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Abstract. State-space exploration is a powerful technique
for verification of concurrent software systems. Applying it
to software systems written in standard programming lan-
guages requires powerful abstractions (of data) and reduc-
tions (of atomicity), which focus on simplifying the data and
control, respectively, by aggregation. We propose a reduction
that exploits a common pattern of synchronization, namely,
the use of locks to protect shared data structures. This pattern
of synchronization is particularly common in concurrent Java
programs, because Java provides built-in locks. We describe
the design of a new tool for state-less state-space exploration
of Java programs that incorporates this reduction. We also de-
scribe an implementation of the reduction in Java PathFinder,
a more traditional state-space exploration tool for Java pro-
grams.
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1 Introduction

Development of correct software is difficult, especially for
concurrent and distributed systems. Ideally, software would
be generated from requirements, yielding programs that are
correct by construction. Until that ideal is reached, software
verification—checking whether a given program satisfies its
requirements—will remain an important problem. A variety
of techniques are being brought to bear on it.State-space ex-
ploration starts from the simple idea of exhaustive search
of all possible behaviors—and hence all reachable states—
of a system and checking, either during or after the search,
whether the explored behaviors/states satisfy the requirements.
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This approach is attractive because it is fully automatic. In
practice, for most software systems, the state space is in-
tractably large. This is especially true for programs written
in standard programming languages, as opposed to simplified
versions written in modeling languages.

Aggregation is commonly used to reduce the size of the
state space.Abstractionssimplify data by aggregating values
into equivalence classes.Reductionssimplify control by ag-
gregating transitions into coarser-grained transitions. In both
cases, the aggregation defines a transformed system that has
fewer reachable states and whose correctness implies cor-
rectness of the original system (the converse sometimes also
holds). State-space exploration is applied to the transformed
system, yielding correctness results that hold for the original
system as well.

We propose a reduction that exploits a common pattern
of synchronization, namely, the use of locks to protect shared
variables. This pattern of synchronization is particularly com-
mon in concurrent Java programs, because Java provides built-
in locks [10]. It is also common in C programs that use the
pthreads thread library [17]. In general, when exploring the
state space of a concurrent program, context switches be-
tween threads must be allowed before each access to a shared
variable. If that variable is protected by a lock—in other words,
the lock is held whenever the variable is accessed—then it
suffices to allow context switches before acquire operations
on the lock, prohibiting them before accesses to the vari-
able. Limiting the points where context switches may occur
effectively increases the granularity of transitions. One can
regard this as defining areduced system, which is a coarser-
grained version of the original system. The reduced system
may have significantly fewer reachable states than the origi-
nal system. For example, when Jigsaw, the World Wide Web
Consortium’s web server (www.w3.org/Jigsaw/), is serving
small web pages, on average, every 35th bytecode performs
an acquire operation (usually an invocation of a synchronized
method). Such an increase in the granularity of transitions
can have an even larger impact on the number of reachable
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states, depending on the number of threads and the pattern of
requests.

The use of mutual exclusion to justify deducing prop-
erties of a system from properties of a reduced system is a
well-known special case of several reduction theorems, such
as [15,4,2]. When used to justify this lock-based reduction,
all of these reduction theorems assume that one knows stat-
ically (i.e., before state-space exploration) that selected vari-
ables are protected by locks. Static analyses like Extended
Static Checking [6], type-based race detection [7], and pro-
tected variable analysis [5] can automatically provide a con-
servative approximation to this information.

For general finite-state systems, it might seem that the
only way to automatically and accurately determine whether
selected variables are protected by locks is state-space explo-
ration of the original system, using a variant of the lockset al-
gorithm [17] to keep track of which variables are protected by
which locks. If this were the case, then the reduction would
be almost pointless, because the goal is to avoid exploring the
entire state-space of the original system. We show in Section
7 that one can determine exactly during state-space explo-
ration of thereducedsystem whether all variables in a given
set are protected by locks in the original system. Intuitively,
this is possible because of commutativity properties of the op-
erations used in the lockset algorithm, which reflect the fact
that whether a variable is protected by a lock depends only
on which accesses occur and which locks are held at each
access, not on the order in which accesses occur. Actually,
this is not true for the Eraser locking discipline [17], whose
treatment of initialization is slightly too liberal and therefore
order-dependent. Our result is for a slightly stricter locking
discipline, introduced in Section 7. Our proofs are based on
partial-order methods, specifically, on persistent sets [8].

The results in Section 7 cannot be derived from classic
reduction theorems such as [15,4]. One might try to derive
them by constructing a transformed system that is instrumented
to halt immediately before it would violate the locking disci-
pline (LD). The idea is that the transformed system would
always satisfy LD, which would ensure that the hypotheses
of the classic reduction theorem hold. This does not work,
because the necessary instrumentation would itself perform
accesses that violate LD.

Our framework handles distributed (i.e., multi-process)
multi-threaded systems. It combines and extends ideas in Veri-
Soft [9], which targets distributed systems of single-threaded
processes and does not incorporate a lock-based reduction,
and ExitBlock [2], which incorporates a lock-based reduction
for single-process multi-threaded systems. A more detailed
comparison with [2] appears in Section 2.

Section 3 provides background. Section 4 presents two
partial-order methods, called persistent sets and sleep sets.
Sections 5 and 7 describe our lock-based reductions. Section
6 gives an algorithm for computing persistent sets. This al-
gorithm is not included in Section 4 because the lock-based
reductions do not rely on it. This algorithm completes the pic-
ture of how to combine a lock-based reduction with general
use of persistent sets.

Section 8 describes a prototype state-space exploration
tool for single-process multi-threaded Java programs. It uses
state-less search [9] and incorporates our reduction.State-less
searchsystematically explores different schedules, without
storing the set of states that have been visited. Section 9 de-
scribes a prototype implementation of our reduction in Java
PathFinder (JPF) [1], a more traditional (state-based) state-
space exploration tool for Java bytecode. The main advan-
tage of state-less search is that it can be applied more easily
to systems whose state is not easily captured and stored,e.g.,
large systems written in a combination of Java and other pro-
gramming languages. The main disadvantage is that it may
unnecessarily explore some states multiple times. Section 10
contains some initial experimental results that compare the
speed of the two implementations and measure the effective-
ness of the reduction.

Sections 3–5, 7 and 10 form the core of the paper. Read-
ers interested in implementation of reductions in state-based
tools might want to read Section 9 as well. Readers interested
in partial-order methods might want to read Section 6. Sec-
tion 8 is mainly for readers interested in state-less search.

2 Related Work

Comparison to VeriSoft [9] and traditional reduction theo-
rems [15,4] appears in Section 1.

Bruening’s ExitBlock algorithm [2] corresponds roughly
to the invisible-first state-less selective search (IF-SSS) algo-
rithm in Section 5.1 without the use of persistent sets or sleep
sets. ExitBlockRW corresponds roughly to IF-SSS with sleep
sets and without persistent sets. ExitBlock and ExitBlockRW
treat release as visible and acquire as invisible. This com-
plicates deadlock detection in ExitBlock, and ExitBlockRW
might miss deadlocks. The framework in [2] assumes LD
is used for all shared variables. Bruening does not discuss
whether ExitBlock or ExitBlockRW is guaranteed to find a
violation of LD for systems that violate LD.

Corbett’s protected variable reduction [5] is similar to the
reduction in Section 5.2. Corbett’s reduction allows context
switches before all five of Java’s synchronization operations
(described in Section 3.2). Our reduction prohibits some of
these context switches and hence can provide more benefit.
Also, [5] does not provide results on checking LD during
state-space exploration.

3 Background

Section 3.1 describes our system model. Sections 3.2 and 3.3
provide an informal introduction to and a more formal model
of the relevant aspects of synchronization in Java. Section 3.4
expresses Eraser’s locking discipline in our system model.
Section 3.5 classifies operations, transitions, control points,
and states as visible or invisible. Section 3.6 defines some
conditions on systems.
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3.1 System Model

We adopt Godefroid’s model of concurrent systems [8], ex-
cept that we call the concurrent entities threads rather than
processes, disallow transitions that affect the control state of
multiple threads, and divide objects into four categories. An
object is characterized by a pair〈Dom,Op〉, whereDom is
the set of possible values of the object, andOp is the set of op-
erations that can be performed on the object. Anoperationis
a partial function that takes an argument and the current value
of the object and returns a return value and an updated value
for the object. Aconcurrent system(or system, for brevity) is
a tuple〈Θ,Ounsh ,Osyn ,Old ,Ocom , sinit , T 〉, where

Θ is a finite set of threads. A thread is a finite set of elements
calledcontrol points. Threads are required to be pairwise
disjoint.

Ounsh is the set of unshared objects,i.e., objects accessed
by at most one thread.
Osyn is the set of synchronization objects, defined in Sec-

tion 3.3.
Old is the set of objects for which a locking discipline, de-

fined in Section 3.4, is used.
Ocom is a set of objects, called communication objects.
sinit is the initial state. State is defined below.
T is a finite set of transitions. A transitiont is a tuple〈S,G,
C, F 〉, where:S is a control point of some thread, which
we denote bythread(t); F is a control point of the same
thread;G is a guard,i.e., a boolean-valued expression
built from read-only operations on objects and mathemat-
ical functions; andC is a command,i.e., a sequence of
expressions built from operations on objects and mathe-
matical functions. We callS andF the starting and fi-
nal control points oft and denote them bystart(t) and
final(t), respectively.

This four-way classification of objects is the basis for
classifying operations into two categories: visible and invisi-
ble. All operations on communication objects are visible, and
operations on synchronization objects that may block are vis-
ible (details are given below). This classification of opera-
tions determines the reduced system; informally, in the re-
duced system, context switches are allowed only before tran-
sitions containing visible operations.

The objects from any Java program can be classified in
this way. No assumptions are made about communication ob-
jects, so it is safe to classify all objects as communication ob-
jects. However, classifying more objects as communication
objects means that more operations are visible and hence that
the reduction provides less benefit. Therefore, objects should
be put in the other categories whenever possible.

There is considerable flexibility in modeling Java pro-
grams as concurrent systems. For example, an object in such
a model might correspond to a single storage location in the
Java program (e.g., a static field, an instance field of a Java
object, or a variable on the call stack), or it might correspond
to a collection of storage locations (e.g., all fields of a Java
object). Note that objects corresponding to variables on the

call stack of a Java program are always unshared. There is
also flexibility in the details of how to model references, ex-
ceptions, object creation, etc. Generally, this can be done as in
[12], which describes a translation from Java to PROMELA
(like [12], we assumeΘ, Ounsh , Osyn , Old , andOcom are
large enough to accommodate all Java threads and objects
that will be created). Such details are irrelevant here, because
our implementations, described in Sections 8 and 9, do not
actually construct such models: they work directly with Java
bytecode. The important points about modeling are: (1) any
Java program with a finite number of reachable states can be
modeled as a concurrent system, and (2) one can determine
which bytecodes in the Java program correspond to visible
operations in the model.

Our framework handles distributed and multi-threaded sys-
tems. For example, a system containing Java processes com-
municating over sockets would contain some instances of java.-
net.Socket, which are inOld , and an underlying socket, which
is inOcom . For our purposes, it is not necessary to explicitly
model the division of the system into processes. What mat-
ters is how variables are accessed. For example, a variable
shared only by threads in a single process could be regarded
as a communication object (if accesses to that variable do not
satisfy the locking discipline); conversely, if some form of
distributed shared memory is used, then a variable shared by
threads in multiple processes could be classified as an ele-
ment ofOld .

A stateis a pair〈L, V 〉, whereL is a collection of control
points, one from each thread, andV is a collection of values,
one for each object. For a states and an objecto, we abuse
notation and writes(θ) to denote the control point of thread
θ in states. Similarly, we writes(o) to denote the value ofo
in s.

A transition〈S,G,C, F 〉 of threadθ is pendingin state
s if S = s(θ), and it is enabledin states if it is pend-
ing in s andG evaluates to true ins. For a systemM, let
pendingM(s, θ) andenabledM(s, θ) denote the sets of tran-
sitions of threadθ that are pending and enabled, respectively,
in states (in systemM). Let enabledM(s) denote the set
of transitions enabled in states. When the system being dis-
cussed is clear from context, we elide the subscript. If a tran-
sition 〈S,G,C, F 〉 is enabled in states = 〈L, V 〉, then it can
be executed ins, leading to the state〈(L\{S})∪{F}, apply(C,
V )〉, whereapply(C, V ) denotes the values obtained by us-
ing the operations inC to update the values inV . Commands
are assumed to be deterministic; non-determinism is modeled
using multiple transitions. We writes

t→ s′ to indicate that
transitiont is enabled in states and that executingt in s leads
to states′.

