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A systematic approach is given for deriving incremental programs that exploit caching. The
cache-and-prune method presented in the article consists of three stages: (I) the original program
is extended to cache the results of all its intermediate subcomputations as well as the final result,
(II) the extended program is incrementalized so that computation on a new input can use all
intermediate results on an old input, and (III) unused results cached by the extended program
and maintained by the incremental program are pruned away, leaving a pruned extended program
that caches only useful intermediate results and a pruned incremental program that uses and
maintains only the useful results. All three stages utilize static analyses and semantics-preserving
transformations. Stages I and III are simple, clean, and fully automatable. The overall method
has a kind of optimality with respect to the techniques used in Stage II. The method can be
applied straightforwardly to provide a systematic approach to program improvement via caching.
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1. INTRODUCTION

Incremental computation takes advantage of repeated computations on inputs that
differ slightly from one another, making use of previously computed results in com-
puting a new output rather than computing from scratch. Methods of incremental
computation have widespread application, e.g., optimizing compilers [Aho et al.
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1986; Cocke and Kennedy 1977; Earley 1976], transformational programming [Paige
1983; Partsch 1990; Smith 1990], and interactive editing systems [Ballance et al.
1992; Reps and Teitelbaum 1988].

Given a program f and an input change operation ⊕, a program f ′ that computes
the result of f(x ⊕ y) efficiently by making use of the value of f(x) is called an
incremental version of f under ⊕. For example, suppose, in a large employee
database, a program salarySum sums salaries of all employees, and the input
change operation is to insert or delete a few employees. Then an incremental
program can compute a new sum from the old sum by adding or subtracting the
salaries of these few employees. For another example, suppose a programming
environment needs all the attributes on a program syntax tree, and the input change
operation is to replace any small subtree. Then an incremental attribute evaluation
program can compute the new attributes by propagating changes and updating old
attributes whose values need to be changed [Reps et al. 1983; Yeh and Kastens
1988].

Often, for efficiently computing a new output after an input change, certain
intermediate results—results computed in the middle of the old computation, not
just its return value—need to be used and maintained. Suppose, in the above
employee database example, a program salaryAve computes the average salary of
employees. Then a new average cannot be computed from the old average and the
salaries of the few inserted or deleted employees. However, the number of employees
and the sum of their salaries are intermediate results of salaryAve. A new average
can be computed using them and the salaries of the changed employees, and these
intermediate results can be efficiently maintained. For another example, attribute
evaluators are often used to return only a synthesized attribute at the tree root
[Katayama 1984], so other attributes need not be maintained for batch computation.
However, to produce the desired output quickly after a subtree replacement, other
intermediate attributes may need to be maintained.

Since programs often compute large numbers of intermediate results, it is often
difficult, yet essential, to determine which intermediate results are needed for incre-
mental computation and how to cache them, use them in the incremental compu-
tation, and maintain their values for incremental computation after a further input
change.

This article describes a systematic method, called cache-and-prune, for address-
ing these problems in incremental computation. The method is based on static pro-
gram analyses and semantics-preserving program transformations. In other words,
it achieves caching statically by transforming programs. The method has three
stages. Stage I extends program f to a program f̄ that returns all intermediate
results. Stage II incrementalizes f̄ under ⊕ to obtain an incremental version f̄ ′

that can use all intermediate results. Stage III uses the dependencies in f̄ ′, prunes
f̄ to a program f̂ that returns only the useful intermediate results, and prunes f̄ ′

to a programf̂ ′ that uses and incrementally maintains only the useful intermediate
results. Since every nontrivial program computes by iteration or recursion, the
cache-and-prune method provides a systematic approach for general program opti-
mization via caching by computing each iteration or recursion using an incremental
program that exploits intermediate results.

The cache-and-prune method is modular. Each stage has a designated goal.
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, May 1998.
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Stage I caches every intermediate result, “cache as cache can,” so to speak. Stage II
uses cached results to reduce the running time. Stage III prunes unused results to
reduce the space consumption and further reduce the running time. Stages I and III
are based on efficient automatic static analyses. Stage II performs algebraic simplifi-
cations, replacements using cached results, and dead-code elimination; a systematic
method has been studied in Liu and Teitelbaum [1995] and is summarized in this
article.

It is the goal of this article to propose the cache-and-prune method, to describe
the analyses and transformations for caching and pruning, and to study the role of
incrementalization in this method. We also illustrate how to use the method for
general program optimization via caching. The generality of the cache-and-prune
method contrasts with previous work on caching, which either relies on a fixed set of
rules [Allen et al. 1981; Paige and Koenig 1982], applies only to programs with cer-
tain properties or schemas [Bird 1980; Cohen 1983; Pettorossi 1984; 1987], requires
program annotations [Hoover 1992; Keller and Sleep 1986; Sundaresh and Hudak
1991], etc. The dependence analysis for pruning in Stage III uses domain projec-
tions to specify specific components of compound values, rather than just heads
or tails of list values, and thus complements existing methods for such analyses
[Hughes 1990; Jones and Le Métayer 1989; Reps and Turnidge 1996].

This article is organized as follows. Section 2 defines the problem of caching inter-
mediate results. Section 3 outlines the cache-and-prune method and its correctness.
Sections 4, 5, and 6 describe caching, incrementalization, and pruning, respectively.
Section 7 discusses the power and limitation of the method, the program analysis
and transformation techniques used, and the trade-offs between time and space.
Section 8 describes examples. Section 9 presents a comprehensive comparison with
related work in caching and concludes.

2. DEFINING THE PROBLEM

We use a simple first-order, call-by-value functional programming language. The
expressions of the language are given by the following grammar:

e ::= v variable
| c(e1, ..., en) constructor application
| p(e1, ..., en) primitive function application
| f(e1, ..., en) function application
| if e1 then e2 else e3 conditional expression
| let v = e1 in e2 binding expression

A program is a set of mutually recursive function definitions of the form

f(v1, ..., vn) = e (1)

and a function f0 that is to be evaluated with some input x = 〈x1, ..., xn〉. Figure 1
gives some example definitions.

An input change operation ⊕ to a program f0 combines an old input x =
〈x1, ..., xn〉 and a change y = 〈y1, ..., ym〉 to form a new input x′ = 〈x′1, ..., x′n〉 =
x ⊕ y, where each x′i is some function of xj ’s and yk’s. For example, an input
change operation ⊕1 to the function foo or fib in Figure 1 may be defined by
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, May 1998.
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foo(x) : sum three preceding “foo”
numbers of x

foo(x) = if x ≤ 2 then 1
else boo(x) + foo(x− 3)

boo(x) = foo(x− 1) + foo(x− 2)

fib(x) : compute Fibonacci number x

fib(x) = if x ≤ 1 then 1
else fib(x − 1) + fib(x− 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sort(x) : sort a list x using merge sort

sort(x) = if null(x) then nil
else if null(cdr(x)) then x
else merge(sort(odd(x)), sort(even(x)))

o d d (x) = if null(x) then nil
else cons(car(x), even(cdr(x)))

even(x) = if null(x) then nil else odd(cdr(x))

merge(x, y) = if null(x) then y
else if null(y) then x
else if car(x) ≤ car(y) then

cons(car(x), merge(cdr(x), y))
else cons(car(y), merge(x, cdr(y)))

Fig. 1. Example function definitions for foo, fib, and sort.

x′ = x ⊕1 y = x + 1, and an input change operation ⊕2 to the function sort in
Figure 1 may be defined by x′ = x⊕2 y = cons(y, x).

We use an asymptotic cost model for measuring time complexity and write
t(f(v1, ..., vn)) to denote the asymptotic time of computing f(v1, ..., vn). Thus,
assuming all primitive functions take constant time, it suffices to consider only the
values of function applications as candidate intermediate results to be cached. Of
course, caching intermediate results takes extra space, which reflects the well-known
trade-off between space and speed. Our primary goal is to improve the asymptotic
running time of the incremental computation. Our secondary goal is to save space
by maintaining only intermediate results useful for achieving the primary goal.

Given a program f0 and an input change operation ⊕, we can use the approach
in Liu and Teitelbaum [1995] to derive a program f ′0, an incremental version of f0

under ⊕, such that, if f0(x) = r, then whenever f0(x⊕y) returns a value, f ′0(x, y, r)
returns the same value and is asymptotically at least as fast.1 For example, for the
function foo in Figure 1 and input change operation x ⊕1 y = x + 1, the function
foo′ in Figure 2 is derived. Unfortunately, computing foo′(x, r) is not much faster
than computing foo(x+ 1) from scratch.

Often, f0(x⊕ y) can be computed faster by caching and using, in addition to the
return value of f0(x), the intermediate results computed in f0(x). For instance, in
the foo example above, the value of foo(x−1) + foo(x−2), which could be used
in computing foo′(x, r) faster, is also computed by foo(x) but cannot be retrieved
from r. Therefore, the problem is to identify, among the possibly large number
of intermediate results computed by f0(x), those that are useful for computing
f0(x ⊕ y), cache these useful intermediate results, use them in computing f0(x ⊕
y), and maintain their corresponding values for computation after a further input
change. Using the method in this article, we can obtain the functions f̂oo and f̂oo

′

in Figure 2 that cache the values of foo(x−1) + foo(x−2) and foo(x − 1), use
them in computing foo(x+1), and maintain their corresponding values. Computing

1While f0(x) abbreviates f0(x1, ..., xn), and f0(x ⊕ y) abbreviates f0(〈x1, ..., xn〉 ⊕ 〈y1, ..., ym〉),
f ′0(x, y, r) abbreviates f ′0(x1, ..., xn, y1, ..., ym, r). Note that some of the parameters of f ′0 may be
dead and eliminated [Liu and Teitelbaum 1995].
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foo′(x, r) = if x ≤1 then 1
else if x = 2 then 3
else r + foo(x− 1) + foo(x− 2)

f̂oo(x) = if x ≤ 2 then < 1 >

else let v1 = b̂oo(x) in
< 1st(v1)+foo(x− 3), v1 >

b̂oo(x) = let v1 =foo(x− 1) in
< v1+foo(x− 2), < v1 >>

f̂oo
′
(x, r̂) = if x ≤1 then < 1 >

else if x=2 then < 3, < 2, <1>>>
else <1st(r̂)+1st(2nd(r̂)),

<1st(r̂)+1st(2nd(2nd(r̂))),
<1st(r̂)>>>

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

If foo(x) = r, then foo′(x, r) = foo(x+1).
For x of length n, foo′(x, r) takes time O(3n);

foo(x+1) takes time O(3n).

foo(x) = 1st(f̂oo(x)).

For x of length n, f̂oo(x) takes time O(3n);
foo(x) takes time O(3n).

If f̂oo(x) = r̂, then f̂oo
′
(x, r̂) = f̂oo(x+1).

For x of length n, f̂oo
′
(x, r̂) takes time O(1);

f̂oo(x+1) takes time O(3n).

Fig. 2. Resulting function definitions of foo′, f̂oo, and f̂oo
′
.

Table I. Notation

Function Return Value Denoted as Incremental Function

f0 original value r f ′0
f̄0 all intermediate results r̄ f̄0

′

f̂0 useful intermediate results r̂ f̂0
′

f̂oo
′
(x, r̂) takes only O(1) time. We use this example as a running example.

Notation. We use <> to construct tuples that bundle intermediate results with
the original return value of a function. We use selectors 1st, 2nd, 3rd, ... to select
the first, second, third, ... elements of such a tuple. We use x to denote the previous
input to f0; r, the cached result of f0(x); y, the input change parameter; x′, the new
input x⊕ y; and f ′0, an incremental version of f0 under ⊕. We use f̄0 to denote an
extended function that returns all intermediate results of f0; r̄, the cached result of
f̄0(x); and f̄0

′, an incremental version of f̄0 under ⊕. Similarly, we use f̂0 to denote
a pruned function that returns only the useful intermediate results; r̂, the cached
result of f̂0(x); and f̂0

′, a function that incrementally maintains only the useful
intermediate results (including the original return value). Table I summarizes the
notation.

3. OVERVIEW OF THE APPROACH

Suppose we know that certain intermediate results in f0(x) are useful in comput-
ing f0(x ⊕ y) faster. Then we can extend f0 to a program f̂0 that returns these
intermediate results. Then, we can derive an incremental version f̂0

′ of f̂0 under
⊕ such that, if f̂0(x) = r̂, then whenever f̂0(x ⊕ y) returns a value, f̂0

′(x, y, r̂) re-
turns the same value [Liu and Teitelbaum 1995]. This says that f̂0

′ can use these
intermediate results of f0(x) and incrementally maintain the corresponding inter-
mediate results of f0(x ⊕ y). Thus, the hard issue left is how to identify, among
the possibly large number of intermediate results of f0(x), those that are useful
for computing f0(x⊕ y). This section proposes two methods, selective caching and
cache-and-prune, but we favor the cache-and-prune method and thus explore it in
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, May 1998.
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the sections after.

Selective Caching. To identify useful intermediate results, a relatively straightfor-
ward method is to mimic the derivation approach in Liu and Teitelbaum [1995] to
identify subcomputations of f0(x⊕y) that are also in f0(x) but whose values cannot
be retrieved from the cached result r of f0(x). Then, we can transform f0(x) to
return these values and cache them. Such a selective caching method involves func-
tion unfolding, algebraic simplification, and so on, as does the derivation approach
in Liu and Teitelbaum [1995]. Transformations involving algebraic simplifications
are expensive compared with transformations based on static analysis.

