns the reference count associated with v. incrc(v) and



decrc(v) increment and decrement, respectively, the reference count associated
with v. incrc and decrc are no-ops if the argument is a primitive value.

fL(v1, . . . , vn) = L [[e]] where e is the body of function f , i.e., f(v1, . . . , vn) = e

L [[v]] = v

L [[l]] = l

L [[c(e1, . . . , en)]] = live[ic]++; if (P · live > P ·maxlive)
then for c ∈ Constructors maxlive[ic] := live[ic];

let r1 = L [[e1]] , . . . , rn = L [[en]] in

incrc(r1); . . . ; incrc(rn);new(c(r1, . . . , rn))

L [[p(e1, . . . , en)]] = p(L [[e1]] , . . . ,L [[en]])

L
[[

c−i(e)
]]

= let x = L [[e]] in

let r = c−i(data(x)) in

(if not(isPrim(x)) and rc(x) = 0 then gcExcept(x, r)); r

L [[if e1 then e2 else e3]] = if L [[e1]] then L [[e2]] else L [[e3]]

L [[f(e1, . . . , en)]] = let r1 = L [[e1]] , . . . , rn = L [[en]] in

incrc(r1); . . . ; incrc(rn);
let r = fL(r1, . . . , rn) in

gcExcept(r1, r); . . . ; gcExcept(rn, r); r

gc(v) = if not(isPrim(v))
then decrc(v); if rc(v) ≤ 0

then live[conType(v)]−−;
for i = 1..arity(v) gc(c−i(data(v)))

gcExcept(u, v) = incrc(v); gc(u); decrc(v)

Fig. 2. Transformation that produces live heap space functions fL. isPrim(v) is true iff
v is primitive. conType(v) returns an integer ic that uniquely identifies the outermost
constructor c in data(v). arity(v) returns the arity of the outermost constructor in
data(v).

Updating Reference Counts. rc(v) is incremented when v is bound to a
variable or function parameter, or a data construction containing v as a child
is created. rc(v) is decremented when the scope of a let binding for v ends,
a function call with an argument bound to v returns, or a data construction
containing v as a child becomes garbage.

Updating live and maxlive. Whenever new data is constructed, live is in-
cremented, and maxlive is recomputed. live is decremented by an auxiliary func-
tion gc (“garbage collect”) which is called whenever data can become garbage.
A data construction may become garbage (1) because of a decrement of its
reference count or (2) because it is created in the argument of a selector or
tester and is lost to the program after the result of the selection or test is ob-
tained. For example, cons(0, nil) is garbage after the application of cons−1 in



cons−1 (cons(0, nil)); note that its reference count is always 0. gcExcept(u, v) is
called when u should be garbage collected, v should not be garbage collected
and v might be a descendant of u.

4 Live Heap Space Bound Functions

The transformation Lb in Figure 3 produces live heap space-bound functions.
The transformation of certain expressions is elided for brevity; for variables, lit-
erals and constructor applications Lb works the same way as L. The complete
transformation appears in [27]. We sometimes refer to space-bound functions
simply as bound functions. At every point during the execution of Lb [[f ]] (x), the
value of live is an upper bound on the possible values of live at the correspond-
ing point in executions of L [[f ]] (x′), for all x′ in the set represented by x. The
presence of partially known inputs in bound analysis causes uncertainty. For con-
ditionals whose tests evaluate to uk , both branches are evaluated to determine
the maximum live heap space usage.
Live heap bound analysis depends on keeping track of all references and

reference counts meticulously. Summarizing the results of two branches into a
single partially known structure, as is done in time analysis [18], does not work
for live heap bound analysis because it would be impossible to keep track of
references accurately. So the result of a conditional whose test evaluates to uk

is a separate entity, a join-value, that points to both results and has its own
reference count.

