
An Operational Approach to Combining
Classical Set Theory and

Functional Programming Languages

Douglas J. Howe1 and Scott D. Stoller2

1 AT&T Bell Labs, 600 Mountain Ave., Room 2B-438
Murray Hill, NJ 07974, USA

howe@research.att.com.
2 Department of Computer Science, Cornell University

Ithaca, NY 14853, USA.
stoller@cs.cornell.edu.

Abstract. We have designed a programming logic based on an inte-
gration of functional programming languages with classical set theory.
The logic merges a classical view of equality with a constructive one by
using equivalence classes, while at the same time allowing computation
with representatives of equivalence classes. Given a programming lan-
guage and its operational semantics, a logic is obtained by extending
the language with the operators of set theory and classical logic, and
extending the operational semantics with “evaluation” rules for these
new operators. This operational approach permits us to give a generic
design. We give a general formalism for specifying evaluation semantics,
and parameterize our design with respect to languages specifiable in this
formalism. This allows us to prove, once and for all, important properties
of the semantics such as the coherence of the treatment of equality.

1 Introduction

Our goal is to develop a logic suitable for the following.
Metatheory of programming languages. Although programming languages dif-

fer dramatically in their syntax and semantics, a great deal of the work in proving
the correctness of specific programs is language-independent, involving, for ex-
ample, reasoning about properties of mathematical models of data. One way of
sharing formal knowledge between different languages is to reason about them
via an embedding into a single logic. Since the metatheory of programming
languages is rich in computational content (e.g., program transformation, inter-
pretation, compilation), this logic, in addition to supporting a broad range of
mathematical reasoning, should itself contain a powerful programming language.

Constructive mathematics. Constructive mathematics gives a powerful, high-
level method for developing correct programs. We see no practical advantage
to staying within a strictly constructive formalism, and instead prefer to view
constructive mathematics as a special case of classical mathematics: one always
does classical mathematics, but when the definitions are appropriate and the

reasoning is sufficiently constructive, a program can be extracted from a proof.
This view is compatible with Bishop’s style of constructive mathematics [3].

Mathematical modeling of programs and software systems. For example, we
want to support at least the general kind of set-theoretic modeling used in the
specification language Z [18].

Providing a highly expressive type system for functional programming lan-
guages. Types are a good way of organizing knowledge about functional pro-
grams. For example, the Calculus of Constructions [7] and Nuprl [6], have type
systems rich enough to serve as specification languages for functional programs.
Many of a program’s properties can be expressed in its type, while in less ex-
pressive type systems, such as the simple type theory of HOL [9], almost all
properties are formalized as a predicate over some simple type.

As a suitable logic for these purposes, we propose an integration of a func-
tional programming language with full classical set theory (ZFC). Our approach
to accomplishing this integration is to give precedence to operational semantics.
Instead of starting with set theory and attempting to give denotational explana-
tions within set theory of the constructs of the programming language, we start
with a rule-based specification of the operational semantics of the programming
language and add to it rules which let us “evaluate” programs that contain oper-
ators and constants from set theory and classical logic. The result of evaluation
gives the set-theoretic meaning of the program.

A benefit of this approach is that it is possible to give a generic design.
Adequate formalizations of set theory are well-known, but there is no general
agreement on what should go into a functional programming language. We give
a formalism for specifying evaluation semantics, similar to the one given in [12],
and parameterize our account with respect to languages specifiable in this for-
malism. This allows us, for example, to prove, once and for all, such properties
as congruence of equality and adequacy of our semantics for the interpreter (see
the discussion of equality below).

The basic idea in our operational approach is simple. Let P0 be the given
programming language, and assume its operational semantics is presented as
a set of rules inductively defining an evaluation relation ⇓. A language P is
obtained is obtained by adding new operators and constants, and adding rules
extending the definition of ⇓. The new evaluation relation can be thought of as
specifying a meaning-finding procedure. Meaning of a program e is determined
by evaluating e, analyzing the value, and possibly continuing on to find meanings
of components of the value. This procedure either fails or results in a set-theoretic
object which is the meaning of e.

If e evaluates to an atomic value, say a number n, then the meaning of e is
just the set-theoretic encoding of n. If e evaluates to a use of a data constructor,
say a pair (u, v), then first obtain the meanings u′, v′ of u, v. If these exist, the
meaning of e is the set-theoretic pair (u′, v′).

For functions we need to make a restriction. Assigning a set-theoretic mean-
ing to polymorphic functions such as λx. x is problematic [17]. We allow such
programs, but do not give them a set-theoretic meaning, although they can ap-

pear in larger programs that do have a meaning. We could try to give a general
account of the forms of functional abstraction we can give set-theoretic meaning
to, but for expediency we fix one particular form. We assume P0 has expres-
sions of the form λx. b. In P , these expressions are given “type bounds”, so that
they have the form λx : A. b, where A is an arbitrary expression. The “type”
A is present only for the purpose of assigning meaning — we do not impose a
syntactic type discipline on P . To find the meaning of e when e evaluates to
λx :A. b, first find the meaning of A. If this is a constant representing a set α,
then for each β ∈ α, find the meaning fβ of b[β/x]. The meaning of e is then
the representation in set theory of the mapping β �→ fβ . Of course, we need to
explain how to evaluate programs like b[β/x] that contain constants representing
sets. This is not hard. For example, to evaluate the application φ(e), where φ is
the set-theoretic graph of a function, first find the meaning α of e then return
the β such that (α, β) ∈ φ.

This informal description suggests why our account can be made generic in
the way described above: the procedure for finding meaning does not mention
any constructs, or operators, that are “non-canonical”, i.e., whose uses do not
construct values but instead require further computation. We are explicit about
the forms of data, but other constructs are simply “evaluated away” in the
meaning-finding procedure.

It is straightforward to include in P rules for evaluating operators from set
theory and logic. For example, to evaluate a universally quantified expression
∀x ∈ A. P , first find the meaning α of A (if any), then find the meaning pβ of
P [β/x] for each β ∈ α. If each pβ is either true or false, then return true if each
pβ is true, and return false otherwise.

So that programs can call on uncomputable functions, and to provide a con-
venient way to name sets we can prove to exist, we add a choice operator similar
to Hilbert’s ε operator. In particular, if P [v/x] is boolean-valued for all sets v
and is true for some v0, then εx. P returns the least such v0 (according to some
fixed ordering). Adding an evaluation rule for ε is straightforward.

