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Abstract

Electronic payment protocols are designed to work correctly in the presence of an adversary that can

prompt honest principals to engage in an unbounded number of concurrent instances of the protocol.

This paper establishes an upper bound on the number of protocol instances needed to attack a large

class of protocols, which contains versions of some well-known electronic payment protocols, including

SET and 1KP. Such bounds clarify the nature of attacks on and provide a rigorous basis for automated

verification of payment protocols.

1 Introduction

Many protocols, including electronic payment protocols, are designed to work correctly in the presence of an
adversary (also called a penetrator) that can prompt honest principals to engage in an unbounded number
of concurrent instances of the protocol. Payment protocols should satisfy at least two kinds of correctness
requirements: secrecy, which states that certain values are not obtained by the penetrator, and agreement,
which states that a principal executes a certain action only if appropriate other principals previously executed
corresponding other actions (e.g., a payment gateway approves a charge to customer C’s account only if
customer C previously authorized that charge).

Allowing an unbounded number of concurrent protocol instances makes the number of reachable states
unbounded. The case studies in, e.g., [MCF87, Ros95, HTWW96, DK97, LR97, MMS97, MCJ97, MSS98,
Bol98, DNL99, MM99] show that state-space exploration of security protocols is feasible when small upper
bounds are imposed on the size of messages and the number of protocol instances. In most of those case
studies, the bounds are not rigorously justified, so the results do not prove correctness of the protocols.
Rigorous automated verification of these protocols requires either symbolic state-space exploration algorithms
that directly accommodate these infinite state spaces or theorems that reduce correctness of these protocols
to finite-state problems.

This paper presents a reduction for a large class of protocols. It uses the strand space model [THG98]. A
regular strand can be regarded as a thread that runs the program corresponding to one role of the protocol
and then terminates; thus, a regular strand corresponds to one instance of one role in the protocol. A central
hypothesis of our reduction is the bounded support restriction (BSR), which states that in every history
(i.e., every possible behavior) of the protocol, each regular strand depends on at most a given number of
other regular strands. Our notion of dependence, embodied in the definition of support, is a variant of
Lamport’s happened-before relation [Lam78], modified to handle freshness of nonces appropriately. BSR is
not easily checked by static analysis, so we propose to check it by state-space exploration, while checking the
correctness requirements. With statically checkable restrictions alone, it seems difficult to find restrictions
that are both strong enough to justify a reduction and weak enough to be satisfied by well-known protocols.
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To check BSR by state-space exploration, we need a reduction for it. We prove: if a protocol satisfies its
correctness requirements and BSR when appropriate bounds are imposed on the number of regular strands
in a history, then the protocol also satisfies its correctness requirements and BSR without those bounds. We
actually prove the contrapositive of this statement, by supposing that some history of the protocol violates
BSR or a correctness requirement and constructing a history violating the same property and containing a
bounded number of regular strands. That history is constructed by starting from an earliest node (in the
strand space model, events are usually called “nodes”) that causes a violation of the property and finding the
set of nodes on which that node depends. Roughly speaking, that set of nodes, augmented with appropriate
actions by the adversary, is the desired history.

Most existing techniques for automated analysis of systems with unbounded numbers of concurrent
processes, such as [CGJ95, KM95, EN96, AJ98, BSBL00, JN00], are not applicable to payment protocols,
because they assume the set of values (equivalently, the set of local states of each process) is independent of
the number of processes, whereas payment protocols generate fresh values, so the set of values grows as the
number of processes (strands) increases. Dolev and Yao’s algorithms for verifying secrecy requirements of
cryptographic protocols are interesting but limited [DY83]; they do not handle agreement requirements, and
they apply to a severely restricted class of protocols, which excludes the variants of SET and 1KP described
in Section 2.1 and is strictly included in the class of protocols handled by our reduction.

Roscoe and Broadfoot use data-independence techniques to bound the number of nonces needed for an
attack [RB99]. Their result assumes that each trustworthy principal participates in at most a given number
of protocol instances at a time. Our reduction does not require that assumption; indeed, our goal is to
justify such assumptions. Lowe’s reduction [Low99] has similar goals as our reduction and provides tighter
bounds in its domain of applicability, but it does not handle agreement requirements and does not apply to
the variants of SET and 1KP described in Section 2.1.

The reduction embodied in Theorems 2 and 3 handles secrecy and agreement requirements and applies
to simplified versions of SET [SET97] and 1KP [BGH+00]. It extends the reduction in [Sto99] in several
significant ways. The class of preserved properties is extended to allow protocol-specific secrecy properties
(roughly, any non-cryptographic value can be designated as a secret) and to allow use of more general
predicates to characterize the desired relationship between actions in agreement properties. The class of
protocols is extended by allowing hash functions, allowing arbitrary nesting of hashing and encryption in
protocol messages, and relaxing the restriction that the recipient of a message be able to recognize the entire
structure of the message.1 These extensions necessitate substantial changes to the statement and proof of
Theorem 1. That theorem is the crux of the proof of our reduction: it provides a statically-calculated bound
on a “dynamic” quantity (i.e., a quantity defined by a maximum over all possible executions of the protocol);
that quantity is the dependence width, defined in Section 4.

Our results implicitly describe a simulation relation between systems with bounded-size histories and
systems with unbounded-size histories. It would be interesting to see whether similar results could be
obtained more easily in a process-algebraic framework, such as Spi calculus [AG99].

2 Model of Protocols

We use the strand space model [THG98], with minor modifications. We introduce simple languages for
protocols and correctness requirements.

The set of primitive terms is Prim = Text ∪Key , where Text is a set of values other than cryptographic
keys, and Key = {key(x, y) | x, y ∈ Name∧x 6= y}∪{pub(x) | x ∈ Name}∪{pvt(x) | x ∈ Name}. Informally,

1Session keys are not used in the examples in this paper, so we omitted them from the framework. They can be handled
roughly as in [Sto99].
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key(x, y) is a symmetric key intended for use by x and y, and pub(x) and pvt(x) represent x’s public and
private keys, respectively, in a public-key cryptosystem. Name is the subset of Text containing names of
principals. Nonce is the subset of Text containing nonces.

The set Term of terms is defined inductively as follows. (1) All primitive terms are terms. (2) If t and
t′ are terms and k ∈ Key , then encr(t, k) (encryption of t with k, usually written {t}k), pair(t, t′) (pairing
of t and t′, usually written t·t′), and h(t) (hash of t, where h represents a one-way collision-resistant hash
function [MvOV97]) are terms.

inv ∈ Key → Key maps each key to its inverse: decrypting {t}k with inv(k) yields t. For a symmetric
key k, inv(k) = k. We usually write inv(k) as k−1. We assume perfect encryption, i.e., {t}k = {t′}k′ iff
t = t′ and k = k′. Distinct primitive terms are assumed to represent distinct values (e.g., key(A,B) and
key(A,S) represent different keys).