A sequenceis a function whose domain is the natural
numbers or a finite prefix of the natural numbers. Let|σ| de-
note the length of a sequenceσ. Let σ(i..j) denote the sub-
sequence ofσ from index i to index j. Let last(σ) denote
σ(|σ|− 1). Let 〈a0, a1, . . .〉 denote a sequence containing the
indicated elements.〈〉 denotes the empty sequence. Letσ1 ·σ2

denote the concatenation of sequencesσ1 andσ2.
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An executionof a systemM is a finite or infinite se-
quenceσ of transitions ofM such that there exist statess0,

s1, s2, . . . such thats0 = sinit ands0
σ(0)→ s1

σ(1)→ s2 · · ·. Op-
erations are deterministic, so the sequence of statess1, s2, . . .
is completely determined by the sequence of transitions. When
convenient, we regard the sequence of states as part of the
execution. A state isreachablein M if it appears in some
execution ofM. A control point isreachableif it appears in
some reachable state.

3.2 Synchronization in Java

Java’s concurrency model allows non-deterministic interleav-
ing of the actions of different threads. Threads have priorities.
“Threads with higher priority are generally executed in pref-
erence to threads with lower priority. Such preference is not,
however, a guarantee...” [10, Section 17.12]. Our framework
is designed to verify only guaranteed properties, not proba-
bilistic properties, so we ignore such preference and hence
priorities.

Java provides five built-in synchronization operations based
on the classic operations on monitors [14]: acquire, release,
wait, notify, and notifyAll. Java also provides bounded-time
variants of wait; we do not consider them, because our system
model is untimed.

One lock and one condition variable are implicitly asso-
ciated with each object. Asynchronized statementis used to
acquire and release a lock. The statement

synchronized (expr) { stmt}

evaluates expressionexpr to an object referenceo, acquires
the lock associated witho, executes statementstmt, and then
releaseso’s lock. Synchronized statements are compiled into
bytecode that uses monitorenter and monitorexit instructions
to acquire and release the lock, respectively.

Java also allows the keyword “synchronized” to be used
as a modifier in method declarations. Declaring an instance
method as synchronized is equivalent to replacing its bodyb
with: synchronized (this){ b }.

The locks are recursive,i.e., a lock is free iff each exe-
cution of the acquire operation has been matched by an ex-
ecution of the release operation. Recursive locks conveniently
support nested or recursive invocations of synchronized meth-
ods.

wait, notify, and notifyAll are final native methods of java.-
lang.Object. They are inherited by all objects. They throw Il-
legalMonitorStateException if invoked by a thread that does
not own the target object’s lock; otherwise, they behave as
follows. o.wait() adds the calling threadθ to o’s wait set (i.e.,
the set of threads waiting ono), releaseso’s lock, and sus-
pendsθ. When another thread notifiesθ (by invoking notify
or notifyAll), θ contends to re-acquireo’s lock. Whenθ ac-
quires the lock, the invocation ofo.wait() returns.o.notify()
non-deterministically selects a threadθ in o’s wait set, re-
movesθ from the set, and notifiesθ. o.notifyAll() removes
all threads fromo’s wait set and notifies each of them.

A waiting thread can also be awoken by a call to Thread.-
interrupt. For simplicity, we do not consider this possibility
in our model. Also, we do not consider Java’s controversial
weakly consistent memory model [10,16], which provides
sequential consistency for objects protected by locks [2, Sec-
tion 2.3.3] but not necessarily for other objects.

3.3 Synchronization Objects

In our framework, a synchronization object embodies the syn-
chronization state that the JVM maintains for each Java ob-
ject. In Java, every object contains its own synchronization
state; there are no separate synchronization objects. This dif-
ference is inconsequential.

The fields of a synchronization object are:owner (the
name of a thread, orfree), depth(the number of unmatched
acquire operations), andwaiters(the set of waiting threads).
We assume that the initial statesoinit of each synchroniza-
tion object hasowner = free, depth = 0, andwaiters = ∅.
The “operations” on synchronization objects are: acquire, re-
lease, wait, notify, and notifyAll. Each of these high-level
“operations” is represented in a straightforward way as one
or more transitions that use multiple (lower-level) operations.
For concreteness, we describe one representation here.

Threadθ acquiringo’s lock corresponds to a transition
with guardo.owner ∈ {free, θ} and commando.owner :=
θ; o.depth++.

Threadθ releasingo’s lock corresponds to two transi-
tions: one with guardo.owner 6= θ and a command that
throws an IllegalMonitorStateException, and one with guard
o.owner = θ and command

o.depth−−; o.owner := newOwner(o.depth, θ),

wherenewOwner(depth, θ) returnsθ if depth > 0 and re-
turnsfree otherwise.

Let lkDepthθ denote an unshared object used byθ and
whose domain is the natural numbers. Threadθ waiting ono
corresponds to three transitions: one with guardo.owner 6= θ
and a command that throws an IllegalMonitorStateException,
and one with guardo.owner = θ and command

o.waiters.add(θ); lkDepthθ = o.depth;
o.depth := 0; o.owner := free

followed by one with guardo.owner = free ∧ θ 6∈ o.waiters
and commando.owner := θ; o.depth := lkDepthθ.

Threadθ invoking notify on o corresponds to|Θ| + 1
transitions: one with guardo.owner 6= θ and a command
that throws an IllegalMonitorStateException, one with guard
o.owner = θ ∧ o.waiters = ∅ and a command that does
nothing, and, for eachθ′ ∈ Θ \ {θ}, a transition with guard
o.owner = θ ∧ θ′ ∈ o.waiters and a command that removes
θ′ from o.waiters. All of these transitions except the one that
throws the exception have the same final control point.

Threadθ doing notifyAll on o corresponds to two tran-
sitions: one with guardo.owner 6= θ and a command that
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throws an IllegalMonitorStateException, and one with guard
o.owner = θ and a command that makeso.waiters empty.

We informally refer to acquire, release,etc., as operations
on synchronization objects, when we actually mean the oper-
ations used by the corresponding transitions.

A useful observation is:

SyncWithoutLock: If a threadθ executes an operationop
other than acquire on a synchronization objecto in a state
s in which θ does not owno’s lock, then (1) execution of
op in s does not modify the state ofo, and (2) execution
of op in s has the same effect (e.g., it throws IllegalMoni-
torStateException) regardless of other aspects ofo’s state
(e.g., regardless of which thread, if any, ownso’s lock,
and regardless of which threads, if any, are blocked wait-
ing ono).

One might consider including synchronization objects in
Old or Ocom instead of treating them specially. They can-
not be included inOld , because operations on them access
o.owner in a way that violates LD. Classifying them as com-
munication objects would mean that all operations on them
are visible (see Section 3.5), which would increase the cost
of the selective search.

To illustrate the definitions, consider a Java program with
two threads that execute the following snippets of code, where
z is a local variable, ando1 is an instance of a class with field
x, ando2 is an instance of a class with fieldy:

Code forθ1:
synchronized (o1){o1.x++;};
synchronized (o2){o2.y++;}
Code forθ2:
synchronized (o2){ o2.y++;

synchronized (o1){z=o1.x+o2.y;}}

This program is modeled by the concurrent systemMex =
〈Θ,Ounsh ,Osyn ,Old ,Ocom , sinit , T 〉, where

Θ = {θ1, θ2} θ1 = {a1, . . . , g1} θ2 = {a2, . . . , f2}
Ounsh = {z} Osyn = {`1, `2} Old = {x, y}
Ocom = ∅
sinit = 〈{a1, a2},

{x 7→ 0, y 7→ 0, z 7→ 0, `1 7→ soinit , `2 7→ soinit}〉

andT , in a self-explanatory shorthand with the operations of
a transition sandwiched between the starting and final control
points of the transition, is given by

Transitions ofθ1:
a1 `1.acquire() b1 x++ c1 `1.release() d1

d1 `2.acquire() e1 y++ f1 `2.release() g1

Transitions ofθ2:
a2 `2.acquire() b2 y++ c2 `1.acquire() d2

d2 z = x+ y e2 `1.release(); `2.release() f2

For example, the first transition ofθ1 is officially

〈a1,
`1.owner ∈ {free, θ1},
`1.owner := θ1; `1.depth++,
b1〉.

IfMex were obtained by systematic translation of a complete
Java program, it would be much larger, due to modeling of
creation and starting of threads in appropriate ThreadGroups,
invocations of run methods, etc. Also, the granularity would
be smaller,e.g., θ2’s two releases would be separate transi-
tions; we merged them into one transition to keep the state
space small. Figure 1 shows the reachable states ofMex .

3.4 Locking Discipline

The locking discipline of [17] allows objects to be initialized
without locking. Initialization is assumed to be completed be-
fore the object becomes shared (i.e., accessed by two different
threads). We formalize this as follows. Transitiont accesses
objecto in states if (1) t is pending ins and t’s guard ac-
cesses (i.e., contains an operation on)o or (2) t is enabled in
s andt’s command accesseso. Threadθ accessesobjecto in
states, denotedaccess(s, θ, o), if there exists a transitiont in
pending(s, θ) that accesseso in s.

For an executionσ = s0
σ(0)→ s1

σ(1)→ s2 · · ·, endInit(σ, o)
is the index of the first state inσ in which o is accessed by
a second thread; formally,endInit(σ, o) is the least value
of i such that(∃i1, i2 ≤ i : ∃θ1, θ2 ∈ Θ : θ1 6= θ2 ∧
access(si1 , θ1, o) ∧ access(si2 , θ2, o)), or |σ| if no such val-
ues exist.

Locking Discipline (LD). An executionσ = s0
σ(0)→ s1

σ(1)→
s2 · · · of a system〈Θ,Ounsh ,Osyn ,Old ,Ocom , sinit , T 〉 sat-
isfies LD iff, for all o ∈ Old , one of the following conditions
holds:

LD-RO: o is read-only after initialization,i.e., there exists a
constantc such that for alli ≥ endInit(σ, o), si(o) = c.

LD-lock: o is lock-protected after initialization,i.e., there ex-
ists a synchronization objecto1 ∈ Osyn such that, for all
i ≥ endInit(σ, o), for all θ ∈ Θ, if access(si, θ, o), then
θ ownso1’s lock in si.

A system satisfies LD iff all of its executions do. For example,
Mex satisfies LD.

Godefroid [8] defines: transitiont uses objecto iff t’s
guard or command contains an operation ono. Thus, the com-
mand of a disabled transition useso. Such uses cannot be
detected by run-time monitoring, so we do not want the defi-
nition of LD to depend on such uses. This motivates our def-
inition of “accesses”.

3.5 Visible and Invisible

Recall that operations are classified as visible or invisible. In
the reduced system, context switches are allowed only imme-
diately before transitions containing visible operations.
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Fig. 1. State Space ofMex . The first and second letters within each state indicate the control points ofθ1 andθ2, respectively; for example,ba abbreviates
{b1, a2}. Values of objects are not shown but can easily be inferred. Edges represent transitions. Transitions ofθ1 andθ2 point diagonally up and down,
respectively. States are numbered in depth-first order. Thick circles denote visible states (see Section 3.5). The sleep set technique (see Section 4) avoids
exploring the dotted edges.

All operations on communication objects are visible, as
in [9]. Operations on synchronization objects that may block
are visible; specifically, operations in the transitions for ac-
quire and wait that do not throw exceptions are visible. All
other operations are invisible. A transitiont is visible if (1)t’s
command or guard contains a visible operation or (2)t is part
of a non-deterministic choice,i.e., in some reachable state,
multiple transitions with starting control pointstart(t) are
enabled. An over-approximation of the second condition can
be used when classifying transitions: unnecessarily classify-
ing a transition as visible is safe (i.e., all the theorems below
still hold). For concurrent systems that model Java programs,
a simple over-approximation of the second condition is that
it holds for transitions corresponding to invocations of no-
tify(), which non-deterministically chooses a waiting thread
to awaken, and invocations of methods of java.util.Random,
which we interpret as non-deterministic (see Section 8.3).

A control pointS is visible if all transitions with starting
control pointS are visible; otherwise, it is invisible. A states
is visible if all control points ins are visible; otherwise, it is
invisible. Visible states correspond to global states in [9].