The natural notion of equality of programs with meanings is to take t =
t′ if t and t′ have the same set as their meaning. Following [11], we can also
define another equality, which we will denote by ∼, that is based directly on
the operational semantics of P , is defined over all programs, and which justifies
the usual kinds of equational reasoning about functional programs. These two
equalities are compatible, in the sense that they agree on terms with meanings,
and furthermore, if t has a meaning and t ∼ t′, then t′ has a meaning. This
means, in particular, that if t = t′, then t can be replaced by t′ in any program
without affecting that program’s meaning (if any). So, although we have given
an operational account of set-theoretic semantics, we have recovered the basis
for the usual forms of equality reasoning.

Fundamental to set-theoretic reasoning is the use of equivalence classes to
impose new equalities on existing sets, as in forming the rational numbers as a
quotient on pairs of integers. We would like to be able to write programs that
manipulate members of quotient sets, and so we need to make computational

sense of equivalence classes.
We solve this problem as follows. We include in P an operator [e]A which,

if (the meaning of) A is a set of equivalence classes, returns the equivalence
class of A that contains (the meaning of) e. We also include an operator qap for
applying a function to an equivalence class. qap(f ; t) evaluates as follows. First,
it finds the meaning ξ of t. If ξ is an equivalence class, it checks that f returns
the same result for all members of ξ, then returns that result. The checking of f ’s
values on ξ is essential. It means that if we have successfully evaluated a program
containing qap(ξ, f), then the computation did not need the whole equivalence
class and could have just taken an arbitrary representative. Because of this, we
can delay equivalence class construction, using [·]A as a data constructor. This
point is expanded on below.

Call this extended language P , and use ⇓ to denote the evalution relations
of both P0 and P . A program P is computable if it is composed only from qap,
[·] and the operators of P0. We count expressions λx :A. b as members of P0 for
arbitrary A in P . We define an interpreter for computable programs as a new
evaluation relation ⇓′ defined by the evaluation rules of P0 together with two
rules for equivalence classes. One rule simply treats [·] as a data constructor, so
[e]A ⇓′ [v]A if e ⇓′ v. For qap, if t ⇓′ [v]A and f(v) ⇓′ v′, then qap(f ; t) ⇓′ v′.
Thus we delay the creation of an equivalence class from a representative of the
class, and when the equivalence class gets used by qap, only the representative
is needed.

We can prove that if e is a program of P and e ⇓ v, then there is a v′ in P
such that e ⇓′ v′ and v is equivalent to v′. This result says that if e has a meaning
then we can compute a value expression for it with the same meaning. Of course,
this value may contain uses of [·]. The proof of the result is somewhat similar
to the “inclusive predicate” proofs of computational adequacy in denotational
semantics.

We can extend the set of computable programs to include type expressions
as data. Type constructors, such as cartesian product, are encoded using the
choice operator ε. Thus, an expression A × B evaluates to a term representing
the set that is the product of (the meanings of) A and B. To include such
exprssions as data, we introduce a variant ε′ of ε which can return only types,
i.e. none of its values can be interpreted as program data. We can now extend
our interpreter to delay evaluation of ε′. We do not ever need to evaluate these
delayed subprograms since no constructs in computable programs can analyze
values returned by ε′. These type expressions can be passed around and used in
expressions A in λx :A. b, allowing a kind of polymorphism.

To ensure that our two notions of equality are compatible, we need to be
careful with function application. Consider the functions λx : ∅. 0 and λx : ∅. 1,
where ∅ is the empty set. These have the same set-theoretic meanings. If they
are to be observationally congruent, we must ensure that their application to
arguments outside their domain cannot be evaluated. We therefore modify the
rule for application, inserting a “run-time” check that the argument is of the
right type.

Our treatment of equality permits a simple explanation of implementation
of abstract data types. Consider, for example, an abstract data type for the
set Q of the rational numbers together with the usual operations and equations
relating them. If our language P0 is a typical functional language, and we try
to use it to implement Q in the obvious way as a set of pairs of integers, then
the equations for Q will not be satisfied, since the equality in Q will be equality
of pairs of integers. We might still be able to establish suitable representation
independence results, but this will require considerable extra work. (See [5] for
an approach along these lines.) This is not required in our setting, since in P
we can give an implementation of Q by taking the obvious one in P0 and using
quotienting to make it respect the equations of Q.

Our operational approach has a few drawbacks. First, since all the operators
in the logic obtain their meaning through an inductive definition of an “opera-
tional” semantics, they must all be monotone with respect to a computational
preorder (less-defined-than). One consequence of this is that the logic cannot
contain a convergence predicate which tells whether a program is defined (has a
value). We avoid this deficiency by using a sequent calculus formulation of the
logic in which the free variables of sequents range over all programs (defined or
not). A similar approach is taken in Nuprl, where it has proven to be convenient
for a wide range of reasoning about termination (definedness).

This monotonicity requirement also affects the treatment of fixed points. We
cannot have a fixed-point operator which returns a function whose domain is
exactly the set of arguments on which computation terminates, since this set
is a non-monotone value. We can still use fixed-point operators, but we must
specify in advance a domain for the function being defined, and the function
must be total on this domain. Our experience with Nuprl suggests that having
to supply a domain is at most a minor practical problem.

A third problem is that our semantics is not compositional. We ultimately
want compositional reasoning principles, but instead of fixing some in advance
through a denotational semantics, we derive within the logic, from some ax-
iomatization of symbolic computation, whatever principles seem useful. We give
an example of this in Section 5, where we derive a rather conventional rule for
proving termination of a recursive program by well-founded induction.

The following aspects of our work are new.

– Computational interpretation of equivalence classes. In [4], Breazu-Tannen
and Subrahmanyam give a logic for reasoning about programs using struc-
tural recursion over data types involving constructors subject to some equa-
tions. Their idea, to assign a meaning of ⊥ to definitions by structural re-
cursion that do not respect the equations, is similar to our treatment of
qap(f ; t), which is undefined if f does not respect equality as given by the
equivalence class t. However, they do not deal with general equivalences or
equivalence classes, and their proof of adequacy relies on a normalization
property of their programming language.

– General operational account. This allows us to prove once, for a fairly large
class of programming languages, that the operational equivalence of the lan-

guage is compatible with set-theoretic equality, and that equivalence classes
can be given a computational interpretation.

– Congruence proof. Our program equivalence is a generalization of applicative
bisimulation [1]. We prove it is a congruence using a new extension of the
proof method introduced by the first author in [11]. The extension is needed
to deal with typed λ-abstractions.

