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Abstract

This paper describes a general approach for automatic and accurate space and space-bound analyses
for high-level languages, considering stack space, heap allocation and live heap space usage of programs.
The approach is based on program analysis and transformations and is fully automatic. The analyses
produce accurate upper bounds in the presence of partially known input structures. The analyses have
been implemented, and experimental results confirm the accuracy.

1 Introduction

Time and space analysis of computer programs is important for virtually all computer applications, especially
in embedded systems, real-time or reactive systems, and interactive systems. In particular, space analysis is
becoming increasingly important due to the increasing uses of high-level languages with garbage collection,
such as Java [40], the importance of cache memories in performance [54], and the stringent space requirements
in the ever-growing area of embedded applications [46]. For example, space analysis is needed to verify that
an embedded application can run with certain memory resources, not running out of memory or being given
more memory than necessary; it can help determine patterns of space usage and thus help analyze cache
misses or page swapping; and it can determine memory allocation and garbage collection behavior.

Space analysis is also important for accurate prediction of running time [20]. For example, analysis of
worst-case execution time in real-time systems often uses loop bounds or recursion depths [39, 2]; the former
is often determined by the size of the data being processed, and the latter corresponds to the maximum size
of the call stack. Also, memory allocation and garbage collection, as well as cache misses and page swapping,
contribute directly to the running time. This is increasingly significant as the processor speed increases,
leaving memory access as the performance bottleneck.

Much work on space analysis has been done in algorithm complexity analysis and systems. The former
is in terms of asymptotic space complexity in closed forms [30]. The latter is mostly in the form of tracing
memory behavior or analyzing cache effects at the machine level [36, 54]. What has been lacking is analysis
of stack space and heap space for high-level languages, in particular, automatic and accurate techniques for
live heap space analysis for languages with garbage collection.

This paper describes a general approach for automatic accurate analysis of stack space and heap space
based on program analysis and transformations. We consider three important metrics of space usage:

stack space: the maximum size of the function call stack during execution. This is the minimum
amount of stack space needed to run the program.

heap allocation: the total amount of heap space allocated during execution. If garbage collection
were disabled, this would be the minimum amount of heap space needed to run the program.
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live heap space: the maximum size of the live data on the heap during execution. This is the minimum
amount of heap space needed to run the program even if garbage collection can be performed at every
point during execution.

Our approach starts with a given program written in a high-level language, such as Java, ML, or Scheme.
The first step is to automatically construct a space function that takes the same input as the original program
and returns the amount of space used, either in place of or in addition to the original return value. The space
function has an additional argument, which is a vector of primitive parameters. The primitive parameters
are numbers giving the size of (i.e., amount of space occupied by) each basic data construct used in the
program, such as data constructors and stack frame sizes of functions defined in the program.

Since the goal is to calculate space usage without being given particular inputs, the calculation must be
based on certain assumptions about inputs. Hence, a space-bound function is constructed. This function
takes as input a characterization of a set of inputs of the original program and returns an upper bound on
the space used by the original program on any input in that set. A key problem is how to characterize the
input data and exploit this information in the analysis.

In traditional analysis of the time and space complexity of algorithms, inputs are characterized by their
size. Accommodating this requires manual or semi-automatic transformation of the time or space function
[53, 32, 55]. The analysis is mainly asymptotic. A theoretically challenging problem that arises in this
approach is optimizing the time-bound or space-bound function to a closed form in terms of the input
size [53, 5, 32, 45, 12]. Although much progress has been made in this area, closed forms are known only
for subclasses of functions. Thus, such optimization can not be automatically done for analyzing general
programs.

Rosendahl proposed characterizing inputs using partially known input structures [45]. For example,
instead of replacing an input list [ with its length n, as done in algorithm analysis, we simply use as
input a list of n unknown elements. A special value unknown is introduced for this purpose. At control
points where decisions depend on unknown values, the maximum of all possible branches is computed.
Rosendahl concentrated on proving the correctness of this transformation for time-bound analysis. He relied
on optimizations to obtain closed forms, but closed forms can not be obtained for all time-bound functions.

We use automatic transformations to construct space-bound functions from the original program. The
resulting functions have two kinds of arguments: input parameters, which are parameters characterizing
partially known input structures, and a vector of primitive parameters, as described above. The only caveat
here is that in some cases, the space-bound function might not terminate even though the original program
does. Nontermination occurs only if the recursive/iterative structure of the original program depends on
unknown parts of the given partially known input structures.

Stack space and heap allocation analyses are similar to the time-bound analysis proposed by Liu and
Goémez [34]. Constructions of the space and space-bound functions for analyzing live heap space are based on
reference counting [28]. We are analyzing functional programs, so reference counting provides an accurate
basis for the analysis. If imperative updates to data constructions are allowed (e.g., setedr! in Scheme),
reference counting can be used to obtain upper bounds on the space usage, but the results would sometimes
be inexact (i.e., not tight), because reference counting does not recognize that data structures containing
cycles can be garbage.

Our analyses can easily be modified to determine related metrics. For example, consider an embedded
system in which garbage collection is performed only at fixed points in the program but disabled at other
program points in order to avoid delays during time-critical operations. A simple variant of our analysis can
determine the live heap space used by programs executed in this way.

We may also use transformations that enable more accurate space bounds to be computed: lifting con-
ditions, simplifying conditionals, and inlining nonrecursive functions, as described in [34]. These transfor-
mations should be applied to the original program before the space-bound function is constructed. They
may result in larger code size, but they allow subcomputations based on the same control conditions to be
merged, leading to more accurate space bounds, which can be computed more efficiently as well.

We choose to start by analyzing a functional subset of Scheme [1, 8] for three reasons. First, high-level
languages with features like automatic garbage collection are becoming increasingly widely used. Second,
existing work on analysis of functional programs, including complexity analysis, can be exploited in our
work. Third, the resulting techniques can be extended later to handle imperative languages.
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Our analyses and transformations are performed at source level. This allows implementations to be
independent of compilers and underlying systems and allows analysis results to be understood at source
level.

2 Language

We use a first-order, call-by-value functional language that has literal values of primitive types (e.g., Boolean
and integer constants), structured data, primitive operations on primitive types and structured data (e.g.,
Boolean and arithmetic operations and data selectors), conditionals, bindings, and mutually recursive func-
tion calls. A program is a set of mutually recursive function definitions of the form

flor,.yv,) =e
h i is given by th !
where an expression e is given by the grammar
en=v variable reference
| 1 literal
| cler,...,en) data construction
| pler,...,en) primitive operation
| if e; then es else e3  conditional expression
| letv=e;iney binding expression
| fler,...,en) function application
For binary primitive operations, we sometimes use infix notation. [z1,...,x,] denotes a list containing the

specified elements, e.g., [z1, z2] abbreviates cons(z1, cons(z2, nil)). Here is a program written in the above
language. The program selects the least element in a non-empty list.

least(z) = if null(cdr(x)) then car(z)
else let s = least(cdr(z))in
if car(z) < s then car(x) else s

The language contains only three kinds of primitive operations that can take constructed data as argu-
ment; our analysis can easily be extended to handle other such operations.

Testers. ¢?(v) returns true iff v has outermost constructor c.

Selectors. ¢~¢(v) returns the i’th component of a data construction v with outermost constructor c.
¢~ " aborts if its argument does not have outermost constructor c.

Equality predicates. As in Lisp and Scheme, for data constructions v; and v, eq?(v1,v2) tests
whether v; and ve refer to the same data construction, and equal?(v1,v2) tests for structural equality
of v; and vy. For primitive values, eq? and equal? both test equality of values. We sometimes write
eq?(v1,v2) as vy = va.

Input programs to our analysis are assumed to be purely functional, but transformed programs for live
heap space analysis use arrays and imperative update. As in Lisp, setedr! updates the second field in a cons
cell. As in C, v++4 and v—— increment and decrement, respectively, the value of an integer variable. A
sequential composition e;; ey returns the value of es.

3 Stack Space Analysis

We measure stack space using frame count vectors, which are vectors of integers with one element corre-
sponding to each function (in a given program). Let iy denote the index associated with function f. Let Pp

I The keywords are taken from ML [37]. Our implementation uses Scheme syntax.
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be a vector of primitive parameters such that Pr[iyf] is the size of a stack frame for f. Stack frame sizes of
functions can be accurately determined based on knowledge about the specific compiler used. Alternatively,
these sizes may be conservatively estimated, independent of any particular compiler.

Stack Space Function. The stack space function fg for function f takes the same inputs as f and returns
frame count vectors such that for all inputs = and all functions g, during evaluation of f(z), the size of the
stack is at most fg(z) - Pp, where - denotes dot product (also called inner product). The transformation
S that produces fs appears in Figure 1. Function calls increment the appropriate component of the frame
count vector, and the maximum of the stack sizes needed to compute the subexpressions is returned. For
clarity of presentation, the transformation for if expressions evaluates S[ei] and e; separately. This causes
redundancy that can increase the running time of the transformed program by an exponential factor. This is
easily avoided by tupling [41]; specifically, the transformation is modified so that S [e] return a pair containing
the return value of e and a frame count vector. With this optimization, the asymptotic time complexity of
the transformed program is the same as that of the original program.

function def: fs(vi,...,v,) = S[e] where e is the body of function f, i.e., f(vi,...,v,) =
variable: Sl =W

prim. value: Sl =W

prim. operation:  S[p(e,...,en)] = mazp(S[ei], ..., Slen))

data construction: S|e(eq, ..., en)] = mazp

(S
(Slerl, - Sleal)

conditional: S|[if e; then e; else e3g] = mazp(S|ei],if e; then Sey] else Sles))
(S
(S

binding: Slet v =e; in es] = mazp(S[ei],let v =e; in S[eq))

function call: S[f(er, ... en)] = mazr(Slei],--.,S[en], inc(fs(er,-..,en),iy)

Figure 1: Transformation that produces stack space functions fs. V denotes a frame count vector with
all elements initialized to zero. inc(v,%) returns (a copy of) vector v with the value of the ¢’th component
incremented by 1. mazp is defined by: mazp(vy,vs) =if vy - Pp > vy - Pp then v; else vs.