For example, inMex , control pointsa1, d1, g1, a2, c2,
andf2 are visible. In Figure 1, thick circles denote visible
states ofMex .

If additional operations on synchronization objects were
introduced, the invisibility of existing operations would need
to be re-evaluated. For example, consider introducing a non-
blocking operation on synchronization objects that returns

true iff the lock is free. This would invalidate SyncWithout-
Lock and require re-classifying release as visible.

3.6 Conditions on Systems

We define some conditions on systems.

Separation(of visible and invisible transitions): For every
threadθ, for every control pointS ∈ θ, all transitions
with starting control pointS are visible, or all of them are
invisible.

InitVis (initial control locations are visible): For every thread
θ, sinit(θ) is visible. This condition is inessential but con-
venient.

BoundedInvis(bound on invisible transition sequences): There
exists a boundb on the length of contiguous sequences
of invisible transitions by a single thread. Thus, in every
execution, for every threadθ, every contiguous sequence
of b + 1 transitions executed byθ (ignoring interspersed
transitions of other threads) contains at least one visible
transition.

DetermInvis (determinism of invisible control points): For
every reachable states, for every threadθ, θ has at most
one enabled invisible transition ins.

NonBlockInvis(non-blocking invisible control points): For
every threadθ, for every invisible control pointS of θ,
for every reachable states containingS, enabled(s, θ) is
non-empty.
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PureVis (pure visible transitions): Visible transitions do not
contain operations on objects inOld .

These conditions, except possibly BoundedInvis, are sat-
isfied by all reasonable models of Java programs with the
natural granularity in which a transition corresponds roughly
to a bytecode or a fragment of a bytecode. Separation and
DetermInvis follow from the definitions of visible transitions
and visible control points. InitVis is easily enforced by clas-
sifying the first transition of each thread as visible; recall
that classifying transitions as visible is always safe. Non-
BlockInvis holds because the only blocking operations are
acquire, wait, and some operations on communication objects
(e.g., receive on a socket), and all of these operations are visi-
ble. PureVis holds for models in which transitions correspond
roughly to bytecodes or fragments of bytecodes, because all
bytecodes satisfy this condition. PureVis typically does not
hold for coarse-grained models, such asC(M) in Section 5.2.
BoundedInvis is checked during state-space exploration: if an
executing thread does not execute a visible transition within
a user-specified amount of time, an error (“possible violation
of BoundedInvis”) is reported.

A straightforward generalization, not considered further
in this paper, is to allow conditional invisibility (i.e., allow
operations to be invisible in some states and visible in others)
and to classify an acquire operation byθ as invisible in states
whereowner = θ.

4 State-less Selective Search

Two techniques used to make state-space exploration more
efficient are persistent sets and sleep sets. They attempt to
reduce the number of explored states and transitions by ex-
ploiting independence of transitions. They are calledselective
searchtechniques, because they justify exploring only a care-
fully selected subset of the enabled transitions from each vis-
ited state. We start with informal descriptions of these tech-
niques and then give formal definitions. The material in this
section is paraphrased from [8,9].

Informally, two transitions areindependentif they com-
mute. A setT of transitions enabled in a states is persistentin
s if everything the system can do fromswhile staying outside
T (i.e., while not executing transitions inT ) is independent
with transitions inT . In this case, transitionst′ outsideT can
safely be deferred until after a transitiont in T has executed,
becauset and t′ are independent. Thus, in the first line of
procedure DFS in the selective search algorithm in Figure 2,
the setT of transitions to be explored is based on a persistent
set PS(s), rather thanenabled(s). An algorithm for comput-
ing persistent sets, based on the static structure of the system,
appears in Section 6.

Sleep sets are computed by the selective search algorithm
in Figure 2 and reflect the history of the search. After ex-
ploring a transitiont from a states and recursively exploring
all states reachable therefrom (note that the search is depth-
first), t is propagated into the sleep sets of statess′ that are

explored on pathsσ from s that start with a different transi-
tion, as long as the pathσ contains only transitions that are
independent witht. Informally, it is safe to defer execution of
t along paths containing only transitions independent witht,
because the transitions in such a path were already explored
on some path froms that starts witht, so it is unnecessary
to also explore interleavings in whicht occurs immediately
after those transitions. Consequently,t is not explored from
such statess′; this is implemented by subtractingsleep from
PS(s) in the first line of procedure DFS. If a transition depen-
dent witht is executed,t is removed from the sleep set; this is
implemented by the calculation ofsleep′ in procedure DFS.

Dependency Relation.Let T andState be the sets of transi-
tions and states, respectively, of a systemM.D ⊆ T × T is
anunconditional dependency relationforM iff D is reflex-
ive and symmetric and for allt1, t2 ∈ T , 〈t1, t2〉 6∈ D (“ t1
andt2 are independent”) implies that for all statess ∈ State,

1. if t1 ∈ enabled(s) ands
t1→ s′, thent2 ∈ enabled(s)

iff t2 ∈ enabled(s′). (Independent transitions neither dis-
able nor enable each other.)

2. if {t1, t2} ⊆ enabled(s), then there is a unique states′

such thats
t1→ s1

t2→ s′ and s
t2→ s2

t1→ s′. (Enabled
independent transitions commute.)

D ⊆ T ×T ×State is aconditional dependency relationfor
M iff for all t1, t2 ∈ T and alls ∈ State, 〈t1, t2, s〉 6∈ D (“ t1
andt2 are independent ins”) implies that〈t2, t1, s〉 6∈ D and
conditions 1 and 2 above hold. This definition of conditional
dependency assumes that commands of transitions satisfy the
no-access-after-updaterestriction [8, p. 21]: an operation that
modifies the value of an objecto cannot be followed by any
other operations ono.

Persistent Set.A setT ⊆ enabled(s) is persistentin s iff,

for all nonempty sequences of transitionsσ such thats0
σ(0)→

s1
σ(1)→ s2 · · ·

σ(n−1)→ sn
σ(n)→ sn+1, if s0 = s and (∀i ∈

[0..n] : σ(i) 6∈ T ), thenσ(n) is independent insn with all
transitions inT .

ConsiderMex , introduced in section 3.3. For control points
S andF , let tSF denote the transition with starting control
point S and final control pointF , if any. The set{tb1c1} is
persistent in stateba. To see this, note thatσ in the definition
of persistent set effectively ranges over non-empty prefixes of
〈ta2b2 , tb2c2〉, and that these two transitions are independent
with tb1c1 . We do not need to consider sequencesσ contain-
ing tc2d2 , because such sequences must also containtb1c1 and
tc1d1 (because of contention for`1’s lock), so the antecedent
σ(i) 6∈ T in the definition of persistent set is false.

Let PS(s) return a set of transitions that is persistent in
s. Let D be an unconditional dependency relation.1 Gode-
froid’s state-less selective search (SSS) using persistent sets
and sleep sets appears in Figure 2, whereexec andundo are

specified by: ifs
t→ s′, thenexec(s, t) = s′ andundo(s′, t) =

1 A conditional dependency relation can be used, but this involves some
minor complications [18].
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SSS(){
stack:= empty;
curState:= sinit ;
DFS(∅);
}

DFS(sleep) {
T := PS(curState) \ sleep;
for eacht in T

stack.push(t);
curState := exec(curState, t);
// next line is in IF-SSS, not in SSS
curState := execInvisM(curState,

thread(t));
sleep′ := {t′ ∈ sleep | 〈t, t′〉 6∈ D};
DFS(sleep′);
stack.pop(); // popt from stack;
curState := undo(curState, t);
sleep := sleep ∪ {t};

}

Fig. 2.State-less Selective Search (SSS) and Invisible-First State-less Selec-
tive Search (IF-SSS) using persistent sets and sleep sets. The two algorithms
differ only in the presence of the indicated assignment statement.stackand
curStateare global variables.stack is needed to report error traces to the
user. Also,stack is needed ifundo is implemented using reset+replay, as
discussed in Section 8.4.

s. Because SSS is state-less, it may visit states multiple times;
persistent sets and sleep sets help reduce this redundancy.

ConsiderMex . SupposePS(s) = enabled(s), and the
dependency relation used to compute sleep sets is: two tran-
sitions are independent if they use disjoint sets of objects.
Then SSS explores all states in Figure 1, and all edges ex-
cept the dotted ones. The depth-first numbering in Figure 1
reflects the order in which states ofMex are explored for the
first time during execution of SSS. Some states are explored
again later in the search. Specifically, a states is explored
once for each path fromsinit to s in Figure 1, ignoring paths
containing dotted edges. To see that the sleep set technique
avoids exploration of,e.g., the dotted edge from stateab to
statebb, consider the relevant steps of the algorithm: (1) ini-
tially, DFS(∅) is invoked in stateaa, (2) in the second itera-
tion of thefor loop in that state,sleep = {ta1b1}, (3) ta1b1 is
independent withta2b2 , so DFS({ta1b1}) is invoked in state
ab, sota1b1 is not explored from that state.

SSS works best for acyclic state spaces. Two problems
arise if the state space contains cycles. First, a state-less search
cannot recognize that it is in a cycle, so a purely depth-first
approach may get stuck in a cycle and never explore some
states. This problem can avoided by using iterative deepen-
ing. Second, persistent sets might cause some enabled transi-
tions to be permanently deferred (i.e., not included in the per-
sistent sets), causing the selective search to miss some states
[8, Chapter 6]; this is called theignoring problem[19]. This
motivates definition of a state-less search that uses iterative
deepening and sleep sets but not persistent sets (or, as we will
see, uses persistent sets only in a restricted way).SSSbnd(d)
denotes a depth-bounded variant of SSS that explores exe-
cutions of length at mostd and usesPS(s) = enabled(s).
SSScyc denotes an iterative-deepening variant of SSS, that
callsSSSbnd with increasingly larger bounds until the longest
execution explored bySSSbnd is shorter than the bound.

Following Godefroid [8] but deviating from standard us-
age, adeadlockis a states such thatenabled(s) is empty. We
focus on determining reachability of deadlocks and control
points. Reachability of control points can easily encode infor-
mation about values of objects. For example, a Java program
might assert that a conditione1 holds using the statementif
(! e1) throw e2; violation of this assertion corresponds to
reachability of the control point at the beginning ofthrow
e2. If necessary (as in Section 5.2), assertion violations can
easily be encoded as reachability of visible control points,
by introducing a communication object with a single visible
operation that is called when any assertion is violated. Ques-
tions about reachability of states can be encoded as questions
about reachability of control points using standard techniques
[8, chapter 7]. We say that a search algorithm explores a con-
trol pointS if it explores a state containingS.

Theorem 1. LetM be a system with a finite state space. (a)
IfM’s state space is acyclic, then SSS explores all reachable
deadlocks and control points ofM. (b) SSScyc explores all
reachable deadlocks and control points ofM.

Proof: (a) This is a paraphrase of Theorem 2 of [9]. Assertion
violations correspond to reachability of control points. (b) As
discussed above, allowing cycles in the state space potentially
causes two problems, andSSScyc avoids both of them. Note
that the claim holds even ifSSScyc diverges. ut

Persistent sets and sleep sets can also be used in tradi-
tional (i.e., state-based) selective search [8]. We omit details
of traditional selective search algorithms, because the results
for traditional selective search in Sections 5.2 and 7 are inde-
pendent of those details.

5 Two Approaches to Lock-Based Reduction

Sections 5.1 and 5.2 describe two approaches to lock-based
reduction, based on persistent sets and composition of transi-
tions, respectively. Section 5.3 compares the two approaches.

5.1 Invisible-First State-less Selective Search

Persistent sets can be used to justify not exploring some in-
terleavings of invisible transitions.

Theorem 2. LetM be a system satisfying LD and Separa-
tion. For all threadsθ and all reachable statess of M, if
enabled(s, θ) contains an invisible transition, thenenabled(s, θ)
is persistent ins.

Proof: See Appendix. ut
Suppose the system satisfies LD, Separation, Bounded-

Invis, and DetermInvis. If a threadθ has an enabled invisi-
ble transition in a states, then Separation and DetermInvis
imply that θ has exactly one enabled transition ins. Theo-
rem 2 implies that it is sufficient to explore only that tran-
sition from s. This can be done repeatedly, untilθ has no
enabled invisible transitions. BoundedInvis implies that this
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iteration terminates. LetexecInvisM(s, θ) be the unique state
obtained by performing this procedure starting from states;
if θ has no enabled invisible transitions in states, then let
execInvisM(s, θ) = s. Specializing SSS to work in this way
yields Invisible-First State-less Selective Search (IF-SSS), given
in Figure 2. IF-SSScyc is defined analogously.