There have been at two other recent attempts to combine set theory with
computation. In [2], Beeson extends to ZF set theory Feferman’s idea for a clas-
sical model of his theory T0 [8]. This might appear more general than our logic,
since one can build function types containing untyped abstractions. For example,
the type N → N would contain the polymorphic identity λx. x, and, in general,
any f such that f(e) evaluates to a number whenever e does. However, pro-
grams enter the set-theoretic world essentially via encoding their syntax. Since
programs can mention set theoretic objects, the type N → N is already semanti-
cally as large as the entire set-theoretic universe V used as a model. This means
that (N → N) → N cannot be understood as a function space in the traditional
sense, since no function whose graph is in V can have a sufficiently large domain.
Also, Beeson does not deal with equivalence classes.

Map theory [10] provides an alternate foundation to set theory, in which
everything is reduced to a “map”. ZF set theory can be interpreted in map
theory, and a function found inside the interpreted set theory is itself a map,
but the input-output behaviour of the map does not directly correspond to that
of the function. The map is more like a recognizer, or generator, for the set of
pairs of the function.

An important issue here is whether ZF itself is practical for large-scale for-
mal reasoning. There is a substantial body of experience supporting a positive
answer. Variants of ZF have been successfully implemented and applied in the
theorem-provers Isabelle [15, 16] and Ontic [14]. Experience with Nuprl is also
relevant, since it shows that a high level of automation of reasoning can be
achieved even when the logic strongly favours expressive power over the ability
to uniformly apply a powerful automated-reasoning method (such as resolution
or term rewriting).

The rest of the paper is organized as follows. Section 2 discusses syntax, in-
cluding how to extend the syntax of a programming language to incorporate sets
and logic. Section 3 describes the class of languages P to which our construction
can be applied, gives the extended operational semantics that incorporates set
theory, and gives some basic results about equality. Section 4 gives an executable
fragment of the extended language and defines an interpreter for it, and shows
that our semantics is adequate for the interpreter. Section 5 sketches the design
of a sequent-based proof systems for our logic. We close with some plans for
future work.

2 Syntax

The remainder of the paper is parameterized by a functional programming lan-
guage P0. We take the syntax of a programming language P to be given by a
language L = (O,K,α) where O is a set of operators,

α ∈ O → { (k1, . . . , kn) | n, ki ≥ 0 }
is a function assigning to each operator an arity, and K ⊆ O. The members
of K are called canonical ; all other operators are noncanonical . The former are
intended to be value constructors.

Fix an infinite set of variables. A term over L is either a variable, or

τ(s1; . . . ; sn)

where τ ∈ O, α(τ) = (k1, . . . , kn) for some k1, . . . , kn, and each si is an operand
of the form xi. ai where ai is a term and xi is a sequence of ki distinct variables.
Define

outer (τ(s1; . . . ; sn)) = τ.

A term t is (non-) canonical if and only if outer (t) is (non-) canonical.
We impose binding structure on terms by specifying that in each operand

x. a the variables in x bind in a. The usual notions of substitution and α-equality
apply. We identify α-equal terms. Let TL be the set of terms over L and TL

0 the
set of closed terms (we drop the superscripts when clear from context). If X is
a set of terms, define X2 = X ×X.

For example, the λ-calculus can be cast as a language L = (O,α) by taking
O = {λ, ap }, α(λ) = (1) and α(ap) = (0, 0), and using λx. b and a(b) as short-
hand for λ(x. b) and ap(a; b). Note the ambiguity here: we use the same notation,
u(v), for both function application and for applying an operator to a sequence
of operands. However, the meaning should always be clear from context.

We need some definitions and notational conventions for binary relations
between terms. Let η ⊂ T 2. For a, b ∈ T , write a η b for (a, b) ∈ η. If s =
x1, . . . , xn. a and s′ = x′

1, . . . , x
′
n. a

′ are operands, then define s η s′ if there are
distinct variables z1, . . . , zn, not free in s or s′, such that

a[z1, . . . , zn/x1, . . . , xn] η a′[z1, . . . , zn/x
′
1, . . . , x

′
n].

If s and s′ are operand sequences s1, . . . , sn and s′1, . . . , s
′
n, respectively, such

that τ(s) and τ(s′) are terms for some τ , then define s η s′ if si η s′i for each
i, 1 ≤ i ≤ n. If η ⊂ T 2, define η◦ ⊂ T 2 by a η◦ a′ if σ(a) η σ(a′) for every
substitution σ such that σ(a) and σ(a′) are closed. Finally, for η ⊂ T 2, define
η0 = η ∩ T0

2.
A preorder η ⊂ T 2 is a precongruence if for all τ(s), τ(s′) ∈ T , if s η s′ then

τ(s) η τ(s′). It is a precongruence on closed terms if for all τ(s), τ(s′) ∈ T0, if
s η◦ s′ then τ(s) η τ(s′). Note that η ⊂ T0

2 is a precongruence on closed terms
if and only if η◦ is a precongruence. A congruence is a precongruence that is an
equivalence relation.

Let L0 be the language of P0. We add new operators to L0 to obtain L
which will be the language for the programming language P which mixes P0

and set theory. Since the semantics of P will be given via evaluation, L must
contain values (terms that evaluate to themselves) denoting all sets of interest.
We achieve this as follows. We assume there is a set V which gives a model of
ZFC when ∈ is interpreted as the restriction of the ordinary membership relation
to V . Such a set exists if there is an inaccessible cardinal.3 Let ρ, σ, τ, . . . range
over V .

L will have enough new operators so that we can establish a bijection between
V and the set of normal terms of L, which are defined below. We need to use
slightly non-standard set-theoretic encodings of objects such as functions, pairs
and equivalence classes, since, for technical reasons, we need to ensure that no
member of V can be interpreted as more than one kind of object. Hence, all sets
that are encodings of “data” (as opposed to the “pure” sets that correspond to
types) are paired with a distinguishing tag. Choose distinct sets fn, ec ∈ V to
serve as tags for functions and equivalence classes, respectively. Let (·, ·) denote
the standard set-theoretic pairing operation. We define operations that add and
remove tags.

fun (φ′) = (fn, φ) [ρ] = (ec, ρ) |(σ, τ)| = τ (1)

We use φ to range over sets (in V) of the form (fn, φ′), where φ′ ranges over
graphs of functions. ξ ranges over sets of the form (ec, ρ) for non-empty sets ρ.

We assume that L0 contains a collection C of canonical operators with arities
of the form (0, . . . , 0); these are data constructors and will be used in normal
terms. We also assume that L0 contains a canonical operator λ of arity (0, 1) and
a corresponding application operator ap. λ will be used to build normal terms
representing functions. Fix an injection i of C into V − {fn, ec}.