[t]pvt(x) abbreviates t · {h(t)}pvt(x), i.e., t signed by x.
A ciphertext is a term whose outermost operator is encr . A hash is a term whose outermost operator is

h. A term t′ occurs in the clear in t if there is an occurrence of t′ in t that is not in the scope of encr or h.
For example, in the term {A}k1 ·{{B}k1}k2 , the term {A}k1 occurs in the clear, and the term {B}k1 does
not.

Let dom(f) denote the domain of a function f . A sequence is a function whose domain is a finite prefix
of the natural numbers. Let len(σ) denote the length of a sequence σ. 〈〈a, b, . . .〉〉 denotes a sequence σ with
σ(0) = a, σ(1) = b, and so on.

A directed term is +t or −t, where t is a term. Positive and negative terms represent sending and
receiving messages, respectively. We sometimes refer to directed terms as “terms” and treat them as terms,
for instance as having subterms.

A trace is a finite sequence of directed terms. Let Trace denote the set of traces.
A trace mapping is a function tr ∈ dom(tr)→ Trace, where dom(tr) is an arbitrary set whose elements

are called strands.
A node of tr is a pair 〈s, i〉 with s ∈ dom(tr) and 0 ≤ i < len(tr(s)). Let Ntr denote the set of nodes

of tr . We say that node 〈s, i〉 is on strand s. Let nodestr (s) denote the set of nodes on strand s in tr . Let
strand(〈s, i〉) = s, index(〈s, i〉) = i, and termtr (〈s, i〉) = tr(s)(i). If termtr (n) is positive (or negative), we
say that n is positive (or negative).

The local dependence relation is: 〈s1, i1〉
lcl→ 〈s2, i2〉 iff s1 = s2 and i2 = i1 + 1.

A term t originates from a node 〈s, i〉 in tr iff 〈s, i〉 is positive, t is a subterm of termtr (〈s, i〉),2 and t is
not a subterm of termtr (〈s, j〉) for any j < i.

A term t uniquely originates from a node n in tr iff it originates from n in tr and not from any other
node in tr . Typically, nonces are uniquely-originated. This is the strand space way of expressing freshness.

For S ⊆ Ntr , let termtr (S) = {termtr (n) | n ∈ S}. For symbols subscripted by the trace mapping, we
elide the subscript when the trace mapping is evident from context.

2.1 Roles, Protocols, and Penetrator

A role is a parameterized sequence of directed terms. Associated with each parameter is a type, i.e., a set of
allowed terms. Some parameters with type Nonce may be designated as uniquely-originated; informally, this
means that the value of that parameter must be uniquely-originated. Uniquely-originated parameters are
designated by underlining in the parameter list. We require that for every role r, for every parameter x of r
with type Nonce, x is uniquely-originated iff the first occurrence of x in r is in a positive term. Let r.x denote

2We use the standard notion of subterm, rather than the modified subterm relation v defined in [THG98], in which k is not
necessarily a subterm of {t}k. Our definition induces a stronger notion of uniquely-originates. This difference is inessential.
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parameter x of role r. For example, R(nc : Nonce) = 〈〈+nc〉〉 defines a role R with one uniquely-originated
parameter nc with type Nonce.

A trace for role r is a prefix of a trace obtained by substituting for each parameter x of r a term
in the type of x. The requirement that parameters be instantiated with values of the specified types is
sometimes called the strong typing assumption. This assumption is common in protocol analysis, but ensuring
that it provides a reasonable abstraction of a given implementation is non-trivial. A role r and a trace σ
for r uniquely determine a mapping, denoted args(r, σ), from the set of parameters of r that appear in
r(0), r(1), . . . , r(len(σ) − 1) to Term. For example, for role R(x1 : Name, x2 : Name) = 〈〈+x1,+x2〉〉 and
σ = 〈〈+A〉〉, dom(args(R, σ)) = {x1} and args(R, σ)(x1) = A.

A protocol Π is a set of roles, together with a set Π.Secret ⊆ (Text \ (Name ∪ Nonce)) of terms that are
“secrets” (i.e., terms that should not be revealed to the penetrator). Excluding names here implies that the
penetrator knows all names. Specialized notions of secrecy are used for keys and nonces, as described in
Section 2.5.

The penetrator model is parameterized by a set KeyP ⊂ Key of keys initially known to the penetrator.
The set ΠP (KeyP ) of penetrator roles contains:

Pair: P (x1 : Term, x2 : Term) = 〈〈−x1, −x2, +x1 ·x2〉〉
Separation: S(x1 : Term, x2 : Term) = 〈〈−x1 ·x2, +x1, +x2〉〉
Encryption: E(k : Key , x : Term) = 〈〈−k, −x, +{x}k〉〉
Decryption: D(k : Key , x : Term) = 〈〈−k−1, −{x}k, +x〉〉

Message: M(x : Text ∪Nonce) = 〈〈+x〉〉
Key: K(k : KeyP ) = 〈〈+k〉〉
Hash: H(x : Term) = 〈〈−x, +h(x)〉〉

Typically, KeyP = {key(x, y) ∈ Key | x = P ∨ y = P} ∪ {pvtkey(P )} ∪ {pubkey(x) | x ∈ Name}.

2.2 History

A history of protocol Π is a tuple h = 〈tr ,msg→ , role〉, where tr is a trace mapping,
msg→ is a binary relation on

Ntr , and role ∈ dom(tr)→ (Π ∪ΠP (KeyP )) such that

1. For all n1, n2 ∈ Ntr , if n1
msg→ n2, then there exists t ∈ Term such that termtr (n1) = +t and

termtr (n2) = −t. This represents that n1 sends t, and n2 receives t.

2. For all n1 ∈ Ntr , if termtr (n1) is negative, then there exists exactly one n2 ∈ Ntr such that n2
msg→ n1.

3. �h is acyclic and well-founded (i.e., does not have infinite descending chains), where �h is the reflexive
and transitive closure of (

msg→ ∪ lcl→). Note that �h is a partial order, first defined by Lamport [Lam78].

4. For all s ∈ dom(tr), tr(s) is a trace for role(s). A regular strand is a strand s with role(s) ∈ Π. A
penetrator strand is a strand s with role(s) ∈ ΠP (KeyP ). Nodes on regular and penetrator strands are
called regular nodes and penetrator nodes, respectively. (For convenience, we assume Π∩ΠP (KeyP ) =
∅.)

5. For all s ∈ dom(tr), for all x ∈ dom(args(role(s), tr(s))), if parameter x is uniquely-originated, then
args(role(s), tr(s))(x) uniquely originates from 〈s, i〉, where i is the index of the first term in r that
contains x.

6. For all t ∈ Π.Secret , t originates only from regular nodes.

Note that a history may contain multiple traces for the same role with identical bindings for parameters that
are not uniquely originated.

To reduce clutter, we sometimes use a history instead of a trace mapping as a subscript; e.g., for a history
h = 〈tr ,msg→ , role〉, we define Nh = Ntr .