Moreover, suppose computing f0(x⊕ y) needs intermediate result g(x) of f0(x);
then we also need to maintain the value of g(x⊕ y) to support incremental compu-
tation after a further input change, i.e., letting f̂0

(1) = 〈f0, g〉, we need to compute
f̂0

(1)(x ⊕ y) incrementally using the cached result r̂(1) of f̂0
(1)(x). However, com-

puting g(x⊕ y) incrementally may introduce the need to cache other intermediate
results of f0(x), i.e., there may be other intermediate results of f0(x), and thus of
f̂0

(1)(x), that can be used to compute g(x ⊕ y), and thus f̂0
(1)(x ⊕ y), faster but

that cannot be retrieved even from r̂(1). To find these other intermediate results,
the selective caching method needs to be applied again to the extended program
f̂0

(1) and operation ⊕.
This process may repeat until we obtain a program f̂0

(i) such that all intermediate
results of f̂0

(i)(x) that can be used in computing f̂0
(i)(x⊕ y) can be retrieved from

the cached result r̂(i) of f̂0
(i)(x). Intuitively, there exists an upper bound of such

f̂0
(i)’s, namely, a program that returns all intermediate results of f0. Thus, we can

arrange this iteration to always terminate, by stopping the iteration when necessary
and using this upper bound. However, the number of iterations depends on f0, ⊕,
and the techniques used to ensure termination. Also, each iteration is expensive.
So, we propose instead a simple three-stage method called cache-and-prune.

Cache-and-Prune. The cache-and-prune method consists of three stages. While
a static dependency analysis may be iterated a number of times in Stage III, the
expensive derivation in Liu and Teitelbaum [1995] is performed only once in Stage
II.

Stage I constructs a program f̄0, an extended version of f0, such that f̄0(x)
returns the values of all function calls made in computing f0(x). Basically, f̄0(x)
returns a nested tuple containing both the intermediate results and the value of
f0(x), such that

1st(f̄0(x)) = f0(x) and t(f̄0(x)) ≤ t(f0(x)). (2)

Stage II derives a program f̄0
′, an incremental version of f̄0 under ⊕, using the

approach in Liu and Teitelbaum [1995], such that if f̄0(x) = r̄ and f̄0(x ⊕ y) = r̄′,
then

f̄0
′(x, y, r̄) = r̄′ and t(f̄0

′(x, y, r̄)) ≤ t(f̄0(x⊕ y)), (3)

and thus, together with (2), we have

1st(f̄0
′(x, y, r̄)) = 1st(f̄0(x⊕ y)) = f0(x⊕ y). (4)

Stage III produces a program f̂0, a pruned version of f̄0, such that f̂0(x) returns
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, May 1998.
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Π(r̄), where r̄ is the return value of f̄0(x), and Π is a projection that selects the
first and other components of r̄ on which 1st(f̄0

′(x, y, r̄)) transitively depends. The
dependency is transitive in the sense that if 1st(f̄0

′(x, y, r̄)) depends on Π1(r̄), and
Π1(f̄0

′(x, y, r̄)) depends on Π2(r̄), then 1st(f̄0
′(x, y, r̄)) depends also on Π2(r̄). This

transitivity is caused by the need to maintain intermediate results corresponding
to those that are used for computing 1st(f̄0

′(x, y, r̄)). In other words, this stage
eliminates those intermediate results cached in r̄ that are not transitively needed
in incrementally computing 1st(f̄0

′(x, y, r̄)), the value of f0(x⊕ y). In particular, if
f0(x) = r, then

1st(f̂0(x)) = r and t(f̂0(x)) ≤ t(f0(x)). (5)

Additionally, we obtain a program f̂0
′, a pruned version of f̄0

′, such that if f̄0
′(x, y, r̄)

returns r̄′, then f̂0
′(x, y, r̂), where r̂ is Π(r̄), returns Π(r̄′). This pruning is possible

because Π(r̄′) depends only on Π(r̄), as can be easily shown using the transitivity
above. With the relationship between f̂0 and f̄0, together with (2) and (3), we can
prove that if f̂0(x) = r̂ and f0(x⊕ y) = r′, then

f̂0
′(x, y, r̂) = f̂0(x⊕ y) and t(f̂0

′(x, y, r̂)) ≤ t(f0(x⊕ y)), (6)

and thus, together with (5), we have

1st(f̂0
′(x, y, r̂)) = 1st(f̂0(x⊕ y)) = r′. (7)

Thus, f̂0
′(x, y, r̂) incrementally computes the desired output and the corresponding

intermediate results and is asymptotically at least as fast as computing the desired
output from scratch.

Putting (5), (6), and (7) together, if f0(x) = r, then

1st(f̂0(x)) = r and t(f̂0(x)) ≤ t(f0(x)), (8)

and if f̂0(x) = r̂ and f0(x ⊕ y) = r′, then

1st(f̂0
′(x, y, r̂)) = r′, f̂0

′(x, y, r̂) = f̂0(x⊕ y), and t(f̂0
′(x, y, r̂)) ≤ t(f0(x ⊕ y)),

(9)
i.e., the programs f̂0 and f̂0

′ preserve the semantics and compute asymptotically at
least as fast as f0. Note, however, that f̂0(x) may terminate more often than f0(x),
and f̂0

′(x, y, r̂) may terminate more often than f0(x⊕ y).

4. STAGE I: CACHING ALL INTERMEDIATE RESULTS

Stage I transforms program f0 into a program f̄0 that embeds all intermediate
results of f0 in the return value of f̄0. It performs a straightforward extension
transformation followed by administrative simplifications.

4.1 Extension

We first perform a local, structure-preserving transformation called extension. For
each function definition f(v1, ..., vn) = e, we construct a function definition

f̄(v1, ..., vn) = Ext[[e]] (10)

where Ext[[e]] extends an expression e to return a nested tuple that contains the
values of all function calls made in computing e. The transformation considers
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, May 1998.
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Ext[[v]] = < v >

Ext[[g(e1, ..., en)]] where g is c or p = let v1 =Ext[[e1]] in ... let vn=Ext[[en]] in
<g(1st(v1), ...,1st(vn))> @ rst(v1) @ ...@ rst(vn)

Ext[[f(e1, ..., en)]] = let v1 =Ext[[e1]] in ... let vn=Ext[[en]] in
let v= f̄(1st(v1), ...,1st(vn)) in
<1st(v)> @ rst(v1) @ ...@ rst(vn) @ <v>

Ext[[if e1 then e2 else e3]] = let v1 =Ext[[e1]] in
if 1st(v1) then let v2 =Ext[[e2]] in

<1st(v2)> @ rst(v1) @ rst(v2) @Pad[[e3]]
else let v3 =Ext[[e3]] in

<1st(v3)> @ rst(v1) @Pad[[e2]] @ rst(v3)

Ext[[let v=e1 in e2]] = let v1 =Ext[[e1]] in
let v=1st(v1) in let v2 =Ext[[e2]] in

<1st(v2)> @ rst(v1) @ rst(v2)

Fig. 3. Definition of Ext.

subexpressions of e in applicative and left-to-right order, introduces bindings that
name the results of function calls, builds up tuples of these values together with the
values of the original subexpressions, and passes these values from subcomputations
to enclosing computations.

The definition of Ext is given in Figure 3. We assume that each introduced bind-
ing uses a fresh variable name. For a constructed tuple <>, 1st returns the first
element, which is the original return value, and rst returns a tuple of the remaining
elements, which are the corresponding intermediate results. We use an infix oper-
ation @ to concatenate two tuples. For transforming a conditional expression, the
transformation Pad[[e]] generates a tuple of ’s of length equal to the number of
function applications in e, where is a dummy constant that just occupies a spot.
The length of the tuple generated by Pad[[e]] can easily be determined by static
inspection of e. The use of Pad ensures that each possible intermediate results
appears in a fixed position independent of the value of the Boolean expression.

Essentially, f̄(v1, ..., vn) and f(v1, ..., vn) perform the same computation, and thus
they take the same asymptotic time. In particular, they have the same termination
behavior, and if they terminate, then

1st(f̄(v1, ..., vn)) = f(v1, ..., vn). (11)

For functions foo and boo of Figure 1, after the extension transformation, we
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, May 1998.
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obtain the functions foo1 and boo1:

foo1(x) = let v1 = let v11 =<x> in let v12 =<2> in
<1st(v11) ≤1st(v12)> @ rst(v11) @ rst(v12) in

if 1st(v1) then let v2 =<1> in
<1st(v2)> @ rst(v1) @ rst(v2) @ < , >

else let v3 = let v31 = let v311 =<x> in

let u1 = boo1(1st(v311)) in
<1st(u1), u1> @ rst(v311) in

let v32 = let v321 = let v3211 =<x> in let v3212 =<3> in
<1st(v3211)−1st(v3212)> @
rst(v3211) @ rst(v3212) in

let u2 = foo1(1st(v321)) in
<1st(u2), u2> @ rst(v321) in

<1st(v31) + 1st(v32)> @ rst(v31) @ rst(v32) in
<1st(v3)> @ rst(v1) @ <> @ rst(v3)

boo1(x) = let v1 = let v11 = let v111 =<x> in let v112 =<1> in
<1st(v111)− 1st(v112)> @ rst(v111) @ rst(v112) in

let u1 = foo1(1st(v11)) in
<1st(u1), u1> @ rst(v11) in

let v2 = let v21 = let v211 =<x> in let v212 =<2> in
<1st(v211)− 1st(v212)> @ rst(v211) @ rst(v212) in

let u2 = foo1(1st(v21)) in
<1st(u2), u2> @ rst(v21) in

<1st(v1) + 1st(v2)> @ rst(v1) @ rst(v2)

(12)
The transformation Ext is local and structure-preserving. However, it may in-

troduce unnecessary bindings for values of expressions other than function appli-
cations, leave many tuple operations for passing intermediate results unsimplified,
and place bindings at undesirable positions, such as within binding definitions. The
result is complicated code and reduced readability.

4.2 Administrative Simplification

Administrative simplifications are performed using a cleaning transformation to
clean up the programs obtained by the extension transformation. For each function
definition f(v1, ..., vn) = e obtained from the extension transformation, we obtain
a function definition

f(v1, ..., vn) = Clean[[e]] ∅ (13)

where Clean[[e]] I cleans up an expression e using the information set I at e, i.e., it
examines subexpressions in applicative and left-to-right order, collects information
sets at subexpressions, simplifies tuple operations for passing intermediate results,
unwinds binding expressions that become unnecessary as a result of simplifying
their subexpressions, and lifts bindings out of enclosing expressions, when possible,
to enhance readability.

Here, an information set at e, denoted I[e], is a set of equations collected from the
bindings introduced in the context of e. For example, if some f(v1, ..., vn) is defined
to be e, and e is let v1 =e1 in let v2 =e2 in e3, where v1 and v2 are introduced by
the extension transformation, then I[e] = ∅ and I[e3] = {v1↔ e1, v2↔ e2}.
Clean uses a function SimpClean to perform basic simplifications on tuple oper-

ations and introduced bindings, as summarized in Figure 4. Given an expression e
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SimpClean[[e1@ e2]] I = <e11, ..., e1n1 , e21, ..., e2n2 > if e1↔<e11, ..., e1n1 >∈ I and
e2↔<e21, ..., e2n2 >∈ I

= e1@ e2 otherwise

SimpClean[[1st(e)]] I = e1 if e↔<e1, e2, ..., en>∈ I
= 1st(e) otherwise

SimpClean[[rst(e)]] I = <e2, ..., en> if e↔<e1, e2, ..., en>∈ I
= rst(e) otherwise

SimpClean[[let v=e1 in e2]] I = e2[e1/v] if v is introduced by Ext and
occurs at most once in e2

= let v=e1 in e2 otherwise

Fig. 4. Definition of SimpClean.

and an information set I, SimpClean simplifies e based on the equations in I.
Clean uses a function SublClean to apply basic simplifications recursively to subex-

pressions and lift bindings out of enclosing expressions, as defined in Figure 5. The
presentation of SublClean is simplified by omitting detailed control structures that
sequence it through the subexpressions. A subexpression is reduced if and only if it
is the result of having already applied Clean to the subexpression at that position.
For an expression let v = e1 in e2 where e1 is not itself a binding expression, if
e1 is a conditional, then, for further simplifying its two branches, SublClean lifts
the condition out; otherwise, if v is introduced by the extension transformation,
SublClean cleans e2 with the assumption that v equals e1 added to the information
set.

Finally, we define the function Clean as in (14). If an expression e has subex-
pressions, then Clean calls SublClean to recursively clean them. Then Clean calls
SimpClean to simplify the top-level expression.

Clean[[e]]I = e′′

where e′′=SimpClean[[e′]]I

e′ =
{
SublClean[[e]]I if e is not v
e otherwise

(14)

Each cleaned function f̄ still satisfies the properties stated at (11).
For the functions foo1 and boo1 in (12), after the cleaning transformation, we

obtain the functions foo and boo below:

foo(x) = if x ≤ 2 then <1, , >

else let u1 = boo(x) in

let u2 = foo(x− 3) in
<1st(u1)+1st(u2), u1, u2>

boo(x) = let u1 = foo(x− 1) in

let u2 = foo(x− 2) in
<1st(u1)+1st(u2), u1, u2>

(15)

They are much simpler and are easier for the subsequent stages to process.