Abstract Data Types. In addition to the con-value type, an ADT called
join-value is also used. A join-value represents a set of possible results. Join-
values are created by conditional expressions whose tests evaluate to uk and
by selectors applied to join-values. Each join-value j has a list branches(j) con-
taining references to con-values and/or join-values. Primitive values, if any, in
the set represented by j are not stored in j. Thus, if branches(j) has only one
element, j represents a choice between that element and some primitive value.
j has an associated constructor count vector exs(j). Parts of the data construc-
tions represented by j may be live regardless of j. Of the other parts, only those
occurring in a single largest branch are live in a worst case (i.e., maximal live
heap space) execution of the original program. The sum of the other parts that
are not in the largest branch is stored in exs(j). live does not include exs(j).
When j becomes garbage, exs(j) is added to live just before garbage collecting
the branches of j. Like con-values, join-values have reference counts and related
functions rc, incrc and decrc. newjoin(b) creates a join-value j with a list b of
branches; rc(j) is initialized to 0, and exs(j) is initialized to the zero vector,
denoted V0.

Conditionals, Selectors and Testers. Consider a conditional expression
(if e1 then e2 else e3)

† whose test evaluates to uk . Suppose l1, l2 and l3 are
the values of live after evaluating e1, e1; e2 and e1; e3, respectively. The value
of live at † is set to max(l2, l3). The result r of the conditional is computed by
join(r2, r3), where r2 and r3 are the results of e2 and e3, respectively. If r2 and



fLb(v1, . . . , vn) = Lb [[e]] where e is the body of function f , i.e., f(v1, . . . , vn) = e

Lb [[p(e1, . . . , en)]] = pu(Lb [[e1]] , . . . ,Lb [[en]])

pu(v1, . . . , vn) = if v1 = uk or · · · or vn = uk then uk else p(v1, . . . , vn)

Lb

[[

c−i(e)
]]

= let x = Lb [[e]] in

let r = c−i
u (x) in

(if not(isPrim(x)) and rc(x) = 0 then gcExcept(x, r); recomputeExs(r)); r

c−i
u (v) = if v = uk then c−i(false)

else if isJoin(v)
then if length(branches(v)) = 1 then c−i(false)

else join(c−i
u (first(branches(v))), c−i

u (second(branches(v))))
else c−i(data(v))

Lb [[if e1 then e2 else e3]] =
let b = Lb [[e1]] in

if b = uk then let l1 = copy(live) in

let r2 = Lb [[e2]] in

let l2 = copy(live) in

live := l1; let r3 = Lb [[e3]] in

let l3 = copy(live) in

live := max(l2, l3); let r = join(r2, r3) in

setexs(r,min(l2 − l1, l3 − l1)); r

else if b then Lb [[e2]] else Lb [[e3]]

Lb [[f(e1, . . . , en)]] = let r1 = Lb [[e1]] , . . . , rn = Lb [[en]] in

incrc(r1); . . . ; incrc(rn);
let r = fLb(r1, . . . , rn) in

gcExcept(r1, r); . . . ; gcExcept(rn, r); recomputeExs(r); r

gc(v) = if not(isPrim(v))
then decrc(v); if rc(v) ≤ 0

then if isJoin(v)
then live = live + exs(v);

for u in branches(v) gc(u)
else live[conType(v)]−−;

for i = 1..arity(v) gc(c−i(data(v)))

Fig. 3. Transformation that produces live heap space-bound functions fLb. copy copies
a vector. + and −, when applied to vectors, denote component-wise sum and difference.

r3 are primitive, then join(r2, r3) is r2 if r2 = r3 and uk otherwise. If r2 and r3
are not primitive and are the same, then join(r2, r3) is r2. Otherwise, join(r2, r3)
is a join-value pointing to r2 and r3. exs(r) is set to min(l2 − l1, l3 − l1). l2 − l1
and l3 − l1 are the amounts of new data in r2 and r3, i.e., the amounts of data
created by e2 and e3. r2 and r3 may contain old data too, i.e., data created
before evaluating e2 and e3. Old data are live regardless of r. Between the sets



of new data in r2 and r3, only one set is live. We keep the larger set live; the
size of the other set is exs(r).