The set of predecessors of a node n in a history h is predsh(n) = {n′ ∈ Nh | n′ �h n ∧ n′ 6= n}.
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Cust(c : Namec, m : Namem ∪ {P}, g : Nameg ∪ {P}, nc : Nonce, nm : Nonce,
price : Price, od : Order , pd : PayDesc, result : Result) =

let trans = c·m·g ·nc·nm·price·h(od)·h(pd) in
〈〈+c·m, (∗ 1. to merchant ∗)
−nm, (∗ 2. from merchant ∗)
+[trans]pvt(c) ·{od}pub(m) ·{pd}pub(g), (∗ 3. to merchant ∗)
−[result ·h(trans)]pvt(g)〉〉 (∗ 4. from gateway ∗)

Mrch(c : Namec ∪ {P}, m : Namem, g : Nameg ∪ {P}, nc : Nonce, nm : Nonce,
price : Price, od : Order , hpd : Hash(PayDesc), epd : Term, result : Result) =

let trans = c·m·g ·nc·nm·price·h(od)·hpd in
〈〈−c·m, (∗ 1. from customer ∗)

+nm, (∗ 2. to customer ∗)
−[trans]pvt(c) ·{od}pub(m) ·epd, (∗ 3. from customer ∗)
+[trans]pvt(c) ·[trans]pvt(m) ·epd, (∗ 4. to gateway ∗)
−[result ·h(trans)]pvt(g)〉〉 (∗ 5. from gateway ∗)

Gate(c : Namec ∪ {P}, m : Namem ∪ {P}, g : Nameg, nc : Nonce, nm : Nonce,
price : Price, hod : Hash(Order), pd : PayDesc, result : Result) =

let trans = c·m·g ·nc·nm·price·hod·h(pd) in
〈〈−[trans]pvt(c) ·[trans]pvt(m) ·{pd}pub(g) (∗ 1. from merchant ∗)

+[result ·h(trans)]pvt(g)〉〉 (∗ 2. to merchant ∗)

Figure 1: Roles for ΠSET. Comments indicate step number and intended source or destination of message.

Let Hist(Π) denote the set of histories of a protocol Π.
A set S of nodes is backwards-closed with respect to a binary relation R iff, for all nodes n1 and n2, if

n2 ∈ S and n1 R n2, then n1 ∈ S.
Given a history h of a protocol Π, a set S of nodes of h that is backward-closed with respect to �h

can be regarded as a history, denoted nodesToHistΠ
h (S), in a natural way. Specifically, nodesToHistΠ

h (S)
is 〈tr1,

msg→ 1, role1〉, where Ntr1 = S,
msg→ 1=

msg→ ∩(S × S), termtr1(n) = termtr (n) for all n ∈ S, and
role1(s) = role(s) for all s ∈ dom(tr1).

2.3 Examples

Consider a payment protocol ΠSET based closely on [Bol97] and reminiscent of SET [SET97], including the
use of a dual-signature technique, so that the customer produces only one digital signature. Let Order ⊂ Text
and PayDesc ⊂ Text denote sets of order and payment descriptions, respectively. Let Price ⊂ Text and
Result ⊂ Text denote sets of prices and results (e.g., “approved”), respectively. We assume these subsets of
Text are disjoint. Let Namec, Namem, and Nameg be disjoint subsets of Name not containing P . For a set S
of terms, let Hash(S) = {h(t) | t ∈ S}. The roles of protocol ΠSET appear in Figure 1, and ΠSET.Secret = ∅,
for reasons given below. We use let expressions to avoid repetition of large subterms. We allow Cust.m = P

and Gate.m = P to model malicious merchants; similarly for malicious clients and gateways. There is no
reason to allow the “me” variable of each role (namely, Cust.c, Mrch.m, and Gate.g) to equal P , because
P ’s actions are modeled by penetrator strands.

Use of Hash(PayDesc) instead of the set of all hashes as the type for Mrch.hpd requires some justification,
because a merchant cannot determine whether the hash received in hpd is the hash of a payment description
or, say, a ciphertext. Attacks involving terms that are not of the expected type are called type flaw attacks.
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Cust(od : Order , price : Price, saltc : Nonce, Rc : Nonce, CAN : AcctNum0,
IDm : Namem ∪ {P}, TIDm : Nonce, noncem : Nonce, g : Nameg, YesNo : Result) =

let cid = h(Rc · CAN )
and common = price ·IDm ·TIDm ·noncem ·cid ·h(od·saltc)
and clear = IDm ·TIDm ·noncem ·h(common)
and slip = price ·h(common)·CAN ·RC in
〈〈+saltc ·cid , (∗ 1. to merchant ∗)
−clear (∗ 2. from merchant ∗)
+{slip}pub(g), (∗ 3. to merchant ∗)
−YesNo ·[h(YesNo ·h(common))]pvt(g)〉〉 (∗ 4. from merchant ∗)

Mrch(od : Order , price : Price, saltc : Nonce, cid : Hash(Nonce ×AcctNum), IDm : Namem,
TIDm : Nonce, noncem : Nonce, g : Nameg, YesNo : Result , eslip : Term) =

let common = price ·IDm ·TIDm ·noncem ·cid ·h(od·saltc)
and clear = IDm ·TIDm ·noncem ·h(common) in
〈〈−saltc ·cid , (∗ 1. from customer ∗)

+clear , (∗ 2. to customer ∗)
−eslip, (∗ 3. from customer ∗)
+clear ·h(od·saltc)·eslip, (∗ 4. to gateway ∗)
−YesNo ·[h(YesNo ·h(common))]pvt(g), (∗ 5. from gateway ∗)
+YesNo ·[h(YesNo ·h(common))]pvt(g)〉〉 (∗ 6. to customer ∗)

Gate(price : Price, Rc : Nonce, CAN : AcctNum, IDm : Namem ∪ {P},
TIDm : Nonce, noncem : Nonce, g : Nameg, hodsalt : Hash(Order ×Nonce), YesNo : Result) =

let cid = h(Rc · CAN )
and common = price ·IDm ·TIDm ·noncem ·cid ·hodsalt
and clear = IDm ·TIDm ·noncem ·h(common)
and slip = price ·h(common)·CAN ·RC in
〈〈−clear ·hodsalt ·{slip}pub(g), (∗ 1. from merchant ∗)

+YesNo ·[h(YesNo ·h(common))]pvt(g)〉〉 (∗ 2. to merchant ∗)

Figure 2: Roles for Π1KP.

Use of the types Hash(PayDesc) and Hash(Order) can be justified by results like those in [HLS00], which
show that type flaw attacks can be prevented by using type tags in the protocol implementation. Extending
their results to accommodate hashing and to accommodate the slightly larger class of agreement properties
introduced below is fairly straightforward.