4.3 Complexity and Optimization

Ext and Clean transform each function definition separately. If we assume that
programs are composed of function definitions of bounded sizes, which is especially
true for large programs, then both Ext and Clean are linear in the size of the entire
program.
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SublClean[[g(e1, ..., en)]] I where g is c, p, or f

= SublClean[[g(e1, ..., ei−1, e
′
i, ei+1, ..., en)]] I

where e′i = Clean[[ei]] I
if e1, ..., ei−1 are reduced, not let,

but ei is not reduced

= SublClean[[let v=ei1 in g(e1, ..., ei−1, ei2, ei+1, ..., en)]] I if e1, ..., ei−1 are reduced, not let,
ei is reduced, but
ei is let v=ei1 in ei2

= g(e1, ..., en) otherwise

SublClean[[if e1 then e2 else e3]] I

= SublClean[[if e′1 then e2 else e3]] I
where e′1 = Clean[[e1]] I

if e1 is not reduced

= SublClean[[let v=e11 in if e12 then e2 else e3]] I if e1 is reduced, but
e1 is let v=e11 in e12

= if e1 then Clean[[e2]] I else Clean[[e3]] I otherwise

SublClean[[let v=e1 in e2]] I

= SublClean[[let v=e′1 in e2]] I
where e′1 = Clean[[e1]] I

if e1 is not reduced

= SublClean[[let v1 =e11 in let v=e12 in e2]] I if e1 is reduced, but
e1 is let v1 =e11 in e12

= SublClean[[if e11 then let v=e12 in e2
else let v=e13 in e2]] I

if e1 is reduced, but
e1 is if e11 then e12 else e13

= let v=e1 in Clean[[e2]] I′

where I′=

{
I∪{v↔e1} if v is introduced
I otherwise

otherwise

Fig. 5. Definition of SublClean.

For a function definition of size s, the typical behaviors of Ext and Clean are also
linear, and this is observed in our prototype implementation. The worst-case time of
Ext is quadratic, and it occurs only if there are Θ(s) conditional branches that con-
tain function applications. This is caused by the padding that is done when extend-
ing conditionals, e.g., if null(x) then f1(x) else if null(cdr(x)) then f2(x) else f3(x)

is extended to if null(x) then <f1(x), , > else if null(cdr(x)) then < , f2(x), >

else< , , f3(x)>. The worst-case time of Clean is exponential, but it occurs only if
there are Θ(s) conditionals in the binding of a binding expression. This is caused by
the lifting of the conditions out of the binding, resulting in duplication of the body,
e.g., let v = (if null(x) then e1 else if null(cdr(x)) then e2 else e3) in e4 is cleaned
to if null(x) then let v=e1 in e4 else if null(cdr(x)) then let v=e2 in e4 else let v=

e3 in e4. In any case, the time complexities of Ext and Clean are linear in the size
of their outputs.

An obvious optimization can be incorporated into the extension transformation:
it can avoid introducing bindings for subexpressions that do not contain function
applications. The optimized extension transformation introduces fewer tuple oper-
ations for passing intermediate results and fewer bindings to be unwound or lifted,
leaving less work for the administrative simplifications. Although this optimization
does not reduce the worst-case asymptotic time or space complexities of the exten-
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sion transformation, it does provide significant benefits in practice. Most programs
contain many more subexpressions than function calls, so this optimization can
significantly reduce the number of bindings and tuple operations introduced by the
extension transformation, and thus speed up the cleaning transformation as well.

5. STAGE II: INCREMENTALIZATION

Stage II derives a program f̄0
′, an incremental version of f̄0 under ⊕. To derive

an incremental version f ′0 of f0 under ⊕, for any f0, the basic idea is to identify
subcomputations in the expanded f0(x⊕ y) whose values can be retrieved from the
cached result r of f0(x), replace them by corresponding retrievals, and capture the
resulting way of computing f0(x ⊕ y) in an incremental version f ′0(x, y, r). Such a
derivation method is given in Liu and Teitelbaum [1995]. This section summarizes
the method and discusses interactions with the transformations for caching and
pruning.

5.1 Basic Incrementalization Method

The basic observation is that all subcomputations in f0(x ⊕ y) depend on x, y, or
both, and we can try to separate out those depending only on x and replace them
with retrievals from the cached result r of f0(x).

To separate out subcomputations depending only on x, we unfold f0(x⊕ y) and
simplify subcomputations. For example, x + 1 − 1 simplifies to x, cdr(cons(y, x))
simplifies to x, and (let v = e1 in e2) simplifies to e2[v := e1] if v occurs at most
once in e2 or if e1 takes constant time. Simplifications can exploit equalities in the
context of a subcomputation. For example, in let v = e1 in if v = u then e2 else v,
expression e2 has the context v = e1 and v = u. If e2 is if u = e1 then e3 else e4,
then it can be simplified to e3.

To replace subcomputations with retrievals from the cache result r of f0(x), we
can replace occurrences of f0(x) by r. We can also exploit r further. In particular,
we can use components of r. For example, if f0(x) = cons(g(x), h(x)), then we can
replace g(x) by car(r) and replace h(x) by cdr(r). Also, we can use r conditionally.
For example, if f0(x) = if e1 then e2 else e3, then e2 = r when e1 is true, and
e3 = r when e1 is false; thus we can replace e2 by r in if e1 then cons(y, e2) else y,
and we can replace e3 by if e1 then e3 else r if t(e1) ≤ t(e3). The latter yields
separate cases. If an expression e is a Boolean-valued function application, we can
use replacements that are valid for both values of e. For example, for Boolean-valued
function application g(e1), if g(f0(x)) = true when g(e1) is true, and g(f0(x)) =
false when g(e1) is false, then we can replace g(e1) by g(r).

The overall derivation examines subcomputations recursively, in applicative and
left-to-right order, and applies simplifications and replacements described above. If
the resulting subcomputation is a function application f(e1, ..., en) that depends on
x, then replace it with an incremental version: if f(e1, ..., en), together with its con-
text and available cached results, forms an instance of an already introduced incre-
mental function f ′, then replace f(e1, ..., en) using f ′ with appropriate instantiation;
otherwise, introduce an appropriate incremental version to compute f(e1, ..., en),
with an additional argument that is the cached result of some f(e′1, ..., e

′
n) that best

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, May 1998.



558 · Yanhong A. Liu et al.

matches f(e1, ..., en),2 and continue to apply unfolding, simplification, and replace-
ment on the new function. After we finish transforming a new function, we perform
dead-code elimination. This is needed since if we retrieve the value of a subcom-
putation from a cached result, then subcomputations used only in computing this
value become dead. The overall derivation starts with f̄0(x⊕ y).

This method is systematic and parameterized by modules for equality reasoning,
time analysis, and strategies used in introducing incremental functions. It can be
made automatic or semiautomatic depending on the power one expects from each
module. For example, equality reasoning can exploit algebraic properties of only
constructors or exploit arithmetic properties as well; time analysis can conserva-
tively compare times of primitives or handle all recursive functions; and strategies
for introducing incremental functions can allow one argument for a cached result
and one incremental version for each given function or allow multiple arguments
for cached results and multiple incremental versions. If the conservative option is
chosen for each module, then the overall derivation is fully automatic and always
terminates; alternatively, if the more ambitious option is chose, the derivation is
semiautomatic. The method in Liu and Teitelbaum [1995] limits each incremental
function to use one argument for a cached result, but it leaves other choices as
parameters of the method.

Even though this method uses transformations like unfoldings and simplifications,
it is tailored to achieve the special goal of using a previously computed result. It
uses a specific sequence of special transformations and is therefore systematic. In
particular, it introduces incremental functions that correspond to nonincremen-
tal functions and uses cached results as extra arguments, and it performs unfold-
ings, simplifications, and replacements using cached results. The effect cannot be
achieved by general optimization strategies, such as the general fold/unfold trans-
formation strategies [Burstall and Darlington 1977], in such an automatable way.
In particular, the method does not introduce eureka definitions, which can be new
functions with arbitrary arguments, nor does it perform arbitrary folding, which
may cause a resulting program not to terminate even when the original program
terminates.

The incrementalization method is also powerful. Even if restricted to use au-
tomatic methods for equality reasoning, time analysis, and introduction of incre-
mental functions, it can derive efficient incremental programs that could not be
automatically derived before. Nevertheless, as with all program optimization tech-
niques, how well the resulting programs perform depends on how the original pro-
grams are written.

Consider the function foo in (15) that caches all intermediate results of foo. We
derive an incremental version of foo under ⊕1, following the approach in Liu and
Teitelbaum [1995], as follows. We transform foo(x+1), with foo(x) = r̄:

2The particular algorithm used in Liu and Teitelbaum [1995] is omitted here.
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1. unfold foo(x+1) and then boo(x+1)
and simplify primitives

= if x ≤ 1 then <1, , >

else let u11 = foo(x) in

let u12 = foo(x− 1) in
let u1 = <1st(u11)+1st(u12),

u11, u12> in

let u2 = foo(x− 2) in
<1st(u1)+1st(u2), u1, u2>

2. separate cases and replace calls to foo by retrievals
= if x ≤ 1 then <1, , >

else if x = 2 then
<3, <2, <1, , >,<1, , >>,<1, , >>

else let u11 = r̄ in
let u12 = 2nd(2nd(r̄)) in
let u1 = <1st(u11)+1st(u12), u11, u12> in
let u2 = 3rd(2nd(r̄)) in
<1st(u1)+1st(u2), u1, u2>

Since each binding takes constant time to compute, the bindings can be unfolded
by simplification, yielding the following:

foo
′
1(x, r̄) = if x ≤ 1 then <1, , >

else if x = 2 then <3, <2, <1, , >, <1, , >>, <1, , >>
else <1st(r̄)+1st(2nd(2nd(r̄))) + 1st(3nd(2nd(r̄))),

<1st(r̄)+1st(2nd(2nd(r̄))), r̄, 2nd(2nd(r̄)) >, 3rd(2nd(r̄)) >

(16)

If the equality reasoning used is powerful enough, it can infer that the first com-
ponent in the third branch equals 1st(r̄) +

(
1st(2nd(2nd(r̄))) + 1st(3nd(2nd(r̄)))

)
,

which equals 1st(r̄) + 1st(2nd(r̄)), where the first equality is by associativity of +,
and the second is by definition of boo. We obtain the incremental function foo

′

below such that, if foo(x) = r̄, then foo
′
(x, r̄) = foo(x+1):

foo
′
(x, r̄) = if x ≤ 1 then <1, , >

else if x = 2 then <3, <2, <1, , >, <1, , >>, <1, , >>
else <1st(r̄)+1st(2nd(r̄)),

<1st(r̄)+1st(2nd(2nd(r̄))), r̄, 2nd(2nd(r̄)) >, 3rd(2nd(r̄)) >

(17)

Clearly, both foo
′
1(x, r̄) and foo

′
(x, r̄) compute foo(x+1) in only O(1) time. How-

ever, they both take O(3n) space, since r̄ does.

5.2 Interaction with Cache and Prune

Incrementalizing a program f0 under ⊕ yields an incremental program f ′0 that
computes f0(x⊕ y) efficiently using the value of f0(x). With a Stage I that caches
all intermediate results of f0 to obtain f̄0, and a Stage III that prunes unused
intermediate results in f̄0

′ to obtain f̂0
′, our method yields a program that computes

f0(x ⊕ y) efficiently using all useful intermediate results of f0(x).
As shown in Section 3, if an incrementalization method ensures that an incre-

mental program always computes at least as fast as its nonincremental counterpart,
then the cache-and-prune method guarantees that f̂0

′(x, y, r̂) always computes at
least as fast as f0(x⊕y). However, it is important to also guarantee that f̂0

′(x, y, r̂)
always computes at least as fast as f0

′(x, y, r), i.e., the cost saved by using inter-
mediate results in r̂ is greater than or equal to the cost of maintaining them in
f̂0
′(x, y, r̂). This ensures that the cache-and-prune method is at least as good as

the incrementalization method alone for arbitrary programs.
First, we show how caching and maintaining an intermediate result may cause

f̄0
′(x, y, r̄) to be slower than f0

′(x, y, r). Let g(x) be an intermediate result of f0(x),
and let f̄0 extend f0 to return this intermediate result also. Suppose that f ′0(x, y, r)
computes f0(x ⊕ y) given r= f0(x) and that f̄0

′(x, y, r̄) computes f̄0(x ⊕ y) given
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r̄ = f̄0(x). It is possible that f ′0(x, y, r) does not compute g(x ⊕ y) even though
f0(x ⊕ y) does, e.g., if g(x ⊕ y) is found to be dead. However, f̄0

′(x, y, r̄) must
compute g(x⊕ y), since f̄0

′(x, y, r̄) computes f̄0(x⊕ y), whose return value contains
g(x⊕y). So, dead-code elimination performed during the incrementalization cannot
eliminate the computation of g(x ⊕ y) from f̄0

′(x, y, r̄). If g(x ⊕ y) cannot be
computed incrementally as efficiently as f0(x⊕y) can, then f̄0

′(x, y, r̄) can be slower
than f ′0(x, y, r).