Stack Space Bound Function. The stack space-bound function fg; for function f takes partially known
values as arguments and returns frame count vectors such that for all partially known values z,; and all
values ¢ represented by w,x, during evaluation of f(z), the size of the stack is at most fs(zpi) - Pr. The
transformations S, and S, in Figure 2 produce stack space-bound functions. S, is applied to expressions
in the original program in order to define functions fg. that take and return partially known values. S
is applied to expressions already transformed by S in order to define stack space-bound functions fg; that
take partially known values as arguments and return frame count vectors. S, does not need to be defined
for variable references or data constructors, because expressions returned by S contain variable references
and data constructors only in the subexpression e; of a binding or conditional, and S,, not S, is applied to
those subexpressions.

The main differences between & and S, are in the transformations for if expressions and primitive
functions. For an if expression, if the value of the condition is unknown, then both branches must be
considered. The programs produced by S, compute frame count vectors for both branches and then take the
maximum. The programs produced by S, compute return values of both branches and then take the least
upper bound. The least upper bound function lub compares the structure of its arguments, returns known
values for substructures where the two arguments are equal, and returns unknown for other substructures.
lub(v1,v9) is vy if eq?(vy,v2), otherwise it is defined as follows. If v; or vy is a primitive value, then lub(vy, vs)
is v1 if v1 = vy and is wnknown otherwise. For data constructions, lub(ci(vi,...,vpn),co(w,..., wy)) is
e (lub(vy,wr), - . ., lub(vy, wy)) if ¢1 = ¢o and is unknown otherwise.

4 of 28



For each primitive function p other than eq?, uses of p are replaced with uses of a function p,, de-
fined as follows. py(vi,...,v,) returns unknown if any of its arguments is unknown; otherwise, it returns
p(v1,...,v,). Special care is needed if an argument to eq? is a data construction allocated by lub; if it is, then
eq? returns unknown. For example, S, [let v = cons(0,0) in eq?(v,if unknown then v else cons(1,1))] re-
turns unknown but would incorrectly return false if eq? were not treated specially. Implementing this requires
tagging data constructions allocated by lub; such tagging is not shown explicitly in Figure 2.

Se, not Sy, is used in the definition of Sy [fs(e1,...,en)], because the space-bound function fgs; takes
partially known values, not frame count vectors, as arguments. fg; uses the partially known values in
conditions of if expressions to try to determine which branch is taken. This is the motivation for using S,
not Sp, in the definitions of S [if e;then es else e3] and Sy [let v = e; in eq).

The space-bound function may be asymptotically slower than the original function by a factor that is
exponential in the size of the input; intuitively, this reflects the fact that a partially known value of size n
can represent an exponential number of known values.

Optimization of tail recursion affects the contents of the stack. The analysis presented here does not
reflect the effect of such optimization but could be modified to do so.

fse(vi, .. o) = Scle] where e is the body of function f, i.e., f(vi,...,vp) =€
fsp(vi, ..., vp) = Sy[Sle]]  where e is the body of function f, i.e., f(vi,...,vp) =€
Se 1] =1
Se V] = v
Seleler, ... en)] = ¢(Selen],- -5 Selen))
Se[p(er,-. ., en)] = pu(Seler], .-, Selen))
Pu(V1, ... 0p) = if (v; = unknown) or --- or (v, = unknown) then unknown else p(vy,...,v,)
Se [eq?(e1, e2)] = let v; =S [e1] in

let vo = S, [e2] in

if (v; or vy is data allocated by lub) then unknown else eq?,(vy,v2)

S [if e;then ey else es] = let v =S, [e1] in

if v = unknown then lub(S, [ez], Se [e3]) else if v then S [ez] else S [es]
lub(vy,v2) = if primVal(vy) or primVal(vs)

then if v; = vy then v; else unknown
else if v; and v» have the same outer constructor ¢ with arity n
then c(lub(c™(v1),c7 1 (v2)),. .., ub(c™™(v1),c " (v2)))
else unknown

S [let v =e; in ey] = let v =35.[e1] in S [ea]
S.[f(ery - ren)] = fslSTeids S fen)
S = 1
Sb [p(ely LR en)] = maxF(Sb I[eI] Yy Sb [en])
Sy [if ejthen ey else e3] = let v =S, [e1] in

if v = unknown then maz p(Sy [e2], Sples]) else if v then Sy [es] else Sy [es]
Spllet v =e; in eo] = let v =35[e1] in Splez]
Sb [fg (61, cey en)] = be (Se |[61] yeeey Se [en])

Figure 2: Transformations that produce stack space-bound functions fg;. p denotes any primitive operation.
q denotes any primitive operation other than eq?.
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Component-Wise Analysis. The above analyses requires that Pr be known during the analysis. Variants
of these analyses, which we call component-wise analyses, can be performed without knowledge of Pp.
“Component” here refers to a component of a frame count vector, i.e., to the stack frame size of a function.
The transformations for the component-wise analyses are the same as in Figures 1 and 2, except with maz
replaced with component-wise maximum. The resulting component-wise space and space-bound functions,
denoted f&* and f&y, respectively, satisfy the same specifications as fs and fss, respectively. Furthermore,

& satisfies: for all inputs 2 and all functions g, during evaluation of f(z), the stack contains at most
fs(z)[iy] stack frames for g. fSY satisfy an analogous property. Thus, component-wise analysis provides
more information about maximum nesting depth of recursive calls to each function. However, if different
components of the frame count vector achieve their maximum values at different points during execution or
in different branches of conditionals, it may provide looser bounds on overall stack size.

4 Heap Allocation Analysis

We measure heap space using constructor count vectors, which are vectors of integers with one element
corresponding to each data constructor (in a given program). Let i, denote the index associated with data
constructor c. Let Po be a vector of primitive parameters such that Po[i.] is the size of an instance of c,
including space taken to store the components of ¢ and the type tag, if any.

Heap Allocation Function. The heap allocation function fg for function f takes the same inputs as
f and returns constructor count vectors such that for all inputs z, evaluation of f(z) allocates at most
fu(z)[i.] instances of ¢. The transformation H that produces fgy appears in Figure 3. H is similar to
S; the main differences are that mazp is replaced with add, and components of the count vector are
incremented by data constructions, not function calls. As for stack space analysis, the transformation
for if expressions, as presented in Figure 3, introduces redundancy that can easily be eliminated by tupling.
With this optimization, the asymptotic time complexity of the transformed program is the same as that of
the original program.

function def: fu(vr,...,vn) = 'Hle] where e is the body of function f, i.e., f(vy,...,v,)
variable: H[v] = W

prim. value: H[ = W

data constr.: Hlcler, - en)] = inc(add(Hle],- .., Hlen]),ic)

prim. operation: H[p(ey,...,en)] = add(Hlei],...,Hlen])

conditional: HIif e; then e; else es] = add(H[ei],if e; then Hes] else Hles])

binding: Hlet v = e; in ey) = add(Hei],let v =e; in H[e])

function call: Hf(er,. .. en)] = add(Hlei],.-., Hlen], fuler,-..,en))

Figure 3: Transformation that produces heap allocation functions fz. Vj denotes a constructor count vector
with all elements initialized to zero. add denotes component-wise addition of vectors. inc is as defined in
Figure 1. maz¢ is defined by: maxc(v1,v2) = if vy - Po > vo - Po then vy else vs.

Heap Allocation Bound Function. The heap allocation bound function fg; for function f takes par-
tially known values as arguments and returns constructor count vectors such that for all partially known
values z,;, and all values x represented by z,y, evaluation of f(z) allocates at most fg(xp) - Pc heap space.
The transformations H, and H, that produce fg, appear in Figure 4. H, is applied to expressions in the
original program in order to define functions fg. that take and return partially known values. Hj is ap-
plied to expressions already transformed by H in order to define heap allocation bound functions fg; that
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take partially known values and return constructor count vectors. The handling of primitive functions and
if expressions in these transformations is similar to their treatment in S, and Sy.

fre(v, ..., v) = H.[e] where e is the body of function f, i.e., f(vy,...,v,) =€
fup(v, ... vp) = Hy[H[e]] where e is the body of function f, i.e., f(vi,...,v,) =€
He [v] = v

He[c(e, -, en)] c(Hele1], ---» He len])
Help(er, ... en)] pu(Hele], ..., He [en])
He[eq?(e1, e2)] = let vy = Hc[e1] in
let vo = H.[e2] in
if (v; or vs is data allocated by lub) then unknown else eq?, (v1,v2)

H. [if e;then eselse e5] = let v = H,[e1] in
if v = unknown then lub(H. [e2], He [e3]) else if v then H, [es] else H. [es]
He[let v=1e; in e ] = let v =H.[e1] in H.[es]
He[fler, - en)] = fue(Hele], s Helen))
Hy [1] = 1
Hy [add(eq, ..., en)] = add(Hplei], .-, Hs [en])

Hy [if e;then e, else es] = let v = H,[e1] in

if v = unknown

then mazc (Hyp[ez], Hp [es])

else if v then H [e2] else Hj [es]
Hp[let v =e; in eq] = let v ="H.[e1] in Hy [ez]

Hlfu(er, ..., en)] frv(He e, -, He [en))

Figure 4: Transformations that produce heap allocation bound functions fgp. p, ¢, pu, and lub have the
same meanings as in Figure 2.

Component-Wise Analysis. A component-wise variant of heap allocation bound analysis is defined by
replacing mazc with component-wise maximum in Figure 4. The resulting component-wise space-bound
function ff; satisfies the same specification as fy, and the property: for all partially known values zpy,
all values = represented by z,, and all data constructors ¢, evaluation of f(z) allocates at most frp(x)[ic]
instances of ¢. mazc is not used in Figure 3, so fg satisfies an analogous component-wise property. For
programs that use only one constructor (e.g., Lisp or Scheme programs that use only cons), the original and
component-wise analyses are equivalent. For programs that use multiple constructors, the component-wise
analysis provides more information about the maximum number of instances of each constructor; however,
if different components of the constructor count vector achieve their maximum values in different branches
of conditionals, it may provide looser bounds on the overall amount of heap allocation.

5 Live Heap Space Analysis

Our analysis is based on reference counting, defined as follows.

The reference count (abbreviated rc) for a data construction v is the number of pointers to v.
These may be pointers on the stack, created by let bindings or bindings to formal parameters of
functions, or on the heap, created by data constructions.
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We measure heap space using constructor count vectors, which are vectors of integers with one element
corresponding to each data constructor (in a given program). Let i, denote the index associated with data
constructor ¢. Let P be a vector of primitive parameters such that Po[i.] is the size of an instance of ¢,
including space taken to store the components of ¢ and the type tag, if any. Let - denote dot product (also
called inner product) of vectors. The maximum max(vy,vs) of constructor count vectors vy and ve is vy if
vy - Po > ve - Po and is vy otherwise.