Theorem 3. LetM be a system with a finite state space and
satisfying LD, Separation, BoundedInvis, DetermInvis, and
NonBlockInvis. (a) IfM’s state space is acyclic, then IF-SSS
explores all reachable deadlocks and control points ofM.
(b) IF-SSScyc explores all reachable deadlocks and control
points ofM.

Proof: See Appendix. ut
Consider applying IF-SSS toMex from Section 3.3, with

PS(s) = enabled(s) and with the same dependency relation
for sleep sets as in Section 4. IF-SSS avoids exploring states
bb andcb (see Figure 1). For example, the dotted inedge of
bb is not explored because of sleep sets, and the solid inedge
of bb is not explored becauseexecInvisMex

(ba, θ1) explores
only tb1c1 .

5.2 Composing Transitions

Another approach to lock-based reduction is to aggregate a
visible transition and the subsequent sequence of invisible
transitions of the same thread into a single transition. Tran-
sitions are aggregated (composed) as follows. For a sequence
σ of transitions, letcmdc(σ) be the sequential composition
of the commands of the transitions inσ, and letguardc(σ)
be the weakest predicate ensuring that when each transitiont
in σ is executed,t’s guard holds.guardc can be expressed in
terms of the weakest-precondition predicate transformerwp
[11]:2

guardc(σ) = ∧ guard(σ(0))
∧
∧

0<i<|σ| wp(guard(σ(i)),
cmdc(σ(0..i− 1))),

(1)

whereguard(〈S,G,C, F 〉) = G. We assumeguardc(σ) can
be expressed in terms of the available operations on objects.

For a systemM satisfying LD, Separation, BoundedIn-
vis, and DetermInvis, the transformed systemC(M) with com-
posed transitions is the same asM except that the set of tran-
sitions is as follows. Letb be the bound in BoundedInvis for
M. For each visible transitiont = 〈S,G,C, F 〉 in T , for
each sequenceσ of invisible transitions such that|σ| ≤ b and
guardc(〈t〉 · σ) 6= false and the intermediate control points
match up (i.e., final(t) = start(σ(0)) and for alli < |σ|−1,
final(σ(i)) = start(σ(i + 1))) and final(last(σ)) is visi-
ble,C(M) has the transition〈S, guardc(〈t〉 · σ), cmdc(〈t〉 ·
σ),final(last(σ))〉.

2 We let a list of formulas bulleted with∧ or ∨ denote the conjunction
or disjunction, respectively, of the formulas, using indentation to eliminate
parentheses.

For example,C(Mex ) has exactly 9 reachable states. These
are the visible states ofMex , denoted by thick circles in Fig-
ure 1. The transitions ofC(Mex ) lead between these states.
For example, the first transitionta1d1 of θ1 in C(Mex ) is

〈a1,
`1.owner ∈ {free, θ1},
`1.owner := θ1; `1.depth++;x+ +; `1.depth−−;

`1.owner := newOwner(`1.depth, θ1),
d1〉.

(2)

The guard of the release intc1d1 does not contribute to the
guard of the composed transition, because

wp(`1.owner = θ, `1.owner := θ) = true. (3)

The command in (2) can be simplified; we do not consider
this further.

Theorem 4. LetM be a system satisfying LD, Separation,
InitVis, BoundedInvis, and DetermInvis.M andC(M) have
the same reachable visible states.

Proof: See Appendix. ut
An invisible control pointS is defined to be reachable

in C(M) if a composed transition passes throughS in some
execution ofC(M).

Theorem 5. LetM be a system with a finite state space and
satisfying LD, Separation, InitVis, BoundedInvis, DetermIn-
vis, and NonBlockInvis.M andC(M) have the same reach-
able deadlocks.M andC(M) have the same reachable con-
trol points.

Proof: See Appendix. ut
Theorems 1(a) (or 1(b)) and 5 imply that, for a systemM

satisfying their hypotheses, SSS (orSSScyc) applied toC(M)
explores all reachable deadlocks and control points ofM.

Theorem 5 is also useful with traditional selective search.
For example, Theorems 5.2 and 6.14 of [8] together with The-
orem 5 imply that, for a systemM satisfying their hypothe-
ses, traditional selective search with persistent sets and sleep
sets [8, Figure 6.2] applied toC(M) explores all reachable
deadlocks and control points ofM.

5.3 Comparison of the Two Approaches

The invisible-first approach (Section 5.1) is worthwhile for
three reasons. First, Theorem 2 shows that this reduction is
a special case of persistent sets, thereby demonstrating the
relationship to existing partial-order methods. Second, Theo-
rem 3 shows that, with IF-SSS, operations in invisible transi-
tions do not need to be recorded, because they do not intro-
duce dependencies that could cause transitions to be removed
from sleep sets. Third, the guards of composed transitions
sometimes introduce dependencies that cause SSS applied to
C(M) to explore more interleavings than IF-SSS applied to
M. For example, consider a threadθ that is ready to execute

someVisibleOp;
if (x1) { if (x2) c1 elsec2 }
else{ if (x3) c3 elsec4 }

(4)
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where thexi are inOld and theci do not contain visible op-
erations. LetS denote the starting control point of this state-
ment. In the original systemM, θ does not accessx2 or
x3 at S. In C(M), θ accessesx1, x2, andx3 at S, because
the composed transitions with starting control pointS have
guards likex1 ∧ x2 and¬x1 ∧ ¬x3. In C(M), the access by
θ to x2 in a states with s(θ) = S ands(x1) = false is an
artifact of composition. Such accesses induce dependencies
that could cause persistent sets to be larger inC(M) thanM.
Whether this occurs depends partly on how persistent sets are
computed. This would not occur if they are computed as de-
scribed in Section 6, becausependInvisOps(s, θ) would be
the same inM andC(M). This could occur if the calculation
of pendInvisOps exploited information from static analysis.
In practice, the number of such code fragments that actually
lead to smaller persistent sets is expected to be too small to
have a significant impact on overall performance.

The composition approach (Section 5.2) is worthwhile
because it sometimes achieves a stronger reduction. For ex-
ample, suppose two threads are both ready to acquire the lock
that protects a shared variablev, copyv’s value into an un-
shared variable, and then release the lock. InC(M), each
thread does this with a single composed transition, and the
two composed transitions are independent (because atomi-
cally acquiring and then releasing a lock has no net effect
on the state of the synchronization object), so SSS applied
to C(M) could explore a single interleaving of these transi-
tions. InM, each thread does this with a sequence of three
transitions, and the transitions that manipulate the lock are
dependent, so IF-SSS applied toM explores multiple inter-
leavings.

Which approach yields better performance depends mainly
on whether the stronger reduction of the composition approach
outweighs the cost of recording invisible operations. Record-
ing invisible operations and using them in the computation of
sleep sets typically does not consume a significant fraction of
the overall running time, in part because the lockset algorithm
is more expensive than this recording. Thus, the composing
transitions approach typically has similar or better perfor-
mance, compared to the invisible-first approach. The stronger
reduction provided by the composing transitions approach is
particularly attractive when used with state-less search, be-
cause avoiding exploration of one of the interleavings that
leads to a states can avoid one redundant exploration of the
entire subgraph of the state space reachable froms.

6 Computing Persistent Sets

Computing persistent sets in a given state requires informa-
tion about possible future behaviors of each thread. Static
analysis or user-supplied annotations may be used to obtain
an upper bound (with respect to the subset ordering) on the
set of operations that each thread may perform. Letops(θ)
denote such an upper bound for threadθ. Let invisOps(θ)
be the set of invisible operations inops(θ). Throughout this
section, we ignore operations on unshared objects.

To compute small persistent sets, an upper bound on the
set of operations used by the pending transitions of a thread
is also needed. LetusedVisOps(t) be the set of visible oper-
ations used by a transitiont. We assume that in each visible
states, for each threadθ, the following set is known:

pendVisOps(s, θ) = {usedVisOps(t) | t ∈ pending(s, θ)}.

pendVisOps(s, θ) is typically obtained by intercepting each
visible operation. A non-trivial upper bound on the set of in-
visible operations used by pending transitions ofθ in s can
be obtained by exploiting LD. For concreteness, we describe
how to calculate a bound from the data structures maintained
by the lockset algorithm [17]. We assume in this section that
the system satisfies LD; the lockset algorithm is used here
only to obtain information about which locks protect each
object inOld . If that information is available from static anal-
ysis, then running the lockset algorithm during the search is
unnecessary.

The lockset algorithm maintains the following values for
each objecto: o.mode, which can be virgin (allocated but
uninitialized), exclusive (accessed by only one thread), shared
(accessed by multiple threads, but threads after the first did
not modify o), or shared-modified (none of the above con-
ditions hold);o.firstThread , which is the first thread that ac-
cessedo (i.e., the thread that initializeso; o.firstThread is un-
defined wheno is in virgin mode); ando.candLkSet (“candi-
date lock set”), which is the set of locks that were held during
all accesses too after initialization (i.e., starting with the ac-
cess that changedo.mode from exclusive to shared or shared-
modified).o.candLkSet contains all locks (i.e., equalsOsyn )
while o is in exclusive mode.

held(s, θ) is the set of synchronization objects whose locks
are owned byθ in states. acqing(s, θ) is the set of synchro-
nization objectso such thatpendVisOps(s, θ) contains an
acquire operation ono. rdOnly(o.op) holds if o.op is read-
only. mayInit(s, θ, o) holds if θ may be the first thread to
access virgin objecto in states. For example, in Java, for in-
stance variables, one might require thatθ be the thread that
allocatedo; for static variables of a classC, one might require
thatθ be the thread that caused classC to be loaded. An up-
per bound on the set of invisible operations used by pending
transitions ofθ in s is

pendInvisOps(s, θ) =
{o.op ∈ invisOps(θ) | ∨ o ∈ Osyn

∨ ∃o1 ∈ held(s, θ) ∪ acqing(s, θ) :
LDallows(s, θ, o1, o.op)}

LDallows(s, θ, o1, o.op) =
∨ o.mode = virgin ∧mayInit(s, θ, o)
∨ o.mode = exclusive ∧ ∨ θ = o.firstThread

∨ rdOnly(o.op)
∨ o1 ∈ o.candLkSet

∨ o.mode = shared ∧ (rdOnly(op) ∨ o1 ∈ o.candLkSet)
∨ o.mode = shared-modified∧ o1 ∈ o.candLkSet

We can obtain a tighter bound onpendInvisOps (and
hence potentially smaller persistent sets) if the system sat-
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isfies the following stricter version of LD-lock: in every exe-
cution in whicho is shared, the same lock protects accesses
to o; formally, this corresponds to switching the order of the
quantifications “for all executions ofM” and “there exists
o1 ∈ Osyn ”. With this stricter requirement, we can mod-
ify undo so that it does not undo changes to the candidate
lock set. This modification potentially makeso.candLkSet
andpendInvisOps smaller.

Persistent sets can be computed using a variant of Algo-
rithm 2 of [8], which is based on Overman’s Algorithm. It
uses the following relation.

Might-be-the-first-to-interfere-with.Operationop′ might be
the first to interfere with operationop from states, denoted
op .s op′, if [8, Definition 4.26]: (1) op and op′ are oper-
ations on the same object and (2) there exists a sequence

σ of transitions such that (2a)s = s0 ands0
σ(0)→ s1

σ(1)→
s2 · · ·

σ(n−1)→ sn
σ(n)→ sn+1, and (2b) for alli ∈ [0..n − 1],

all operations inσ(i) are independent withop in si, and (2c)
σ(n) usesop′, andop andop′ are dependent insn.

Algorithm 2-LD, our variant of Algorithm 2 of [8], is:

1. Select one transitiont ∈ enabled(s). LetT = {thread(t)}.
2. For eachθ ∈ T , for eachop ∈ pendVisOps(s, θ) ∪

pendInvisOps(s, θ), for each threadθ′ ∈ Θ\T , if (∃op′ ∈
ops(θ′) : op .s op′), then insertθ′ in T .