Next, we show how pruning can help compensate for this. Suppose f̄0(x) returns
some intermediate result g1(x), but g1(x⊕ y) cannot be computed incrementally as
efficiently as f0(x ⊕ y). If computing 1st(f̄0

′(x, y, r̄)), i.e., f0(x ⊕ y), does not use
the value g1(x) in r̄, then pruning eliminates g1(x) in r̄ and g1(x⊕ y) in f̄0

′(x, y, r̄),
and we may obtain an incremental program f̂0

′(x, y, r̂) that is as fast as f ′0(x, y, r).
However, this does not completely solve the problem. The whole idea of caching
intermediate results is for the incrementalization to use them, by replacing subcom-
putations with retrievals from these cached results. So, the problem is to determine
when it is worth using an intermediate result.

Based on the above interactions with the transformations for caching and prun-
ing, the rest of this section studies three requirements on the incrementalization
method to guarantee that f̂0

′(x, y, r̂) is at least as fast as f ′0(x, y, r). These re-
quirements are based on how an intermediate result g(x) might be used in the
incremental computation, causing g(x⊕y) to be maintained. The interactions shed
light on the fundamental issues that arise with the cache-and-prune method.

The first requirement is that if a subcomputation h(x) in the transformed f̄0(x⊕y)
can be replaced by a retrieval using either 1st(r̄) or an intermediate result g(x) other
than 1st(r̄), then 1st(r̄) is used instead of g(x).3 The goal of this is to leave g(x)
unused, so it can be pruned out in Stage III, saving both time and space. In fact,
Stage I can be enhanced to avoid caching intermediate results that are embedded
in the original return value, using an embedding analysis [Liu et al. 1996]; to keep
Stage I simple, we did not present this here. A related requirement, although
not needed for ensuring that f̂0

′(x, y, r̂) is as fast as f ′0(x, y, r), helps achieve our
secondary goal of minimizing space complexity: if there are multiple intermediate
results from which h(x) can be retrieved, then a retrieval from an intermediate
result that is already used is preferable.

The second requirement is that a subcomputation h(x) in the transformed f̄0(x⊕
y) is replaced by a retrieval using an intermediate result g(x) other than 1st(r̄) only
if h(x) takes at least as much time as g(x).4 Together with the first requirement,
we know that h(x) cannot be replaced by using 1st(r) but can be replaced by
using g(x). This means that f ′0(x, y, r) incurs the cost of computing h(x) if and
only if f̂0

′(x, y, r̂) does not incur the cost of computing h(x) but incurs the cost
of maintaining g(x ⊕ y). We show below how to ensure that the time spent in
maintaining g(x⊕ y) does not surpass the time saved by not computing h(x).

The third requirement is that a subcomputation h(x) in the transformed f̄0(x⊕y)

3In other words, we require that if h(x) is replaced by a retrieval from r in deriving f ′0, then it is
replaced by a retrieval from 1st(r̄) in deriving f̄0

′.
4To compare the times of h(x) and g(x), an automated analysis could be used. A simpler method
is to check whether h(x) can be simplified to yield g(x), since simplifications never increase cost.
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is replaced in some branch by a retrieval using an intermediate result g(x) other
than 1st(r̄) only if, in every other branch where g(x⊕y) is maintained, g(x⊕y) takes
constant time.5 This is because intermediate result g(x) may be used conditionally
in some branch, but then g(x⊕y) needs to be maintained, possibly in other branches.
We want to guarantee that in these other branches, the time of computing g(x⊕ y)
can be ignored asymptotically.

With the above requirements on the incrementalization method, if (a) the size
of y is bounded, (b) when the size of y is bounded, the time of computing x ⊕ y
is bounded, and (c) g is at most linear-power exponential time, i.e., g is either
polynomial time or exponential time but with linear exponent, then we have

t(f̂0
′(x, y, r̂)) ≤ t(f ′0(x, y, r)). (18)

It is easy to see that the three conditions are true for all practical and feasible
incremental applications, and therefore we assume they are satisfied. To prove
(18), we notice that

t(f̂0
′(x, y, r̂))≤ t(f ′0(x, y, r)) + t(g(x⊕ y)) by definition of f̂0

′ and derivation
≤ t(f ′0(x, y, r)) + t(g(x)) by conditions on y, ⊕, and g
≤ t(f ′0(x, y, r)) + t(h(x)) by requirements above
≤ t(f ′0(x, y, r)) + t(f ′0(x, y, r)) by h being a subcomputation of f ′0
≤ t(f ′0(x, y, r)) by definition of t.

f̂0
′ might be a constant factor slower than f ′0, if there is an intermediate result

g(x⊕ y) of f0(x⊕ y) that became dead in f ′0(x, y, r) due to retrieval from r but is
live in f̂0

′(x, y, r̂) due to retrieval of g(x) from r̂. This does not cause f̂0
′(x, y, r̂) to

be slower than f0(x⊕y) because g(x⊕y) is an intermediate result of f0(x⊕y). Since
incrementalization can ensure that f ′0(x, y, r) is absolutely no slower than f0(x⊕y),
it can ensure that f̄0

′(x, y, r̄) is absolutely no slower than f̄0(x ⊕ y). The only
reason that f̄0

′(x, y, r̄) might be slower than f0(x⊕y) is the cost of tuple operations
introduced in f̄0(x⊕y) and thus in f̄0

′(x, y, r̄). This cost is usually small and in the
worst case increases the running time by a factor equal to the size of the largest
function definition in the original program f0. Furthermore, pruning f̄0

′(x, y, r̄) to
produce f̂0

′(x, y, r̂) largely eliminates this cost because unused intermediate results
and the corresponding tuple operations are eliminated.

Note that the three conditions on y, ⊕, and g are not needed if intermediate
results are maintained lazily during sequences of calls to f̂0

′. This laziness ensures
that an intermediate result in an iteration is maintained only if it is actually needed
in the next iteration. So, if f̂0

′(x, y, r̂) uses an intermediate result g(x) to replace a
computation h(x) that takes at least as much time as g(x), then f ′0(x, y, r) has the
cost of computing h(x), and thus f̂0

′(x, y, r̂) is at least as fast as f ′0(x, y, r).

6. STAGE III: PRUNING

Stage III prunes programs f̄0 and f̄0
′ to programs f̂0 and f̂0

′, respectively, so that
f̂0 returns only the useful intermediate results and so that f̂0

′ maintains only these
useful intermediate results. To achieve this, we analyze program f̄0

′ to determine

5Implementing a conservative and reasonably accurate test for this is straightforward. Note that
this typically holds in branches corresponding to the base cases of a recursive function definition.
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+
+

boo(x+ 1) :

foo(x+ 1) :

v′1 v′2 v′3v2v1 v3

foo(x−1) + foo(x −2) + foo(x−3) foo(x) + foo(x − 1) + foo(x− 2)

boo(x) :

foo(x) :

Fig. 6. Transitive dependencies.

the components of r̄, i.e., the value of f̄0(x), on which 1st(f̄0
′(x, y, r̄)), i.e., the value

of f0(x⊕ y), transitively depends, and we prune f̄0 and f̄0
′.

6.1 Transitive Dependency for Maintaining Intermediate Results

Since the goal is to compute f0(x⊕y), we start with the first component of f̄0
′(x, y, r̄)

and determine the components of r̄ on which this value depends; these components
may include components other than the first one of r̄. To support incremental com-
putation after a further input change, we need to maintain these other components
of f̄0

′(x, y, r̄) as well as the first component, but they may depend on still other
components of r̄, forming a kind of transitive dependency.

Figure 6 illustrates the transitive dependencies for the program foo
′
. By defini-

tions of foo and boo and associativity of +, as used by the derivation of foo
′
in (17),

we have

foo(x+1) = boo(x+1) + foo(x−2) =
(
foo(x)+foo(x−1)

)
+ foo(x−2)

= foo(x) +
(
foo(x−1)+foo(x−2)

)
= foo(x) + boo(x).

Thus, to compute the value v′1 of foo(x+1), foo
′
sums the value v1 of foo(x) and the

(intermediate) value v2 of boo(x). To maintain the corresponding (intermediate)
value v′2 of boo(x+1), foo

′
sums the value v1 of foo(x) and the (intermediate) value

v3 of foo(x−1). To maintain the corresponding (intermediate) value v′3 of foo(x),
foo
′

just uses the value v1 of foo(x). Therefore, to summarize, the value v′1 of
foo(x+1) transitively depends on the components corresponding to intermediate
results v1, v2, and v3, which are maintained as v′1 = v1 + v2, v′2 = v1 + v3, and
v′3 = v1, respectively. Other intermediate results do not need to be computed or
maintained; they can be pruned out. Similarly, we could draw a dependency graph
for the program foo

′
1.

To summarize, we need to compute the closure of the transitive dependencies for
maintaining all useful intermediate results.

6.2 Dependency Analysis Using Projections

We first describe our use of domain projections [Gunter 1992; Scott 1982] to rep-
resent components of the tuple values constructed in Stage I and manipulated by
Stage II. Then, we give a backward dependency analysis that determines which com-
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ponents of r̄ are needed for computing certain designated components of f̄0
′(x, y, r̄).

Finally, we present an algorithm that computes the closure of the transitive depen-
dencies for maintaining intermediate results.

Projections. Our domain D of interest contains ⊥, indicating a computation
diverges, values d returned by functions in the original program f0, and constructed
tuples < d1, ..., dn >, where each di is (recursively) an element of D other than
⊥. The length of a constructed tuple is statically bounded, but the depth of tuple
nesting may not be statically bounded. Intuitively, any components of a constructed
tuple value can be replaced by the dummy constant , introduced in Stage I, if we
do not care about the values of those components. Even when a subcomputation
involves , the result of the parent computation need not be . For any value d
in domain D, we define ⊥ v d. For two values d1 and d2 other than ⊥ in D, we
define d1 v d2 if and only if

d1 = , d1 = d2, or
d1 = <d11, ..., d1n>, d2 = <d21, ..., d2n>, and d1i v d2i for i=1..n.

A projection over the domain D is a function Π : D → D such that Π(Π(d)) =
Π(d) and Π(d) v d for all d ∈ D. Three important projections are ID, ABS,
and BOT . ID is the identity function: ID(d) = d. ABS is the absence function:
ABS(d) = for all d 6= ⊥. BOT is the bottom function: BOT (d) = ⊥.

A nonbottom projection Π of interest here can be represented as a set of selection
functions, each of which is a sequence of elements of {1st, 2nd, ...}. The null sequence
is denoted ε. Intuitively, if Π contains a sequence ikthik−1

th...i1
th, then the ikth element

of the ik−1th element of the · · · of the i1th element of Π’s argument is selected, and
if Π contains ε, then all components of Π’s argument are selected. A projection Π
replaces those components of its argument that are not selected with the constant

. For example {1st}, {1st, 1st2nd}, and {1st1st2nd, ε} are projections, and

{1st, 1st2nd}(<d1, <<d211, d212>, d22>>) = <d1, <<d211, d212>, >> .

For convenience of presentation, we use Π-i to denote the set {π |π ith ∈ Π}, i.e.,
Π-i is the part of Π that considers the ith component. With the set representation,
a projection Π = ID if and only if ε ∈Π or Π-i = ID for i= 1..n for arguments of
Π of length n; a projection Π = ABS if and only if Π = ∅. For Π 6∈ {ID,ABS},
Π(<d1, ..., dn>) =<Π -1 (d1), ...,Π -n (dn)>. For any two projections Π1 and Π2

other than BOT , Π1 v Π2 if and only if

Π1 = ABS, Π2 = ID, or
Π1

-i v Π2
-i for i = 1..n for arguments of Π1 and Π2 of length n.

Dependency Analysis. We use a backward dependence analysis to compute which
components of r̄ are needed for computing certain components of f̄0

′(x, y, r̄).
Following the style of Wadler and Hughes [1987], for each function f of n param-

eters, and each i from 1 to n, we define f i to be a dependency transformer that
takes a projection that is applied to the result of f and returns a projection that
is sufficient to be applied to the ith parameter. The sufficiency condition that f i
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vv(Π) = Π

uv(Π) = ABS if u 6= v

(<e1, ..., en>)v(Π) = ev1(Π-1) ∪ ... ∪ evn(Π-n)

(ith(e))v(Π) = ev({π ith |π ∈ Π})
(g(e1, ..., en))v(Π) = ev1(ID) ∪ ... ∪ evn(ID) if g is c or p but not <> or ith

(f(e1, ..., en))v(Π) = ev1(f1(Π)) ∪ ... ∪ evn(fn(Π))

(if e1 then e2 else e3)v(Π) = ev1(ID) ∪ ev2(Π) ∪ ev3(Π)

(let u=e1 in e2)v(Π) = ev1(eu2 (Π)) ∪ ev2(Π) assume u 6= v after renaming

Fig. 7. Definition of ev(Π) for Π 6= BOT,ABS.

must satisfy is if Πi = f i(Π) then

Π(f(v1, ..., vi, ..., vn)) v f(v1, ...,Πi(vi), ..., vn). (19)

Similarly, we define ev to be a dependency transformer that takes a projection that
is applied to e and returns a projection that is sufficient to be applied to every
instance of v in e. A similar sufficiency condition must be satisfied: if Π′ = ev(Π)
then

Π(e) v e[Π′(v)/v]. (20)

For a function f whose definition is f(v1, ..., vn) = e, we define f i(Π) = evi(Π).
The definition of ev may in turn refer to f i; thus the definitions may be mutually
recursive. We define

ev(BOT ) = BOT and ev(ABS) = ABS. (21)

For Π 6∈ {BOT ,ABS}, we define ev(Π) in Figure 7. It is easy to show that each rule
guarantees sufficient information. Thus, the sufficiency conditions are satisfied by
induction.