As another example, consider a version of the 1KP protocol [BGH+00] based closely on [CMJ98]. Fol-
lowing [CMJ98], we assume the customer account number (CAN) is secret and hence (for brevity) omit the
PIN. We also omit the date field, since it does not affect the secrecy or agreement properties of Π1KP given
below, assuming nonces are uniquely-originated. Let AcctNum ⊂ Text be a set of account numbers. To
model dishonest customers (i.e., customers that collude with the penetrator), we partition AcctNum into
two sets, AcctNum0 and AcctNum1, which contain account numbers of honest and dishonest customers,
respectively. Let Order , Result , Namem, and Nameg be as above. We assume these subsets of Text are
disjoint. 1KP is designed for settings where the gateway has a private key with a well-known public key, but
the customer and merchant do not. Consequently, 1KP provides few guarantees if the gateway is dishonest,
so we do not include P in the types of Cust.g and Mrch.g. The roles of protocol Π1KP appear in Figure 2,
and Π1KP.Secret = AcctNum0.
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2.4 Derivability

Informally, a term t is derivable (by the pentrator) from a set S of nodes if the penetrator can compute t
from term(S) and KeyP . A formal definition follows.

For a nonce g that uniquely originates in a history h, let originh(g) denote the node from which g

originates in h.
For a set S of nodes in a history h = 〈tr ,msg→ , role〉 of a protocol Π, let uniqOrigReqrdΠ

h (S) denote the
set of nonces g such that there exists 〈s, i〉 ∈ S and x ∈ dom(args(role(s), tr(s))) such that parameter x is
uniquely originated and args(role(s), tr(s))(x) = g and originh(g) = 〈s, i〉.

For a directed term t, the absolute value of t, denoted abs(t), is t without its sign. For T ⊆ Term,
abs(T ) = {abs(t) | t ∈ T}, and the role SrcT is defined by SrcT (x : T ) = 〈〈+x〉〉. When the subscript on Src
is clear from context, we elide it.

A term t is derivable (by the penetrator) from a set S of nodes of a history h of a protocol Π, denoted
S `Π

h t, if there exists a history h′ = 〈tr ′,msg→
′
, role ′〉 of the protocol {Srcabs(termh(S))} such that: (1)

arguments of strands for Message in h′ are not in uniqOrigReqrdΠ
h (S)(i.e., for all s ∈ dom(tr ′), if role ′(s) = M

and x ∈ dom(args(M, tr(s′))), then args(M, tr(s′))(x) 6∈ uniqOrigReqrdΠ
h (S)); and (2) there exists a node

n ∈ Ntr ′ with termtr ′(n) = +t. The derivability relation, like the penetrator’s Key role, is implicitly
parameterized by the set KeyP of keys initially known to the penetrator. This relation is equivalent to the
derivability relation in [CJM98] and can be computed using the approach in [CJM98]. Similar relations or
functions have been considered by other researchers.

2.5 Correctness Requirements

We consider the following kinds of correctness requirements. For a correctness requirement φ, we say that a
protocol Π satisfies φ iff every history of Π satisfies φ.

Long-Term Secrecy. A history h of a protocol Π satisfies long-term secrecy iff, for every t ∈ Π.Secret ∪
(Key \KeyP ), Nh 6`Π

h t.

Nonce Secrecy. Informally, nonce secrecy says: the values of specified nonce parameters are not revealed
to the penetrator. A nonce secrecy requirement has the form “r.x is secret unless r.y ∈ S”, where r ∈ Π, x
and y are parameters of r, and S ⊆ Text (typically, S ⊆ Name). A history h = 〈tr ,msg→ , role〉 of a protocol Π
satisfies that requirement iff, for every strand s ∈ dom(tr), if role(s) = r and y ∈ dom(args(role(s), tr(s)))
and args(role(s), tr(s))(y) 6∈ S, then Ntr 6`Π

h args(role(s), tr(s))(x).

Agreement. Informally, agreement says: if some strand executed a certain role to a certain point with
certain arguments, then some strand must have executed a corresponding role to a corresponding point with
corresponding arguments. An agreement requirement has the form “〈r2, len2〉 satisfying x2 6∈ S2 is preceded
by 〈r1, len1〉 satisfying t1 = t2”, where x2 is a parameter of r2, S2 is a subset of Text , and t1 and t2 are terms
containing parameters of r1 and r2, respectively, as free variables. A history h = 〈tr ,msg→ , role〉 of a protocol Π
satisfies that agreement requirement iff, if h contains a strand s2 such that role(s2) = r2, len(tr(s2)) ≥ len2,
and args(r2, tr(s2))(x2) 6∈ S2, then tr contains a strand s1 for role r1 such that len(tr(s1)) ≥ len1 and t1
instantiated with the arguments of s1 equals t2 instantiated with the arguments of s2.

One of Bolignano’s requirements for ΠSET is that the gateway has proof of transaction authorization
by the merchant [Bol97, p. 12]. This can be expressed as an agreement requirement: 〈Gate, 1〉 satisfying
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Gate.m 6∈ {P} is preceded by 〈Mrch, 4〉 satisfying

let transm = Mrch.c·Mrch.m·Mrch.nc·Mrch.nm·Mrch.price·h(Mrch.od)·Mrch.hpd
and transg = Gate.c·Gate.m·Gate.nc·Gate.nm·Gate.price·Gate.hod·h(Gate.pd) in
transm = transg ∧Mrch.g = Gate.g

This requirement applies even if Gate.c = P , i.e., even if the customer is dishonest.3 SET is designed to
provide secrecy for order and payment descriptions. ΠSET as defined above does not provide such secrecy,
because, e.g., a customer strand with Cust.m = P can reveal an order description to the penetrator. This
is why we take ΠSET.Secret = ∅. To express secrecy of order descriptions from gateways, we use a variant
Πo

SET in which merchants are assumed to be honest; specifically, Πo
SET differs from ΠSET as follows: the type

for Cust.m is Namem, and Πo
SET.Secret = Order . Dishonest gateways are modeled by penetrator strands

(the types of Cust.g and Mrch.g contain P ), so if order descriptions are not known to the penetrator, then
they are not known to dishonest gateways, so they are not known to honest gateways. Similarly, to express
secrecy of payment descriptions from merchants, we use a variant Πp

SET in which gateways are assumed to be
honest; specifically, Πp

SET differs from ΠSET as follows: the type for Cust.g is Nameg, and Secret = PayDesc.
Using multiple versions of the protocol to express the requirements is slightly awkward but has the

virtue of simplicity. One alternative is to annotate the protocol with predicates indicating the conditions
under which the value of each parameter whose type intersects Secret may be revealed to the adversary;
for example, for Cust.od, the predicate would be Cust.m = P . This alternative leads to stronger long-term
secrecy requirements for some (contrived) protocols. We do not adopt it because it is more complicated, and
the secrecy requirements are equivalent for reasonable protocols. Modifying our reductions to accommodate
that approach is straightforward.