The transformations introduce two global variables, live and mazlive, that contain constructor count
vectors and satisfy the invariants: (1) for each constructor ¢, live[i.] is the number of live instances of ¢;
(2) mazlive is the maximum value of live so far during execution. The maximum live space used during
evaluation of function f is at most ml - Pc where ml is the value of mazlive after evaluation of the space or
space-bound function for f.

Our implementation of reference counting uses an abstract data type whose signature contains four func-
tions (or macros). new(c(zy,...,x,)) returns a value v representing a new data construction c(zy,...,z,),
whose reference count is initialized to zero. data(v) returns the data construction ¢(z1, ..., zy). re(v) returns
the reference count associated with v. setrc(v,) sets the reference count associated with v to i. incre(v)
and decrc(v) increment and decrement, respectively, the reference count associated with v. We require that
setre, incre and decrc be no-ops if the argument is a primitive value.

This abstraction can be implemented in various ways. In our implementation, each data construction is
paired (using cons) with its reference count; thus, 2 new(c(z1,...,z,)) is cons(c(z1,...,xy,),0). It follows
that data is car, rc is cdr, and the remaining functions are easily implemented using cons? and setcdr!.

Updating Reference Counts. The reference count of a data construction v is initialized to zero,
because pointers to v of the kinds described above do not yet exist. Of course, some temporary storage
location—perhaps a register—must point to v, but according to the above definition of reference count,
such pointers are not counted (¢f. the comments in the next paragraph). Thus, the reference count of v is
incremented when v is bound to a variable or function parameter, or a data construction containing v as
a child is created. The reference count of v is decremented when the scope of a let binding for v ends, a
function call with an argument equal to v returns, or a data construction containing v as a child becomes
garbage. Note that the reference count is defined to count pointers that exist during execution of the original
program, not the transformed program.

Updating live and mazlive. Whenever new data is constructed, live is incremented, and maxzlive is
recomputed. An auxiliary function ge (“garbage collect”) is called whenever data can become garbage. Data
is garbage if there is no pointer to it from the stack or heap and no such pointer can be created in the future
(¢f. the discussion of temporary increments, below). For a data construction v, ge(v) decrements rc(v) and
then, if re(v) is not positive, it decrements the appropriate element of live and calls gc recursively on the
children of v. A data construction can become garbage in three ways:

e Data created in the argument of a selector, tester, or equality predicate is lost to the program after
the result of the selection, test, or equality predicate is obtained. For example,

cons(cdr(cons(0,1))*,2)
cons?(cons(0,1))1* or equal?(1,2)*
if eq?(cons(0,1),nil)!* then 1 else 2

The dagger indicates where cons(0, 1) becomes garbage. The asterisk indicates where gc is called. Note
that cons(0, 1) has reference count 0 when gc is called. ge¢ decrements the reference count of cons(0,1)
to -1 before concluding that cons(0,1) is garbage; that decrement is unnecessary but harmless. It is
harmless because the data construction is garbage, so its reference count will never be examined again.

e Data bound to variables through let expressions or formal parameters of functions may become garbage

2We use ML-like notation here, although our implementation is in Scheme, which has different syntax.
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when the variables go out of scope. Here are 3 examples:

let v = cons(0,1) in 17* (1)
let v = cons(2,3) in v*
cons(f(cons(0,1), cons(2,3))1*,4) where f(z,y) =y

The dagger and asterisk have the same meaning as above. In the first and third examples, when g¢
is called, cons(0,1) has reference count 1 and becomes garbage. In the second and third examples,
cons(2,3) does not become garbage, because it appears in the return value; this point is discussed
further below.

e Data constructions that have become garbage may have components that refer to data constructions to
which there are no other pointers. These data constructions also become garbage. They have reference
count 1 when gc is called on them.

Temporary Increments of rc. In order to avoid v being considered as garbage when only temporary
storage locations point to v, re(v) is temporarily incremented at certain points in the transformed program.
Specifically, temporary increments of rc are required for selectors, function calls, and let expressions, since
these expressions may produce garbage, but the garbage produced depends on what data construction (if
any) is referenced by the return value. Since the return value is initially stored in a temporary storage
location(until it is discarded or an enclosing function, let expression, or data construction stores it on the
stack or heap), a temporary increment of its rc is needed. Accordingly, letting r denote the return value, we
increment rc(r) immediately before calling g¢ and decrement rc(r) immediately afterwards. For example,
in car(cons(cons(0,1), nil))*, the value of rc(cons(0,1)) is temporarily incremented while the outer cons
is garbage collected. The second and third lines of (1) provide examples involving let and function call;
re(cons(2,3)) is temporarily incremented to 2 before gc is called and is decremented to 0 afterwards.

We regard these temporary increments as transient deviations between the value of r¢ and the definition
of reference count. Making them part of the definition would be problematic, because the exact number and
scopes of temporary storage locations is compiler-dependent.

The transformation £ in Figure 5 produces live heap space functions. For convenience, the transforma-
tion for if expressions assumes that the condition is Boolean-valued (otherwise, the program aborts). The
transformation for function calls assumes that the evaluation order for let bindings and function arguments
is the same; for example, this is true in Chez Scheme [3]. This assumption is easily avoided, by modifying
the transformation so that the let bindings appear in the function arguments. Live heap space may depend
on the evaluation order. Our transformation is correct regardless of the evaluation order (e.g., left-to-right
or right-to-left), assuming the same compiler is used to run the original and transformed programs.

Optimization of tail recursion affects the contents of the stack and hence reference counts. The analysis
presented here does not reflect the effect of such optimization but could be modified to do so.

6 Live Heap Space Bound Function

The transformation £, in Figures 8-10 produces live heap space-bound functions. This transformation
ensures that at every point during the execution of Ly [f] (x) the value of global variable live is an upper
bound on the possible values of live at the corresponding point in executions of L[f](z'), for all z’ in the
set represented by x. As before, global variable mazlive contains the maximum value of live so far during
execution, with one exception, described below.

Conditional expressions whose tests evaluate to unknown are the only source of uncertainty in bounds
analysis. In stack space and heap allocation bound analyses, such expressions return data that is the least
upper bound of the values of the branches. This does not work well for live space bound analysis whose
correctness depends on keeping track of all references and reference counts meticulously. We need to keep
references from the result r of such a conditional expression, to the results r; and ry of its branches. If we
did not, and if r stays live longer than r; and ry, when r; and rs become garbage, we might incorrectly
subtract their sizes from live although one of them is actually live.
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fr(vi,...,vp) = L[e] where e is the body of function f, i.e., f(vi,...,vp) =€

L] =wv
L=1
Lle(el, ... en)] = live[i.]++; mazlive = max(live, mazlive);
let ry = Lle1],...,rn = L]en] in
incre(ry); .. .;inere(ry); new(e(ry, ..., ry))

El[q(ela te en)] = q(‘c [61] PR 7£|[en])
Lld' (e1,...,en)]=1let 1 = Lle1],...,zn = L]ey] in
let r = ¢'(data(xy),. .., data(zy,)) in
if not(primVal(z1)) and rc(z1) =0 then ge(z);

if not(primVal(z,)) and rc(z,) =0 then ge(z,);
.
L[ci(e)] =1let 2 =L[e] in
let r = ¢ #(data(z)) in
if not(primVal(x)) and rc(xz) = 0 then incre(r); ge(z); decre(r);
r
L[if el then e2 else e3] = if L]el] then L[e2] else L[e3]

L[let v=1e; in e3] =let v = L]e;] in
incrc(v);
let r = L[es] in
incre(r); ge(v); decre(r);r
Llf(er,...,ex)]=let r1 =Lle1],...,mn = Lley] in
incre(r); . . .5 incre(ry);
let r = fr(r1,...,7mp) in
incre(r); ge(ry); . .. ge(ry); decre(r);r
gc(v) = if not(primVal(v))
then decrc(v);
if re(v) <0
then live[cons Type(v)]——;
for i = 1..arity(v) ge(c i (data(v)))

Figure 5: Transformation that produces live heap space functions fr,. ¢ denotes any primitive operation
other than a selector, tester, or equality predicate. ¢' denotes a tester or equality predicate. primVal(v)
returns ¢rue iff v is primitive data. consType(v) returns an integer i, that uniquely identifies the outermost
constructor ¢ in data(v). arity(v) returns the arity of the outermost constructor in data(v). consType and
arity abort (with a run-time type error) if the argument is not an abstract data type representing a data
construction.

By maintaining these references from r to r; and rs, we run the risk of obtaining loose upper bounds,
since live might include the sizes of both branches when only one is live. We deal with this by subtracting
from live, when appropriate, the size of the smaller branch. With an expression containing nested conditional
expressions, we subtract from live, when appropriate, the sizes of all the data returned by the branches of
the conditional expressions, other than the size of a single largest data structure that could be returned by
the entire expression.
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6.1 Abstract Data Types

Two abstract data types, lubData and constrData, are used. lubData is used to represent data that may be
different data constructions for different inputs to the program being analyzed. lubData are results of either
conditional expressions whose tests evaluate to unknown or selectors applied to lubData. Each lubData [
has a list branches(l) containing references to the data constructions that [ represents, i.e., that [ could be
in an execution of the original program. Since conditional expressions are the only branching expressions,
lubData have at most two branches. If [ represents a choice between primitive and non-primitive data, then
branches(l) has only one element. If the choice is between two non-primitive data, then branches(l) has two
elements. Each lubData [ has a rc rc(l); functions setre, incre, and decre apply to lubData. Each lubData |
has a list lubParents(l) of lubparents, which are lubData v such that [ € branches(v). addToLubParents(v,l")
and remFromLubParents(v,l') adds I' to and removes [’ from, respectively, v’s list of lubparents. Each
lubData [ has an associated constructor count vector min(l), which is the amount subtracted from live in
order to obtain the effect of keeping only a largest branch of [ alive. When [ becomes garbage, min(l) is
added to live just before garbage collecting the branches of I. newlub(b) creates a lubData [ with a list b of
branches, and with rc(l) initialized to 0, lubParents(l) initialized to nil, and min(l) initialized to the zero
vector, which is denoted V.

constrData is an extension of the ADT described in Section 5. Each constrData has a rc and a list of
lubparents. Functions new, re, setre, incrc, decrc, lubParents, addToLubParents, and remFromLubParents
apply to constrData.