Let ir̄ be the index of r̄ in the parameters of f̄0
′. With the above definitions,

we know that f̄0
′ īr (Π) computes how much of r̄ is needed when Π(f̄0

′(x, y, r̄)) is
needed.

To compute f i(Π) for some f i and Π 6∈ {BOT ,ABS} (otherwise, we can use (21)),
if the definition of f i does not involve recursion, then we can compute directly
using the definition. If the definition of f i involves recursion, then the argument
projections and resulting projections of some dependency transformers may contain
selection functions of unbounded depth. To approximate the result, we restrict
the selection functions of the projections to be of bounded depth d, namely, if a
projection contains a selection function ik

th ik−1
th ...i1

th but k > d, then we truncate
it to id

th id−1
th ...i1

th. A simple choice for the depth bound would be 1. A more
prudent choice could be the length of the longest simple cycle that contains f in
the call graph. This limits the domain of projections to be finite. Now, to solve the
recursive definitions of these dependency transformers, we just compute the limits
of the ascending chains by starting at f i(Π) = ABS for all f i and Π and iterating
using the definitions. This iteration with the approximated domain of projections
always terminates, since when the depth of nesting being examined is bounded, the
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ascending chains are finite. Note that the resulting projection of an f i(Π) is valid
for all calls to f , including recursive calls.

Computing the Closure of Transitive Dependency. To compute the components
Π of r̄ on which 1st(f̄0

′(x, y, r̄)) transitively depends, we start with Π being {1st}
and compute the smallest projection Π of r̄ on which Π(f̄0

′(x, y, r̄)) depends, i.e.,
the smallest projection Π such that

{1st} v Π and Π(f̄0
′(x, y, r̄)) v f̄0

′(x, y,Π(r̄)). (22)

Of course, the projection Π = ID is always a solution. But our goal is to make Π
as small as possible and thus to avoid as much unnecessary caching as possible.

Since f̄0
′ īr (Π) computes the components of r̄ on which Π(f̄0

′(x, y, r̄)) depends, we
define

Π(0) = {1st}
Π(i+1) = Π(i) ∪ f̄0

′ īr (Π(i))
(23)

and iterate until the sequence converges. Thus, Π is the least projection that
satisfies {1st} v Π and f̄0

′ īr (Π) v Π. We call this projection the closure projection.
Note that the above computation always terminates, since f̄0

′ īr (Π(i)) terminates
and returns only sets of selection functions of bounded depth.

The time complexity of the closure computation depends on the required size of
the projection domain and the complexity of the dependency analysis. Suppose d
is the maximum depth of selection functions we consider, and l is the maximum
length of the constructed tuples, which is bounded by the largest number of function
applications in a function definition in the program f0. Then the maximum number
c of disjoint components in these projections is at most ld, which characterizes the
maximum size of the projection domain.

We estimate the complexity of the dependency analysis in the simplest manner.
Consider a program f̄0

′. Let n be the number of function definitions, and let a be the
maximum number of parameters in any of these definitions. Then there are at most
na dependency transformers. Since an argument projection may contain any subset
of the c components, there are at most 2c argument projections to each transformer.
Thus, the number of projections f i(Π) to be computed is at most na2c. Let sf be
the number of function applications in a function definition; then the maximum
number of transformers used in a transformer definition is sfa. Being careful, we can
recompute each f i(Π) only when some computed projection used by f i(Π) changes,
where each can change at most c times. Thus, the total number of computations of
f i(Π) using its immediate definition is at most na22ccsf . Each such computation
takes at most O(sc) time, where s is the maximum size of a function definition,
i.e., the number of subexpressions in the defining expression, and c reflects the time
needed to compute operations, such as union, on two projections. Therefore, the
total time is at most O(na22cc2ssf). This bound includes the computations of all
f i(Π). Computing the dependency closure takes at most c additional projection
unions, each taking at most O(c) time. Thus, the total time of closure computation
is still at most O(na22cc2ssf ).

Although this worst-case time bound is high (exponential in l and doubly expo-
nential in d), the actual complexity is typically much smaller, as seen in the running
example and the examples in Section 8. The reason for this is that typical program
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structure induces locality in the dependencies, so many of the projections are not
needed in computing the closure projection. To exploit this, the projections f i(Π)
can be computed on demand during the computation of the closure projection. If
we limit the depth of selection functions to be independent of the number of func-
tion definitions, then a, c, s, and sf are all constant factors determined by the size
of a function definition. Thus the total time is linear in the number of function
definitions, although the constant factors could be very large.

Example. Applying dependency analysis to the function foo
′

in (17), we obtain

foo
′2

(Π)
= (x ≤ 1)r̄(ID) ∪ (<1, , >)r̄(Π) ∪

(x = 2)r̄(ID) ∪ (<3, <2, <1, , >,<1, , >>,<1, , >>)r̄(Π) ∪
(<1st(r̄)+1st(2nd(r̄)), <1st(r̄)+1st(2nd(2nd(r̄))), r̄, 2nd(2nd(r̄))>, 3rd(2nd(r̄))>)r̄(Π)

= (1st(r̄)+1st(2nd(r̄)))r̄(Π-1) ∪
(1st(r̄)+1st(2nd(2nd(r̄))))r̄((Π-2)-1) ∪ (r̄)r̄((Π-2)-2) ∪ (2nd(2nd(r̄)))r̄((Π-2)-3) ∪
(3rd(2nd(r̄)))r̄(Π-3).

For this example, since the definition of foo
′2

is not recursive, we can compute
foo
′2

(Π) for a given Π directly without iteration and approximation. For example,

foo
′2

({1st}) = {1st, 1st2nd}
foo
′2

({1st2nd}) = {1st, 1st 2nd 2nd}
foo
′2

({1st 2nd 2nd}) = {1st}

illustrate the dependencies depicted in Figure 6. An example where the dependency
transformer is defined recursively is shown in the merge sort example in Section 8.
Computing the projection for the closure of the transitive dependencies, we have

Π(1) = Π(0) ∪ foo
′2

(Π(0)) = {1st, 1st2nd}
Π(2) = Π(1) ∪ foo

′2
(Π(1)) = {1st, 1st2nd , 1st 2nd 2nd}

Π(3) = Π(2) ∪ foo
′2

(Π(2)) = {1st, 1st2nd , 1st 2nd 2nd}.

Thus, we obtain the projection {1st, 1st2nd, 1st2nd2nd}.
Similarly, applying dependency analysis to the function foo

′
1 in (16), we obtain

foo
′
1
2(Π)

= (1st(r̄)+1st(2nd(2nd(r̄))) + 1st(3nd(2nd(r̄))))r̄(Π-1) ∪
(1st(r̄)+1st(2nd(2nd(r̄))))r̄((Π-2)-1) ∪ (r̄)r̄((Π-2)-2) ∪ (2nd(2nd(r̄)))r̄((Π-2)-3) ∪
(3rd(2nd(r̄)))r̄(Π-3).

Computing the projection for the closure of the transitive dependencies, we have

Π(1) = Π(0) ∪ foo
′2

(Π(0)) = {1st , 1st 2nd 2nd, 1st 3rd 2nd}
Π(2) = Π(1) ∪ foo

′2
(Π(1)) = {1st , 1st 2nd 2nd, 1st 3rd 2nd}.

We obtain the closure projection {1st, 1st 2nd 2nd, 1st 3rd 2nd}.

6.3 Pruning under the Closure Projection

With the closure projection Π obtained above, we want to prune the extended
program f̄0 to get a program f̂0 such that Π(f̄0(x)) v f̂0(x), and prune the incre-
mental program f̄0

′ to get a program f̂0
′ such that Π(f̄0

′(x, y, r̄)) v f̂0
′(x, y,Π(r̄)).

Of course, setting f̂0 to be f̄0 and f̂0
′ to be f̄0

′ would always work, but we want
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to make f̂0(x) as close to Π(f̄0(x)), and f̂0
′(x, y,Π(r̄)) as close to Π(f̄0

′(x, y, r̄)),
as possible, to avoid caching and maintaining unnecessary intermediate results as
much as possible.

To do this, for each expression e that defines a function f(v1, ...vn), we associate a
projection with each subexpression of e, indicating how much of the subexpression
is needed assuming Π of f̄0 (or f̄0

′) is needed. The definition and computation of the
associated projections can be done in a fashion similar to the dependency analysis.
For the program f̄0

′ and the closure projection Π, the final projection associated
with each variable will be the same as computed for the variable using dependency
analysis.

After the computation, subexpressions associated with ID are left unchanged,
and subexpressions associated with ABS are replaced by . If a variable whose
value is a constructed tuple is associated with a projection Π other than ID or
ABS, then we construct a tuple with the components selected by Π filled with
the corresponding selections and the rest filled with . For example, if a variable
v is associated with a projection {1st, 1st2nd}, and v represents a tuple of length
three whose second component is a tuple of length two, then v is replaced by
<1st(v), <1st(2nd(v)), >, >.

As the result of such replacements, we have Π(f̄0(x)) v f̂0(x), but not necessarily
f̂0(x) = Π(f̄0(x)) as anticipated in Section 3. Nevertheless, the resulting f̂0 is still
good enough to guarantee (8): we can just project Π(r̄) out of the return value of
f̂0(x). We do have f̂0

′(x, y,Π(r̄)) = Π(f̄0
′(x, y, r̄)). Thus, assuming r̂ = Π(r̄), we

have (9). We intend to use f̂0 only once to get the initial value, and then use f̂0
′

repeatedly to compute all successive values.
For the functions foo in (15) and foo

′
in (17), only {1st, 1st2nd, 1st 2nd 2nd} of their

return values are needed. After the replacements as above, we obtain the functions
f̂oo1 and f̂oo

′
1 below such that, if f̂oo1(x) = r̂1, then f̂oo

′
1(x, r̂1) = f̂oo1(x+ 1).

f̂oo1(x) = if x ≤ 2 then <1, , >

else let u1 = b̂oo1(x) in

let u2 = f̂oo1(x−3) in
<1st(u1)+1st(u2),
<1st(u1), <1st(2nd(u1)), , >, >,
>

b̂oo1(x) = let u1 = f̂oo1(x−1) in

let u2 = f̂oo1(x−2) in
<1st(u1)+1st(u2),
<1st(u1), , >,
>

(24)

f̂oo
′
1(x, r̂1) = if x ≤ 1 then <1, , >

else if x = 2 then <3, <2, <1, , >,< , , >>, < , , >>
else <1st(r̂1)+1st(2nd(r̂1)),

<1st(r̂1)+1st(2nd(2nd(r̂1))), <1st(r̂1), , >, >, >

(25)

Similarly, for the functions foo in (15) and foo
′
1 in (16), only {1st, 1st2nd2nd, 1st3rd2nd}

of their return values are needed. After replacements, we obtain the functions f̂oo11
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and f̂oo
′
11:

f̂oo11(x) = if x ≤ 2 then <1, , >

else let u1 = b̂oo11(x) in

let u2 = f̂oo11(x−3) in
<1st(u1)+1st(u2),
< ,<1st(2nd(u1)), , >,

<1st(3rd(u1)), , >>,
>

b̂oo11(x) = let u1 = f̂oo11(x−1) in

let u2 = f̂oo11(x−2) in
<1st(u1)+1st(u2),
<1st(u1), , >,
<1st(u2), , >>

(26)

f̂oo
′
11(x, r̂11) = if x ≤ 1 then <1, , >

else if x = 2 then <3, < ,<1, , >,<1, , >>, < , , >>
else <1st(r̂11)+1st(2nd(2nd(r̂11)))+1st(3rd(2nd(r̂11 ))),

< , <1st(r̂11), , >, <1st(2nd(2nd(r̂11))), , >>, >

(27)

A number of simplifications can be applied to the resulting functions. First, un-
fold a binding expression if a binding variable occurs at most once in the body.
This is enabled by replacements using . Second, combine split components in
a constructed tuple whose selected components are not preceded by any . Such
splits are caused by replacements for variables whose values are constructed tuples.
Third, lift common selections that use 1st. This avoids unnecessarily comput-
ing a compound value and using only part of it. Fourth, replace occurrences of
1st(f̂(e1, ..., en)) by occurrences of f(e1, ..., en). The last three simplifications are
needed only on the nonincremental program f̂0.