Observe that in the transformation of (if e1 then e2 else e3), we evaluate
e2 and then e3, making copies of only live in between. We do not need to make
copies of the heap because the source language does not contain imperative
update. Thus, if h1 is the heap after the evaluation of e1, then e2 and e3 modify
h1 only by adding new con-values to it. Informally, h2, the heap after evaluation
of e2, is (h1 ∪ r2). Similarly, h3 is (h1 ∪ r3), h3 having the expected meaning.
In other words, the heap after evaluation of the conditional is (h1 ∪ (r2 or r3)).
The choice between r2 and r3 is conveniently represented using a join-value that
points to them both.

For join-values with two non-primitive branches, selectors and testers are
first applied to the branches and the join of the results is returned. The exs field
of a join-value j that is the result of applying a selector to another join-value j ′

is set to V0, because when j is created, j ′ is live, and exs(j′) already takes care
of any excess.

When a selector c−i is applied to uk or a join-value j with a primitive branch,
it simply aborts by attempting to apply the selector to an arbitrary primitive
value. However, if we assume that the given program never applies selectors to
primitive values, then the occurrence of c−i(j) in the analysis corresponds to the
application of c−i to the non-primitive branch of j in the original program. With
this assumption, c−i(j) is simply the result of applying c−i to the non-primitive
branch. Applications of selectors to join-values with primitive branches is in fact
seen in only one of our examples, namely quicksort.

Achieving Tightness. The following example illustrates why live may not
be as tight as desired.

let u = cons(1,nil) in

let v = cons(2,nil) in

(if uk then cons(3, v) else cons(4, cons(5, u)))
(1)

Let r be the result of the conditional. Let ci denote the data construction with
cons−1 (ci) = i. Just after the conditional is evaluated, live includes the sizes of
both c1 and c2. live excludes the size of c3 because the result of the alternative
branch containing c4 and c5 is larger; so live includes the latter instead of the
former. Once v goes out of scope, c2 is live only through the reference from r.
At this point in any execution of the original program, either c2 and c3 are live
or c4 and c5 are live; c1 is definitely live because of the binding for u. But in the
analysis, because of the reference from r, c2 is kept live and its size is included
in live. Thus, join-value r causes live to be loose by one cons.

In general, at any point at which all references to a data construction v are
lost except for references from a join-value, there is a possibility that live is
loose because it includes the size of v when it should not. These points arise
immediately after decrements to rc(v) caused by (1) a variable or parameter
going out of scope or (2) parts of data becoming garbage after the application
of a selector. v may then be an excess in live caused by a join-value j which in



case (1), is in the result of a function call or let expression and in case (2), is
in the result of the selector. The exs attributes of join-values in the results of
function calls, let expressions and selectors are recomputed and the value of live
adjusted appropriately. Observe that v may be part of a join-value j ′ that is not
in the result of these expressions. It can be shown that loss of references to v
at the completion of the expressions, has no effect on exs(j ′) and so we do not
recompute it. Note that recomputing exs is used only to obtain tighter bounds,
so calling or not calling it at any point in the analysis is safe.

5 Optimizations

We use two optimizations that reduce the asymptotic complexity of live heap
analysis for many programs. The first optimization avoids looking at data struc-
tures without join-value descendants when recomputing exs attributes. This is
done by adding to con-values and join-values a boolean attribute that indicates
the presence of join-value descendants. The second optimization is as follows:
at any point p during the execution of a bound function, a join-value j with
branches b1 and b2 and without any join-value descendants may be reduced to
b1 if b1 leads to equal or greater live heap usage as compared to b2. This holds
with b1 and b2 interchanged also.
The stack and live heap can be viewed as a graph: con-values and join-values

in the heap and formal parameters of functions and let-bound variables on the
stack are vertices; references from variables, con-values and join-values to con-
values and join-values are edges. The subgraph comprised of nodes and edges
reachable from a node x is an edge-ordered DAG Gx rooted at x. It is acyclic
because we are dealing with a first-order functional language. The ordering of
fields in data constructions imposes an ordering on the out-edges from nodes.
For example, if x = cons(1, y) and y is not a primitive value, then Gx contains
the edge 〈x, y, 2〉. We say that a vertex u is contained-in a vertex v if v is an
ancestor of u in every path from a node for a parameter or variable to u.