3. Repeat step 2 until no more threads can be inserted. Re-
turn∪θ∈T enabled(s, θ).

The might-be-the-first-to-interfere-with relation is deter-
mined manually for each kind of object and stored in a library
[8, Section 4.7]. A might-be-the-first-to-interfere-with rela-
tion for synchronization objects appears in Figure 3. Accurate
analysis of dependencies between operations on synchroniza-
tion objects involves the value of the object and the identities
of the threads performing the operations. We assume that the
latter can be inferred from the operation (or from a constant
argument to the operation in the transition; such arguments
can be considered as part of the operation). Letθ:op denote a
synchronization operationop performed by threadθ. Figure
3 gives.s only for operations on synchronization objects in
transitions that do not throw IllegalMonitorStateException;
for operations (inop1 or op2) in thetransitions that throw Il-
legalMonitorStateException, SyncWithoutLock implies that
op1 .s op2 is false.

Justifying the relation in Figure 3 is not difficult. For ex-
ample, consider the entry forθ1:o.acquire .s θ2:o.acquire.
Consider a states in whicho.owner 6∈ {free, θ1}. Letσ be a
sequence of transitions starting froms and ending with a tran-

sition that performsθ2:o.acquire. As usual, lets0
σ(0)→ s1

σ(1)→
s2 · · ·

σ(n−1)→ sn
σ(n)→ sn+1, with s0 = s. It suffices to show

that either an operation dependent withθ1:o.acquire occurs
beforeθ2:o.acquire in σ, orθ1:o.acquire is independent with
θ2:o.acquire in sn. Consider two cases.

case:s(o.owner) = θ2. If sn(o.owner) = θ2 holds, then
θ1:o.acquire is disabled insn, and executingθ2:o.acquire
in sn leavesθ1:o.acquire disabled, soθ1:o.acquire and

θ2:o.acquire are independent insn. If sn(o.owner) 6=
θ2, thenθ2 must freeo’s lock at some point duringσ,
i.e., for somei ∈ [0..n], si(o.owner) = free, and the re-
lease operation byθ2 in the transitionσ(i − 1) enables
θ1:o.acquire and hence is dependent with it insi−1.

case:s(o.owner) = θ3, whereθ3 ∈ Θ \ {θ1, θ2}. In this
case,θ3 must freeo’s lock beforeθ2:o.acquire can occur;
that release operation byθ3 also enablesθ1:o.acquire and
hence is dependent with it.

Another example isθ1:o.notifyAll .s θ2:o.wait1. These
two operations are independent in all states, because in any
state, at most one of them is enabled (because the guard of
each requireso’s lock), and executing the enabled one (if any)
does not enable the other one. This argument blurs the dis-
tinction between guards and commands. The operations ono
in the command of a transitiont2 that performswait1 do not
commute with the operations in the command of a transition
t1 that performsnotifyAll. Nevertheless,t1 andt2 are inde-
pendent in all states, because of their guards, by the above
argument. Thus, this dependency between the operations in
the commands can safely be ignored, because it never induces
dependency between transitions. Dependency between tran-
sitions is what matters, because it is the basis for defining
persistent sets and sleep sets.

Theorem 6. LetM be a system satisfying LD. In every state
s ofM, Algorithm 2-LD returns a set that is persistent ins.

Proof: This follows from correctness of Algorithm 2 of [8].
ut

For example, Algorithm 2-LD can compute non-trivial
persistent sets for dining philosophers. Ignoring initialization,
the heart of the code for each philosopher is

asynchronized (lfork){ bsynchronized (rfork){ eat} }

wherea andb are labels representing control points, lfork and
rfork are instance fields that refer to objects representing this
philosopher’s left and right forks, respectively, and eat is an
operation on an unshared object. Consider using Algorithm
2-LD on a model of this program with three philosophers,
corresponding to threadsθ0, θ1, andθ2. Let fi be a synchro-
nization object representing a fork. Fori ∈ [0..2], the left
and right forks of philosopheri arefi andfi⊕1, respectively,
where⊕ denotes addition modulo 3. We trace the execution
of Algorithm 2-LD in the unique reachable states in which
θ0 is at labelb, andθ1 andθ2 are at labela. The relevant sets
of operations are

pendVisOps(s, θ0) = {f2.acquire}
pendVisOps(s, θ1) = {f2.acquire}

pendInvisOps(s, θi) = {fi.release, fi⊕1.release}
ops(θ2) = {f2.acquire, f0.acquire,

f2.release, f0.release}

Suppose we start withT = {θ0}. In step 2 withθ = θ0 and
θ′ = θ1, we haveθ0 : f2.acquire .s θ1 : f2.acquire, soθ1

is inserted inT . In step 2 withθ = θ0 andθ′ = θ2, all of
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op1

op2
aaaa acquire release wait1 wait2 notifyAll
acquire owner ∈ {free, θ1} owner = θ2 owner = θ2 ∨ θ2 ∈ waiters ∧ owner = θ1

∨ θ2 6∈ waiters ∧ owner ∈ {free, θ1}
release
wait1 owner = θ1

wait2 owner = free owner ∈ {free, θ1}
notifyAll

Fig. 3. op1 .s op2 holds only if the predicate in the appropriate box holds. An empty box denotesfalse. opi is an operation performed by threadθi on
synchronization objecto, with θ1 6= θ2. The row forop1 = notify and the column forop2 = notify are not shown; all entries in them arefalse. We do not
considerθ1 = θ2, because Algorithm 2-LD does not depend on it.wait1 andwait2 correspond to the operations in the first and second non-exception-throwing
transitions inwait, respectively.owner andwaiters abbreviateo.owner ando.waiters, respectively.

the relevant might-be-the-first-to-interfere-with relations are
false, soθ2 is not inserted inT . Next, step 2 is executed again,
and there is a new combination of threads to consider, namely,
θ = θ1 andθ′ = θ2. All of the relevant might-be-the-first-to-
interfere-with relations are false, so the algorithm terminates
with T = {θ0, θ1}.

7 Checking LD on the Reduced System

If accesses to objects inOld are expected to satisfy LD, but
no static guarantee is available, LD can be checked during
state-space exploration using the lockset algorithm [17]. The
results in Sections 5 and 6 do not directly apply in this case,
because they assume that the original (unreduced) system sat-
isfies LD. Here we extend those results to ensure that, if the
original system violates a slightly stricter variant of LD, then
state-space exploration of the reduced system finds a viola-
tion.

Savageet al. observe that their liberal treatment of ini-
tialization makes Eraser’s checking undesirably dependent on
the scheduler [17, p. 398]. For the same reason, IF-SSS might
indeed miss violations of LD. Consider a system in whichθ1

can perform the sequence of two transitions (control points
are omitted in this informal shorthand)〈sem.up(), v := 1〉,
andθ2 can perform the sequence of four transitions

〈sem.down(), o.acquire(), v := 2, o.release()〉,

wherev ∈ Old is an integer variable,o ∈ Osyn , andsem ∈
Ocom is a semaphore, initialized to zero. This system vio-
lates LD, becausev := 1 can occur afterv := 2, andθ1

owns no locks when it executesv := 1. IF-SSS does not find
a violation, because aftersem.Up(), execInvis immediately
executesv := 1. Similarly, SSS applied toC(M) would not
find a violation of LD.

We strengthen the locking discipline’s constraints on ini-
tialization by requiring that the thread (if any) that initializes
each object be specified in advance and by allowing at most
one initialization transition per object (a more flexible alter-
native is to allow multiple initialization transitions per ob-
ject, but to require that the initializing thread not perform any
visible operations between the first access too and the last
access too that is part of initialization ofo). Formally, we
require that a partial functioninitThread from Old to Θ be

included as part of the system. Foro 6∈ domain(initThread),
let endInit ′(σ, o) = 0. For o ∈ domain(initThread), for

σ = s0
σ(0)→ s1

σ(1)→ s2 · · ·, let endInit ′(σ, o) be the sec-
ond smallesti such that(∃θ ∈ Θ : access(si, θ, o)), or |σ|
if no such value exists. Let LD′ denote LD withendInit re-
placed withendInit ′, and extended with the requirement that
for each objecto in the domain ofinitThread , initThread(o)
is the first thread to accesso.3 The lockset algorithm can eas-
ily be modified to check LD′; we call the modified version
the lockset′ algorithm. We assume guards of transitions in
C(M) are constructed using short-circuiting conjunction, so
the artifacts described in Section 5.3 do not affect the lockset′

algorithm (in contrast, persistent sets are calculated from the
static structure of the system, with incomplete information
about object values, so short-circuiting has limited impact on
that calculation). We assume that accesses to objects inOld

by the guard of a transitiont are checked in each state in
which t is pending (in other words, in each state, guards of
all pending transitions are evaluated). It suffices to check ac-
cesses to objects inOld by the command of a transition only
when that transition is explored by the search algorithm; to
see this, note that the following variant of LD′-lock is equiv-
alent to LD′-lock, in the sense that it does not change the set
of systems satisfying LD′:

o is lock-protected after initialization,i.e., there exists a
synchronization objecto1 ∈ Osyn such that, for alli ≥
endInit ′(σ, o), (1) if access(si, σ(i), o), thenthread(σ(i))
ownso1’s lock insi, and (2) for allθ ∈ Θ, if pending(si, θ)
contains a transition whose guard accesseso, thenθ owns
o1’s lock in si.

Let σ; t denote execution ofσ followed by evaluation of
t’s guard and, ift is enabled, execution oft’s command. Re-
call that conditions on systems (Separation, BoundedInvis,
etc.) are defined in Section 3.6.

Theorem 7. LetM be a system satisfying Separation. For
all threadsθ, all reachable statess, and all executionsσ0

leading to s, if enabled(s, θ) contains an invisible transi-
tion, then either (a)enabled(s, θ) is persistent ins or (b)
enabled(s, θ) contains a transitiont such that either (b1)

3 It is easy to show that LD′ is stricter than LD. This observation does
not enable simple proofs of the theorems in this section from the theorems
in previous sections orvice versa.
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σ0; t violates LD′ or (b2) s
t→ s′ and a violation of LD′ is

reachable froms′.

Proof: See Appendix. ut

Theorem 8. LetM be a system with a finite state space and
satisfying Separation, BoundedInvis, DetermInvis, NonBlock-
Invis, and PureVis. AssumeM runs the lockset′ algorithm.
(a) IfM’s state space is acyclic,M violates LD′ iff IF-SSS
finds a violation of LD′. (b)M violates LD′ iff IF-SSScyc

finds a violation of LD′.

Proof: See Appendix. ut

Theorem 9. Let M be a system with a finite state space
and satisfying Separation, InitVis, BoundedInvis, DetermIn-
vis, NonBlockInvis, and PureVis. AssumeM runs the lockset′

algorithm.M violates LD′ iff C(M) violates LD′.

Proof: (⇐): Letσ be an execution ofC(M) that violates LD′.
Expanding each transition inσ into the sequence of transi-
tions ofM from which it is composed yields an execution of
M that violates LD′.

(⇒): Theorem 8(b) implies that IF-SSScyc explores an
executionσ of M that violates LD′. Composing sequences
of transitions ofM in σ to form transitions ofC(M) yields
an execution ofC(M) that violates LD′. Note thatC(M) is
not expected to satisfy PureVis.ut

The stricter constraints on initialization in LD′ allow the
definition ofpendInvisOps to be tightened. LetpendInvisOps ′

denote that variant ofpendInvisOps. Let Algorithm 2-LD′

denote the variant of Algorithm 2-LD that usespendInvisOps ′.

Theorem 10. LetM be a system that runs the lockset′ algo-
rithm. In every states ofM, Algorithm 2-LD′ returns a setP
such that eitherP is persistent ins or P contains a transition
t such thatt violates LD′ in s.

Proof: pendInvisOps ′ is the only part of Algorithm 2-LD′

that depends on LD′. pendInvisOps ′(s, θ) is invoked only
for threadsθ that have already been added toT . Suppose for
all threadsθ in T , all transitions inenabled(s, θ) satisfy LD′

in s. Then all invocations ofpendInvisOps ′ in this invocation
of Algorithm 2-LD′ return accurate results, so Theorem 6 im-
plies thatP is persistent ins. Suppose there exists a threadθ
in T such that some transitiont in enabled(s, θ) violates LD′

in s. ThenP containst, andt violates LD′ in s. ut
The results in Theorems 8–10 can easily be generalized

to reflect that, if static analysis ensures that accesses to some
objects inOld satisfy LD′, then it suffices to run the lockset′

algorithm only for the other objects inOld .
LetM be a system with a finite and acyclic state space

and satisfying Separation, InitVis, BoundedInvis, DetermIn-
vis, NonBlockInvis and PureVis. AssumeM runs the lockset′

algorithm. Consider applying IF-SSS with Algorithm 2-LD′

to M. Theorems 8(a) and 10 imply that if no violation of
LD′ is found, thenM satisfies LD′ and hence LD. Theorem
3 implies that all reachable deadlocks and control points of
M were explored.