Bellare et al. specify agreement requirements for 1KP. For example, their requirement A1 (gateway has
proof of transaction authorization by customer) is roughly: 〈Gate, 1〉 satisfying Gate.CAN 6∈ AcctNum1 is
preceded by 〈Cust, 3〉 satisfying

let cmng = Gate.price ·Gate.IDm ·Gate.TIDm ·Gate.noncem ·Gate.Rc ·Gate.CAN ·Gate.hodsalt
and cmnc = Cust.price ·Cust.IDm ·Cust.TIDm ·Cust.noncem ·Cust.Rc ·Cust.CAN ·h(od,Cust.saltc)
in cmng = cmnc

Their requirement M1 (merchant has proof of transaction authorization by gateway) can be expressed sim-
ilarly. Long-term secrecy expresses secrecy of account numbers in AcctNum0 from merchants (recall that
Π1KP models dishonest merchants by allowing Cust.IDm = P and Gate.IDm = P ). To express secrecy
of order descriptions from gateways, we use a variant Πo

1KP of Π1KP in which merchants are assumed to
be honest, but gateways may be dishonest; specifically, Πo

1KP differs from Π1KP as follows: the type for
Cust.IDm does not contain P , the types for Cust.g and Mrch.g contain P , and Secret = Order . The nonce
secrecy requirement is: Cust.Rc is secret unless Cust.g ∈ {P}.

3 Support

Informally, a set S′ of nodes of a history tr supports a set S of nodes of tr if S′ ⊇ S and S′ contains all of
the regular nodes on which regular nodes in S depend. A formal definition follows.

For T ⊆ Term, the set of nonces that occur in T is nonces(T ) = {g ∈ Nonce | ∃t ∈ T : g occurs in t}.

3Bolignano’s version of the protocol omits g from trans and consequently violates the conjunct Mrch.g = Gate.g (in his
presentation, this conjunct corresponds to st′.mcht.gateway = G in the second filter function on p. 12).
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Let RNΠ
h denote the set of regular nodes in history h of protocol Π.

A set S′ of nodes is a support for a set S of nodes in a history h of a protocol Π if:

1. Nh ⊇ S′ ⊇ S.

2. S′ is backwards-closed with respect to lcl→.

3. For all negative nodes n in S′, predsh(n) ∩ S′ ∩RNΠ
h `Π

h termh(n).

4. For all g ∈ nonces(termh(S′)) ∩ (uniqOrigReqrdΠ
h (Nh) \ uniqOrigReqrdΠ

h (S′)), g occurs in the clear in
termh(originh(g)). (This condition ensures the compositionality property expressed in Lemma 2.)

If S′ is a support for S, we say S′ supports S. For a strand s, if S′ supports nodes(s), we say that S′

supports s.
For example, consider the following history of a generic payment protocol. Suppose sc,1, sm,1, and

sg,1 are customer, merchant, and gateway strands, respectively, that interact without interference from the
penetrator. Let g be a nonce that uniquely originates on sm,1 and is revealed to the penetrator (e.g., the
value of Mrch.nm in ΠSET, or noncem in Π1KP). The penetrator then behaves as a merchant, interacting
with a customer strand sc,2 and a gateway strand sg,2, except that the penetrator uses g instead of a fresh
nonce. A support for sc,2 or sg,2 need not contain nodes on sm,1 or sc,1. In that sense, sc,2 and sg,2 do not
depend on sm,1, even though the chain of messages that conveys g means that there is causal dependence
between those nodes in the classical sense of Lamport [Lam78]. Informally, that classical dependence can be
ignored here because the penetrator could generate a nonce g′ and replace g with g′ in the terms of nodes
on sc,2 and sg,2. The careful treatment of unique origination in the definition of derivability allows such
inessential classical dependencies to be ignored. The following lemma says that a support can be transformed
into a history by adding penetrator nodes, without adding or changing regular nodes.

For a set S of nodes, let strand(S) = {strand(n) | n ∈ S}. For a trace mapping tr , a strand s ∈ dom(tr),
and a set S of nodes of tr that is backwards-closed with respect to lcl→, S contains nodes on a prefix of tr(s);
let prefixtr (s, S) denote that prefix.

Lemma 1. Let Π be a protocol. If S′ is a support for S in a history h = 〈tr ,msg→ , role〉 of Π, then there
exists a history h′ = 〈tr ′,msg→

′
, role ′〉 of Π such that

(∀s ∈ strand(S′) : s ∈ dom(tr ′) ∧ tr ′(s) = prefixtr (s, S′) ∧ role ′(s) = role(s))
∧ (∀s ∈ dom(tr ′) \ strand(S′) : role ′(s) ∈ ΠP (KeyP ))

∧ (∀n1, n2 ∈ S′ : n1
msg→
′
n2 ⇒ n1

msg→ n2)
(1)

Proof: A witness h′ can be constructed as follows. Let S′neg denote the set of negative nodes in S′. For
each n ∈ S′neg , let hn = 〈trn,

msg→ n, rolen〉 be a history that witnesses the truth of predsh(n) ∩ S′ ∩RNΠ
h `Π

h

termtr (n). Let outn be a node in Ntrn such that termtrn(outn) = +abs(termtr (n)). For each strand s

for Src in hn, let witnessn(s) be a node in predsh(n) ∩ S′ ∩ RNΠ
h such that abs(termtr (witnessn(s))) =

args(Src, trn(s))(x); the definitions of support and derivability together imply that such a node exists.
Rename strands, if necessary, so that dom(trn) ∩ dom(tr) = ∅ and dom(trn1) ∩ dom(trn2) = ∅ for n1 6= n2.
We define h′ in two steps. The first step merges S′ and all the hn (for n in S′neg), yielding 〈tr1, role1,

msg→ 1〉.
The second step eliminates strands for Src, yielding h′.

dom(tr1) = strand(S′) ∪
⋃

n∈S′neg

dom(trn)
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tr1(s) =

{
prefixtr (s, S′) if s ∈ strand(S′)
trn(s) if s ∈ dom(trn) for some n ∈ S′neg

role1(s) =

{
role(s) if s ∈ strand(S′)
rolen(s) if s ∈ dom(trn) for some n ∈ S′neg

msg→ 1 =
msg→ ∩ (S′ × S′) ∪

⋃
n∈S′neg

msg→ n ∪ {〈outn, n〉}

dom(tr ′) = {s ∈ dom(tr1) | role1(s) 6= Src}
tr ′(s) = tr1(s)

role ′(s) = role1(s)

sourcen(s) =

{
witnessn(s) if termtr (witnessn(s)) is positive
outwitnessn(s) if termtr (witnessn(s)) is negative

msg→
′

=
msg→ 1 ∩ (Ntr ′ ×Ntr ′) ∪

⋃
n∈S′neg

{〈sourcen(s), n1〉 | s ∈ dom(tr1) ∧ role1(s) = Src ∧ 〈s, 0〉 msg→ 1 n1}

〈tr ′,msg→
′
, role ′〉 being a history of Π follows from h and all the hn being histories of the appropriate protocols

and from the following observations. For acyclicity of
msg→
′
, note that witnessn(s)

msg→ n. For the unique-
origination condition, we need to show that for every regular strand s ∈ strand(S′), for every parameter x ∈
dom(args(role ′(s), tr ′(s))), if x is uniquely-originated, then the nonce g = args(role ′(s), tr ′(s))(x) uniquely
originates from 〈s, i〉, where i is the index of the first term in r that contains x. Note that role ′(s) = role(s),
tr ′(s) = prefixtr (s, S′), g ∈ uniqOrigReqrdΠ

h (S′), and 〈s, i〉 ∈ S′. h is a history of Π, so g does not originate
from any other node in S′. It remains to show that g does not originate from any penetrator node in tr ′.
By inspection of ΠP (KeyP ), a nonce that originates from a penetrator node must originate from a strand
for Message. The definitions of support and derivability imply that tr ′ does not contain strands for Message
from which nonces in uniqOrigReqrdΠ

h (S′) originate.