Furthermore, we can eliminate components. We must be careful if, in a tuple,
such a component precedes a component that is not , since the selectors need to
be adjusted. In particular, if k of the components preceding a component i are
eliminated from a tuple, then we must replace all uses of the selector ith for the
tuple with (i−k)th. This elimination needs to be done consistently for f̂0 and f̂0

′.
The change of selectors is needed only in the incremental program f̂0

′.
These simplifications and eliminations can be fully automated. For example, the

simplification for unfolding binding expressions can be performed straightforwardly
based on an occurrence counting analysis [Jones et al. 1993]. These simplifications
and eliminations help reduce running time and space, as well as code size, for both
f̂0 and f̂0

′, and they can also greatly reduce the asymptotic space complexity of f̂0,
but they do not affect the asymptotic time and space complexities of the resulting
incremental program f̂0

′.
For the function f̂oo1 in (24), unfold the binding for u2, replace 1st(f̂oo1(x−3))

by foo(x−3), and combine split components of u1. For the function b̂oo1 in (24),
unfold the binding for u2, replace 1st(f̂oo1(x−2)) by foo(x−2), and lift 1st(u1).
We obtain the following:

f̂oo2(x) = if x ≤ 2 then <1, , >

else let u1 = b̂oo2(x) in
<1st(u1)+foo(x−3), u1, >

b̂oo2(x) = let v1 = foo(x−1) in
<v1+foo(x−2), <v1, , >, > (28)

Function f̂oo
′
1 remains the same. Finally, we eliminate unnecessary components

in the functions f̂oo2 and b̂oo2 in (28) and f̂oo
′
1 in (25) and obtain the functions

f̂oo, b̂oo, and f̂oo
′

as given in Figure 2.
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Similarly, we apply simplifications to the functions f̂oo11 in (26) and f̂oo
′
11 in

(27), and we replace selectors 2nd(2nd(r̂11) and 3rd(2nd(r̂11) by 1st(2nd(r̂11) and
2nd(2nd(r̂11), respectively. We obtain the following:

f̂oo12(x) = if x ≤ 2 then <1>

else let u1 = b̂oo12(x) in
<1st(u1)+foo(x−3),
<<1st(2nd(u1))>,
<1st(3rd(u1))>>>

b̂oo12(x) = let u′1 = foo(x−1) in
let u′2 = foo(x−2) in
<u′1+u′2, <u

′
1>, <u

′
2>> (29)

f̂oo
′
12(x, r̂12) = if x ≤ 1 then <1>

else if x = 2 then <3, <<1>,<1>>>
else <1st(r̂12)+1st(1st(2nd(r̂12)))+1st(2nd(2nd(r̂12))),

<<1st(r̂12)>, <1st(1st(2nd(r̂12)))>>>

(30)

In both cases, pruning leaves us with resulting programs that use space for only
two additional values. Thus, in both cases, incremental computation takes not only
constant time but also constant space.

7. DISCUSSION

We have obtained an extended program f̂0, which caches appropriate intermedi-
ate results, and a corresponding program f̂0

′ that incrementally maintains these
intermediate results. The programs f̂0 and f̂0

′ preserve the semantics of compu-
tations and compute asymptotically at least as fast as computing from scratch or
computing using only the old return value but not intermediate results.

7.1 Incrementalization and Cache-and-Prune: Power and Limitation

The cache-and-prune method consists of three relatively independent stages and
thus is modular. Each stage fulfills its goal with a desired property. Stage I gives us
maximality by providing all the intermediate results possibly used by Stage II. Stage
II uses these intermediate results for the exclusive purpose of incrementalization.
Stage III gives us a kind of minimality by preserving only the intermediate results
actually used by Stage II. So, the overall approach has a kind of optimality with
respect to the incrementalization method of Stage II. Overall, the cache-and-prune
method is a powerful framework, in the following three respects.

First, even using simple automatic methods for the incrementalization in Stage
II, the cache-and-prune method can identify intermediate results that can be used
and maintained efficiently in an incremental program f̂ ′, as demonstrated by many
examples, some given in Section 8. This coincides with the intuition that, in many
repeated computations, incremental computation can use previously computed re-
sults in simple and therefore automatable ways. The principle of cache-and-prune
is general and applies also to other language features, e.g., imperative programs
that use arrays [Liu and Stoller 1998].

Second, the idea of cache-and-prune is not limited to using intermediate results.
If some other information might be useful for the incremental computation, we can
cache them as well as intermediate results, incrementalize this further extended
program, and prune the resulting programs. A class of such auxiliary information
can actually be found by mimicking the incrementalization method [Liu et al. 1996].
For comparison, Table II lists the basic ideas for incrementalization using only
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Table II. Comparing Incrementalization, Selective Caching, and Discovering Auxiliary Information

Method Identify Subcomputations in Transformed f0(x⊕ y)

inc whose values can be retrieved from the cached results r of f0(x)

cache that are also subcomputations in f0(x) but
whose values cannot be retrieved from the cached results r of f0(x)

aux whose values cannot be retrieved from the cached results r̄ of f̄0(x)

the return value (inc), for selectively caching intermediate results (cache), and for
discovering a class of auxiliary information (aux):

Third, the cache-and-prune method can be used for general program optimization
via caching. We can incrementalize a loop body under the loop increment to obtain
an incrementalized loop body, and we can incrementalize a recursive function under
an appropriate input change operation to form an efficient new recursion. Besides
using an incremental program for these repeated computations, we can also use a
slight variant of the incrementalization method to replace subcomputations with
retrievals from results computed earlier in the same iteration.

Three caveats also come with the cache-and-prune method, showing its limita-
tions. First, although the method allows all intermediate results to be cached and
used, the exploitation of such results has limitations. For example, there may be
values that are computed only in certain branches of f0(x) but are useful under
different conditions in f0(x⊕ y); this is the case for the path sequence problem, the
knapsack problem, etc. In such cases, the cache-and-prune method as described
cannot effectively incrementalize f0(x⊕ y), unless the values that are needed under
those different conditions are treated as a kind of auxiliary information [Liu et al.
1996].

Second, to use the cache-and-prune method for general program optimization,
an important issue is to determine appropriate f0’s and ⊕’s. For many programs,
including all while and for loops, this is relatively straightforward [Liu 1997], but
a systematic method is lacking for general recursions. As a rule of thumb, when f0

is used repeatedly in a computation, and ⊕ specifies small changes in the program
state, incrementalization can result in asymptotic speedup; otherwise, it can give
at most constant factor speedup.

Third, as with the incrementalization method described in Section 5, how well
the cache-and-prune method works depends on how the original programs are writ-
ten. Also, certain efficient computations can only be coded using language features
not treated in this article. For example, some image-processing algorithms require
arrays. The principle of cache-and-prune is general, but the method must be ex-
tended to analyze and transform programs written using those other features [Liu
1997; Liu and Stoller 1998].

7.2 Transformation and Analysis Techniques

The idea of caching all intermediate results followed by incrementalization can be
regarded as a realization of the reduction from Kleene’s course-of-values recursion
to primitive recursion [Kleene 1952] (private communication, A. Nerode, 1995). We
summarize techniques that are relevant to the program analyses and transforma-
tions used for caching and pruning.

The transformation Ext in Stage I is similar to the construction of call-by-value
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complete recursive programs by Cartwright [1984]. However, a call-by-value compu-
tation sequence returned by such a program is a flat list of all intermediate results,
while our extended program returns a nested tuple, a tree structure that mirrors
the hierarchy of function calls. The transformations in Stage I also mimic the CPS
transformations in some respects [Lawall and Danvy 1993; Plotkin 1975]: sequenc-
ing subexpressions, naming intermediate results, passing the collected information,
and performing administrative reductions on the resulting program. However, our
transformations are simpler than the CPS transformations, since the collected in-
termediate results are passed directly to return values, rather than to continuation
functions.

The backward dependency analysis and pruning transformations in Stage III use
domain projections to specify sufficient information. Wadler and Hughes [1987]
use projections for strictness analysis. Their analysis is also backward but seeks
necessary rather than sufficient information. Launchbury [1989] uses projections for
binding-time analysis. It is a forward analysis and is proved equivalent to strictness
analysis [Launchbury 1991]. Mogensen [1989] also uses projections for binding-time
analysis, based on a restricted class of regular tree grammars.

Several analyses are in the same spirit as ours. The necessity interpretation by
Jones and Le Métayer [1989] uses necessity patterns that correspond to projections.
Necessity patterns specify only heads and tails of list values. The absence analysis
by Hughes [1990] uses the name context in place of projection. It handles only
a finite domain of list contexts where every head context and every tail context
is the same. The analysis for backward slicing by Reps and Turnidge [1996] uses
projections based on regular tree grammars. Their grammars specify only atoms or
nested pairs. We use projections that specify specific components of tuple values
and thus can provide more accurate information, but our methods for making the
domains finite are crude.

Recently, Liu [1998] uses projections based on general regular tree grammars to
specify specific components of tuples and gives more natural methods for making
the domains finite. Since the dependency analysis and pruning transformations
simply eliminate dead components and related computations on compound values,
they are useful for general program optimizations. For example, in many functional
programs, compound values are created only to be taken apart somewhere else, and
perhaps some of the components are used. It is desirable to avoid constructing and
passing the unnecessary components [Traub 1986]. A summary of applications is
given in Liu [1998].

There are analyses and transformations not yet mentioned that we believe could
be incorporated in our framework. For example, type analysis is useful for many
program manipulations, including incrementalization. The transformations in
Stages I and III apply to both typed and untyped languages and could easily be
augmented with corresponding manipulations needed for types. Also, in Stage III,
further manipulation with projections could enable more simplifications, such as
component lifting. For example, if we lift the single element in the second of the
second component of f̂ oo and f̂ oo

′
in Figure 2, and change 1st(2nd(2nd(r̂))) to

2nd(2nd(r̂)), we obtain f̂ oo in Figure 2, and b̂oo and f̂ oo
′

below:
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b̂oo(x) = let v1 = foo(x−1) in
<v1+foo(x−2), v1>

f̂oo
′
(x, r̂) = if x ≤ 1 then < 1 >

else if x = 2 then <3, <2, 1>>

else <1st(r̂)+1st(2nd(r̂)),

<1st(r̂)+2nd(2nd(r̂)), 1st(r̂)>>

7.3 Cost Model and Time-Space Trade-Off

The basic motivation for caching is to trade space for speed, and our primary
concern is to reduce the asymptotic running time of the incremental computation.
Thus, we cache values of all function applications that are useful for the incremental
computation, assuming other program constructs take constant time. For example,
if the value of f(x) + g(x) is needed in the incremental program, then we cache the
values of f(x) and g(x) and compute the sum from the two cached values. However,
we do not assume that space is free. Each of the three stages makes an effort to
reduce space consumption without adversely affecting asymptotic running time.

One could be more mindful of economizing cache space by not caching values of
function applications unless they are absolutely needed. For example, if the value
of f(x) + g(x) is needed in the incremental program, but neither f(x) nor g(x) is
needed separately, then we can cache just the value of f(x) + g(x); coincidentally,
this also improves the speed of this example by a slight constant amount.

On the other hand, we could be more mindful of constant speedup, regardless of
additional space consumption, by caching the results of all subcomputations, not
just function applications. For example, we could cache the values of f(x), g(x),
and f(x) + g(x) for their respective uses in the incremental program, thus saving
the time to compute the sum but consuming the space to store the sum.

Other choices affecting the time-space trade-off may also be required by applica-
tions, e.g., achieving the least running time possible given a fixed-size cache space.
For some applications, we may need to consider the number of times a given value
is needed. Ideally, we would have a cost model for time and a cost model for space
and then decide what to cache depending on the trade-off between time and space
required by the application. There are standard constructions for mechanical time
analysis [Rosendahl 1989; Wegbreit 1975], which can be used by our method [Liu
and Teitelbaum 1995], though further study is needed. However, if we want to
reduce space at possible sacrifice of speed, we must analyze the trade-off between
time and space, which is a problem open for study.

8. EXAMPLES

This section gives more examples: incremental merge sort and the Fibonacci func-
tion, as well as sketches of seven other examples that are taken from attribute
evaluation, combinatorics, string processing, graph algorithms, image processing,
etc.

8.1 Merge Sort

Consider a sorting program and an input change operation x ⊕ y = cons(y, x). If
the program does an insertion sort, i.e., inserts the first element into the correct
position of the recursively sorted other elements, or a selection sort, i.e., selects
the least element and recursively sorting the rest, then incrementalization yields
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an insertion program that inserts y into the sorted result r of sort(x) [Liu and
Teitelbaum 1995]. While using insertion sort or selection sort on cons(y, x) takes
quadratic time, inserting y into r takes linear time.

Consider the merge sort program sort in Figure 1 and input change operation
x⊕ y = cons(y, x). If we are given sort(cons(y, x)) = merge(cons(y, nil), sort(x)),
then we can directly obtain sort′(y, r) = merge(cons(y, nil), r), which also takes
linear time and essentially performs an insertion. However, discovering this non-
trivial property of merge and sort is difficult, and proving it requires induction.
Below we show that caching enables us to obtain a linear-time incremental merge
sort without the need of discovering and proving this property.