6.2 Conditionals and Least Upper Bounds

Consider a conditional expression (if e; then e, else 63)T whose condition evaluates to unknown. The value
of live needed at t is the larger of the values of live obtained by executing the two branches of the conditional
expression. Therefore, both branches are executed by the transformed program. Suppose the value of live
after the evaluation of ey is [1. es is evaluated first, with the value of live set to [1. Let [> denote the resulting
value of live. The value of live is reset to [; and e3 is evaluated. Let 3 denote the resulting value of live.
The required value of live at { is max(l2,l3). We achieve this by first setting the value of live to

l +(lg —l1)+(l3 —ll) (2)

and relying on lub, as described in case (d) below, to subtract min(ly —1I;,l3 —I;) from live. The intermediate
value of live computed using (2) does not satisfy the invariant for mazlive; this is the exception mentioned
above.

The result of the conditional expression is computed by lub(rs,73,le — l1,l3 — l1), where ro and r3 are
the results of e; and es, respectively. Let r denote the result of this invocation. There are four possible
situations.

a) ro and r3 are primitive data. Then r is their least upper bound, i.e., 7 if ro and r3 are the same and
unknown, otherwise.

b) ro and r3 are the same non-primitive data. Then r is that non-primitive data.

c) Exactly one of 75 and r3 is non-primitive. Suppose, without loss of generality, that 75 is non-primitive.
Then, r is newlub([rz]). The reference from branches(r) to ro keeps r alive for at least as long as r is live, i.e.,
ro is garbage collected and its size subtracted from live only after or when r gets garbage collected. rc(r2)
is incremented and r is added to lubParents(rz) to reflect the reference from branches(r) to ry. Since rs is
primitive, it does not use heap space and we do not keep track of it. This creates an approximation similar
to the one in case (a). r¢(r) is 0 since there is no reference to r. Notice that rc(r) is a bound on the number
of references made to the result of the conditional expression and does not include any other references to
ro. lubParents(r) is nil. The value of live at T computed using (2) is l5. This being the maximum possible
value of live at T, nothing needs to be subtracted from live, so min(r) is Vp.

d) ro and r3 are non-primitive and different. = is newlub([r2,r3]). The references from branches(r)
to 72 and r3 keep them alive for at least as long as r stays live. The following paragraphs and Section 6.5
describe how tight bounds are attained despite keeping both branches live. re(r2) and re(rs) are incremented
and r is added to lubParents(rs) and lubParents(rs) to reflect the references from branches(r). The values
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of rc¢(r) and lubParents(r) are as in case (c¢). Recall that min(l) for lubData [ is the amount subtracted
from live, if any, in order to obtain the effect of keeping only a largest branch of [ alive. min(r) is set to
min((lz — 11), (I3 — {1)). This value is explained as follows.

i) Suppose at least one of Iy — 1y and I3 — Iy is a zero vector. Iz —I; and I3 —[; are the amounts of new data
in 7 and r3, respectively. This means that at least one of r» and r3 contains no new data, so keeping both
of them alive (by references from r) does not cause any over-approximation at this point in the execution,
so min(r) is Vp.

ii) Suppose both lo —I; and I3 — [} are non-zero vectors. This implies that both r» and r3 contain new
data whose sizes total to o — [; and I3 — [y, respectively. It is impossible for both sets of new data to
be live in an execution of the original program. So, we subtract from live the size of the smaller set, i.e.,
min(ly — 14,13 —I1) and set min(r) to this amount. As a result of this subrtraction, the original value of live
computed using (2) reduces to max(l,l3), as required. Thus, we keep the new data in both ro and r;3 live
but include only one of their sizes in live. Old data in ro and r3 are created before the conditional expression
and are referenced from data other than ro and r3. They are live at T because of these other references.
Hence, the sizes of such data are not included in the value of min(r), even if they occur in only one of the
branches of r.

In the following examples, we examine the values of live and mazlive at different points of £; [e], for an
expression e. It is easy to verify that these values are tight upper bounds on the possible values of live and
mazlive at the corresponding points in L[e'], for any expression e’ obtained from e by substituting either
true or false for unknown.

Example 1. This example illustrates case (c).

let u = (let v = cons(1, nil) in
(if unknown then v else 0)') in

cons(2,u)*
Before the evaluation of the conditional, At *,
live = (1) (since the size of cons(1, nil) is (1)) Let s denote the result of the entire expression.
mazlive = (1) u is bound to 7.
At 1, letting r denote the result of the conditional, r = (branches = [v'], rc = 2, lubParents = nil, min = V)
v is bound to v'. (references are from s and the binding for u)
v" = (cons(1, nil), rc =2, lubParents = nil) s = (cons(2,r), rc =0, lubParents = nil)
(references are from r and the binding for v) live = (2), mazlive = (2)

r = (branches = [v'], r¢ =0, lubParents = nil, min = Vp)
(min(r) is Vp since r has only one non-primitive branch)
live = (1), mazlive = (1)
The value of live at T is the same irrespective of the branch executed. The value of live at x is affected by
the branch taken; the larger value of live at * is obtained by keeping v’ live till %, using a reference from
branches(r) to v'; without this reference, v’ would incorrectly be considered garbage when v goes out of
scope.

Example 2. This example illustrates case d(ii).

let u = cons(1,nil) in
let v = cons(2, nil) in (3)
(if unknown then cons(3,u) else cons(4, cons(5,v)))

Before the conditional expression, live = (2) and mazlive = (2). We have [} = (2), I = (3) and I3 = (4),
where [, ls and I3 are as defined earlier. The value of live at } before the call to lub is (5). The min value
of the result r of the conditional expression is min({1),(2)) = (1). The value of live after the call to lub is

(5) — (1) = (4).
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6.3 Selectors, Testers and Equality Predicates

Selectors and testers return unknown if given unknown arguments. If the argument to a tester ¢ is a lubData
with a single branch b, then, since one of the branches is primitive data on which the tester must return
false, lub(false,q(b)) is returned. If the argument to a selector ¢ is a lubData with a single branch, then,
since applying ¢ to any primitive data must cause an error, ¢ is applied to false, causing the analysis to
abort with an error. If the argument to a selector or tester ¢ is a lubData with two branches b; and by, then
lub(q(b1),q(b2)) is returned. For testers, the result of this lub may be true, false or unknown. For selectors,
the result is (a) unknown if the selected fields in both branches are different primitive data, (b) data d if the
selected fields in both branches contain d or (c) a new lubData otherwise. Suppose [ is a lubData created in
case (c) by applying a selector to a lubData I'. When [ is created, I’ is still live. Hence, applying a selector
to I' and as a result, creating new references to data that appear in elements of branches(l’") does not affect
the liveness of these data; these data are live regardless of the references from [ and [ has its min value set
to Vp. In all calls to lub above, the third and fourth arguments to lub, which have been omitted, are nil.
lub uses these arguments to determine the min value of the lubData, if any, that it creates. In all the above
calls to lub, either no lubData is created or the min value of the created lubData is Vj.

Values of equality predicates applied to lubData are defined similarly. For lubData [ and constrData v, if
[ has two branches b; and by, then eq?(l,v) is lub(eq?(b1,v), eq?(b2,v)); otherwise, [ has only one branch by,
and the implicit second branch of ! represents primitive data and therefore is not equal to v, so eq?(l,v) is
lub(eq?(b1,v), false). For lubData Iy and I, eq?(l1,l2) is true iff I; and l» are the same lubData; otherwise,
if I5 has two branches be; and bay, then the result is lub(eq?(l1,b21), eq?(l1,b22)); otherwise, l> has only one
branch, and the result is unknown, since the primitive data represented by the implicit second branch is not
available to compare with. equal? is defined similarly. Equality predicates are not used in our examples, so
we omit transformations for them from Figure 8.

6.4 Recomputing the Min Value of LubData

Recall that min(l) is the amount subtracted from live in order to obtain the effect of keeping only a largest
branch of lubData [ alive. The min value of a lubData is computed and initialized when the lubData is
created. It may need to be recomputed at certain later points to make live tight. Consider a lubData [
that is the result of a conditional expression of case (d) described in Section 6.2. [ has two non-primitive
branches b; and bs. Suppose one or both of by and by are constructed before the conditional expression and
hence are live without references from [, when [ is constructed. Then min(l) is initially set to Vp, and live
contains the sizes of both b; and by. When all references to b; and by, except for those from [, disappear,
we may conclude that only one of b; and by is live at the corresponding point in an execution of the original
program. In order to include the size of exactly one largest branch of [ in live, min(l) is recomputed. Notice
that min(l) must remain Vj as long as one or both of b; and by are live without references from [. If one
branch, say by, of [ has references from [ alone and the other branch, b,, has references from data other than
l, then we cannot conclude that only one of b; and bs is live in the original program. Both b; and b, may be
live; by through [, i.e., as the result of the conditional, and bs through data other than [.
Example. Consider the following conditional expression of case d(i), whose result is a lubData r.

let z = cons(1, nil) in
if unknown then z else cons(2, nil)

Just after the evaluation of the conditional expression, live is (2) and includes the size of both cons(1, nil)
and cons(2, nil); min(r) is V5. This is correct since the former is live through the binding for z. After the
evaluation of the let expression, x goes out of scope, and the only reference to cons(1, nil) is from r. Now,
live should contain the size of exactly one of cons(1,nil) and cons(2, nil). Hence, min(r) is recomputed and
set to (1). Once the new value of min(r) is subtracted from live, live becomes (1), as required.

Suppose some data construction v, created before a conditional expression that evaluates to lubData I,
is part of a branch of . The size of v remains included in live even after the initial computation of min(l)
when [ is created. At this point, this does not cause any looseness in live since v is indeed live. When all
references to v except for the ones from [ disappear, then live may in fact be loose since it still includes the

13 of 28



size of v which may not be part of the larger sized branch of I. At this point, min(l) must be recomputed.

Example. In example (3), cons(1, nil) and cons(2, nil) are part of one or the other branch of the result
r of the expression. At f, live includes the sizes of both these data constructions. This is correct since both
cons(1, nil) and cons(2, nil) are live through bindings for v and v, respectively. v goes out of scope after the
evaluation of the let expression that binds v. Now, cons(2, nil) is live through r alone but since it occurs in
the larger branch of r, live is still tight. u goes out of scope after the evaluation of the let expression that
binds u. Now, since cons(1, nil) is live only through r and is part of the smaller branch of 7, its size is an
excess in the current value of live, so min(r) is recomputed and the value of live updated.