Lemma 2. If S′0 and S′1 support S0 and S1, respectively, in a history h = 〈tr ,msg→ , role〉 of a protocol Π,
then S′0 ∪ S′1 supports S0 ∪ S1 in history h of Π.

Proof: It is easy to show that the first, second, and fourth conditions in the definition of support are satisfied.
For the third condition, consider i ∈ {0, 1}, and consider a negative node n in S′i. Let h′ = 〈tr ′,msg→

′
, role ′〉

be a history that witnesses predsh(n)∩S′i ∩RN
Π
h `Π

h termh(n). Suppose termh(n) does not contain a nonce
in uniqOrigReqrdΠ

h (S′(i+1)%2) \ uniqOrigReqrdΠ
h (S′i); then h′ also witnesses predsh(n)∩ (S′0 ∪S′1)∩RNΠ

h `Π
h

termh(n). Suppose termh(n) contains a nonce g in uniqOrigReqrdΠ
h (S′(i+1)%2)\uniqOrigReqrdΠ

h (S′i); then h′

might not be a witness for predsh(n) ∩ (S′0 ∪ S′1) ∩RNΠ
h `Π

h termh(n), because h′ might contain strands for
Message with argument g, violating the first condition in the definition of derivable. Note that originh(g) ∈
S′(i+1)%2, and originh(g) �h n (because g originates from originh(g) in h, and termh(n) contains g), and
originh(g) ∈ RNΠ

h (because penetrator roles do not have uniquely-originated parameters). Thus, we can
construct a history h′′ that witnesses predsh(n)∩ (S′0 ∪S′1)∩RNΠ

h `Π
h termh(n) by starting with h′ and, for

each nonce g in uniqOrigReqrdΠ
h (S′(i+1)%2) \ uniqOrigReqrdΠ

h (S′i),

1. Add a strand sSrc for Src with argument termh(originh(g)). Thus, termh′′(〈sSrc, 0〉) = termh(originh(g)).

2. Add strands for Separation, if necessary, to select g from termh′′(〈sSrc, 0〉), so h′′ contains a node ng
with term(ng) = +g. This is possible because the fourth condition in the definition of support implies
that g occurs in the clear in termh(originh(g)).
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3. For each strand sM for Message with argument g, delete sM from h′′ and, for each negative node nneg

such that 〈sM , 0〉
msg→
′
nneg , let ng

msg→
′′
nneg . This does not create cycles in �h′′ ; the main point is

that sSrc contains no negative nodes, so 〈sSrc, 0〉 is �h′′ -minimal.

3.1 Bounded Support Restriction

A strand count for a protocol Π is a function from the roles of Π to the natural numbers. A set S of nodes has
strand count f iff, for each role r, S contains nodes from exactly f(r) strands for r. If Nh has strand count
f , then we say that history h has strand count f . Let f1(r) = 1 for every role r. We define a partial ordering
�SC on strand counts for a protocol; �SC is simply the pointwise extension of the standard ordering on
natural numbers.

A history h satisfies the bounded support restriction, abbreviated BSR, iff for each regular strand s in h,
there exists a support for s in h with strand count at most f1. A protocol satisfies BSR iff all of its histories
do.

ΠSET and Π1KP satisfy BSR. We proved these results manually; the proofs are similar to the proof in
[Sto99] for Lowe’s corrected version of the Needham-Schroeder public-key authentication protocol. Theorem
2 in Section 5 shows that in principle, these results can be obtained automatically by state-space exploration
of histories with bounded strand counts; an algorithm like the one in [Sto99] can be used to compute a (small)
support for a given set of nodes. The current bounds probably need to be decreased somewhat before this
is feasible, e.g., by finding a tighter bound on the dependence width (see Section 4).

4 Dependence Width

Informally, the dependence width of a negative term r(i) in a role r of a protocol Π, denoted DW(〈r, i〉,Π),
is the maximum number of “additional” positive regular nodes needed in any history h of Π to provide
the penetrator with enough knowledge to produce the term received by any node 〈s, i〉 of h such that
role(s) = r. “Additional” here means “beyond those needed for the penetrator to produce negative terms
that occur earlier in the same strand”. The dependence width of a protocol Π, denoted DW(Π), is the
maximum over all negative terms r(i) in roles r in Π of DW(〈r, i〉,Π). The concept of dependence width is
used in the proof of Theorem 2 in Section 5 to bound the number of strands involved in a violation of BSR.

Let n be a negative node of a history h of a protocol Π, and let t be a subterm of termh(n). A revealing
set for t at n in h is a set S of positive regular nodes of tr such that S ⊆ predsh(n) and S `Π

h t.
4

For a set S of numbers, let min(S) and max(S) denote the minimum and maximum element of S,
respectively. We define min(∅) = 0 and max(∅) = 0.

The revealing set min-size of t at 〈s, i〉 in h is

rvlSetMinSz(t, 〈s, i〉, h) = min({size(R \ nodesh(s)) | R is a revealing set for t at 〈s, i〉 in h}) (2)

Nodes in R that are on the same strand as n are not counted in the revealing set min-size (and hence not in
the dependence width), because in the proof of Theorem 2—specifically, in equation (5)—those nodes appear
in supportΠ

h0
(s0) and hence are excluded from the index set of the rightmost union, and the dependence width

is designed to bound the size of that index set.
Note that, if there are no revealing sets for t at n in h (i.e., t is not known to the penetrator at that

point), then rvlSetMinSz(t, n, h) = 0.

4Roughly speaking, the main difference between a “revealing set for term(n) at n” and a “support for {n}” is that the former
considers only one step of dependency, while the latter implicitly considers a transitive closure of dependencies.
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Let r be a role in a protocol Π, and let i be the index of a negative term in r. The dependence width of
〈r, i〉 in Π is

DW(〈r, i〉,Π) = max({rvlSetMinSz(termtr (〈s, i〉), 〈s, i〉, 〈tr ,msg→ , role〉) |
〈tr ,msg→ , role〉 ∈ Hist(Π) ∧ 〈s, i〉 ∈ Ntr ∧ role(s) = r})

(3)

The dependence width of a protocol Π is

DW(Π) = max({DW(〈r, i〉,Π) | r ∈ Π ∧ r(i) is a negative term}) (4)

The proof of Theorem 2, and therefore also the proof of Theorem 3, rely on an upper bound on the
dependence width of the protocol. If the protocol might send terms of the forms {g}k1 , {k1}k2 , {k2}k3 , . . .,
{ki−1}ki , ki, then i+ 1 terms are needed to reveal g to the penetrator. Our long-term secrecy requirement
prohibits such behavior. Secrecy-limited dependence width, abbreviated SL dependence width and denoted
DWSL, is defined in the same way as dependence width, except that the maximum over histories is restricted
to histories satisfying long-term secrecy.