Reducibility of Join-values. j = join(b1, b2) is reducible to b1 at a point
p0 during execution of a bound function if at p0

R0. j does not have any join-value descendants.
R1. Gb1 and Gb2 , the DAGs rooted at b1 and b2, are isomorphic. Let f be an

isomorphism between Gb1 and Gb2 .
R2. Corresponding primitive values in b1 and b2 and their descendants are equal,

taking uk = uk.
R3. For every node d1 of Gb1 , if d1 is not contained-in j, then d1 and f(d1) are

the same node.

R0 implies that j represents exactly two data structures: b1 and b2. R1 and R2
state that b1 and b2 have the same structure and contents. The only possible
difference between b1 and b2 is the particular heap locations they use. No opera-
tion in our language can distinguish b1 and b2; recall that we don’t consider eq?.
Thus, R1 and R2 ensure that the program’s execution is the same regardless



of whether b1 or b2 is used, except for the heap space used by b1 and b2. R3
asserts that b1 always contributes at least as much to the live heap space as b2.
For example, this happens if b2 references data constructions that are live even
without references from b2 and the corresponding data constructions in b1 are
live only because of the references from b1.

As an example, consider the expression below. Also shown is the abstract
heap at the point just after the evaluation of the conditional. Con-values c1

let v = cons(uk ,nil) in

if uk
then cons(uk , cons(uk ,nil))
else cons(uk , v)

c2 c4

c1c3

j v

through c4 are numbered according to their syntactic order of appearance. The
join-value result j of the conditional satisfies conditions R0 through R3, and
hence may be reduced to its left branch.

Theorem 1. If j = join(b1, b2) is reducible to b1 at a point p0 during execution

of a bound function, then it is safe to replace all references to j with references

to b1, i.e., space-bound analysis still returns an upper bound on live heap usage.

Sketch of Proof: Based on the above arguments, it suffices to show that b1
contributes at least as much to the live heap space as b2, at p0 and thereafter.
The contribution of bi to live is the amount of data contained-in j and referenced
by bi. At p0, because of R1 and R3, for every descendant of b2 that is contained-
in j, there exists a unique descendant of b1 that is contained-in j. So, at p0, b1
contributes at least as much to live as b2. It can be shown that this continues to
be the case after p0. The complete proof is in [26].

6 Handling Tail Call Optimization

Tail call optimization [1] is handled in our analysis by recognizing function
calls in tail position and at the sites of these calls, garbage collecting all vari-
ables in the current scope. The transformation for space functions is straight-
forward but that for bound functions is more involved. Consider a conditional
(if uk then e2 else e3) that is in tail position. Both e2 and e3 need to be eval-
uated. Suppose both e2 and e3 contain tail calls. During the evaluation of e2,
all environment variables u1, . . . , um are garbage collected just before the tail
call. But at the start of evaluation of e3, u1, . . . , um are still live, so the effects
of the earlier garbage collection have to be reversed before evaluating e3. Also,
references from the result of e2 to u1, . . . , um should not hinder their garbage
collection before the tail call in e3. Similar issues arise when only one or none of
the two branches contain tail calls.
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Fig. 4. Results of live heap space analysis. n is the input size. For binary tree insert, h is the height
of the complete binary tree and n is the number of nodes in the tree.

7 Experiments

We implemented the analyses and measured the results for several standard
list and tree processing programs. Comparisons of results of space and bound
functions show that bound functions produce exact bounds for all but one ex-
ample. For most of the examples, the bound functions have the same asymptotic
time complexities as the corresponding space functions. For all examples, a com-
parison of the running times of bound functions and the running times of space
functions multiplied by the number of represented inputs showed that the bound
functions are asymptotically faster than applying the corresponding space func-
tions to all represented inputs. The non-termination issue mentioned in Section
1 is not a problem for any of these examples.
Figure 4 contains the results of live heap space analysis on some examples.