The min value of a lubData [ with only one non-primitive branch never needs to be computed. As
explained under case (c) in Section 6.2, since the primitive branch of [ occupies no heap space, | does not
create any looseness in the value of live by keeping its non-primitive branch live. Hence, live is tight as is
and min(l) is always Vj.

6.5 Definition of the Min Value of LubData

If all the descendants of a lubData [ with two branches are constrData then it is easy to see that [ represents
a choice between exactly two data structures and that min(l) is just the size of smaller of the two data
structures. If [ has lubData descendants, then in effect, [ represents more than 2 possible data structures.
min(l) includes the size of all these data structures except a largest one. Sizes of parts of these data structures
may be counted in min values of descendant lubData of I and hence already be subtracted from live. Sizes
of those parts are not included in min(l).

We consider the stack and live heap as a graph: formal parameters of functions, local variables placed
on the stack and data in the heap are vertices, and references from a variable to a datum or from one datum
to another, including, for lubData [, references in branches(l) but excluding references in lubParents(l), are
edges. We say that w is contained-in v if v is an ancestor of u in every path into u. For a lubData [, let C;
denote the set of all data contained in [, and let G denote the graph comprising vertices and edges reachable
from I. A lub-path of [ is a subgraph of G; containing [ and constructed from G; by selecting at every
lubData descendant I’ of [, including [ itself, exactly one branch of I’ and eliminating unreachable vertices
and edges. A lub-path is not a path in the traditional sense since it contains all outedges of component
constrData. Lub-paths of [ correspond to data structures represented by I. conType Vec(u) for a constrData
u is a constructor count vector in which the count of the constructor type of u is 1 and all other components
are 0. mazLubPath(l) is the maximum of the sizes of all lub-paths of I. If G} is a lub-path of I, then

size(Gyp) = Z con TypeVec(u)
u is a constrData in Gy N C}

For a lubData I, if branches(l) has two elements, both of which are contained-in I, min(l) is defined as
follows(lubData for which these conditions don’t hold have min values of Vj).
min(l) = total(l) — sub(l) — mazxLubPath(l) (4)
total(l) = Z con TypeVec(u) (5)

u is a constrData in

Z min(u) (6)

u is a lubData in C

sub(l)

All quantities in (4) are constructor count vectors. The sum and difference of vectors in (4) are computed
component-wise. This is safe, i.e., does not result in vectors with negative counts, since sub(l) and mazLub-
Path(1) count data in disjoint subsets of C;. This is explained as follows : if the lub-path P which contributes
to mazLubPath(l) contains a lubData I’ then P contains a largest lub-path of I' and min(l") counts data in
the other lub-paths of . Hence, min(l'), for any descendant lubData I’ of 1, counts data in lub-paths that
are not part of P. Informally, (4) says ”subtract from live everything except a largest lub-path and nodes
that have already been subtracted from live”.
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6.6 Computing the Min Value of LubData

We first deal with computing the min value of a lubData [ when both elements by and bs of branches(l)
become contained-in [. This happens immediately after a decrement of r¢(by) or re(bs) in ge. ge may access
[ through lubParents(b) or lubParents(bz). gc checks whether the reference counts of by and by are 1; if
so, by and by are contained-in I, so gc calls computeMin(l). This conservative approximation to checking
contained-in is faster than an exact check and suffices to obtain tight bounds for all of our examples.

The functions used to compute min values of lubData appear in Figure 9. computeMin is called only on
lubData whose branches have two elements both of which are contained-in the lubData; this is conservatively
checked using a call to containedIng. computeMin may not be used to compute min values of any other
kind of lubData. computeMin calls three functions, each of which makes one pass through Gy, where [ is the
argument to computeMin. The first pass, made by totalSub, is used to compute total(l) and sub(l). Each
time totalSub visits a node v, it decrements the rc of v. v’s contribution to total(l) and sub(l) is counted only
when v’s rc reduces to zero; this ensures that v’s contribution is counted only once even if there are multiple
paths from [ to v. In the second pass, mazLubPath determines the maximum of the sizes of lub-paths of [
in a bottom-up manner, first computing the maximum lub-path sizes of descendant lubData of | and then
using these results to compute the maximum lub-path sizes of ancestors. Because of the decrement in the
first pass, nodes contained in [ are easily identified as those with rc 0. In the third pass, recIncre restores
rc’s of nodes in G} to their original values.

A conditional expression of type d(ii) described in Section 6.2 evaluates to a lubData [ such that, the
elements of branches(l) are contained-in | when [ is created. For efficiency, instead of calling computeMin
to determine min(l), lub sets min(l) to min(le — ly,13 — [1), where [, ls, I3 are the values of live after the
evaluation of the test, true branch and false branch, respectively. The two computations yield the same
result. Intuitively, this is because min(ly — l1,l3 — [1) is the lesser of the amounts of new data in the results
of the two branches and the new data in the results are the only data that can be contained-in the resulting
lubData of the conditional expression.

Example 1. This example demonstrates the computation of the min value of a lubData that has only
constrData descendants.
let © = cons(1, nil) in
let r = (let u = cons(2,z) in
let v = cons(3,z) in (7)
if unknown then u else v)! in

Let 7' be the result of the conditional expression. The elements of branches(r') become contained-in ' at }.
Figure 6 shows lubData r' and its lub-paths at 1 and the computation of min(r').

Example 2. This example demonstrates the computation of the min value of a lubData that has lubData
descendants.
let © = cons(1, nil) in
let r = (let r1 = (if unknown then cons(2, nil) else z) in
let r2 = (if unknown then cons(3, nil) else z) in
if unknown then r1 else r2)! in

Let 7' be the result of the last conditional expression to be evaluated. The elements of branches(r') become
contained-in 7' at {. Figure 7 shows lubData r' and its lub-paths at t and the computation of min(r").

We now deal with computing the min value of a lubData ! when a descendant v of I that is not in
branches(l) becomes contained-in [. This happens immediately after a decrement to rc(v). We next discuss
how such an ancestor ! of v may be found since there is no direct way of doing so.

The following discussion explains how v may become contained-in a lubData [ for the first time. We will
see later that once v becomes contained-in [, if min(l) is computed and v’s contribution to min(l) considered,
then we need not be concerned about v’s contribution to min(l) again; so, we deal with only the first time
that v becomes contained-in / and not any subsequent times. v’s rc is decremented when
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G, lubdata

G1
o] rilfo] [[]]
branthes rc
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XU 3) XU 3) cdrrc

r

At t, before min(r') is computed, Computing min(r') at T,
z, v and v are bound to z', u' and v', respectively. Co = {r' v, v}
r is not bound yet. size(G1) = size(G2) = (1)
z' = (cons(1, nil), rc = 3, lubParents = nil) min(r')= total(r') — sub(r') — mazLubPath(r")
(references are from u', v’ and the binding for z) = (2) — (0) — (1)
u' = (cons(2,z'), rc =1, lubParents = [r']) = (1)
v = (cons(3,z"), rc =1, lubParents = [r']) live = (3) — (1) = (2)
r" = (branches = [u',v'], ¢ =0, lubParents = nil, min = Vp)
live = (3)

Figure 6: Computing min(r') at . G, is the graph of nodes and edges reachable from 7'; G; and G5 are
lub-paths of 7’. lubData are represented by rectangles and constrData by rounded rectangles. Some fields
of both types of data have been omitted from the pictorial representations since they are not relevant to the
discussion.

1. a variable or parameter referencing v goes out of scope.
2. a data construction u containing references to v becomes garbage in one of the following ways:

(a) the last variable or parameter referencing u goes out of scope.

(b) after the evaluation of an expression ¢(e) where ¢ is a selector, tester, or equality predicate and
e is an expression that evaluates to data y such that w is contained-in y and y is new data (i.e.,
data with reference count 0) and ¢ (if it is a selector) does not select u.

(c) the last data that contains a reference to u becomes garbage; this can happen only if there exists
some ancestor z of v which becomes garbage through (a) or (b).

In case (1), v may become contained-in some lubData that is part of the result of the let expression
or function call whose bound variable or parameter, respectively, is going out of scope. We recompute
the min values of such lubData. This scheme also handles case (2a) and instances of case (2c) in which
x becomes garbage through (2a). In case (2b), v may become contained-in the part of y that is selected
by q. recomputeMin should be called on the results of such applications of selectors to new data. The
current implementation does not make this invocation. Since none of our examples have instances of such
applications, there is no loss of accuracy in these examples.

recomputeMin is called at the end of let expressions and function calls on the result of the expression.
recomputeMin(v), where v is a constrData, calls recomputeMin recursively on the fields of v. For a lubData [,
recomputeMin(l) should call computeMin(l) if branches(l) has two elements, both of which are contained-in
I. Instead, it conservatively calls computeMin(l) if branches(l) has two elements with rc’s equal to 1. If
the check fails, then recomputeMin is called recursively on the elements of branches(l). In the first case, if
computeMin(l) is greater than min(l), then min(l) and live are updated appropriately. computeMin(l) is
less than min(l) iff there exists a v, such that (a) v was contained-in I when min () was last computed but is
not currently contained-in [ and (b) the size of v contributes to the last value of min(l). If u is contained-in
a lubData I’, it is possible to get a reference to u iff u occurs at the same position in all lub-paths of I,
i.e., iff there exists a sequence of selectors qi,...,q, such that applying the sequence of selectors to any
lub-path of I’ yields u. For example, in (7), cdr(r) returns a reference to z. (b) implies that v does not
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At t, before min(r') is computed, Computing min(r') at f,
x, rl and r2 are bound to z', r1' and 72, respectively. Co={r',rl" 72" v v'}
r is not bound yet. (z' is not in C,/ because of the binding for x)
x' = (cons(1, nil), rc =3, lubParents = [r1’,r2']) size(G1) = size(G4) = (1)
u' = (cons(2, nil), rc =1, lubParents = [r1]) size(G2) = size(G3) = (0)
v' = (cons(3, nil), rc =1, lubParents = [r2']) min(r')= total(r') — sub(r') — mazLubPath(r")
rl" = (branches = [u',2'], rc =1, lubParents = [r'], min = Vp) =(2) — (0) — (1)

r2" = (branches = [v',z'], rc =1, lubParents = [r'], min = Vp) = (1)
(the min values of r1" and r2' are Vj since one branch of both live = (3) — (1) = (2)
lubData viz. z', is not contained-in either.)

r" = (branches = [r1',72'], re =0, lubParents = nil, min = V)

live = (3)

Figure 7: Computing min(r') at 1. G, is the graph of nodes and edges reachable from r'; G;, G2, G3 and
G4 are lub-paths of 7.

occur in the lub-path whose size is mazLubPath(l), so it is impossible to get a direct reference to v after
v becomes contained-in [. Henceforth, every new reference to v is in the branches(l’), for some lubData [';
such lubData and references from them to v are created by applying selectors to [. These new references to
v cause v to not be contained-in [. According to definition (4) of min, this affects min(l). However, applying
selectors to [ does not immediately affect the value of live, since [ stays live even after the application, and
references that keep fragments of [ alive have no direct impact on live until [ becomes garbage. Therefore,
if computeMin(l) is less than min(l), min(l) and live are not updated. This also explains why we are only
concerned with the first time that v becomes contained-in I. After this first time, min(l) is not affected by
v’s becoming contained-in or not contained-in [.