Let Π be a protocol, and let t be a term, possibly containing parameters. nSecret0(t,Π) is a bound on
the number of subterms of t that are not known to the penetrator, ignoring keys and values of parameters;
formally, nSecret0(t,Π) = Nc+Nh+Nprim , whereNc is the number of subterms of t whose outermost operator
is encr , ignoring those whose second argument is always in KeyP (based on parameter types), Nh is the
number of subterms of t with outermost operator h, and Nprim is the number of elements of Nonce∪Π.Secret
that occur in t. In computing Nc and Nh, identical subterms are counted only once. For a parameter r.x
of a role r of Π, nSecret(r.x,Π) = max({nSecret0(t,Π) | t is in the type of r.x}). Let nSecret(〈r, i〉,Π) =
nSecret0(r(i),Π) +

∑
x∈params(r(i)) nSecret(r.x,Π), where params(t) is the set of parameters that occur in t.

Theorem 1. Let r(i) be a negative term in a role r of a protocol Π. DWSL(〈r, i〉,Π) ≤ nSecret(〈r, i〉,Π).

Proof: Consider a strand s for r in a history h for Π. We consider each subterm t1 of termh(〈s, i〉) and
show that each hash, ciphertext, and element of uniqOrigReqrdΠ

h (Nh)∪Π.Secret that occurs in termh(〈s, i〉)
contributes at most 1 to DWSL(〈r, i〉,Π). The number of such subterms is bounded by nSecret(〈r, i〉,Π).
Other subterms contribute nothing. The definition of dependence width implies that terms not derivable by
the penetrator contribute nothing to the dependence width (because such terms have no revealing sets), so
in computing the bound, we conservatively assume all subterms are derivable by the penetrator. Consider
cases based on the type of t1.

case 1: t1 ∈ Key . Long-term secrecy implies that no keys are revealed, so keys contribute nothing to
DWSL(〈r, i〉,Π).

case 2: t1 ∈ uniqOrigReqrdΠ
h (Nh) ∪ Π.Secret . The definition of history implies that t1 originates from

a regular node in h and (according to the conservative assumption discussed above) is derivable by the
penetrator (using strands for Separation and Decryption), so there is a positive regular node n such that
t1 occurs in termh(n) either in the clear or encrypted only with keys known to the penetrator. Long-term
secrecy implies that those keys (if any) are in KeyP . Thus, t1 is derivable from {n}, so t1 contributes at
most 1 to DWSL(〈r, i〉,Π).

case 3: t1 ∈ Text \ (uniqOrigReqrdΠ
h (Nh) ∪Π.Secret). t1 is directly available to the penetrator through the

Message role, so t1 contributes nothing to DWSL(〈r, i〉,Π).

case 4: t1 is a pair. Revealing a pair is equivalent to revealing its two components, so proper subterms of t1
contribute to DWSL(〈r, i〉,Π), but t1 itself does not.
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case 5: t1 is a ciphertext or hash, and t1 originates from a penetrator node in predsh(〈s, i〉). The penetrator
performs the encryption or hashing to construct its copy of t1, so proper subterms of t1 contribute to
DWSL(〈r, i〉,Π), but t1 itself does not.

case 6: t1 is a ciphertext or hash, and t1 does not originate from a penetrator node in predsh(〈s, i〉). Then
t1 originates from a regular node, and the argument is the same as in case 2. Note that it is not necessary
for proper subterms of t1 to contribute to DWSL(〈r, i〉,Π). Our bound on DWSL(〈r, i〉,Π) might be loose
because it does not attempt to exploit this observation; exploiting it is left for future work.

Now we justify ignoring, in the definition of Nc in nSecret0, occurrences of encr whose second argument is
always in KeyP . Let {t′}k be such a ciphertext.

case 1: ∅ `Π
h t′; in other words, t′ contains no secrets. Then ∅ `Π

h {t′}k, so {t′}k contributes nothing to
DWSL(〈r, i〉,Π).

case 2: ∅ 6`Π
h t′; in other words, t′ contains one or more secrets. Thus, subterms of t′ contribute at least 1

to our bound on DWSL(〈r, i〉,Π).

case 2.1: predsh(〈s, i〉) `Π
h t
′. The penetrator can perform the encryption to construct its copy of {t′}k,

so proper subterms of {t′}k contribute to DWSL(〈r, i〉,Π), but {t′}k itself does not, so ignoring {t′}k in
Nc is safe.

case 2.2: predsh(〈s, i〉) 6`Π
h t
′. The ciphertext {t′}k must originate from a regular node and be revealed

to the penetrator. The ciphertext actually contributes 1 to DWSL(〈r, i〉,Π) (cf. case 6 above), and its
subterms actually contribute nothing. Our bound counts 0 from the ciphertext but counts at least 1
from subterms of t′. Thus, although the bookkeeping might seem skewed, the sum of the contributions
is sufficient.

We simplify ΠSET and Π1KP as follows. Parameters epd and eslip are used to forward messages in a trivial
way (specifically, all occurrences of these parameters are unencrypted), and TIDm is redundant because it
always appears together with noncem. Thus, eliminating these parameters has no impact on correctness. Let
Π′SET and Π′1KP refer to versions of the protocols in which these parameters have been eliminated. Theorem
1 implies DWSL(Π′SET) ≤ 6 and DWSL(Π′1KP) ≤ 7. In both protocols, the first term of Gate has the largest
dependence width.

The bound on DWSL provided by Theorem 1 can sometimes be decreased by replacing a negative term
of the form −t1·t2 in a role with the sequence of terms −t1,−t2. For example, let Π′′SET denote the protocol
obtained from Π′SET by splitting the first term of Gate into a sequence of three terms. Theorem 1 implies
DWSL(Π′′SET) ≤ 5. This transformation preserves all correctness requirements, provided the lengths in
agreement requirements are adjusted appropriately. It can introduce violations of BSR, but this does not
happen with Π′SET.

5 Reduction for BSR and Long-Term Secrecy

The following lemma says, roughly, that constructing a history h′ from a support S′ of a set S of nodes of a
history h does not create new supports for S.

Lemma 3. Suppose S0 supports S in a history h of a protocol Π. Let h′ be a history of Π whose existence
is implied by Lemma 1 applied to S0. Suppose S1 supports S in history h′ of Π. Then S1 ∩RNΠ

h supports
S in history h of Π.
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Proof: The proof is similar to that of Lemma 3 in [Sto99].
For a protocol Π, define a strand count β(Π) by β(Π)(r) = DWSL(Π) + 1.

Theorem 2. A protocol Π satisfies BSR and long-term secrecy iff all histories of Π with strand count β(Π)
do.