Consider applying SSS with Algorithm 2-LD′ to C(M).
Theorems 1(a) and 10 imply that if no violation of LD′ is
found, thenC(M) satisfies LD′. Theorem 9 implies thatM
satisfies LD′ and hence LD. Theorems 1(a) and 5 together
imply that all reachable deadlocks and control points ofM
were explored.

Consider applying Godefroid’s traditional selective search
with persistent sets and sleep sets [8, Figure 6.2] toC(M),
whereM is as above except without the acyclicity require-
ment. By the same reasoning as in the previous paragraph,
except with references to Theorem 1(a) replaced with refer-
ences to [8, Theorem 6.12], if no violation of LD′ is found,
thenC(M) satisfies LD′ and all reachable deadlocks and con-
trol points ofM were explored.

8 Implementation of State-less Search with Lock-Based
Reduction

JavaChecker is a prototype implementation of state-less search
for multi-threaded single-process Java programs. It incorpo-
rates our lock-based reduction and has been applied to some
simple programs (e.g., dining philosophers). It currently has
several limitations,e.g., array accesses are not intercepted,
and Algorithm 2-LD′ and support for communication objects
and RMI are unimplemented.

JavaChecker transforms Java class files (source code is
not needed) by inserting calls to a scheduler at visible opera-
tions and inserting calls to the lockset′ algorithm at accesses
to shared objects. The scheduler, written in Java, performs
state-less selective search. Markus Dahm’s Byte Code Engi-
neering Library, available from bcel.sourceforge.net, greatly
facilitated the implementation.

The scheduler runs in a separate thread. The scheduler
gives a selected user thread permission to execute (by un-
blocking it) and then blocks itself. The selected user thread
executes until it tries to perform a visible operation, at which
point it unblocks the scheduler and then blocks itself (waiting
for permission to continue). Thus, roughly speaking, only one
thread is runnable at a time, so the JVM’s built-in scheduler
does not affect the execution.

JavaChecker exploits annotations indicating which objects
are (possibly) shared. We use allocation sites as static names
for (equivalence classes of) objects [3]. Specifically, object
creation instructions (namely, the new instruction and invo-
cations of java.lang.Class.newInstance and java.lang.Object.-
clone) may be annotated as creating unshared objects, ac-
cesses to which are not intercepted, or as creating tentatively
unshared objects, accesses to which are intercepted only to
verify that the objects are indeed unshared. Objects created
by unannotated instructions are potentially shared; accesses
to them are intercepted to check LD′ and, if necessary, are
recorded to determine dependencies. Currently, annotations
are provided by the user; escape analysis, such as [20], could
provide some of them automatically.
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8.1 Granularity

By default, classes havefield granularity, i.e., the intercepted
operations are field accesses. For some classes, it is desir-
able to consider execution of a method to be one operation
(or, for some blocking methods, a small number of opera-
tions) for purposes of checking LD′ and computing depen-
dencies. We say that such classes havemethod granularity.
For example, with semaphores, it is desirable for operations
seen by the scheduler to be up (also called V or signal) and
down (also called P or wait), not field accesses. Method gran-
ularity reduces overhead and allows use of class-specific de-
pendency relations. User-supplied annotations indicate which
classes have method granularity. Currently, method granular-
ity is supported only for instance methods; static fields are
always handled with field granularity.

When methods are considered as operations, the bound-
aries of the operation must be defined carefully, so that de-
pendencies are defined and computed appropriately. In our
framework, by default, an invocationi of an instance method
of a class with method granularity represents accesses tothis
performed byi but not accesses tothis performed by meth-
ods invoked withini; furthermore, it does not represent ac-
cesses to objects other thanthis or accesses to static fields.
Accesses byi to other objects are intercepted based on the
granularities of the classes of those objects. Thus, indicating
that a classC has method granularity determines only how
accesses to instances ofC are intercepted. For a classC with
method granularity, we require: (G1) all instance methods of
C (including inherited methods) perform no visible opera-
tions, except that the methods may be synchronized.

Ideally, for a classC with method granularity, all accesses
to instances ofC are intercepted at the level of method invo-
cations. If an instanceo of C has fields that are accessed by
methods invoked on objects other thano, those field accesses
would also need to be recorded. Therefore, for a classC with
method granularity, we also require: (G2) all instance fields
(including inherited fields) are private or final (accesses to fi-
nal fields are not intercepted) and (G3) instance methods of
C do not directly access fields of other instances ofC (i.e.,
instances other thanthis ). If (G3) turns out to be undesir-
ably restrictive (e.g., for classes that use such accesses to im-
plement comparisons, such as equals), we can deviate from
this ideal and explicitly record such field accesses; a simple
static analysis can identify getfield and putfield instructions
that possibly access instances other thanthis .

8.2 Synchronization Operations

Synchronized methods are intercepted using automatically
generated wrapper classes. Unshared objects are instances of
the original classC; shared objects are instances ofC ’s wrap-
per class, which extendsC. For each synchronized methodm
of C, the wrapper class contains a wrapper method that over-
ridesm. The wrapper method yields control to the scheduler
and then waits for permission to proceed. When the scheduler

gives it ownership of the appropriate lock and lets it continue,
it invokes super.m and then releases the lock.

An “invokevirtual C.m” instruction requires no explicit
modification; the JVM’s built-in method lookup mechanism
efficiently determines whether the target object is shared (i.e.,
whether it is an instance of the original class or the wrapper
class) and invokes the appropriate method. For method invo-
cations on unshared instances, the overhead is negligible.

An obvious alternative approach, which we call Inline, is
to insert near each invocation instruction some bytecode that
explicitly tests whether the instance is shared and, if so, per-
forms the steps described above. With Inline, the overhead is
non-negligible even for unshared instances. Another benefit
of using wrappers to intercept invokevirtual is that, when gen-
erating a wrapper, it is easy to determine whether the method
being wrapped is synchronized. With Inline, if the instance is
shared, the inserted bytecode would need to explicitly check
the class of the instance, because a synchronized method can
override an unsynchronized method, andvice versa. Also,
wrappers are convenient for intercepting RMIs on the server
side. Wrappers forrun methods of classes that implement
Runnable or extend Thread are special (we assume such meth-
ods are not invoked directly by the application): their first ac-
tion is to block, waiting for permission to proceed.

The other visible synchronization operations are intercepted
using Inline; this includes “invokespecialC.m”, monitorenter,
and invocations of java.lang.Object.wait. The bytecode in-
serted near these instructions must efficiently determine whether
the target object is shared. Inserting a boolean field in java.lang.-
Object would be a nice solution if it didn’t give the JVM (in
Sun JDK 1.2.1) a heart attack. Our transformation inserts in
java.lang.Object a boolean-valued method, called isShared,
whose body is “return false”. This method is overridden in
all wrapper classes by a method whose body is “return true”.
This works fine with Sun JDK 1.2, but causes the HotSpot
VM in JDK 1.3 and JDK 1.4 to die. More portable but slower
alternatives are to look up the object in a hash table or use
java.lang.Object.getClass to check whether the object is an
instance of a wrapper class.

Invocations of notify and notifyAll are intercepted, so that
our system can keep track of which threads, if any, are cur-
rently waiting on an object; the JVM provides no direct way
to determine this. Similarly, releases are intercepted, and our
system keeps track of which thread, if any, owns an object’s
lock, because the JVM provides no direct way to determine
this. Interception of monitorexit instructions is easy. Inter-
ception of the implicit release performed when a synchro-
nized method returns is slightly tricky; in particular, if a syn-
chronized method invoked with invokespecial throws an ex-
ception, the inserted code must catch this exception, record
the release, and then re-throw the exception from within the
scopes of the same exception handlers as the original invoke-
special instruction.

Our system maintains its own copy of all synchroniza-
tion-related state, so executing the JVM’s built-in synchro-
nization operations would be redundant. Those operations are
removed by the transformation.
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8.3 Method Invocations and Field Accesses

Methods of classes with method granularity are intercepted
in a similar way as synchronized methods. In short, invoke-
virtual instructions are intercepted using wrapper methods
that call the lockset′ algorithm, record the operation (if nec-
essary), and invoke super.m. Invokespecial instructions and
field accesses (and, in principle, array accesses, though this is
unimplemented) are intercepted using the Inline approach.

The lockset′ algorithm requires associating a candidate
lock set,etc., with each potentially shared storage location.
We maintain this information for each object and each static
field, by inserting an instance field in each wrapper class and
inserting appropriate static fields in each class. The prototype
currently does not maintain this information separately for
each instance field, so a violation of LD′ is reported if differ-
ent locks protect different fields of an object.

java.util.Random is treated specially. Instances of it gen-
erate pseudo-random sequences of numbers. Instances that
are created with a specified seed behave the same way in the
original and transformed program. Instances created without
a specified seed behave differently. In the original program,
they are implicitly seeded from the real-time clock. In the
transformed program, they are non-deterministic: the sched-
uler explores transitions corresponding to each possible re-
turn value. This is similar to VSToss in VeriSoft [9].

8.4 Undo

undo(s, t), as used in SSS or IF-SSS, can be implemented
in three ways: reverse computation, reset+replay, and check-
pointing. Reverse computation is efficient but difficult to im-
plement. JavaChecker uses reset+replay (like VeriSoft), mainly
because it is relatively easy to implement. Specifically, undo
is implemented by resetting the system to its initial state and
replaying the sequence of transitions instack (see Figure
2). ExitBlock [2] and Java PathFinder [1] use checkpointing,
which requires a custom JVM but is more efficient than re-
set+replay for systems with long executions.

9 Implementation of Lock-Based Reduction in Java
PathFinder

Java PathFinder (JPF) [1] is based on a custom JVM, written
in Java, that supports traditional selective search, as in Spin
[13]. We implemented the lock-based reduction in JPF by
(1) modifying the existing JPF implementation of the lock-
set algorithm to use a different notion of initialization, and
(2) modifying the scheduler so that context switches are al-
lowed only in visible states. The user supplies two files, .com-
mun and .unshared, that classify objects intoOunsh ,Old , and
Ocom . Each file contains a list of class names and object
creation instructions. Instances of those classes and objects
created by those instructions are in the corresponding cate-
gory. The classification based on object creation site takes

precedence in case of conflicts. Objects not explicitly classi-
fied by .commun or .unshared are inOld by default. Correct-
ness of the classification is fully checked during state-space
exploration, using the modified lockset algorithm for objects
in Old , and using a straightforward algorithm for objects in
Ounsh .

Locksets are stored in a hash table, so at most one copy
of each distinct lockset is stored, as in Eraser [17]. We plan to
implement the memoization optimization described in [17],
which caches the results of set intersection operations.

10 Experimental Results

We report two kinds of experiments. The first compares the
execution speeds of state-less search in JavaChecker and tra-
ditional search in JPF. The second measures the benefit of
the lock-based reduction, using the JPF implementation. The
two kinds of experiments used Sun JDK 1.2.2 and Sun JDK
1.3.0, respectively. All experiments were done with a Sun
UltraSPARC-II 300 MHz CPU. One should not generalize
too much from the results of these few experiments. More
experiments with a variety of larger programs are needed.

To compare the execution speeds of JavaChecker and JPF,
we ran the usual deadlock-prone dining philosophers pro-
gram in both systems. Due to differences in the granularity
used by the two implementations for some system classes,
the two tools do not explore exactly the same number of in-
terleavings with multiple philosophers, so we performed this
experiment with a single philosopher that executes its main
loop (acquire both chopsticks, eat, release both chopsticks)
5,000 times. Context switches consume a small fraction of
the running time, so the relative speed of the two implemen-
tations is about the same with any number of philosophers.
The running times are 563.0 sec for JPF, and 5.79 sec for
JavaChecker. Thus, JavaChecker’s execution speed is about
two orders of magnitude faster than JPF’s. The reasons are
simple. JPF incurs the cost of hashing and storing states and
has interpretive overhead for execution of every bytecode in-
struction. JavaChecker does not hash or store states, and it
incurs no overhead for accesses to unshared variables (e.g.,
bytecodes that manipulate the operand stack) and relatively
little overhead (only the cost of recording invisible opera-
tions) for accesses to unshared objects. However, in overall
performance on non-trivial systems, this constant factor in fa-
vor of JavaChecker can very easily be outweighed by the cost
of replay (which can be arbitrarily large, depending on the
length of executions) and the cost of redundant exploration
of states (which can be exponential in the number of distinct
visited states, depending on the structure of the computation
and the effectiveness of the partial-order reductions). Con-
sequently, state-less search is useful in practice mainly for
systems whose state is not easily captured and stored,e.g.,
systems written in a combination of programming languages.