Once the rc’s of the elements of branches(l) reduce to 1, no new references can be made to them since
selectors applied to ! can only select fields of these elements. Thus, for b € branches(l), if rc(b) becomes 1,
it remains 1 until b becomes garbage, which occurs when [ becomes garbage.

As seen in Figure 10, ge(x) might call computeMin(l), where [ is a lubparent of z. The result of
computeMin(l) is subtracted from live and assigned to min(l). The old value of min(l) is not first added to
live. This is explained as follows. In the call to ge(x), the decrement to r¢(x) might cause r¢(x) to reduce to
1 and x to become contained-in in [ for the first time. If so, since rc(z) is greater than 0 until now and z is
an element of branches(l), the old value of min(l) must be V4. Ignoring such a value of min(l) is harmless.
It follows from the arguments in the previous paragraph that once rc¢(z) becomes 1, any subsequent call to
gc(z) occurs because [ has become garbage. In such a case, gc(z) does not call computeMin(l). Thus, a call
to computeMin(l) from gc(x) occurs at most once: at the first point when both elements of branches(l) have
rc 1. computeMin(l) is not called at all from ge(z) if both branches of [ have rc 1 when [ is constructed.

Calls to recomputeMin(l), if any, occur only after the call to computeMin(l), if any, from gc(z), where x
is the element of branches(l) whose rc is the last to reduce to 1. This is because gc(z) is called before the
call to recomputeMin in transformed let expressions and function calls. Further, the call to recomputeMin
on the results of these expressions will not affect the min value of [ unless computeMin has already done so.
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6.7 Improvements

The current transformation does not achieve complete accuracy. We describe some improvements that are
aimed at obtaining more accuracy. Although none of these have been implemented yet, we get accurate
results on all our examples.

computeMin(l) should be called only after checking if elements b; and bs of branches(l) are contained-in
l. However, we simply check if rc(b;) and re(be) are 1. This check is conservative. A thorough check may be
implemented as follows : modify the definition of computeMin so that after calling totalSub on its branches,
it checks if rc(by) and re(be) are 0. If so, then the computation is completed. If not, Vp is returned.

recomputeMin should be called on results of selectors also. This is described in Section 6.6.

According to the current definition of recomputeMin, if recomputeMin(l) calls computeMin(l) for lubData
I, then recomputeMin is not recursively called on the elements of branches(l). Hence, the min value of a
descendant lubData I’ of [ is not recomputed. Any excess in live caused by I’ which has not already been
subtracted away by min(l') will be included in min(l); this follows from the definition of min. Thus, at this
point, [ and its descendants cause no looseness in live. However, if at some later point [ becomes garbage
while I’ stays live, min(l) which includes the excess caused by [’ is added to live. The recursive call to gec(l')
will not cause this excess in I’ just added to live to be subtracted from live since [’ is still live. At this point,
min(l") should be recomputed and live updated. In more general terms, when garbage collecting lubData,
we should recompute the min values of descendant lubData that do not become garbage.

We do not correlate lubData results of duplicate evaluations of ¢(I) or lubData results of evaluations of
q1(1) and ¢2(1); I is a lubData, ¢, g1 and ¢» are selectors, ¢; # g2. Each time ¢(!) is called, a new lubData is
returned. Suppose [; and [, are results of two such calls to ¢(I). If [ becomes garbage and [; and I, stay live,
since the common elements of branches(ly) and branches(l2) are not contained-in either I; or Iy, the sizes of
both elements are included in live even though, in an execution of the original program, only one element is
live. A similar situation arises in the case of the results of ¢;(I) and ¢»(). This is roughly analogous to the
false path problem.

Example. Consider the expression

(let r = if unknown
then cons(1, cons(2, nil))
else cons(3, cons(4, nil)) in
cons(cdr(r), cdr(r)))t

The two calls to cdr(r) return two different lubData Iy and lo. branches(ly) and branches(lz) contain
references to cons(2, nil) and cons(4, nil). At t, r becomes garbage. Now, the min values of [; and l» are
recomputed. cons(2,nil) and cons(4, nil) are not contained-in [; or l» because of the references from the
other. Their min values are set to Vp even though only one of cons(2, nil) and cons(4, nil) is live.

The problem may be partially solved by returning a unique lubData when selecting from some other
lubData. The first time a selector is applied to lubData [, a reference to the resulting lubData [’ is saved in
l. Subsequent applications of the same selector to [ return [’.

6.8 Garbage Collection

gc works on constrData the same way as before. gc also handles lubData. When a lubData [ becomes
garbage, before gc calls itself recursively on the elements of branches(l), it adds min(l) to live, so that live
includes the sizes of all descendants of [ when those descendants are garbage collected through recursive
calls to gc. These recursive calls will remove from live the sizes of only those descendants that do become
garbage. Without the last two improvements mentioned in Section 6.7, the total amount subtracted from
live by these recursive calls may not be as large as min(l).

6.9 Component-Wise Analysis

The above analyses require that Po be known during the analysis. Variants of these analyses, which we
call component-wise analyses, can be performed without knowledge of Pz, simply by using component-wise
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fro(vi,...,vn) = Ly]e] where e is the body of function f, i.e., f(vi,...,v,) =€

Lyl =wv

Lyl =1

Lylcler, ..., en)] =same as Llc(ey, ..., en)], except replace £ with Ly

Lylg(el,...,en)] = qu(Lolel], ..., Ly[en])

Gu(V1, ... vy) = if v = unknown or --- or v, = unknown then unknown else q(vy,...,vy)
Ly[q'(e)] = same as L][¢'(e)], except replace £ with £, and replace ¢’ with ¢/,

q.,(v) = if v = unknown then unknown
else if lubData(v)
then if length(branches(v)) =1
then lub(false, ¢, (first(branches(v))), nil , nil)
else lub(q. (first(branches(v))), q;,(second (branches(v))), nil, nil)
else ¢'(data(v))
Ly [e7i(e)] = same as L [c~i(e)], except replace £ with £y, and replace ¢=¢ with ¢}
¢, '(v) = if v = unknown then unknown
else if lubData(v)
then if length(branches(v)) =1
then c~(false)
else lub(c, (first(branches(v))), ¢, *(second (branches(v))), nil, nil)
else ¢ (data(v))
Ly [if e; then e; else e3] = let r = Ly[eq] in
if r = unknown
then let [0 = copy(live), I1 = copy(live) in
let r2 = Ly [es] in
let diffi2 = vectorSub(live,l1) in
live = [0;
let r3 = Ly [es] in
let diffi3 = vectorSub(live,l1) in
live = vectorAdd (11, diffi2, diffi3); lub(r2,r3, diffi2, diffi3)
else if r then £ [e2] else L [es]
Ly[let v=-e; in ex] = let v = Ly[e;] in
incre(v);
let r = Ly[es] in
incre(r); ge(v); decre(r); recomputeMin (r);r
Ly[f(er,...,en)] =let r1 = Lyled], ..., = Ly]en] in

incre(ry); .. .5 inere(ry);
let r = frp(re,...,7) in
incre(r); ge(ry); .. .5 ge(ry); decre(r); recomputeMin(r);r

Figure 8: Transformation that produces live heap space-bound functions fr;. ¢ is a primitive operation other
than a selector, tester, or equality predicate. ¢' is a tester. copy copies a vector. vectorAdd and vectorSub
determine the component-wise sum and difference, respectively, of their vector arguments; the first argument
is modified in place to hold the sum or difference and is returned as the result. As an optimization, in the
transformation for if expressions, it is easy to avoid transforming es and e3 twice, by saving and re-using
the results of those transformations.
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computeMin(v) = let (total, sub, maxBr) = (newZeroVec(), newZeroVec(), newZero Vec()) in
for v in branches(v) (total, suby += totalSub(u);
for u in branches(v) mazBr = max(mazBr, mazLubPath(u));
for u in branches(v) recIncre(v);
(total — sub — maxBr)

totalSub(v) = if primVal(v) then (newZeroVec(), newZeroVec())
else decrc(v);
if re(v) =0
then let (total, sub) = (newZeroVec(), newZeroVec()) in
if lubData(v)
then for u in branches(v) (total, sub) += totalSub(u);
if min(v) # nil then vectorAdd(sub, min(v))
else for i = 1..arity(v) (total, sub) += totalSub(c~'(data(v)));
total[cons Type(v)]++
(total, sub)
else (newZeroVec(), newZeroVec())

maxLubPath(v) = if primVal(v) then newZero Vec()
else if re(v) =0

then let maxBr = newZeroVec() in
if lubData(v)
then for « in branches(v) maxBr = max(maxBr, maxLubPath(u))
else for i = 1..arity(v) vectorAdd(maxBr, mazLubPath(c~%(data(v))));

max Br[consType (v)]++

maxBr

else newZeroVec()

recIncre(v) = if not(primVal(v)) then
incrc(v);
if re(v) =1 then if lubData(v)
then for u in branches(v) recIncre(u)
else for i = 1..arity(v) recInere(c™%(data(v)))

recomputeMin(v) = if not(primVal(v)) then
if lubData(v)
then if length(branches(v)) = 2 and containedIng(branches(v))
then let newmin = computeMin(v) in
if newmin > min(v)
then vectorSub(vectorAdd(live, min(v)), newmin); setmin(v, newmin)
else for u in branches(v) recomputeMin(u)
else for i = 1..arity(v) recomputeMin(c=!(data(v)))

Figure 9: Auxiliary functions used to compute the min value of lubData. newZeroVec() return-
s a new constructor count vector in which all counts are 0. (t,s) += (#,s’) is the same as
vectorAdd(t,t'); vectorAdd(s, s').