A member of V is tagged if it is a φ or a ξ, or if it has the form

(i(c), (σ1, . . . , σn))

for some c ∈ C whose arity has length n. We will always used α to range over
members of V that are not tagged.

L is obtained from L0 by adding a canonical operator θα, θφ, θξ of arity
(), (0), () for each α, φ and ξ in V , respectively. We will usually identify α and
θα, φ and θφ, and ξ and θξ. We also add operators qap, [], ε, ε′,∀ ,⇒,∈,=. The
arities of these operators will be apparent from their uses below. We will use the
usual infix notation for uses of the operator ∈, relying on context to distinguish
it from the mathematical membership relation. We assume that none of the
operators we add are present in L0.

Definition 1 Inductively define ρ̂, for ρ ∈ V , as follows.

ρ̂ =




c(σ̂1, . . . , σ̂n) if ρ = (i(c), (σ1, . . . , σn))
λx : ̂dom(φ′). θρ(x) if ρ = (fn, φ′)
θρ otherwise

(2)

3 We could take V to be a proper class for most of the results in the paper, but not
for our treatment of polymorphism.

where dom(φ′) is the domain of φ′. A term t ∈ TL
0 is normal if t = ρ̂ for some

ρ ∈ V .

We need truth values to give semantics to the logical operators, so we as-
sume there are nullary operators T, F ∈ C. We also use T, F to denote their
counterparts in V (namely, the ρ1, ρ2 such that ρ̂1 = T and ρ̂2 = F).

3 Semantics

We assume that the operational semantics of P0 is presented as a collection of
evaluation rules. In this section, we first give a precise definition of a general form
of evaluation rule, and then point out several restrictions on the set of rules of
P0. We then add to the given set of rules new evaluation rules for operators in L.
This new set of rules inductively defines the evaluation relation ⇓, which provides
a semantics for the terms of L. Finally, we establish some basic properties of our
semantics.

In giving the new evaluation rules, it is convenient to introduce an auxiliary
binary relation /, and rules for it, so that ⇓ and / are mutually inductively
defined. The interpretation of e / σ is that the closed term e has σ as a set-
theoretic meaning. This new relation is not strictly necessary: a premise in which
it occurs can be regarded as a “macro” for a (large) set of premises not involving
it. However, it is convenient in our proofs to reason directly about /.

3.1 A General Rule Format

Inference rules for evaluation are specified using an extension of the term lan-
guage to include, for all i ≥ 0, an infinite set of variables which we call the
metavariables of arity i. A term schema is built in the same way as a term, ex-
cept that it may also be an expression of the form P [a], where P is a metavariable
of arity i (i ≥ 0), and a is a sequence of i term schemas. We write P for P [] and
use capital letters in term schemas exclusively for metavariables. A simple term
schema has the form τ(x1. P1[x1]; . . . ;xn. Pn[xn]), where the Pi are distinct
metavariables.

A second-order substitution is a partial map σ from metavariables to operands
such that if σ(P) is defined then it has the form x1, . . . , xn. b, where n is the arity
of P . The application of σ to term schemas is similar to ordinary substitution,
except that if σ(P) is x1, . . . , xn. b, then

σ(P [a1, . . . , an]) = b[σ(a1), . . . , σ(an)/x1, . . . , xn].

σ is closed if σ(P) is closed for all P in the domain of σ. For ν ⊂ T 2, define
σ ν σ′ if for every P in the domain of σ, σ′(P) is defined and σ(P) ν σ′(P).

An evaluation rule is an inference rule whose premises and conclusion are
formulas of the form a ⇓ b, where a and b are term schemas with no free ordinary
variables. a and b are called the left-hand side and right-hand side, respectively,
of the the formula. We impose the following conditions on rules. The set of

premises may be infinite but comes with a well-ordering. Thus, a rule consists
of a set I, a well-ordering <I over I, and a schema of the form

{ai ⇓ bi}i∈I

a ⇓ b
(3)

We say that the rule is for outer (a).
We impose the following syntactic restrictions on each rule:

1. a is a simple term schema. Let θ = outer (a).
(a) If θ is canonical, then b is a term schema with outer operator θ.
(b) If θ is non-canonical, then b is a metavariable and b = bi for some i ∈ I.

2. For all i ∈ I, bi is a metavariable or a simple term schema and has no
metavariables in common with a or with bj for j �= i.

3. For each i ∈ I and each metavariable P of ai, P occurs in a or in bj for some
j <I i.

As an example, below are rules for the pure lazy λ-calculus.

F ⇓ λx.B[x] B[A] ⇓ C
F (A) ⇓ C λx.B[x] ⇓ λx.B[x] .

The standard constructs for performing case analysis and term decomposition
by pattern matching (á la SML) can also be cast in this form.

A closed instance of a rule is the result of applying to it a closed second-
order substitution whose domain contains all the metavariables occurring in the
rule. The evaluation relation defined by a set of rules is the relation inductively
defined by the set of all closed instances of rules.

In what follows, we will be somewhat sloppy about our use of second-order
variables in rules, and will usually use conventional first-order notation, .g. writ-
ing t[a/x] instead of T [A]. We will also make liberal use of ad hoc rule schemes
that stand for sets of rules.

3.2 Assumptions

There are four restrictions we need to make on the set of rules defining the
evaluation relation of P0. The first restriction is that the rules may only mention
operators from L0 − {λ}. The second is that P0 contains the following as the
only rule for each c ∈ C.

t1 ⇓ v1 · · · tn ⇓ vn

c(t1, . . . , tn) ⇓ c(v1, . . . , vn)
(4)

The other two restrictions are needed to ensure that the evaluation relation
of the extended language P has some basic properties. We could follow [12]
and attempt to express these restrictions without mentioning P by quantifying
over all possible extensions of P0, but all the ways to do this that we know of
are somewhat arbitrary and complicated. Instead, we will simply make these
restrictions directly in terms of P . We need the evaluation relation of P to be

single-valued, in the sense that if e ⇓ v then v ⇓ v, and determinate, in the sense
that if e ⇓ v and e ⇓ v′ then v is identical to v′. Furthermore, we require that
these properties hold of the modified evaluation relations ⇓̄ defined in Section 4.

3.3 New Rules

To give the semantics of P , we add evaluation rules to those of P0. The new
rules are all of the form described earlier if we take premises of the form t / ρ
to stand for sets of premises. The rules for λ-abstraction and application are as
follows.