To measure the benefit of the reduction, we used two pro-
grams supplied by the developers of JPF. HaltException, de-
scribed in [12], involves a producer thread and a consumer
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thread that exchange data itemsvia a shared FIFO buffer.
In our experiments, the threads exchange 10 items, and the
buffer has capacity 6. Clean, which is roughly the same as [1,
Figure 1], is based on code in NASA’s Remote Agent and in-
volves two threads that use bounded counters, synchronized
methods, wait, and notifyAll. The measurements appear in
Figure 4. In the Atomicity column, “bytecode” and “line”
mean that a transition corresponds to execution of one byte-
code instruction and one line of source code, respectively;
“reduced” means that the lock-based reduction is used. The
Lockset column indicates whether the (modified) lockset al-
gorithm was turned on.

For HaltException, the reduction (with lockset on) re-
duces memory usage by a factor of 67, and running time by
a factor of 2.6, compared to bytecode atomicity with lockset
off. For Clean, the reduction (with lockset on) reduces mem-
ory usage by a factor of 28.2, and running time by a factor of
6.7, compared to bytecode atomicity with lockset off. If static
analysis can show that objects inOld are lock-protected, then
running the reduction with lockset off would be more appro-
priate. For both programs, if the user is interested in verifying
absence of race conditions, and static analysis cannot verify
this, then comparing the reduction with lockset on to byte-
code atomicity with lockset on would be more appropriate.

HaltException and Clean are little more than synchro-
nization skeletons. They perform few local computations. This
is an unfavorable case for the reduction, which is more bene-
ficial for programs that perform more local computation.

For both programs, the reduction in the number of visited
states is larger than the reduction in memory, because JPF
uses substructure sharing, so storing a new state that differs
only slightly from the previous state requires only a small
additional amount of memory.

A performance comparison of lock-based reduction and
source-line atomicity has limited significance, because the
former is a sound reduction (relative to bytecode atomicity),
and the latter is not.

The lockset algorithm’s data structures (described in Sec-
tion 6) are part of the state, so turning on the lockset algo-
rithm can increase the number of visited states as well as the
amount of memory used. For Clean with bytecode atomicity,
turning on the lockset algorithm decreases the final memory
usage (reported in the table) by about 14%; we are investi-
gating this anomaly. The time overhead of the lockset algo-
rithm is significant but can be decreased using memoization,
as mentioned in Section 9.
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Han Li implemented the reduction in JPF, with help and advice
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his comments about partial-order methods, and Ernie Cohen for his
comments about reduction theorems.

Atomicity Lockset States RAM Time
bytecode off 201,688 56.1 245.3
bytecode on 323,854 92.3 1729.9
line off 8,266 2.8 23.0
line on 11,457 3.9 54.6
reduced off 788 0.78 19.7
reduced on 788 0.83 92.8

Atomicity Lockset States RAM Time
bytecode off 58,370 15.9 77.9
bytecode on 58,370 13.7 167.0
line off 8,365 2.5 23.9
line on 8,365 2.5 32.2
reduced off 209 0.55 10.3
reduced on 209 0.56 11.6

Fig. 4.Experimental results for HaltException (top) and Clean (bottom). The
units for memory and running time are MB and seconds, respectively. Mem-
ory is “Memory used after gc” (garbage collection), as reported by JPF. Run-
ning time is user+system time. For measurements with bytecode and line
atomicity, we used unmodified JPF version 0.9 from NASA.
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Appendix

Proof of Theorem 2: Let σ be a sequence of transitions such

that s0
σ(0)→ s1

σ(1)→ s2 · · ·
σ(n−1)→ sn

σ(n)→ sn+1 with s0 =
s and (∀i ∈ [0..n] : σ(i) 6∈ enabled(s, θ)). It suffices to
show thatσ(n) is independent insn with all transitionst =
〈S,C,G, F 〉 in enabled(s, θ). By hypothesis,enabled(s, θ)
contains an invisible transition, so Separation implies thatt is
invisible. Note thats(θ) = S.

We first prove by induction thatσ does not contain tran-
sitions of θ. Base case:σ(0) is executed from states, and
σ(0) 6∈ enabled(s, θ), soσ(0) is not a transition ofθ. Step
case: The induction hypothesis is thatσ(0..i) does not con-
tain transitions ofθ, and we need to show thatσ(i + 1) is
not a transition ofθ. We assume thatσ(i + 1) is a transition
td = 〈Sd, Gd, Cd, Fd〉 of θ and show a contradiction. By hy-
pothesis,σ(i+ 1) 6∈ enabled(s, θ), i.e., td is disabled ins, so
to reach a contradiction, it suffices to show thatσ(0..i) does
not cause any transition ofθ that is disabled ins to become
enabled insi+1. By the induction hypothesis,σ(0..i) does
not contain transitions ofθ, so it does not changeθ’s current
control point, soSd = S. By hypothesis,enabled(s, θ) con-
tains an invisible transition. The starting control point of that
transition must beS. Thus, Separation implies thattd is invis-
ible. td can become enabled byσ(0..i) only through updates
to objects accessed bytd. td is invisible, so it does not access
communication objects or perform acquire or wait on syn-
chronization objects. All other operations on synchronization
objects are non-blocking and therefore do not affect whether
td is enabled, even iftd uses some of those operations. By
hypothesis,σ(0..i) andtd are transitions of different threads,

so accesses byσ(0..i) to unshared objects cannot enabletd.
Finally, consider accesses by a transitionσ(j) to an objecto
in Old , where0 ≤ j ≤ i.
case: td’s guard does not accesso in si+1. Thenσ(j)’s access

to o does not affecttd’s enabledness.
case: td’s guard accesseso in si+1. SinceSd = S, td’s guard

also accesseso in s. thread(σ(j)) 6= θ, so o becomes
shared at or beforesj , soσ(j) is not part of initialization
of o, so LD-RO or LD-lock holds foro at sj and there-
after.
case:LD-RO holds foro. σ(j) is not part of initialization

of o, soσ(j) does not updateo, soσ(j)’s access too
cannot affecttd’s enabledness.

case:LD-lock holds foro. This case is impossible. Let
o1 be the synchronization object whose lock protects
accesses too. σ(j) is not part of initialization ofo, so
LD-lock impliesthread(σ(j)) ownso1’s lock in state
sj , soθ does not owno1’s lock in sj . By the induc-
tion hypothesis,σ(j..i) does not contain transitions of
θ, soθ does not owno1’s lock in si+1, so LD-lock im-
plies thattd (including td’s guard) does not accesso
in si+1, a contradiction.

This completes the proof thatσ does not contain transitions
of θ.

Supposeσ(n) accesses an objecto in sn; thus,σ(n) con-
tains an operationopn on o. We show that the presence of
this operation inσ(n) does not cause dependence betweent
andσ(n) in sn. If t does not accesso in sn, this is obvious.
Supposet accesseso in sn; thus,t contains an operationop
ono.

case:o ∈ Ounsh . This case is impossible, becauseσ(n) and
t are transitions of different threads and both accesso.

case:o ∈ Osyn . t is invisible, soop is release, notify, or
notifyAll.
case:θ ownso’s lock insn. As shown above,thread(σ(n))

is notθ, sothread(σ(n)) does not owno’s lock in sn.
σ(n) is enabled insn, so opn is not acquire. Sync-
WithoutLock-1 implies thatopn does not modify the
state ofo, so opn does not affect execution ofop.
op cannot causethread(σ(n)) to hold o’s lock, so
SyncWithoutLock-2 implies that execution ofopn is
unaffected by execution ofop.

case:θ does not owno’s lock in sn. SyncWithoutLock-1
implies thatop does not modify the state ofo, soop
does not affect execution ofopn. opn cannot causeθ
to holdo’s lock, so SyncWithoutLock-2 implies that
execution ofop is unaffected by execution ofopn.

case:o ∈ Old . By hypothesis,θ andthread(σ(n)) both ac-
cesso in sn, andθ 6= thread(σ(n)), soo is shared insn,
soσ(n) andt are not part of initialization ofo.
case:LD-RO holds foro. LD-RO implies thatσ(n) andt

do not updateo in sn, soopn andop are independent
in sn.

case:LD-lock holds foro. This case is impossible. Let
o1 be the synchronization object whose lock protects
accesses too. By hypothesis,σ(n) andt both access
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o in sn, soθ andthread(σ(n)) both owno1’s lock in
sn, a contradiction, becauseθ 6= thread(σ(n)).

case:o ∈ Ocom . This case is impossible, because all oper-
ations on a communication object are visible, andt con-
tains an operation ono and is invisible. ut

Proof of Theorem 3: (a) This follows directly from Theo-
rems 1 and 2, by comparing an execution of IF-SSS with an
execution of SSS using a persistent set function PS that, for
invisible states, returns a singleton set containing an invis-
ible transition; NonBlockInvis (defined in Section 3.6) im-
plies that IF-SSS applies PS to visible states only, so there is
no need to restrict the behavior of PS for visible states. The
only significant difference between the two executions is in
the calculation of sleep sets. SSS inserts invisible transitions
in sleep sets, and IF-SSS does not, but using smaller sleep
sets is clearly safe. Separation, DetermInvis, and the above
hypothesis about PS for invisible states together imply that
|T | = 1 wheneverT contains an invisible transition, so the
argument of DFS never contains invisible transitions. Thus,
inserting invisible transitions in sleep sets (in the last line of
the for loop) does not reduce the number of transitions ex-
plored by SSS.

IF-SSS does not explicitly check whether transitions in
sleep are independent with invisible transitions executed by
execInvis. This is safe because the former and the latter are
always independent, because (1) ifenabled(s) contains an
invisible transitiont of a threadθ, then Separation and Deter-
mInvis imply thatt is the only transition ofθ in enabled(s),
and Theorem 2 implies thatt is independent inswith all tran-
sitions inenabled(s) \ enabled(s, θ); (2) in IF-SSS, when an
invisible transition is executed,sleep ⊆ enabled(curState)
(similarly, in SSS,sleep ⊆ enabled(curState) whenexec is
called).

(b) BoundedInvis implies that the limited use of persis-
tent sets in IF-SSScyc does not introduce the ignoring prob-
lem, because a call toexecInvis defers transitions only until
the next visible transition is explored, which occurs within a
bounded number of steps.ut
Proof of Theorem 4: Let s be a visible state. We show thats
is reachable inM iff s is reachable inC(M).

(⇐): This direction follows immediately from the obser-
vation that for every executionσ of C(M), expanding each
transitiont′ in σ′ into the sequence of transitions ofM from
which t′ is composed yields an execution ofM.

(⇒): Let s be a reachable visible state ofM; thus, there

is an executionσ ofM such thats0
σ(0)→ s1

σ(1)→ s2 · · ·
σ(n−1)→

sn
σ(n)→ sn+1 with s0 = sinit andsn+1 = s.