—Stage I. Cache all intermediate results of sort using Ext and Clean and obtain
the following:

sort(x)
= if null(x) then

< nil, , , , , >
else if null(cdr(x)) then

< x, , , , , >

else let v11 = odd(x) in
let u1 = sort(1st(v11)) in
let v21 = even(x) in
let u2 = sort(1st(v21)) in
let v = merge(1st(u1), 1st(u2)) in
< 1st(v), v11, u1, v21, u2, v >

odd (x) = if null(x) then < nil, >
else let v1 = even(cdr(x)) in

< cons(car(x), 1st(v1)), v1 >
even(x) = if null(x) then < nil, >

else let v1 = odd(cdr(x)) in
< 1st(v1), v1 >

merge(x, y)
= if null(x) then < y, , >

else if null(y) then < x, , >
else if car(x) ≤ car(y) then

let v1 = merge(cdr(x), y) in
< cons(car(x), 1st(v1)), v1, >

else let v2 = merge(x, cdr(y)) in
< cons(car(y), 1st(v2)), , v2>

(31)

—Stage II. Derive an incremental version of sort under ⊕ following the approach
in Liu and Teitelbaum [1995], i.e., transform sort(cons(y, x)), with sort(x) = r̄:

1. unfold sort(cons(y, x)), simplify
= if null(x) then

< cons(y, nil), , , , , >
else let v1 = even(x) in

let v11 =<cons(y, 1st(v1)),
v1> in

let u1 = sort(1st(v11)) in

let v2 = odd(x) in
let v21 =<1st(v2), v2 > in
let u2 = sort(1st(v21)) in
let v= merge(1st(u1),

1st(u2)) in
< 1st(v), v11, u1, v21, u2, v >

2. separate cases, replace applications of sort
= if null(1st(r̄)) then

< cons(y, nil), , , , , >
else if null(cdr(1st(r̄))) then

let v11 =<cons(y,nil), <nil,<nil>>> in
let v21 =<1st(r̄), <1st(r̄), <nil>>> in
let v= merge(cons(y, nil), 1st(r̄)) in
<1st(v), v11, <cons(y, nil)>, v21, <1st(r̄)>,
v >

else let v1 = 4th(r̄) in
let v11 =<cons(y, 1st(v1)), v1 > in

let u1 = sort
′
(y, 1st(v1), 5th(r̄)) in

let v2 = 2nd(r̄) in
let v21 =<1st(v2), v2 > in
let u2 = 3rd(r̄) in
let v = merge(1st(u1), 1st(u2)) in
<1st(v), v11, u1, v21, u2, v >

We obtain the function sort
′ below such that, if sort(x) = r̄, then sort

′(y, r̄) =
sort(cons(y, x)). Note that the parameter x was dead and has been eliminated
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from the definition of sort′.

sort
′
(y, r̄) = if null(1st(r̄)) then

< cons(y, nil), , , , , >
else if null(cdr(1st(r̄))) then

let v11 =< cons(y, nil), < nil,< nil >>> in
let v21 =< 1st(r̄), < 1st(r̄), < nil >>> in
let v = merge(cons(y, nil), 1st(r̄)) in
<1st(v), v11, <cons(y, nil)>, v21, <1st(r̄)>, v >

else let v1 = 4th(r̄) in
let v11 =< cons(y, 1st(v1)), v1 > in

let u1 = sort
′
(y, 5th(r̄)) in

let v2 = 2nd(r̄) in
let v21 =< 1st(v2), v2 > in
let u2 = 3rd(r̄) in
let v = merge(1st(u1), 1st(u2)) in
< 1st(v), v11, u1, v21, u2, v >

(32)

—Stage III. First, using the dependency analysis, for Π 6= ABS, we have

sort
′2

(Π) = (null(1st(r̄)))r̄(ID) ∪ ABS ∪
(null(cdr(1st(r̄))))r̄(ID) ∪ (1st(r̄))r̄(merge2({1st})) ∪
(4th(r̄))r̄((1st(v1))v1 ((Π-2)-1) ∪ (Π-2)-2) ∪
(5th(r̄))r̄(sort

′2
((1st(u1))u1 (merge1((1st(v))v (Π-1) ∪ Π-6)) ∪ Π-3)) ∪

(2nd(r̄))r̄((1st(v2))v2 ((Π-4)-1) ∪ (Π-4)-2) ∪
(3rd(r̄))r̄((1st(u2))u2 (merge2((1st(v))v (Π-1) ∪ Π-6)) ∪ Π-5)

which is recursively defined and can be simplified, assuming 1st ∈ Π, yielding the
following:

sort
′2(0)

(Π) = ABS

sort
′2(i+1)

(Π) = {1st} ∪
(4th(r̄))r̄((1st(v1))v1 ((Π-2)-1) ∪ (Π-2)-2) ∪
(5th(r̄))r̄(sort

′2(i)
({1st} ∪ Π-3)) ∪

(2nd(r̄))r̄((1st(v2))v2 ((Π-4)-1) ∪ (Π-4)-2) ∪
(3rd(r̄))r̄({1st} ∪ Π-5).

(33)

Limiting the depth of selection functions to be 1, we compute the closure of the
transitive dependencies for sort′2 and obtain

Π(0) = {1st} and, by (33), sort
′2(i+1)

(Π(0)) = {1st} ∪ (5th(r̄))r̄(sort
′2(i)

({1st})) ∪ {3rd}

sort
′2(0)

(Π(0)) = ABS

sort
′2(1)

(Π(0)) = {1st, 3rd}
sort

′2(2)
(Π(0)) = {1st, 3rd, 5th}

sort
′2(3)

(Π(0)) = {1st, 3rd, 5th}

Π(1) = {1st, 3rd, 5th} and, by (33), sort
′2(i+1)

(Π(1)) = {1st} ∪ (5th(r̄))r̄(sort
′2(i)

(ID)) ∪ {3rd}
sort

′2(i+1)
(ID) = {1st} ∪ {4th} ∪ (5th(r̄))r̄(sort

′2(i)
(ID))∪

{2nd} ∪ {3rd}

sort
′2(0)

(Π(1)) = ABS

sort
′2(1)

(Π(1)) = {1st, 3rd}
sort

′2(2)
(Π(1)) = {1st, 3rd, 5th}

sort
′2(3)

(Π(1)) = {1st, 3rd, 5th}
Π(2) = {1st, 3rd, 5th}.
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Thus, we obtain the closure projection {1st, 3rd, 5th}. This matches the intuition
that the first component of sort′(y, r̄) depends only on 3rd(r̄) and 5th(r̄), and
the third and fifth components depend only on 3rd(r̄) and 5th(r̄) too. Pruning
functions sort and sort

′ yields

ŝort1(x) = if null(x) then
< nil, , , , , >

else if null(cdr(x)) then
< x, , , , , >

else let u1 = ŝort1(odd(x)) in

let u2 = ŝort1(even(x)) in
< merge(1st(u1), 1st(u2)), , u1, , u2, >

ŝort
′
1(y, r̂1) = if null(1st(r̂1)) then

< cons(y, nil), , , , , >
else if null(cdr(1st(r̂1))) then

< merge(cons(y, nil), 1st(r̂1)), , <cons(y, nil)>, ,<1st(r̂1)>, >

else let u1 = ŝort
′
1(y, 5th(r̂1)) in

let u2 = 3rd(r̂1) in
< merge(1st(u1), 1st(u2)), , u1, , u2, >

Eliminating components and adjusting the indexing yields

ŝort(x) = if null(x) then < nil >
else if null(cdr(x)) then < x >

else let u1 = ŝort(odd(x)) in

let u2 = ŝort(even(x)) in
< merge(1st(u1), 1st(u2)), u1, u2 >

(34)

ŝort
′
(y, r̂) = if null(1st(r̂)) then < cons(y, nil) >

else if null(cdr(1st(r̂))) then

< merge(cons(y, nil), 1st(r̂)), < cons(y, nil) >, < 1st(r̂) >>

else let u1 = ŝort
′
(y, 3rd(r̂)) in

let u2 = 2nd(r̂) in
< merge(1st(u1), 1st(u2)), u1, u2 >

(35)

For x of length n, using merge sort to compute sort(cons(y, x)) takes O(n logn)
time, but using incremental merge sort to compute ŝort

′
(y, r̂) takes only O(n) time,

just like insertion. Note that O(n) is the optimal time complexity for an applicative
sorting algorithm that returns a linked list. While insertion takes O(n) space to
store the previously sorted list, incremental merge sort uses O(n log n) space to
store also the intermediate results. We can view this as trading space for the need
to discover and prove program properties.

8.2 Fibonacci Function

This example shows how our method for caching intermediate results can be used
for general systematic program efficiency improvement via caching. We transform
the classical exponential-time Fibonacci function into a linear-time one. To perform
such optimizations, the user needs to provide the function f0 and operation ⊕, but
not special schemas or eurekas that decide to cache particular intermediate results.

Consider the function fib(x) below that computes the xth Fibonacci number and
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, May 1998.



576 · Yanhong A. Liu et al.

consider input change operation x⊕ y = x+ 1.

fib(x) = if x ≤ 1 then 1
else fib(x− 1) + fib(x− 2)

(36)

Direct application of the incrementalization method in Liu and Teitelbaum [1995]
yields the function fib′ below such that, if fib(x) = r, then fib′(x, r) = fib(x+ 1):

fib′(x, r) = if x ≤ 0 then 1
else if x = 1 then 2
else r + fib(x − 1)

(37)

But fib′(x, r) takes O(2x) time, no better than computing fib(x+ 1) from scratch.
Instead, we apply the cache-and-prune method, as follows:

—Stage I. Cache all intermediate results of sort using Ext and Clean and obtain
the following:

fib(x) = if x ≤ 1 then < 1, , >

else let v1 = fib(x− 1) in

let v2 = fib(x− 2) in
< 1st(v1)+1st(v2), v1, v2 >

(38)

—Stage II. Derive an incremental version of fib under ⊕ following the approach in
Liu and Teitelbaum [1995], i.e., transform fib(x⊕y) = fib(x+1), with fib(x) = r̄:

1. unfold fib(x+1), simplify primitives
= if x ≤ 0 then < 1, , >

else let v1 = fib(x) in

let v2 = fib(x− 1) in
< 1st(v1)+1st(v2), v1, v2 >

2. separate cases, replace applications of fib
= if x ≤ 0 then <1, , >

else if x = 1 then
<2, <1, , >, <1, , >>

else let v1 = r̄ in
let v2 = 2nd(r̄) in
<1st(v1)+1st(v2), v1, v2 >

We obtain function fib
′

such that, if fib(x) = r̄, then fib
′
(x, r̄) = fib(x+ 1):

fib
′
(x, r̄) = if x ≤ 0 then < 1, , >

else if x = 1 then < 2, < 1, , >, < 1, , >>
else <1st(r̄)+1st(2nd(r̄)), r̄, 2nd(r̄) >

(39)

—Stage III. Using dependency analysis for fib
′

in a similar way as for foo
′

but
simpler, we obtain the closure projection {1st, 1st2nd}. To prune, we first obtain

f̂ ib1(x) = if x ≤ 1 then < 1, , >

else let v1 = fib(x− 1) in

let v2 = fib(x− 2) in
< 1st(v1)+1st(v2), < 1st(v1), , >, >

f̂ib
′
1(x, r̂1) = if x ≤ 0 then < 1, , >

else if x = 1 then < 2, < 1, , >, < 1, , >>
else <1st(r̂1)+1st(2nd(r̂1)), < 1st(r̂1), , >, >

Simplify f̂ ib1 and f̂ ib
′
1, remove components, and lift the single component in

the second component of f̂ ib1 and f̂ ib
′
1 as discussed in Section 7. We obtain

f̂ ib(x) = if x ≤ 1 then < 1 >
else let u1 = fib(x− 1) in

< u1 + fib(x − 2), u1 >

(40)
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Table III. Some Examples and Their Running Times

Example Batch Incremental Optimized Note

attribute evaluation O(n) O(P + A)

binomial coefficient O(2i) O(j) O(i ∗ j)
string editing O(3i+j) O(i) O(i ∗ j)
dag path sequence O(2n) O(n2) aux. info.

longest common subsequence O(2i+j) O(i ∗ j) aux. info.

row neighborhood summation O(n1 ∗ n2 ∗m) O(n1 ∗ n2) array

local neighborhood summation O(n2 ∗m2) O(n2) array

f̂ ib
′
(x, r̂) = if x ≤ 0 then < 1 >

else if x = 1 then < 2, 1 >
else < 1st(r̂) + 2nd(r̂), 1st(r̂) >

(41)

Clearly, f̂ ib
′
(x, r̂) takes constant time. Note that fib(x) = 1st(f̂ ib(x)) and, if

f̂ ib(x) = r̂, then f̂ ib(x + 1) = f̂ ib
′
(x, r̂). Using definition (41) of f̂ ib

′
in this last

equation, we obtain a new definition for f̂ ib:

f̂ ib(x+ 1) = if x ≤ 0 then < 1 >
else if x = 1 then < 2, 1 >

else let r̂ = f̂ ib(x) in < 1st(r̂)+2nd(r̂), 1st(r̂) >

Letting v = x+ 1, we get

f̂ ib(v) = if v ≤ 1 then < 1 >
else if v = 2 then < 2, 1 >

else let r̂ = f̂ ib(v − 1) in < 1st(r̂)+2nd(r̂), 1st(r̂) >

(42)

We define fib(v) = 1st(f̂ ib(v)) using definition (42) of f̂ ib. This computes the
Fibonacci numbers in linear time, as desired.

8.3 More Examples

The cache-and-prune method is based on general techniques for static analyses and
program transformations. They are not developed for particular program schema
or particular application problems. Therefore, many examples can be improved
with them. Table III lists some of them and summarizes their running times.
The heading “Batch” refers to a given nonincremental program; “Incremental”
refers to an incremental version of the batch program under a given input change
operation; and “Optimized” refers to an optimized version of the batch program
that uses an incremental version for an iteration or recursion. The column “Note”
specifies techniques needed, if any, in addition to the transformations for caching
and pruning.

These examples are classic problems, and no systematic method for obtaining
the optimizations was previously given. They illustrate different aspects, including
useful improvements, of cache-and-prune. We explain each example briefly below.
Details for some of these and other examples are given in Liu et al. [Liu 1997; Liu
and Stoller 1998; Liu et al. 1996].