maximum when computing the maximum of constructor count vectors. For programs that use multiple con-
structors, component-wise analysis provides more information about the maximum number of live instances
of each constructor; however, if different components of the constructor count vector achieve their maximum
values in different branches of conditionals, it may provide looser bounds on the overall amount of live da-
ta. Our examples use only one constructor (namely, cons); for such programs, component-wise analysis is
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lub(v1,ve, livey, lives) = if eq?(v1,v2) then vy
else if primVal(vy)
then if primVal(vy) then unknown
else let result = newlub([v2]) in
incrc(ve); addToLubParents(vy, result); result
else if primVal(vs)
then let result = newlub([v1]) in
incrc(vy); addToLubParents(vy , result); result
else let result = newlub([vy,v2]) in
incrc(vy); add ToLubParents (v, result);
incrc(ve); add ToLubParents (va, result);
if livey # nil and lives # nil
then let m = min(livey, lives) in
vectorSub(live, m); setmin(result, m);
result
gc(v) = if not(primVal(v))
then decre(v);
if length(lubParents(v)) = 1
then let u = first(lubParents(v)) in
if length(branches(u)) = 2 and
containedIng(branches(u))
then let m = computeMin(u) in
vectorSub(live, m); setmin (u, m)
if re(v) <0
then if lubData(v)
then if min(v) # nil
then live = vectorAdd(live, min(v));
for u in branches(v)
remFromLubParents(u,v); ge(u)
else live[consType(v)]——;
for i = 1..arity(v) gc(c™¢(data(v)))
containedIng(I1s) = if null(ls) then true
else if re(car(ls)) = length(lubParents(car(ls))) =1
then containedIng(cdr(ls))
else false

Figure 10: Auxiliary functions lub, gc and containedIng.

equivalent to the original analysis.

7 Experiments

We have implemented the above analyses using Chez Scheme [3] for a subset of Scheme and measured the
results for several standard list and tree processing programs. These programs do not contain eq?; we did
not implement tagging of data allocated by lub in stack space and heap allocation analyses. Comparisons
of results of space functions and space-bound functions of all three analyses show that bound functions
produce accurate results for all these examples. The results of live heap space-bound functions are also
consistent with the expected asymptotic space complexities of the functions. All bound functions are either
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asymptotically faster or several times faster than applying the corresponding space functions to all possible
inputs. Non-termination is not a problem for any of these examples.

Figures 11, 12, 13 and 14 contain the results of stack space, component-wise stack space, heap-allocation
and live heap space analysis on some example programs. We do not show the results of both space functions
on worst-case inputs and corresponding bound functions on partially known inputs since the two sets of
results are the same in all examples, for all analyses. List reversal is the standard linear-time version of
reverse; reversal with append is the standard quadratic-time version. The version of merge sort tested is
the one that splits the input list into sublists containing the elements at odd and even positions. Dynamic
programming algorithms [43, 6] are used for binomial coefficient, longest common subsequence and string
edit. Binary-tree insertion involves insertion of an item into a complete binary tree in which each node is a
list containing an element and left and right subtrees.

The partially known inputs for the bound functions of reversal and sorting are lists of known lengths n
where all elements are unknown; those for longest common subsequence and string edit are two such lists of
equal length n. The bound function for binary-tree insertion inserts unknown into a complete binary tree
of known depth n with unknown elements; the results are the same for inserting unknown into a tree with
known elements or inserting a known value into a tree with unknown elements, since the test which checks
if the given item is to be inserted into the left or right subtree evaluates to unknown in both these cases.
Binomial coefficient uses integer arguments, n and m, where m < n. It was observed, using the analysis,
that for a given n, binomial coefficient uses maximum stack space on inputs n and n — 1. We use known
inputs n and n — 1 for all bound functions of binomial coefficient.

reversal || reversal w/app.|| insertion sort selection sort merge sort
n| rev n| revl app n| sort|insert n| sort|least| remove|| n|sort|even|odd|merge
10| 11 10| 11 0| 10{ 11 0| 10{ 11 0 o 1] 1 0| O 0
20| 21| 20f 21 0]l 20| 21 0]l 20| 21 0 0| 2 1 2l 1 0
50| 51| 50f 51 0|l 50| 51 0|l 50| 51 0 0]l 5] 1 3 3 0
100{ 101 100| 101 0|| 100| 101 0|| 100| 101 0 0j|10f 1 6] 5 0
200{ 201f{| 200{ 201 0|| 200 201 0|| 200 201 0 0|15 1 8 8 0
300| 301 300| 301 0]| 300| 301 0]| 300| 301 0 0]{20f 1| 11| 10 0
500| 501 500| 501 0]| 500|{ 501 0]| 500|{ 501 0 0|[25| 1| 13| 13 0
1000{1001|{1000{1001 0{{1000{1001 0{{1000{1001 0 0|{30] 1| 16| 15 0
1500|1501(|1500{1501 0]|1500{1501 0]|1500{1501 0 0]{40{ 1| 21| 20 0
2000|2001{{2000{2001 0{/2000{2001 0{/2000{2001 0 0|[50| 1| 26| 25 0
binomial coefficient|| longest common subsequence string edit distance
n[b[bhat] bhat’|| nlics[lcshat]lcshat’| strref]| nl[se|sehat]sehat’|strref]
10|1 1 10{| 10| 1 1 10 10|l 10f 1 1 10 10
20(1 1 20(| 20| 1 1 20 20( 20| 1 1 20 20
50(1 1 50(| 50| 1 1 50 50{| 50| 1 1 50 50
100|1 1 100(|100| 1 1 100 100(|100| 1 1{ 100| 100
2001 1 200/|150| 1 1 150 150{{150| 1 1| 150| 150
300(1 1 300((|200| 1 1 200 200(({200( 1 1| 200| 200
5001 1 500/|250| 1 1 250 250(|250( 1 1| 250| 250
1000(1 1{ 1000({(300| 1 1 300 300(|300( 1 1| 300| 300
15001 1| 1500({400| 1 1 400 400((400| 1 1| 400| 400
2000(1 1| 2000500 1 1 500 500(|500( 1 1| 500| 500

Figure 11: Results of stack space functions on worst-case inputs. These are also the results of stack space-
bound functions; the two are equal for all of these examples. n is the input size.

Recall that the result of stack space analysis is a frame count vector whose elements are counts of the stack
frames of functions defined in the program being analyzed. In the tables in Figures 11 and 12, the names of
the functions defined in each program appear in the second line. For all programs, the first function listed
is the top-level function. In list reversal with append, app appends a given list to another given list. insert
in insertion sort inserts an element into a sorted list, in the correct position. In selection sort, least returns
the least element in a given list, and remove removes a specified element from a list. In merge sort, odd(ls)
and even(ls) return lists containing the elements of list Is at odd and even positions, respectively. The hat
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reversal || reversal w/app.|| insertion sort selection sort merge sort
n| rev n| rev| app n| sort|insert n| sort|least|remove|| n|sort|even|odd| merge
10 11 10 11 10 10 11 10 10 11| 10 10(| 1 1 o 0 0
201 21 201 21 20 201 21 20 20| 21| 20 20]| 2 2 2 2 2
50( 51| 50| 51| 50| 50| 51 50( 50 51| 50 50(| 5| 4 3| 3 5
100| 101 100| 101| 100{| 100 101| 100 100|{ 101} 100 100(|10 5 6] 6 10
200{ 201 200 201| 200 200 201| 200 200 201 200 200{|15| 5 8| 8 15
300{ 301|| 300 301| 300|| 300{ 301| 300{| 300/ 301| 300 3001|20 6 11| 11 20
500{ 501 500 501| 500 500 501| 500 500 501 500 500(|25| 6| 13| 13 25
1000{1001{{1000{1001| 1000(|1000{1001| 1000{{1000{1001|1000 1000130 6 16| 16 30
1500{1501|{1500(1501| 1500(|1500|1501| 1500({1500|1501|1500| 1500({40f 7| 21| 21 40
2000|2001{{2000|2001| 2000{|2000{2001| 2000{{2000{2001({2000| 2000{(50| 7| 26| 26 50
binomial coefficient|| longest common subsequence string edit distance
n[b]bhat] bhat’|| nlics[lcshat]lcshat’| strref]| n[se|sehat]sehat’|strref
10|1 2 10(| 10 1 11 11 10|| 10f 1 21 20 10
20|1 2 20| 20| 1 21 21 20)| 20| 1 41 40 20
50(1 2 50| 50| 1 51 51 50( 50| 1| 101| 100 50
1001 2 100||100| 1| 101 101 100(|100( 1| 201 200| 100
200|1 2 200((150( 1| 151 151 150(|150( 1{ 301 300| 150
300(1 2 300((200| 1| 201 201 200((200( 1| 401| 400| 200
500|1 2 500((250( 1| 251 251 250((250| 1| 501 500 250
1000(1 2| 1000{{300{ 1| 301 301 300((300( 1| 601| 600| 300
1500|1 2| 1500{|400| 1| 401 401 400(|400| 1| 801 800 400
2000|1 2| 2000{{500{ 1| 501 501 500((500( 1| 1001| 1000| 500

Figure 12: Results of component-wise stack space functions on worst-case inputs. These are also the results
of component-wise stack space-bound functions; the two are equal for all of these examples. n is the input
size.

and hat' functions in binomial coefficient, longest common subsequence and string edit are constructed using
methods described in [35]; the top-level function simply calls the hat function and extracts the appropriate
part of its return value; the recursively-defined hat function calls the hat' function to compute the return
value incrementally in the recursive case; in other words, the hat' function exploits the results of smaller
sub-computations. strref in longest common subsequence and string edit returns the element at a given
position in a list; in both programs, strings are represented as lists.

For all examples, stack space-bound analysis is tight relative to stack space analysis; in other words, the
stack space-bound function applied to an unknown input returns the same result as the stack space function
applied to a known worst-case input. Similarly, for all of these examples, component-wise stack space-bound
analysis is tight relative to component-wise stack space analysis. Intuitively, these results indicate that the
behavior of conditionals in the presence of partially known values is being analyzed sufficiently accurately.
Recall from Section 3 that component-wise stack space-bound analysis provides bounds on the number of
nested calls to each function but may lead to loose bounds on the overall stack size. This looseness occurs in
most of these examples, as one can see from Figures 11 and 12. For example, the result of stack space analysis
applied to reversal with append on a list of size n is {(n + 1),0), while the result of the component-wise
analysis is ((n + 1),n); the first and second components of the tuples are numbers of calls to rev and app,
respectively.