Let 〈t0, t1, . . . , tm〉 be the subsequence of invisible tran-
sitions inσ. We re-arrangeσ using the following procedure,
which moves the invisible transitions (if any) ofθ that appear
between thei’th and(i + 1)’th visible transitions ofθ back-
wards so that those invisible transitions form a contiguous
subsequence ofσ starting immediately after thei’th visible
transition ofθ.

for i = 0 tom
while (the transitiont immediately precedingti

in σ hasthread(t) 6= thread(ti))
swapti andt in σ;

We show that each swap preserves the fact thatσ is an exe-

cution ofM. Suppose a fragments
t→ s′

ti→ of σ is modified
by a swap,i.e., t andti get swapped. Note thatthread(t) 6=
thread(ti). It suffices to show thatti is enabled ins, and
that t and ti are independent ins. For the former, sinceti
is enabled ins′, it suffices to show thatt cannot changeti’s
status from disabled to enabled.t and ti are transitions of
different threads, so accesses byt to unshared objects can-
not enableti. ti is invisible and hence cannot access commu-
nication objects or perform acquire or wait on synchroniza-
tion objects. The other operations on synchronization objects
are non-blocking, so even ifti uses them, they do not affect
whetherti is enabled. Supposeti’s guard contains some op-
erationop on some objecto ∈ Old . We prove by contradic-
tion thatt’s command does not updateo, which implies thatt
does not affectti’s enabledness viaop. Supposet’s command
updateso. t is enabled ins, sot accesseso in s. ti’s guard ac-
cesseso, andti is pending ins (becauseti is pending ins′,
andt does not changethread(ti)’s control location), soti ac-
cesseso in s. Thus, neithert nor ti is part of initialization of
o in σ.

case:LD-RO holds foro. LD-RO implies thatt does not up-
dateo, a contradiction.

case:LD-lock holds foro. Let o1 be the synchronization ob-
ject whose lock protects accesses too. LD-lock implies
that thread(t) and thread(ti) both owno1’s lock in s,
and thread(ti) ownso1’s lock in s. This is impossible,
becausethread(t) 6= thread(ti).

This completes the proof thatti is enabled ins.
ti is invisible, so Theorem 2 impliesenabled(s, thread(ti))

is persistent ins. By hypothesis,thread(t) 6= thread(ti), so
t 6∈ enabled(s, thread(ti)). Sincet ∈ enabled(s), the defi-
nition of persistent set implies thatt andti are independent
in s. This completes the proof that each swap yields an ex-
ecution ofM. In the remainder of this proof,σ denotes the
re-arranged execution.

Let j + 1 be the number of visible transitions inσ, and
let v ∈ [0..j] → [0..n] be such that〈σ(v(0)), σ(v(1)), . . . ,
σ(v(m))〉 is the subsequence of visible transitions inσ. InitVis
impliesv(0) = 0. Letwi = σ(v(i)..v(i+1)−1). Lets′i+1 de-
note the state after execution ofwi in σ. We show thats′i+1 is
visible.wi changes the control point only ofthread(wi(0)),
so it suffices to show thats′i+1(thread(wi(0))) is visible.

case:wi contains the last transition ofthread(wi(0)) in σ.
Then visibility ofs′i+1 follows from visibility of s.

case:wi does not contain the last transition ofthread(wi(0))
in σ. The next transition ofthread(wi(0)) afterwi in σ
is the first transition in somewi1 and hence is visible, so
Separation implies thats′i+1(thread(wi(0))) is visible.

By definition ofC(M), for eachwi, C(M) has a transition
that is the sequential composition of the transitions inwi; let
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σ′(i) equal that transition. Thus,s0
σ′(0)→ s′1

σ′(1)→ s′2 · · ·
σ′(j−1)→

s′j
σ′(j)→ s′j+1 ands′j+1 = s, sos is reachable inC(M). ut

Proof of Theorem 5: NonBlockInvis (defined in Section 3.6)
implies that all deadlocks ofM are visible, so Theorem 4 im-
plies that thatM andC(M) have the same reachable dead-
locks.

For a control pointS, we show thatS is reachable inM
iff S is reachable inC(M). The proof of the backward direc-
tion (⇐) is the same as for Theorem 4. Consider the forward
direction (⇒). By hypothesis,S is reachable inM, so there
exists an executionσ0 of M that ends in a state containing
S. NonBlockInvis implies thatσ0 can be extended to form
an executionσ of M that ends in a visible state. The con-
struction in the proof of the forward direction of Theorem 4
shows thatσ can be re-arranged by swapping transitions into
an executionσ′ of C(M). σ andσ′ contain the same control
points, soS is reachable inC(M). ut
Proof of Theorem 7: Some observations about accesses: (O1)
in all states in which a transitiont is enabled,t accesses the
same set of objects, namely, those used in its guard or com-
mand; (O2) in all states in which a transitiont is pending
and disabled,t accesses the same set of objects, namely those
used in its guard. Some observations about LD′: (O3) a tran-
sition t that is pending in a states can violate LD′ in s even if
t is disabled ins; (O4) after initialization, whether accesses to
an object satisfy LD′-RO is independent of the order in which
the accesses occur (what matters is whether the set contains
a non-read-only operation); (O5) after initialization, whether
accesses to an object satisfy LD′-lock is independent of the
order of the accesses, because set intersection is commutative
and associative.

Let s, θ, andσ0 be as in the statement of this theorem.
Let σ andt be as in the proof of Therorem 2. Note thatt ∈
enabled(s, θ). Consider cases corresponding to the places in
which a violation of LD′ could affect the proof of Theorem 2

case 1:for all j ∈ [0..|σ|−1], σ0 ·σ(0..j) andσ0 ·σ(0..j−1); t
both satisfy LD′. In this case, the proof of Theorem 2 goes
through, so disjunct (a) in the statement of the theorem
holds.

case 2:there existsj ∈ [0..|σ|−1] such thatσ0 · σ(0..j) or
σ0 ·σ(0..j−1); t violates LD′. Let j denote the least such
j. The proof of Theorem 2 goes through forσ(0..j−1);
specifically, fori < j, thread(σ(i)) 6= θ andt is indepen-
dent withσ(i) in si. Independence oft with transitions in
σ(0..j−1) and the definitions oft andσ together imply
that〈t〉 · σ(0..j−1) can be executed froms, andt can be
executed fromsj .
case 2.1:σ0 · σ(0..j− 1); t violates LD′. The violation

occurs whent accesses some objecto in sj .
case 2.1.1:σ(0..j−1) contains an initialization transi-

tion σ(i) for o. This implieso is in the domain of
initThread . The definition ofj implies thatσ0 ·
σ(0..i) does not violate LD′, sothread(σ(i)) =
initThread(o). LD′ requires thatthread(σ(i))
be the first thread to accesso, so σ0; t violates
LD′, becausethread(σ(i)) 6= θ, and becauset

is enabled ins and hence accesses ins all of the
objects that it accesses insj . Thus, disjunct (b1)
holds. (Forj > 0, we could conclude that this
case is impossible, since it contradicts the defini-
tion of j.)

case 2.1.2:σ(0..j−1) does not contain an initializa-
tion transition foro. Observations O1–O5 and
invisibility of t imply that σ0 · 〈t〉 · σ(0..j−1)
also violates LD′, since the same set of accesses
to o with the same sets of held locks occur in
σ0 ·σ(0..j−1)·〈t〉 andσ0 ·〈t〉·σ(0..j−1), because
thread(σ(i)) 6= θ for i < j. The violation might
occur at any point in〈t〉 · σ(0..j−1); depending
on when it occurs, disjunct (b1) or disjunct (b2)
holds.

case 2.2:σ0 · σ(0..j− 1); t satisfies LD′. Thus, inσ0 ·
σ(0..j), some access byσ(j)’s guard or command vi-
olates LD′.
case 2.2.1:afterσ0 ·σ(0..j−1), some access byσ(j)’s

guard violates LD′. Observations O1–O5 and in-
visibility of t imply thatσ0 · 〈t〉 ·σ(0..j−1);σ(j)
also violates LD′, even thoughσ(j) might be dis-
abled afterσ0 ·〈t〉·σ(0..j−1). Thus, disjunct (b2)
holds.

case 2.2.2:afterσ0 ·σ(0..j−1), all accesses byσ(j)’s
guard satisfy LD′. Thus, inσ0 ·σ(0..j), some ac-
cess byσ(j)’s command violates LD′. As in the
proof of Theorem 2,t does not affectσ(j)’s en-
abledness (this follows from the hypotheses of
cases 2.2 and 2.2.2), soσ(j) is enabled afterσ0 ·
〈t〉 · σ(0..j−1). Observations O1–O5 and invisi-
bility of t imply thatσ0 · 〈t〉 ·σ(0..j) also violates
LD′, so disjunct (b2) holds. ut

Proof of Theorem 8: (a) The proof of the reverse direction
(⇐) of the “iff” is straightforward. For the forward direction
(⇒), we supposeM violates LD′ and show that IF-SSS finds
a violation. The proof involves an invariant about states in the
stack of the depth-first search. To express the invariant con-
veniently, we introduce a new local variablev of procedure
DFS, and insert “v := curState” before the assignment toT .
Also, we assume there is a global variableviolatedthat is ini-
tially false and is set totrue by the lockset algorithm when a
violation of LD′ is encountered. LetcallStackdenote the call
stack, ignoring frames for functions other than DFS. Letf.x
denote the value of a local variablex in a stack framef . Let
violR(s) denote that a violation of LD′ is reachable froms;
because the system is running the lockset′ algorithm, the state
contains the lockset′ algorithms data structures, so this prop-
erty is a function of the states, independent of the execution

that led tos. Let s
t→eI denote evaluation oft’s guard ins

and, if t is enabled ins, execution oft’s command, leading
to a states′, followed byexecInvis(s′, thread(t)), leading to

a states′′; if t is enabled ins, then we writes
t→eI s

′′. It is
sensible to ask whethers

t→eI violates LD′, independent of
the execution that led tos, for the same reasons. The invariant
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I is

∨ violated
∨ (∀f ∈ callStack : violR(f.v)⇒ (∃t ∈ f.T, s′ ∈ State :

(f.v t→eI violates LD′) ∨ (f.v t→eI s
′ ∧ violR(s′))))

To avoid clutter, this formula relies on the pretense that cre-
ation of a stack framef for DFS and the assignments tof.v
andf.T occur atomically.

By hypothesis,M runs the lockset′ algorithm, so viola-
tion of LD′ corresponds to reachability of a control point.
Theorem 1(a) can be generalized to show that selective search
starting from any states explores all control points reachable
from s. This implies that if persistent sets and sleep sets are
computed correctly, thenI is preserved, and a violation of
LD′ is found.

Consider a stack framef , a (visible) transitiontv ∈ f.T ,
and a (invisible) transitionti executed in a statesi by the call
to execInvis after execution oftv from f.v . Letσ0 be the se-
quence of transitions that led to this visit tosi. Violations of
LD′ can potentially cause two problems whenti is explored:
(P1){ti} might not be persistent insi; (P2) ti might be de-
pendent insi with a transitiont′ in sleep, in which caset′ in-
correctly remains insleep. We show that these potential prob-
lems do not falsifyI. Specifically, we suppose thatviolR(si)
holds and show that one of the disjuncts in the last line ofI
holds.

(P1) Suppose{ti} is not persistent insi. Theorem 7, Sep-
aration (defined in Section 3.6), and DetermInvis imply that

eitherσ0; ti violates LD′, or si
ti→ s′ ∧ violR(s′). The for-

mer impliess
tv→eI violates LD′, so the first disjunct in the

last line ofI holds. The latter, Separation, and DetermInvis

imply that eithers
tv→eI violates LD′ or there existss′ such

that s
tv→eI s′ andviolR(s′), so one of the disjuncts in the

last line ofI holds.
(P2) Separation and DetermInvis imply that all transitions

in sleep are visible, sot′ is visible, so PureVis implies that
t′ does not access any object inOld . Thus, a LD′-violating
access byti to an object inOld cannot cause dependency
betweent andt′. Thus, such errors in computing sleep sets
are impossible.

Now we show thatI implies that a violation is found.
SinceM violates LD′, the disjunct(∃t ∈ f.T ) of I holds for
the first frame for DFS. Consider the execution defined by
repeatedly following the transitiont that witnesses the exis-
tential inI. The state space is finite and acyclic, so the second
disjunct in the existential cannot hold indefinitely, so eventu-
ally the first disjunct in the existential holds, as desired.

(b) The proof of the reverse direction (⇐) of the “iff” is
straightforward. For the forward direction (⇒), we suppose
M violates LD′, and show that IF-SSScyc finds a violation.
The proof thatI is an invariant is the same as in part (a), ex-
cept that we refer to Theorem 1(b) instead of Theorem 1(a).
The proof thatI implies a violation is found is the same as
in part (a), except for two points. First, we consider a call
to SSSbnd with a depth bound large enough for the search to
reach a violation of LD′. Second, the presence of cycles in the

state space means that it is possible for the second disjunct in
the existential inI to hold along an infinite path. We need to
show that the search does not get stuck in a cycle and miss
violations outside the cycle. This holds, because BoundedIn-
vis implies that every cycle contains a visible state, and in a
visible state, even if LD′ is violated, IF-SSScyc explores all
enabled transitions except those in the sleep set. (Recall that
sleep sets are computed correctly, even if LD′ is violated.)
ut


