
Addendum to “Proof Rules for Flush Channels”

Scott Stoller

Abstract—The logic presented in [1] for processes that com-
municate using flush channels is inadequate for reasoning
about processes that send multiple identical messages along
a channel. A modification to the logic and proof system that
remedies this deficiency is described herein.

Keywords— asynchronous communication, distributed sys-
tems, program verification

The logic presented in [1] for systems of processes that
communicate using flush channels is incomplete. The ax-
iomatization given is adequate for reasoning about pro-
grams that never send two or more identical messages (i.e.,
messages with the same contents and the same F-channel
message type) along a channel, but inadequate for reason-
ing about programs that do not satisfy this condition. The
source of the weakness is that the mathematical model of
flush channels on which the logic is based does not con-
tain enough information to determine exactly the possible
message delivery orderings, as defined by the operational
semantics of flush channels. (The model of flush channels in
[1] is defined implicitly by the choice of auxiliary variables
and the updates to the auxiliary variables used to repre-
sent communication events.) If several identical messages
are sent along a channel, the multiplicity is not taken into
account in the ordering ≺+F . Consequently, the assump-
tion in the satisfaction axiom for receive statements is too
weak: it corresponds to an operational semantics that al-
lows a message m to be delivered after delivery of at least
one copy of each message that should be delivered before
m, even if multiple copies of some of those messages should
be delivered before m.

For example, consider the following program:

cobegin
P1 : send (2F, 0) on F ;

send (2F, 0) on F ;
send (2F, 1) on F

‖
P2 : receive (t1, x1) from F ;

receive (t2, x2) from F ;
receive (t3, x3) from F

coend

Let mi =def 〈2F, i〉. According to the operational seman-
tics of flush channels, both copies of m0 sent by P1 must be
delivered before m1, so x2 = 0∧x3 = 1 holds when the pro-
gram terminates. Consider showing satisfaction (using the

Scott Stoller (stoller@cs.cornell.edu) is with the Department of Com-
puter Science, Cornell University, Ithaca, NY 14853. He is currently sup-
ported by an IBM Graduate Fellowship.

rules of [1]) for the second receive. One possible situation
is that all three sends have been executed; in this case,
σF = {m0,m0,m1}, ρF = {m0}, and ≺+F = {(m0,m1)}.
The antecedent of the satisfaction formula contains the
predicate

(∀m : m ∈ σF ∧ m ≺+F MTEXT ⇒ m ∈ ρF),

which is supposed to characterize which messages MTEXT
in σF � ρF can be delivered next. This predicate holds for
MTEXT = m0 and MTEXT = m1, so the postcondition
of this statement must hold if either of these messages is
received by this statement. Thus, the strongest fact about
x2 that can be proved in the postcondition of the second
receive is (x2 = 0 ∨ x2 = 1). Consequently, the strongest
fact about x2 and x3 that can be proved in the postcon-
dition of this program, using the logic presented in [1], is
(x2 = 0 ∧ x3 = 1) ∨ (x2 = 1 ∧ x3 = 0).

There are various ways to remedy this deficiency, though
at the cost of complicating the model and proof system.
One approach is to keep track of multiplicities in ≺ and
≺+ by making them multisets. The interpretation is: if the
multiplicity of (m,m′) in ≺+ is i, then i copies of m must
be received before m′. This approach fails because ≺ does
not contain enough information to compute ≺+ (i.e., there
is no definition of the “transitive closure” of ≺ that yields
the correct multiplicities in ≺+). Similar difficulties arise if
one tries to modify the proof rules to compute ≺+ directly.

Another approach is to tag messages in a way that en-
sures that when a tagged message is added to σF , it is not
already contained in σF � ρF . The tagging occurs only in
the mathematical model of the network, not in the user’s
program or in the implementation of flush channels. This
approach permits “minimal” tagging schemes but compli-
cates other aspects of the model; for example, it requires
that pairs be deleted from ≺F when a receive occurs.

A simpler approach is to tag each message with an unique
identifier. One natural choice for the unique identifier is
the multiset of messages previously sent along the channel;
another, which I use below, is the size of this multiset. In
either case, every element added to σF is unique, so σF

and ρF can be regarded as sets rather than multisets.
The corresponding modifications to the proof rules fol-

low. The changes to the send axioms are captured neatly
by reinterpreting the “macro” m, which is used in these ax-
ioms as an abbreviation for 〈type, data〉, as an abbreviation
for 〈〈type, data〉, |σF |〉. In the satisfaction and noninterfer-
ence rules, the substitutions of MTEXT for 〈mtype,mdata〉

1

should be changed to substitutions of π1(MTEXT) for
〈mtype,mdata〉, where π1 projects out the first component
of a pair.

In the Appendix of [1], Camp et al. argue that their
mathematical model accurately describes the behavior of
flush channels. The argument fails to uncover the discrep-
ancy noted above because it contains the unstated assump-
tion that all elements added to σF are distinct. This as-
sumption is particularly evident in the proof of Lemma 1.
However, this assumption does not hold for all programs
in their model. Since this assumption holds in the model
proposed above, their argument shows that this model ac-
curately describes the behavior of flush channels.

References

[1] T. Camp, P. Kearns, and M. Ahuja, “Proof rules for flush chan-
nels,” IEEE Trans. on Software Eng., vol. 19, no. 4, pp. 366–
378, 1993.

2