We measured the running times of the original programs and the stack analysis functions for two examples
- insertion sort and merge sort. The running time of insertion sort is quadratic time in the size of the input.
Its stack space and stack space-bound functions also run in quadratic time. Stack space functions have similar
structures as the original programs, except for the following: test expressions in conditionals, bindings in
let expressions and arguments of function calls are evaluated twice, once to obtain their value and again to
determine the stack space usage. This might lead to asymptotic slowdown if the expressions involved take
more than constant time. Since all such expressions in insertion sort take constant time, its stack space
function is only a constant factor slower than insertion sort itself. The stack space-bound function explores
all possible ways of inserting elements into intermediate sorted sublists that contain unknown elements.
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Given such a list of size m, an element may be inserted into the list in (m + 1) different ways. The bound
function creates the lub of these (m + 1) possible results in O(m) time, the computation being similar to a
worst-case scenario of inserting into a list of known elements in which a known element has to be inserted
at the end of the list. Thus, the bound function is no worse than the worst case scenario for insertion sort.

Even though inserting into a list of size m with unknown elements leads to (m + 1) possible results, the
use of [ub ensures that the result is a single list with unknown elements. This prevents exponential blowups
that arise when all possible results have to manipulated instead of a single lub value.

Merge sort and its stack space function take O(nlogn) time. The stack space-bound function of merge
sort has a larger time complexity than merge sort. This is because of steps during the computation of the
bound function where two lists containing unknown elements are merged. Two sorted lists of size n and m
may be merged in (n + m)!/(n! x m!) different ways. The bound function explores each of these different
possibilities. Hence, its running time is at least exponential in the input size.

. . . . . . longest
list reversal insertion selection merge || binomial 8 . .
. common || string edit
reversal w/append sort sort sort coefficient
subseq.

n|heap n heap n heap n heap|| n|heap n|heap|| n| heap|| n| heap
10| 10| 10 55 10 55| 10 55( 1 0| 10| 29| 10 121(| 10 341
20| 20{| 20 210|| 20 210|| 20 210 2 3|l 20| 59| 20 441 20| 1281
501 50( 50 1275( 50 1275|| 50 1275(| 5| 20| 50| 149|| 50| 2601|| 50| 7701
100| 100(| 100 5050(| 100 5050|| 100 5050(|{10{ 59|| 100 299(/100| 10201{{100| 30401
200| 200|| 200/ 20100{| 200 20100|| 200| 20100||15| 104|| 200| 599|/150| 22801||150| 68101
300| 300|| 300| 45150|| 300| 45150|| 300| 45150(|20| 157|| 300| 899(/200| 40401(|200|120801
500| 500|| 500| 125250|| 500| 125250|| 500| 125250(|25| 212|| 500|1499([250| 63001||250|188501
1000{1000{{1000| 500500{{1000| 500500(|1000| 500500({30| 267|{1000| 2999|/300| 90601|300|271201
1500{1500({1500|1125750({1500|1125750(|1500|1125750|{40| 393|{1500| 4499|(400|160801(|400|481601
2000|2000(|2000(2001000({2000{2001000{|2000(2001000(|50| 523||2000| 5999(|500(251001|{500|752001

Figure 13: Results of heap allocation functions on the worst-case input. These are also the results of the
heap allocation-bound functions; the two are equal for all of these examples. n is the input size.

Figure 13 contains results of heap allocation analysis on all examples. These examples use only one
constructor (namely, cons), so component-wise heap allocation bound analysis provides no additional infor-
mation about space usage. This applies to live heap space analysis also. Heap allocation does not include
the space used by top-level arguments since they are not allocated by any of the functions in the program
being analyzed. The running times of heap allocation and heap allocation bound functions are similar to
those of the corresponding stack analysis functions.

Figure 14 shows results of live heap space analysis. These results include the space used by top-level
arguments since these arguments are indeed live throughout the execution of the program. It is easy to

list reversal ||insertion|| selection|| merge || binary-tree longest . .
. . common|| string edit

reversal || w/append sort sort sort insertion

subseq.

n|result n|result|| n|result|| n|result|| n|result|| n| result|| n| result n|result
10 20 10 29]| 1 21l 1 21 1 1| 1 18| 2 10 10{ 100
20 40(] 20 59| 2 5| 2 5| 2 5| 2 33| 4 18| 20| 200
50| 100 50| 149|| 3 9|l 3 9(l 3 9(l 3 60|| 6 26 50| 500
100 200 100| 299|| 4 14| 4 14| 4 11| 4 111 8 34|| 100{ 1000
200| 400 200 599|| 5 20| 5 20]| 5 16| 5 210((10 42|| 200{ 2000
300{ 600|| 300 899| 6 27|| 6 27| 6 18| 6 405|112 50|| 300{ 3000
500{ 1000|| 500| 1499|| 7 35| 7 35( 8 23| 7 79214 58| 500( 5000
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Figure 14: Results of live heap space-bound functions on partially known inputs.
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see from these results that list reversal, reversal with append, longest common subsequence, and string edit
take linear space. Insertion sort and selection sort take quadratic space. Merge sort takes O(nlogn) space.
Binary-tree insertion takes O(2"™ + n) space, since we define live heap space to include the space taken by
the arguments, and a complete binary tree of depth n takes O(2") space.

We compared the running times of the original functions, the live heap space functions, and the live heap
space-bound functions for two programs: insertion sort and string edit. For both of these examples, the live
heap space functions typically ran a factor of 60 to 100 slower than the original programs. For string edit,
the running times of the original, space and bound functions are quadratic in terms of the input size (cf. next
paragraph). For insertion sort, the running time of the space-bound function appears to be O(n?n!), i.e., the
average case running time of the original function times the number of equivalence classes of inputs. Thus,
the bound function does not appear to offer any asymptotic savings in running time compared to running the
space function on all inputs. However, the bound function does achieve significant constant-factor savings :
50 to 1500 for inputs of size 5 to 10.

Given partially known inputs of the kind described before, bound functions of all examples other than
those of reversal and string edit build lubData. Bound functions of reversal, when given lists of known size
and unknown elements, do not contain any conditional expressions whose tests evaluate to unknown, so they
do not create any lubData. The only conditional expression in the bound function of string edit, whose test
evaluates to unknown, has branches that are primitive data. Such conditional expressions return unknown.
Notice that since the branches of such conditional expressions are primitive data, evaluation of both branches
increases the running time by only a constant factor. The running times of all three bound functions grow
at the same rate as the corresponding space functions.

8 Related work

There has been a large amount of work on analyzing program cost or resource complexities, but the majority
of it is on time analysis, e.g., [53, 32, 11, 45, 51, 49, 12, 44, 33, 47, 34]. Some techniques for time analysis can
be adapted for space analysis, for example, as we did for stack space and heap allocation analysis. Analysis
of live heap space has an important difference from all these other analyses: it involves explicit analysis of
the graph structure of the data.

Most of the work related to analysis of space is on analysis of cache behavior, e.g., [10, 38, 54, 14, 33],
much of which is at a lower language level, for compiler generated code, and much of which is for facilitating
time analysis. Our analyses bound stack space and heap space and are completely at the source level; they
can serve many more purposes in understanding and optimizing programs, as discussed at the beginning.
Live heap space analysis is also a first step towards analyzing cache behavior in the presence of garbage
collection.

Our analyses for stack space and heap allocation are closely related to the time-bound analysis of Liu
and Goémez [34]. Heap allocation corresponds to the number of data constructions that their analysis counts.
Stack space counts nested function calls, separately for different functions, and takes the maximum, rather
than sum in their analysis, over subexpressions.

Persson’s work on live memory analysis [40] has the same goal as our live heap space analysis. He presents
his techniques in the context of an object-oriented language and discusses various problems involved, and
he requires programmers to give annotations, including specific numbers as bounds for the size of recursive
data structures. His work is preliminary: the presentation is informal, with a few formulas summarizing
sizes of data in bytes based on the annotations, and only one example, summing a list, is given. Persson
also mentions the use of size information for deriving bounds on loops for time analysis but does not explain
how. The general method used in our analyses is able to compute various kinds of bounds based on input
size only, without program annotations; it can do time analysis automatically as well, as shown by the work
of Liu and Gémez [34].

A number of people have worked on static analysis for compile-time garbage collection [22, 21, 16, 29,
27, 19, 25, 50, 18, 52], and one of the approaches is static reference counting [22, 21]. For compile-time
optimization, the reference count includes only pointers to memory cells that will be used in the rest of the
execution [21]. This kind of reference count can not be used for analyzing live heap space, since a cell not
to be used in the future may still be pointed to from the stack and thus would not yet be garbage collected
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by standard run-time garbage collectors. Thus, we had to develop a different reference counting method for
the live space analysis.

Inoue and others [26] analyze functional programs to detect run-time garbage, by finding run-time garbage
conservatively at compile-time. Their result is an approximation without any information about the input.
Also, they do not compute the size of live space.

Our analysis combines static program analysis techniques with reference counting and is simple and
powerful. Interestingly, Goyal and Paige [17] developed a method for avoiding unnecessary hidden copies by
performing compile-time analysis and optimizations that facilitate dynamic reference counting; their method
is also simple and powerful, compared to relying completely on dynamic reference counting or using only
static analysis.

Several type systems [24, 23, 7] have been proposed for reasoning about space and time bounds, and
some of them include implementations of type checkers [24, 7]. They require programmers to annotate their
programs with cost functions as types. Furthermore, some programs must be rewritten to have feasible types
[24, 23].

Chin and Khoo [4] propose a method for calculating sized types by inferring constraints on size and then
simplifying the constraints using Omega [42]. Their analysis results do not correspond to stack space or
heap space in general. Furthermore, Omega can only reason about constraints expressed as linear functions.

To summarize, this work is a first attempt to analyze live heap space automatically and accurately using
source-level program analysis and transformations. We believe that it can be extended to handle higher-order
functions and side effects. The extension to higher-order functions should be similar to the recent extension
of timing analysis by Gémez and Liu from first-order [34] to higher-order functions [15]. The extension to
handle side effects in the presence of destructive update is more complicated, since using reference counting
may give overly pessimistic bounds when cycles are present. Since we have also developed a shape-analysis
based version for live heap space analysis, we think it can be combined with new techniques for shape analysis
in the presence of destructive update [48] to address this challenge.
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