Attribute Evaluation. Attribute grammars are widely used in programming lan-
guage implementations and systems [Deransart et al. 1988; Knuth 1968; Paakki
1995]. Given an attribute grammar, a set of recursive functions can be constructed
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to evaluate the attribute values for any derivation tree of the grammar [Katayama
1984]. Each function evaluates a synthesized attribute of a nonterminal, and the
value of a synthesized attribute of the root symbol is the final return value of in-
terest. We consider subtree replacement as the input change operation, given by a
new subtree and a path from the root of the whole tree to the root of the subtree
to be replaced.

Caching all intermediate results yields a set of extended functions that returns an
attributed tree instead of just the value of a synthesized attribute at the root. Then,
incrementalizing the extended functions under a subtree replacement just composes
a new attributed tree from the old, based on equalities between old attributes and
new attributes, evaluating only attributes whose values are affected by the subtree
replacement, yielding a set of incremental recursive functions. Suppose a given
batch program takes O(n) time to evaluate each attribute once. The incremental
program takes O(P +A) time, where P (for PATH) is the path from the root of
the whole tree to the root of the new subtree, and A (for AFFECTED) is the set of
attributes whose values are different in the new tree [Reps et al. 1983]. This is the
best that can be done in a functional language [Pugh and Teitelbaum 1989].

Binomial Coefficient and String Editing. Binomial coefficient binomial(i, j), for
0 ≤ j ≤ i, is the number of j-element subsets of an i-element set [Cormen et al.
1990; Partsch 1990]. A straightforward recursive program for binomial(i, j) takes
exponential time. Using the cache-and-prune method, we obtain a incremental
program that computes binomial(i + 1, j) using binomial(i, j) in O(j) time and
O(j) space. Using this incremental program, we can obtain an optimized program
that computes binomial(i, j) in O(i ∗ j) time and O(j) space, both of which are
optimal for this problem.

The string-edit problem is to find the minimum cost edit(s1, s2) for modify-
ing two strings s1 of length i and s2 of length j so that they are the same [Aho
et al. 1974; Purdom and Brown 1985]. A straightforward recursion that tries
all possible deletions, insertions, and substitutions takes O(3max(i,j)) time. Us-
ing the cache-and-prune method, we obtain an incremental program that computes
edit(s1, cons(c, s2)) using edit(s1, s2) in O(i) time. Using this incremental program,
we can obtain an optimized program that computes edit(s1, s2) in O(i ∗ j) time.

Dag Path Sequence and Longest Common Subsequence. Given a directed acyclic
graph, and a string whose elements are vertices in the graph, the path-sequence
problem is to compute the length of the longest subsequence in the string that forms
a path in the graph [Bird 1984]. Suppose path(s) computes the required length for
a string s of length n. A straightforward program takes O(2n) time. Using the
cache-and-prune method, extended to cache also certain auxiliary information, we
obtain an incremental program that computes path(cons(c, s)) using path(s) in
O(n) time; using this incremental program, we can obtain an optimized program
that computes path(s) in O(n2) time [Liu et al. 1996].

The longest-common-subsequence problem finds the length lcs(s1, s2) of the
longest common subsequence of two given sequences s1 of length i and s2 of length
j [Cormen et al. 1990]. A simple recursive program takes O(2max(i,j)) time [Cormen
et al. 1990]. Using cache-and-prune, again with auxiliary information, we obtain
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 3, May 1998.
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[1] for i := 0 to n1 −m do
[2] s[i] := 0;
[3] for k := 0 to m− 1 do
[4] for l := 0 to n2 − 1 do
[5] s[i] := s[i] + a[i+ k, l]

(a)

[6] s[0] := 0;
[7] for k := 0 to m− 1 do
[8] s1[k] := 0;
[9] for l := 0 to n2 − 1 do
[10] s1[k] := s1[k] + a[k, l];
[11] s[0] := s[0] + s1[k];
[12] for i := 1 to n1 −m do
[13] s1[i+m−1] := 0;
[14] for l := 0 to n2 − 1 do
[15] s1[i+m−1] := s1[i+m−1] + a[i+m−1, l];
[16] s[i] := s[i−1]− s1[i−1] + s1[i+m−1]

(b)

Fig. 8. Programs for row-neighborhood-summation problem.

an incremental program that computes lcs(s1, cons(c, s2)) using lcs(s1, s2) in O(i)
time; using the incremental program, we can obtain an optimized program that
computes lcs(s1, s2) in O(i ∗ j) time.

Row-Neighborhood-Summation and Local-Neighborhood Problems. We show how
the general principle of the cache-and-prune method applies to improving impera-
tive programs that use arrays. Given an array a with n1 rows and n2 columns, the
row-neighborhood-summation problem computes, for each row i (0 ≤ i ≤ n1−m),
the sum of the m-by-n2 rectangle comprising rows i through i+m−1. The straight-
forward program in Figure 8(a) takes O(n1n2m) time, while the efficient program in
Figure 8(b) uses O(n1n2) time andO(n1) additional space. We sketch how to obtain
the efficient program systematically following the basic ideas of cache-and-prune.
The detailed analyses of loops and arrays needed to make the transformations au-
tomatic are described in Liu and Stoller [1998].

As discussed in Section 7, to optimize a loop we take the loop body as the program
to be incrementalized and take the loop increment as the update operation. In this
example, incrementalizing the body of the loop over k and the body of the loop
over l leaves them unchanged. For the loop over i, the loop body comprises lines
[2-5], and the update operation is the increment to i. Stage I introduces an array
s2 that caches the results computed by the loop over k: s2[i, k] is the sum of row
i + k. The transformations in Liu and Stoller [1998] eliminate the redundancy in
this array, replacing it with an array s1 such that s1[i + k] = s2[i, k]; thus, s1[i] is
the sum of row i. Stage II incrementalizes the computation of s[i]: in line [16], s[i]
is computed from s[i−1] by subtracting the sum of row i−1 and adding the sum of
row i+m−1, and in lines [13-15], the result s1[i+m−1] is maintained by summing
row i+m−1. Stage III has no effect, since all intermediate results are used. The
final optimized program uses the incrementalized loop body. The initialization in
lines [6-11] computes s[0] and prepares the cached results s1[0] through s1[m−1].

The row-neighborhood-summation problem is just an example of a class of prob-
lems called local-neighborhood problems, which involve computing information
about local neighborhoods of objects, (pixels, rows, etc.). Such problems are com-
mon in image processing [Webb 1992; Wells 1986; Zabih 1994; Zabih and Woodfill
1994]. The cache-and-prune approach can be used to optimize programs for such
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problems. This is illustrated by the row-neighborhood problem above and by the
local-neighborhood-summation problem in Liu and Stoller [1998].

9. RELATED WORK AND CONCLUSION

Related work in incrementalization, as well as work related to the analysis and
transformation techniques used for caching and pruning, has been discussed in
Section 7. Here we compare our work with related work in program efficiency
improvement using caching techniques. Caching is the basis of many techniques
for developing efficient programs and optimizing programs. Bird [1980] and Cohen
[1983] provide overviews. We classify most of these into three classes.

Separate Caching. In the first class, a global cache separate from a subject
program is employed to record values of subcomputations that may be needed
later, and certain strategies are chosen for using and managing the cache. We call
this technique separate caching. It corresponds to exact tabulation in Bird [1980]
and the large-table method in Cohen [1983]. The initial idea of separate caching,
“memo” functions, proposed by Michie [1968], belongs to this class. Uses of the
word “memoization” mainly refer to techniques in this class [Partsch 1990].

Since then, there has been additional work on general strategies for separate
caching. For example, Hughes [1985] discusses lazy memo functions that are suit-
able for use in systems with lazy evaluation. Mostow and Cohen [1985] discuss
issues for speeding up Interlisp programs by caching in the presence of side effects.
Pugh [1988] describes improved cache replacement strategies for a simple functional
language. Abadi, Lampson, and Levy [Abadi et al. 1996] study caching in the con-
text of λ-calculus. Two trends are apparent: studying specialized cache strategies
for classes of problems, and adding annotations or specifications to subject pro-
grams to provide hints to the cache strategies. An example of the former is the
stable decomposition scheme of Pugh and Teitelbaum [1989]. Examples of the lat-
ter include work by Keller and Sleep [1986], which uses annotations for applicative
languages, work by Sundaresh and Hudak [Sundaresh 1991; Sundaresh and Hudak
1991], which decides what to cache based on given input partitions of programs,
and work by Hoover [1992], which uses annotations for an imperative language.

The pros and cons are well discussed by Bird [1980] and Cohen [1983]. To sum-
marize, the idea is simple, and the subject programs are basically unchanged. But
the caching methods are dynamic and thus fundamentally interpretive. Moreover,
the strategies for the use and management of the separate cache cannot easily be
made both general and powerful, so they can be sources of inefficiency.

Schema-Based Integrated Caching. In the second and third classes, the above
drawbacks are overcome by transforming subject programs to integrate caching into
the transformed programs. Techniques in the second class apply transformations
based on special properties and schemas of subject programs. We call this schema-
based integrated caching. A nice survey of most of these ideas can be found in Bird
[1980]. Some uses of the word “tabulation” mainly refer to techniques in this class
[Partsch 1990]. Typical examples of these techniques are dynamic programming
[Aho et al. 1974], schemas of redundancies [Cohen 1983], and tupling [Chin 1993;
Chin and Khoo 1993; Pettorossi 1984; 1987; Pettorossi and Proietti 1997]. Dynamic
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programming applies to problems that can be divided into subproblems and solved
from small subproblems to larger ones by storing and using results of smaller ones.
Work on schemas of redundancies studies several forms of redundant recursive calls
and their mathematical properties and provides transformations to eliminate them.
Tupling looks for a recurrent pattern in computing intermediate results, groups
those computed in the pattern into a tuple, and transforms the program to compute
the tuple progressively.

Note that separate caching with a specialized cache strategy for a certain class
of problems can be realized as schema-based integrated caching for this class of
problems. More precisely, for any problem that fits into this class, we treat the
corresponding program as fitting into a certain schema. We can then integrate the
specialized cache strategy by transforming the corresponding program and obtain
a transformed program with schema-based integrated caching. In this case, the
separate caching corresponds to an interpretive mechanism; the transformation
with integration is similar to compiling; and a transformed program corresponds to
a compiled program.

While integrating caching into transformed programs eliminates the interpretive
overhead of separate caching, a drawback of schema-based integrated caching is its
lack of generality.

Principle-Based Integrated Caching. Techniques in the third class analyze and
transform programs according to general principles. We call this principle-based
integrated caching. Often, such principles are used to derive a relatively complete
set of strategies and rules for programs written in a certain language, and these
strategies and rules are used to transform programs. For example, the conventional
strength reduction optimization [Allen 1969; Allen et al. 1981; Cocke and Kennedy
1977] identifies subcomputations such as multiplications that can be replaced with
subcomputations such as additions while maintaining the values of these subcom-
putations. Similarly, the APTS program transformation system [Paige 1983; 1990;
1994] identifies set expressions in SETL that can be maintained using finite differ-
encing rules [Paige and Koenig 1982].

Sometimes it is not sufficient to have only a fixed set of strategies and rules.
Seeking more flexibility and broader applicability, KIDS [Smith 1990] advocates
certain high-level strategies but leaves the choice of which intermediate results to
maintain as manual decisions. CIP [Partsch 1990] also proposes a general strategy
for caching, but it may even lead to less efficient programs.

Recently, certain principles that can directly guide program transformations have
been proposed. Webber’s principle of least computation [Webber 1993; 1995] avoids
subcomputations whose values have been computed before or are not needed. Ba-
sically, first-order purely functional programs are transformed into trace grammars,
which are thinned using this principle and then transformed back. The analysis used
by thinning can lead to clever optimizations [Webber 1997], but it does not perform
explicit incremental computation such as strength reduction. Hall’s principle of re-
distributing intermediate results [Hall 1990; 1991] finds paths from subcomputations
to multiple uses of their values. However, the method uses a great deal of program
design knowledge, including annotations of invariants, test-case inputs, and proofs
of correctness. Also, it guarantees correctness of the transformed programs only on
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the test-case inputs.
Our approach to program improvement via caching falls into the third class.

The intrinsic iterative computation property of programs drives the incremental
computation of each iteration, which in turn drives the decision of what interme-
diate results to cache. This approach is a crucial complement to any incremental
computation technique for achieving the goal of program improvement.

Among principle-based integrated caching methods, our approach is not limited
to using a fixed set of rules for program analysis and transformation; on the contrary,
the approach can even be used to derive such rules when necessary. Compared to the
general approaches advocated by KIDS or CIP, our approach is more algorithmic
and automatable.

There is an additional advantage of formulating the problem of program efficiency
improvement as incrementalizing repetitive computations. It allows auxiliary in-
formation to be used together with intermediate results [Liu et al. 1996]. This is
impossible for methods based on principles that exploit only intermediate results.

In conclusion, incremental computation has widespread applications throughout
computing. This article proposes a general systematic method for caching inter-
mediate results for incremental computation which can also be used for general
program efficiency improvement. The modularity of the method lets us integrate
other techniques in our framework and reuse our components for other optimiza-
tions. Although our approach is presented in terms of a simple functional language,
the underlying principles are general and apply to other languages as well. A pro-
totype system, CACHET [Liu 1995], based on our approach is under development.
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