λx : A. b ⇓ λx : A. b
(5)

f ⇓ λx : A. b t ⇓ u u / ρ A / σ ρ ∈ σ b[u/x] ⇓ v

f(t) ⇓ v
(6)

t / τ (τ, ρ) ∈ |φ|
φ(t) ⇓ ρ̂

(7)

The premises involving / in the rule for application accomplish the “run-time
typecheck”. The value u of the argument t must have a set theoretic meaning ρ
that is a member of the set which is the set theoretic meaning of the “type” A.

For equivalence classes we have the following two rules.

t / ρ A / τ ρ ∈ |ξ| ξ ∈ τ disjoint(τ)
[t]A ⇓ ξ

(8)

where disjoint(τ) holds if and only if τ is a set of disjoint equivalence classes,
i.e., for all ρ ∈ τ there is a ξ such that ρ = ξ, and for all ξ, ξ′ ∈ τ , if |ξ| = |ξ′|
then |ξ| ∩ |ξ′| = ∅. To apply a function to an equivalence class, one must show
that it produces the same result on all members of the equivalence class.

t / ξ ∀ρ ∈ |ξ|. f(ρ̂) / τ

qap(f ; t) ⇓ τ̂
(9)

Constants are values:

ξ ⇓ ξ α ⇓ α
(10)

Define the abbreviation Bool ≡ ̂{T, F}. The choice operator evaluates as
follows:

t[ρ̂/x] ⇓ T ∀σ <V ρ. t[σ̂/x] ⇓ F ∀σ. (t[σ̂/x] ∈ Bool) ⇓ T

ε(x.t) ⇓ ρ̂
(11)

where <V is a fixed well-ordering of V . The choice of a value of ρ when there are
multiple possibilities is arbitrary. ε′ is like ε, except it can only return a “type”.

t[α̂/x] ⇓ T ∀α′ <V α. t[α̂′/x] ⇓ F ∀σ. (t[σ̂/x] ∈ Bool) ⇓ T

ε′(x.t) ⇓ α̂
(12)

The rules for the operators ∀ , ⇒, ∈ and = are straightforward and we omit
them. For example, (a = b) ⇓ T if there is a ρ such that a / ρ and b / ρ, and
(a ∈ A) ⇓ F if a / σ, A / α and σ �∈ α.

We now give the rules for the auxiliary relation /. These rules capture the
meaning-finding procedure described in the introduction.

t ⇓ ξ

t / ξ

t ⇓ α

t / α
(13)

t ⇓ c(s1, . . . , sn) s1 / σ1 · · · sn / σn

t / (i(c), (σ1, . . . , σn))
(14)

t ⇓ λx : A. b A / σ dom(|φ|) = σ ∀ρ ∈ σ. b[ρ̂/x] / |φ|(ρ)
t / φ

(15)

In 15, |φ|(ρ) denotes set-theoretic application of the function |φ|.

Definition 2 A term v is a value if and only if there is a t such that t ⇓ v. A
term e denotes, or has a meaning, if there exists ρ ∈ V such that e / ρ.

The proofs of the following are straightforward.

Lemma 1 For all ρ, ρ̂ / ρ.

Lemma 2 If e / ρ and e / ρ′, then ρ = ρ′.

Lemma 3 For all t and ρ, t / ρ if and only if there exists v such that t ⇓ v and
v / ρ.

3.4 Equality

Define a ∈̃ A if for some β ∈ α ∈ V , a / β and A / α.

Definition 3 For η ⊂ T0
2, define [η] ⊂ T0

2 by a [η] a′ if

1. for all terms θ(s) where θ �= λ, if a ⇓ θ(s) then there exists s′ such that
a′ ⇓ θ(s′), and s η◦ s′, and

2. for all terms of the form λx :A. b, if a ⇓ λx :A. b then there exists A′, b′ such
that a′ ⇓ λx :A′. b′, A η A′, and for all t, if t ∈̃ A then b[t/x] η b′[t/x].

Define ≤ as the largest relation η such that η ⊆ [η].

It is easy to show that ≤=[≤] and that ≤ is a preorder. Define a ∼ b if a ≤ b
and b ≤ a.

Theorem 1 ≤◦ is a precongruence (hence ∼◦ is a congruence).

Proof. The proof is a straightforward adaptation of the method first presented
in [11] and applied in [12]. We just outline the differences here. The key idea in
the method is to define, using ≤, an auxiliary relation ≤̂ that is easy to show
a congruence, and then to show that ≤̂ ⊆ ≤ by coinduction, i.e., by showing
≤̂ ⊆ [≤̂]. This is proved by induction on the definition of evaluation. We use the
same definition of ≤̂ as in [12]4, but we adapt the induction to treat / directly.
The proof reduces to showing the following by induction on the definition of ⇓
and /.

1. If a / α, then a ≤̂ a′ implies a′ / α.
2. If a ⇓ v, then a ≤̂ a′ implies there exists v such that a′ ⇓ v′ and v ≤̂ v′.

The remainder of the proof is an easy adaptation of the original method.
The proof of the following is straightforward.

Lemma 4 If a ≤ b and t ⇓ v, then t[b/a] ⇓ v′ and v ≤ v′.

We now define the relation we denoted by = in the introduction.

Definition 4 Define s =
 t if there is a ρ such that s / ρ and t / ρ.

Thus s =
 t if and only if s and t have the same meaning.
We have defined two equivalence relations on programs. The following theo-

rems relate them.

Theorem 2 If s =
 t, then s ∼ t.

Proof. By coinduction on ≤. It suffices to show that s =
 t implies s[=
]t.
Use the following facts. For values v and v′, v =
 v′ implies v and v′ have
the same outermost operator. For values θ(u) and θ(u′), θ(u) =
 θ(u′) implies
θ(u) [=
] θ(u′).

Theorem 3 If s denotes and s ≤ t, then s =
 t.

Proof. By induction on the derivation of s / σ.

Theorem 4 If s ∼ t, then either s and t both do not denote, or s =
 t.

Proof. This follows directly from Lemma 3 and the symmetry of ∼.

3.5 Polymorphism

It is easy to add a universe U , or a cumulative hierarchy of universes, to the
theory, if one postulates the existence of a sufficient number of inaccessible car-
dinals. Universes (probably one is sufficient) could play a role in our logic similar
to the one they play in Martin-Löf’s type theory [13]. For example, with one uni-
verse U , we could write a polymorphic list-append procedure and give it a type
like

Π A∈U .A list → A list → A list.
4 In [12], ≤̂ is named ≤∗

We could also use sigma-types to represent abstract data types.
Our delaying of the evaluation of ε′ in the interpreter, described below, is

essential if we are to obtain an executable programming language with explicit
polymorphism of the kind we are suggesting. For example, an append function
with the type above takes a type argument; the interpreter should not have to
evaluate this argument.