For all examples except quicksort, we show only the results of bound functions
on partially known inputs, because they are the same as the results of the space
functions on worst-case input. Reversal using append is the standard quadratic-
time version. The version of merge sort tested is the one that splits the input
list into sublists containing the elements at odd and even positions. Dynamic
programming algorithms [5] are used for longest common subsequence and string
edit. Binary-tree insertion involves insertion of an item into a complete binary
tree in which each node is a list containing an element and left and right subtrees.
The partially known inputs for the bound functions of reversal and sorting

are lists of known lengths n where all elements are uk; those for longest common
subsequence and string edit are two such lists of equal length n. The bound
function for binary-tree insertion inserts uk into a complete binary tree of known
height h with unknown elements.
The difference between the results of the space and bound functions of quick-

sort is due to the use of uk ; every uk element of the input list is both greater
and less than every other uk element. The space-bound function of quicksort
terminates, while the time-bound function for quicksort in [18] diverges. This
is essentially because join-values retain more information than partially known
structures. See [26] for more details.
The results in Figure 4 include the space used by top-level arguments since

these arguments are indeed live throughout the execution of the program. Figure
5 contains running times of live heap analysis of some examples; more results
appear in [27, 26]. For all examples, the live heap space function has the same



reversal w/append insertion sort selection sort longest common subseq.
n S B Bopt n S B Bopt n S B Bopt n S B Bopt

101 1.0 m 0 1.0 m 101 1.0 m 1.0 M 9.0 m 101 0 37.3 s 10.0 m 101 10.0 m 0.8 s 44.0 m
102 0.1 s 0.3 s 0.1 s 102 0.1 s 5.1 s 102 0.2 s 5.0 s 102 6.6 s 24.0 s
103 10.7 s 3.5 M 11.9 s 103 12.8 s 1.5 H 103 27.3 s 1.5 H 103 2.0 H 7.1 H

Fig. 5. Running times of live heap space and live heap space-bound functions. Columns S, B and Bopt
contain times of space, unoptimized space-bound and optimized space-bound functions, respectively.
n and h are as in Figure 4. m is milliseconds, s is seconds, M is minutes and H is hours. Blank fields
in B and Bopt columns indicate terminating but long analyses that were aborted after a few days.

asymptotic time complexity as the original function. The time complexities of the
live heap bound functions of reverse using append, string edit and longest com-
mon subsequence are the same as the complexities of the corresponding original
functions. The time complexities of the optimized bound functions of insertion
sort and selection sort are a linear factor more than those of the original func-
tions due to the computation involved in reducing join-values. The running time
of the bound function of merge sort is more than polynomial in the size of the
input. This is because the analysis examines all (n+m)!/(n!×m!) ways in which
two sorted lists of sizes n and m may be merged in sorted order. The running
time of the bound function of binary tree insert is polynomial in the size of the
input. The first optimization in Section 5 improves the asymptotic complexity
of reverse using append by a linear factor. The second optimization improves
the asymptotic complexities of insertion sort, selection sort and longest common
subsequence from greater than polynomial to polynomial. These speedups are
shown in Figure 5.

We applied live heap space analysis handling tail call optimization to tail-
recursive versions of reverse, insertion sort, selection sort and an optimized Ack-
ermann’s function. Comparing the results with those of the corresponding non-
tail-recursive programs showed that tail call optimization does significantly re-
duce heap usage. For example, tail-recursive insertion sort uses only O(n) space,
while non-tail-recursive insertion sort uses O(n2) space. The optimized Acker-
mann’s function [19] is a systematically derived program which has much better
time complexity than the classical version. Let n and m be the first and second
arguments to the function. The space complexity of this program was worked out
by hand to be O(n), but it is hard to see this because of the complicated space
usage of the program. The results of our analysis for n ∈ [0, 3], m ∈ [2, 10] do not
prove O(n) space usage but helped confirm that, for a given n, the space usage
is independent of m. Computing Ackermann’s function for n > 3 is famously
expensive.

We applied our analysis to a 600-line calendar benchmark. The partially
known inputs used are partially known dates. The analysis takes only a few
seconds to complete and yields tight bounds, providing preliminary evidence for
the scalability of our method. We plan to analyze more benchmarks. We have
also used the analysis in teaching programming languages courses.



8 Discussion

Correctness. More detailed correctness arguments appear in [26]. We are also
working on more formal proofs.