Proof: The forward direction (⇒) of the “iff” is easy. For the reverse direction (⇐), we prove the con-
trapositive, i.e., we suppose there exists a history h of Π that violates BSR or long-term secrecy, and we
construct a history of Π with strand count at most β(Π) that violates the same property.

BSR and long-term secrecy are safety properties [AS85] satisfied by histories with zero nodes, and �h is
well-founded, so there exists a �h-minimal node n0 such that

1. nodesToHistΠ
h (predsh(n0)) satisfies BSR and long-term secrecy.

2. nodesToHistΠ
h (predsh(n0)) ∪ {n0} violates BSR or long-term secrecy.

Let h0 = nodesToHistΠ
h (predsh(n0)). Let s0 = strand(n0) and i0 = index(n0). Note that in h0, s0 does not

include n0. For a strand s in a history h′ that satisfies BSR, let supporth′(s) denote a support for s in h′

with strand count at most f1 (recall that f1 is defined in Section 3.1). The definitions of BSR and long-term
secrecy imply n0 is a regular node. Consider cases based on the sign of n0.

case: n0 is a negative node. n0 cannot cause a violation of secrecy, so it causes a violation of BSR.
Suppose i0 > 0. n0 directly depends on 〈s0, i0 − 1〉 and on a revealing set R for term(n0) at n0 in h; more
precisely, for all S′, if S′ supports {〈s0, i0 − 1〉} ∪ R in h, then S′ ∪ {n0} supports {n0} in h. h0 satisfies
long-term secrecy, so Theorem 1 implies size(R \ nodesh0(s0)) ≤ DWSL(Π). Let

S1 = {n0} ∪ supporth0
(s0) ∪

⋃
n∈R\nodestr0 (s0)

supporth0
(strand(n)). (5)

h0 satisfies BSR, so each of the supports in (5) has strand count at most f1, so S1 has strand count at most
β(Π) (note that n0 is on s0, so {n0} ∪ supporth0

(s0) contributes at most f1 to the strand count of S1).
Lemma 2 implies that S1 \ {n0} supports {〈s0, i0 − 1〉} ∪R in h; thus, S1 supports {n0} in h. Lemma 1

implies that S1 can be transformed into a history h1 of Π by adding penetrator nodes. Adding penetrator
nodes does not affect the strand count, so h1 has strand count at most β(Π). We show by contradiction that
n0 also causes a violation of BSR in h1. Suppose n0 does not cause such a violation. Then there exists a
support S′ for {n0} in h1 with strand count at most f1. Lemma 3 implies that S′ ∩ RNΠ

h1
is a support for

{n0} in h with strand count at most f1, a contradiction.
Suppose i0 = 0. The proof is similar to the case i0 > 0, except n0 does not depend on the non-existent

node 〈s0, i0 − 1〉, so we omit supporth0
(s0) from the definition of S1, and Lemma 2 implies that S1 \ {n0}

supports R in h.
case: n0 is a positive node. n0 cannot cause a violation of BSR, so it causes a violation of long-term

secrecy. predsh(n0) satisfies long-term secrecy, so there is some t ∈ Π.Secret ∪ (Key \ KeyP ) such that
t appears in termh(n0) either in the clear or encrypted only with keys in KeyP . Suppose i0 > 0. Let
S0 = supporth0

(s0) and S1 = {n0} ∪ S0. h0 satisfies BSR, so S0 and S1 have strand count at most f1 (note
that n0 is on s0, and s0 ∈ strand(S0), so n0 does not increase the strand count of S1). S1 can be transformed
into a history h1 by adding penetrator nodes; this follows from Lemma 1 and the observation that n0 is
positive and is an immediate successor of the last node on s0 in h0. It is easy to show that adding penetrator
nodes does not change the strand count or destroy the violation of long-term secrecy. Thus, h1 is a history
of Π with strand count at most β(Π) that violates long-term secrecy. Suppose i0 = 0. Then predsh(n0) = ∅,
and the history containing only node n0 has strand count at most f1 and violates long-term secrecy.
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6 Reduction for Nonce Secrecy and Agreement

Define a strand count f2 by: f2(r) = 2 for every role r.

Theorem 3. Let φ be a nonce secrecy or agreement requirement. Suppose all histories of a protocol Π with
strand count β(Π) satisfy BSR and long-term secrecy. Π satisfies φ iff all histories of Π with strand count
f2 do.

Proof: The forward direction (⇒) of the “iff” is easy. For the reverse direction (⇐), we prove the con-
trapositive, i.e., we suppose there exists a history h = 〈tr ,msg→ , role〉 of Π that violates φ, and we construct
a history of Π with strand count at most f2 that violates φ. Nonce secrecy and agreement requirements
are safety properties [AS85] satisfied by histories with zero nodes, and �h is well-founded, so there exists a
�h-minimal node n0 such that

1. nodesToHistΠ
h (predsh(n0)) satisfies φ.

2. nodesToHistΠ
h (predsh(n0)) ∪ {n0} violates φ.

Let s0 = strand(n0).
By hypothesis, all histories of Π with strand count β(Π) satisfy BSR and long-term secrecy, so Theorem

2 implies that Π satisfies BSR. For s ∈ dom(h), let supporth(s) denote a support for s with strand count at
most f1.

Suppose φ is a nonce secrecy requirement. φ has the form “r.x is secret unless r.y ∈ S”. n0 is a positive
regular node, and there is a regular strand sg such that args(role(sg), tr(sg))(y) 6∈ S and predsh(n0) 6`Π

h g

and predsh(n0) ∪ {n0} `Π
h g, where g = args(role(s), tr(s))(x). By the same reasoning as in case 2 of the

proof of Theorem 1, this implies that {n0} `Π
h g. Let S1 = supporth(s0) ∪ supporth(sg). Lemma 2 implies

that S1 is a support for nodesh(s0)∪nodesh(sg). Lemma 1 implies that S1 can be transformed into a history
h1 by adding penetrator nodes. Note that S1 and h1 have strand count at most f2. It is easy to see that n0

causes a violation of nonce secrecy in h1.
Suppose φ is an agreement requirement. φ has the form: “〈r2, len2〉 satisfying x2 6∈ S2 is preceded by

〈r1, len1〉 satisfying t1 = t2”. n0 causes a violation of φ, so s0 is a strand for r2 and args(r2, tr(s2))(x2) 6∈ S2

and index(n0) = len2. Lemma 1 implies that supporth(s0) can be transformed into a history h0 of Π with
strand count at most f1. Note that n0 ∈ Nh0 . Removing nodes in Nh \ Nh0 and adding penetrator nodes
preserve the lack of a node 〈s1, len1〉 such that role(s1) = r1 and such that t1 instantiated with the arguments
of s1 equals t2 instantiated with the arguments of s0. Thus, h0 violates φ.
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[THG98] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Why
is a security protocol correct? In Proc. 18th IEEE Symposium on Research in Security and
Privacy. IEEE Computer Society Press, 1998.

17 of 17