4 The Interpreter

Consider the computable fragment of P sketched in the introduction. The inter-
preter for this fragment manipulates representatives of equivalence classes rather
than equivalence classes per se. In other words, the representation of an equiva-
lence class in the interpreter is a tagged member of the equivalence class. This is
achieved by making [·] canonical.5 This requires a modification to the evaluation
rule for qap; the interpreter simply computes the specified function on the given
member of the equivalence class. One can view this modification to the evaluator
as delaying the evaluation of terms with a certain outer constructor (here, [·])
until the value of such a term is needed by another rule (here, the qap rule),
then computing only as much information as is needed to determine the result
of that rule (here, it suffices to produce a member of the equivalence class).

For technical convenience, we define our interpreter in two stages. First, we
define a new evaluation relation ⇓̄ for the full language P . The new evaluator
delays computation of [·] and ε′, and omits the typechecking premise in the rule
for application. The desired interpreter is easily derived from this set of rules.

The evaluation relation ⇓̄ is inductively defined by the evaluation rules for ⇓
given above, with the following modifications:

1. Replace rule (6) for application with

f ⇓̄λx : A. b b[t/x]⇓̄v
f(t)⇓̄v (16)

2. Replace rule (8) for equivalence classes with

t⇓̄v
[t]A⇓̄[v]A

(17)

3. Replace rule (9) for qap with the rules

t⇓̄[s]A f(s)⇓̄v
qap(f ; t)⇓̄v

t⇓̄ξ ∀ρ ∈ |ξ|. f(ρ̂) / τ

qap(f ; t)⇓̄τ̂ (18)

4. Replace rule (12) for ε′ with the rule

ε′(x.t)⇓̄ε′(x.t) (19)

5 The theory works equally well whether it is eager or lazy.

Note that in the rules for ⇓̄, / still denotes the original “meaning” relation.
Let v and v̄ be the results of evaluating and interpreting, respectively, a term

s. We want to prove, by induction on the derivation of s ⇓ v, that v ∼ v̄. In order
to obtain a sufficiently strong induction hypothesis, we need to show a stronger
relation, denoted �, between v and v̄. Informally, s � s̄ if s̄ is obtained from
s by replacing some normal subterms of s with terms of L that have the same
meanings (and a few technical properties).

Definition 5 Formally, � is the least binary relation on T0
2 satisfying s � s̄ if

there are a1, . . . , an and ρ1, . . . , ρn such that

s̄ = s[a1/ρ̂1, . . . , an/ρ̂n]

and for all i, 1 ≤ i ≤ n, ai / ρi and there exists a′i such that

– ai⇓̄a′i,
– a′i / ρi and
– if a′i is [t]A and ρi = (ec, τ) then there is a σ ∈ τ such that σ̂ � t.

We say that a term v is a value if v⇓̄v.
Lemma 5 � is a precongruence, and if θ(u) � θ(v) then u � v.

Lemma 6 1. If s =
 s̄ and t[s/x] / τ , then t[s̄/x] / τ .
2. If s / σ and s � s̄, then s̄ / σ.
3. If s is closed and s � s̄, then s ∼ s̄.

Proof. For the first part, s =
 s̄, so by Theorem 2, s ∼ s̄, so by Theorem 1,
t[s/x] ∼ t[s̄/x], so by Theorem 4, t[s/x] =
 t[s̄/x]. The second part is immediate
from the first and from the definition of �. Finally, let s̄ = s[ā1/ρ̂1, . . . , ān/ρ̂n].
ai =
 ρ̂i, so by Theorem 2, ai ∼ ρ̂i, so by Theorem 1, s ∼ s̄.

Lemma 7 1. If v is a value, then outer (v) is canonical.
2. If v is a value, then outer (v) is canonical or [·].
3. If v is canonical and v ⇓ v′, then outer (v) = outer (v′).
4. If v is a value and denotes an equivalence class, then v is of the form ξ.

Proof. Parts 1 and 2 are proved by induction on the derivation of s ⇓ v and
s⇓̄v, respectively. Part 3 follows immediately from the restrictions on evaluation
rules for canonical operators. For Part 4, suppose v / ξ. From the form of the
rule for deriving v / ξ, it must be that v ⇓ ξ. v is a value, so by Part 1, outer (v)
is canonical. By Part 3, outer (v) = outer (ξ) = ξ.

Lemma 8 If v and v̄ are canonical and v =
 v̄, then outer (v) = outer (v̄).

Proof. By Lemma 3, there exist v′ and v̄′ such that v ⇓ v′ and v̄ ⇓ v̄′.
Note that v′ =
 v̄′. By the third part of Lemma 7, outer (v) = outer (v′) and
outer (v̄) = outer (v̄′). By inspection of the rules defining /, if v is a denot-
ing value, then outer (v) is uniquely determined by its value. Since v′ = v̄′,
outer (v′) = outer (v̄′). By transitivity, outer (v) = outer (v̄).

Lemma 9 If v is a value, v̄ is a value, v � v̄, and v is not of the form ξ, then
outer (v) = outer (v̄).

Proof. Case 1: v is completely replaced to obtain v̄. v must be a normal term
σ̂. v is not of the form ξ, so by Lemma 7(4), v does not denote an equivalence
class. By Lemma 6(2), v̄ / σ. outer (v̄) is not [·], since if it were, v̄ could denote
only an equivalence class. By Lemma 7(2), outer (v̄) is canonical. By Lemma 8,
outer (v) = outer (v̄). Case 2, where v is not completely replaced, is trivial.

The main result of this section is:

Theorem 5 If s ⇓ v and s � s̄, then s̄⇓̄v̄ and v � v̄.

Proof. By induction on the derivation of s ⇓ v. We describe two of the more
interesting cases for the primitive rules (the other cases are similar but simpler)
and the case for the general rule format. Suppose the last rule used is rule (9)
for qap. The (end of the) derivation must be of the form

t / ξ ∀σ ∈ |ξ|. f(σ̂) / ρ

qap(f ; t) ⇓ ρ̂

By Lemma 3, there are subderivations showing t ⇓ ξ and for all σ ∈ |ξ|, f(σ̂) ⇓
vσ, where vσ / ρ. s is non-canonical hence non-normal, so it is not completely
replaced, so s̄ is of the form s̄ ≡ qap(f̄ ; t̄), with f � f̄ and t � t̄. By the induction
hypothesis applied to t⇓̄ξ, t̄ ⇓ ē and ξ � ē. By Lemma 7(2, 4), outer (ē) is ξ or
[·]. Suppose ē ≡ ξ. For all σ ∈ |ξ|, f(σ̂) � f̄(σ̂), so by Lemma 6(2), f̄(σ̂) / ρ.
Thus, by the second rule in (18), qap(f̄ ; t̄)⇓̄ρ̂.