Termination. The space function terminates iff the original program termi-
nates. The bound function might not terminate, even when the original program
does if the recursive structure of the original program directly or indirectly de-
pends on unknown parts of a partially known input structure. For example, if
the given partially known input structure is uk , then the bound function for
any recursive program does not terminate; if such a bound function counts new
space, then the original program might indeed take an unbounded amount of
space. Indirect dependency on unknown data can be caused by an imprecise join
operation. Making the join operation more precise might eliminate this source
of non-termination. Another strategy that could be especially effective to detect
non-termination of bound functions corresponding to terminating programs is
as follows: for every call to a bound function, a check is made to see if the same
call with equivalent arguments is on the call stack. If so, the analysis stops and
reports that the bound function diverges.

Although there are other methods to deal with non-termination, incorporat-
ing such methods in our analysis could result in loose bounds on space usage,
even for programs for which non-termination is not a problem. Further, non-
termination is not a problem in any of the examples we analyzed.

Scalability. For large programs or programs with sophisticated control struc-
tures, the analysis is efficient if the input parameters are small, but for larger
parameters, efficiency might be a challenge. One approach is to improve effi-
ciency by memoizing calls to bound functions and reusing the memoized results
wherever possible. Another strategy is to use the results of space-bound analysis
on smaller inputs to semi-automatically derive closed forms and/or recurrence
relations that describe the program’s space usage, by fitting a given functional
form to the analysis results. The closed forms or recurrence relations may then
be used to determine space bounds for large inputs.

Inputs to Bound Functions. To analyze space usage with respect to some
property of the input, we need to formulate sets of partially known inputs that
represent all actual inputs with that characteristic, e.g., all lists with length
n, all binary trees of height h or all binary trees with n nodes. As an example,
{(uk , (uk , nil, nil), nil), (uk , nil, (uk , nil, nil)), (uk , (uk , nil, nil), (uk , nil, nil))}
represents all binary trees of height 1, each node being a list of the element
and left and right subtrees. Often, formulating such sets of partially known in-
puts is straightforward but tedious for the user to do by hand. However, it is
easy to write programs that generate sets of partially known inputs.

Imperative Update and Higher-Order Functions. The ideas in this
paper may be combined with reference-counting garbage collection extended to
handle cycles [3] or with other garbage collection algorithms, such as mark and
sweep, to obtain a live heap space analysis for imperative languages. They may
also be combined with techniques for analysis of higher-order functions [10].



9 Related Work

There has been much work on analyzing program cost or resource complexities,
but the majority of it is on time analysis, e.g., [17, 24, 18]. Analysis of live heap
space is different because it involves explicit analysis of the graph structure of
the data.
Most of the work related to analysis of space is on analysis of cache behavior,

e.g., [28, 9], much of which is at a lower language level and does not consider
liveness. Live heap analysis is a first step towards analysis of cache behavior in
the presence of garbage collection.
Persson’s work on live memory analysis [22] requires programmers to give

annotations, including numerical bounds on the size of recursive data structures.
His work is preliminary: the presentation is informal, and only one example,
summing a list, is given. Our analysis does not require annotations.
Unlike static reference counting used for compile-time garbage collection [15],

our analysis uses a reference counting method similar to that in run-time garbage
collection. The former keeps track of pointers to memory cells that will be used
later in the execution. Our analysis could be modified so that decrc(v) is called
when a parameter or let-variable won’t be used again (instead of waiting until
v goes out of scope). Our current analysis corresponds to the garbage collection
behavior in, e.g., JVMs from Sun, IBM, and Transvirtual.
Several type systems [14, 13, 6, 12] have been proposed for reasoning about

space and time bounds, and some of them include implementations of type check-
ers [14, 6]. They require programmers to annotate their programs with cost func-
tions as types. Furthermore, some programs must be rewritten to have feasible
types [14, 13].
Chin and Khoo [4] propose a method for calculating sized types by inferring

constraints on size and then simplifying the constraints using Omega [23]. Their
analysis results do not correspond to live heap space in general. Further, Omega
can only reason about constraints expressed as linear functions.
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