Suppose ē ≡ [a]A. ξ � [a]A, so [a]A / ξ and there exists σ ∈ |ξ| such that
σ̂ � a. f(σ̂) � f̄(ā), so by the induction hypothesis on f(σ̂)⇓̄vσ, f̄(ā) ⇓ v̄ and
vσ � v̄. By the first rule in (18), qap(f̄ ; t̄)⇓̄v̄, so it suffices to show ρ̂ � v̄. By
Lemma 6(2), v̄ /ρ. Since v̄ is a value, v̄⇓̄v̄. If outer (v̄) �= [·], we are done. Suppose
v̄ ≡ [a1]A1 and ρ = ξ1. We need to show there is a σ1 ∈ |ξ1| such that σ̂1 � a1.
By Lemma 7(1,4), vσ ≡ ξ1. ξ1 � [a1]A1 , so by definition of �, we are done.

Suppose the last rule used in the derivation of s ⇓ v is rule (8) for [·]. s is
non-canonical hence non-normal, so it is not completely replaced, so s̄ is of the
form s̄ ≡ [t̄]Ā, with t � t̄ and A � Ā. Since t / ρ, t ⇓ vρ and vρ / ρ. By the
induction hypothesis on t ⇓ vρ, t̄ ⇓ v̄ρ and vρ � v̄ρ. So by rule 17, s̄⇓̄[v̄ρ]Ā. We
need to show ξ � [v̄ρ]Ā. Since ⇓̄ is single-valued, it suffices to show that [v̄ρ]Ā / ξ
and that there exists ρ ∈ |ξ| such that ρ̂ � v̄ρ. The former holds by Lemma 6.

Suppose that outer (v̄ρ) �= [·]. Then ρ̂ � v̄ρ follows from v̄ρ / ρ and the fact
that ⇓̄ is single-valued.

Suppose that outer (v̄ρ) = [·], i.e., v̄ρ is of the form [t1]A1 . Since v̄ρ / ρ, ρ
must be an equivalence class, ρ = ξ1. It suffices to show there exists ρ1 ∈ |ξ1|
such that ρ1 � t1. v̄ρ is a value and denotes an equivalence class, so by Lemma
7(4), v̄ρ is ξ1, so ξ1 � [t1]A1 . By definition of �, we are done.

Finally, we consider the general case. Suppose the last rule used is a substi-
tution instance of rule 3. Let η denote the second-order substitution that was
used. Let underlining denote application of η, so, e.g., a = aη. Note that s is a.

Extend � to closed second-order substitutions by η � η̄ if for all P ∈ dom(η̄),
η(P) � η̄(P). Note that if η � η̄, then aη � aη̄.

case: a is completely replaced to obtain s̄. Then a is normal, a ≡ σ̂. By definition
of �, s̄ / σ, s̄⇓̄v̄, and so on. It is easy to check that σ̂ � s̄ and s̄⇓̄v̄ implies
σ̂ � v̄. Normal terms are values, so σ̂ ⇓ σ̂, so b ≡ σ̂. Thus, s̄⇓̄v̄ and b � v̄, as
desired.

case: a is not completely replaced. In this case, we construct a second-order
substitution η̄ such that s̄ = aη̄, η � η̄, and ∀i ∈ I. aiη̄⇓̄biη̄. Then b � bη̄,
and we conclude by instantiating this rule with η̄ that s̄⇓̄bη̄, as desired. We
define η̄ first on metavariables that appear in a, then on metavariables that
appear in the bi.
We construct a substitution η̄0 whose domain is the set of metavariables
appearing in a. a is not completely replaced to obtain s̄, so outer (s̄) =
outer (a) = outer (a). Since a is a simple term schema and outer (s̄) =
outer (a), there exists a substitution η̄0 such that a = aη̄0. For all P ap-
pearing in a, η(P) and η̄0(P) are corresponding subterms of a and s̄, so by
Lemma 5, η(P) � η̄0(P). So η � η̄0.
We show by induction on i that for all i ∈ I there exists η̄i such that aiη̄i ⇓
biη̄i, η � η̄i and dom(η̄i) = MV (bi), where MV (t) is the set of metavariables
appearing in t. Define η̄′i = η̄0 ∪ (∪j<I iη̄j). By the induction hypothesis and
the above result about η̄0, η � η̄′i, so ai � aiη̄

′
i, so by the induction hypothesis

applied to ai ⇓ bi, aiη̄
′
i ⇓ b′i and bi � b′i.

case: bi is a metavariable. Define η̄′i to be the substitution that maps bi to
b′i.

case: bi is a simple term schema. Claim: outer (b′i) = outer (bi). Proof:
case: bi is completely replaced to obtain b′i. By the restrictions on eval-

uation rules, bi is not of the form ξ, hence neither is bi, so by Lemma
9, outer (b′i) = outer (bi).

case: bi is not completely replaced to obtain b′i.
Thus, outer (b′i) = outer (bi) = outer (bi), so b′i is an instance of bi. Define
η̄i to be the substitution obtained by matching b′i to bi. For all metavari-
ables P in bi, η(P) and η̄i(P) are corresponding subterms of bi and
b′i, and bi � b′i, so η(P) � η̄i(P). By this argument and the induction
hypothesis, η � η̄i.

Finally, define η̄ = η̄0 ∪ (∪i∈I η̄i). It is easy to see that η̄ has the required
properties.

Corollary 1 If s̄ ⇓ v, then s̄⇓̄v̄ and v ∼ v̄.

Finally, we want to distinguish an computable fragment of L. Let E be the
set of closed terms e of L such that for all operators τ of L, either τ ∈ {qap, [·]},
τ is an operator of L0, or all occurrences of τ in e are within a subterm of the
form ε′(x.t) or are within A in a subterm of the form λx : A. b or [t]A.

The restricted interpreter is obtained from the rules for ⇓̄ by simply omitting
the rules for the omitted constructs, and omitting the second rule for qap in
(18). Let ⇓′ be the evaluation relation defined by this new set of rules.

Theorem 6 For all e in E, if e ⇓ v then there is a v′ ∈ E such that e ⇓′ v′ and
v ∼ v′.

Proof. First show that E is closed under ⇓′, which is easily proven by induc-
tion on the definition of ⇓′. The desired result then follows immediately from
Corollary 1.

Since the interpreter ignores type information on λ’s and equivalence classes,
it is easy to justify optimizations in which this information is removed (erased).

5 A Sequent Calculus

The term language for the logic is L′ obtained from L by removing all operators
ξ, α and φ. A sequent has the form Γ � t, where Γ is a set {s1, . . . , sn} of
possibly open terms. It is true if for all closed (first-order) substitutions η, if
for all i, 1 ≤ i ≤ n, siη ⇓ T (where siη is the application of the substitution η
to si), then tη ⇓ T . Note the difference between a variable bound by ∀ and a
free variable: the former is quantified over all set-theoretic objects; the latter is
implicitly quantified over all closed terms.

We only sketch a logic for our semantics. Variants of most of the types used
in Nuprl can easily be defined here, and the rules used in Nuprl can be made
true with minor modifications. For example, Nuprl’s dependent function space
becomes its classical analogue, generalized cartesian product. If we use the logic
given by our analogue of Nuprl’s propositions as types, then we will be able
to extract a “program” from any proof. Of course, this program may contain
uncomputable operators (defined, e.g., using ε), but if one avoids classical rea-
soning, the program will be computable.

Nuprl’s rules for its quotient type can be adapted for reasoning about equiv-
alence classes. Another important set of rules we can adapt from Nuprl are the
direct computation rules. These allow direct reasoning about symbolic compu-
tation in the programming language. They are justified by the fact that ≤ is a
precongruence.

One general rule which is an improvement on the Nuprl version is the fol-
lowing, which allows free substitution of equals for equals. We present our rules
“refinement style”, with the conclusion of the rule first, and the premises listed
below it.

Γ � t
Γ � a = b
Γ � t[b/a]

(20)

The soundness of this rule follows easily from Theorem 2. The Nuprl analogue
of this rule has a third premise requiring that t be appropriate for the given
substitution.

The only difficulty in stating the axioms of ZF set theory is dealing with for-
mula parameters. For example, the comprehension axiom becomes a rule with a
premise to show that the formula parameter is well formed (i.e., has a meaning):

Γ � ∀ y. ∃ z. ∀x. x ∈ z ⇔ x ∈ y & φ(x)
Γ � ∀x. WF (φ(x))

(21)

where WF (t) abbreviates t = t.
We also include axioms relating normal terms to their set-theoretic codes.

These axioms will be needed only to establish some derived rules. Two such
derived rules are the following.

� λx : A. b = λx : A′. b′

� A = A′

x ∈ A � b = b′

(22)

� f(a) = t
� f = λx : A. b
� a ∈ A
a ∈ A � t = b[a/x]

(23)

The only subtle rule is the rule for typing recursively-defined functions. Sup-
pose the programming language P contains the untyped lazy λ-calculus. We use
λ′ to denote the untyped lambda operator. We can define a fixed-pointed com-
binator Y in the usual way. Let WellFounded(A;<) be a predicate that holds
exactly when A is well-ordered by <.

� Y (λ′f.λx : A. b) ∈ A → B
� WellFounded(A;<)
x ∈ A, f ∈ {y : A | y < x} → B � b[(λz : A. f(z))/f] ∈ B

(24)

It is easy to show by induction on A that this rule is sound. The following fact
is needed. If σ′ ⊆ σ, then

λz : σ̂. (λy : σ̂′. b[y/z])z ≤ λz : σ̂. b.

6 Future Work

We are considering implementation of a theorem-prover, based on Nuprl, and a
compiler (to Lisp) for this theory. We plan to develop a version of the theory
containing unbounded λ-abstraction, building on the ideas in [12], which gives
a classical model of a type theory of Martin-Löf. This will allow more poly-
morphism, but will likely place strong restrictions on the permissible kinds of
set-theoretic principles for constructing sets.

Acknowledgments

The second author would like to thank Professor Constable and Stuart Allen
for many illuminating discussions of type theory and program verification. The
second author is supported by an IBM Graduate Fellowship.

References

1. S. Abramsky. The lazy lambda calculus. Proceedings of the Institute of Declara-
tive Programming, August 1987.

2. M. J. Beeson. Towards a computation system based on set theory. Theoretical
Computer Science, 60:297–340, 1988.

3. E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.
4. V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of
programming with sets/bags/lists. In Automata, Languages and Programming:
18 th International Colloquium, Lecture Notes in Computer Science, pages 60–75.
Springer-Verlag, 1991.

5. V. Breazu-Tannen and R. Subrahmanyam. On extending computational adequacy
by data abstraction. In Proc. ACM Symposium on Lisp and Functional Program-
ming, pages 161–169. ACM Press, 1992.

6. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

7. T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-
putation, 76:95–120, 1988.

8. S. Feferman. A language and axioms for explicit mathematics. In Dold, A. and B.
Eckmann, editor, Algebra and Logic, volume 450 of Lecture Notes in Mathematics,
pages 87–139. Springer-Verlag, 1975.

9. M. Gordon. A proof generating system for higher-order logic. In Proceedings of
the Hardware Verification Workshop, 1989.

10. K. Grue. Map theory. Theoretical Computer Science, 102:1–133, 1992.
11. D. J. Howe. Equality in lazy computation systems. In Proceedings of the Fourth

Annual Symposium on Logic in Computer Science, pages 198–203. IEEE Computer
Society, June 1989.

12. D. J. Howe. On computational open-endedness in Martin-Löf’s type theory. In
Proceedings of the Sixth Annual Symposium on Logic in Computer Science, pages
162–172. IEEE Computer Society, 1991.

13. P. Martin-Löf. Constructive mathematics and computer programming. In Sixth
International Congress for Logic, Methodology, and Philosophy of Science, pages
153–175. North Holland, 1982. .

14. D. A. McAllester. Ontic: A Knowledge Representation System for Mathematics.
MIT Press, 1989.

15. L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361–385. Academic Press, 1990.

16. L. C. Paulson. Set theory for verification: I. from foundations to functions. Tech-
nical report, University of Cambridge, 1993.

17. J. C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D. B. MacQueen,
and G. Plotkin, editors, Semantics of Data Types: International Symposium, vol-
ume 173 of Lecture Notes in Computer Science, pages 145–156. Springer-Verlag,
1984.

18. J. Spivey. The Z Notation. Prentice Hall, 1989.

This article was processed using the LaTEX macro package with LLNCS style

