Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Model-Checking Multi-Threaded Distributed Java Programs

Scott D. Stollerr
Computer Science Dept., Indiana University, Bloomington, IN 47405-7104 USA. estaller@cs.sunysb.edu

Received: date / Revised version: date

Abstract. State-space exploration is a powerful techniqueThis approach is attractive because it is fully automatic. In
for verification of concurrent software systems. Applying it practice, for most software systems, the state space is in-
to software systems written in standard programming lantractably large. This is especially true for programs written
guages requires powerful abstractions (of data) and redudn standard programming languages, as opposed to simplified
tions (of atomicity), which focus on simplifying the data and versions written in modeling languages.

control, respectively, by aggregation. We propose a reduction pggregation is commonly used to reduce the size of the
that exploits a common pattern of synchronization, namelystate spacedbstractionssimplify data by aggregating values
the use of locks to protect shared data structures. This patteffig equivalence classeReductionsimplify control by ag-

of synchronization is particularly common in concurrent Javagregating transitions into coarser-grained transitions. In both
programs, because Java provides built-in locks. We describgases, the aggregation defines a transformed system that has
the design of a new tool for state-less state-space exploratioger reachable states and whose correctness implies cor-
of Java programs that incorporates this reduction. We also dgectness of the original system (the converse sometimes also
scribe an implementation of the reduction in Java PathFindetyg|gs). State-space exploration is applied to the transformed
a more traditional state-space exploration tool for Java prosystem, yielding correctness results that hold for the original
grams. system as well.

We propose a reduction that exploits a common pattern
of synchronization, namely, the use of locks to protect shared
variables. This pattern of synchronization is particularly com-
mon in concurrent Java programs, because Java provides built-
in locks [10]. It is also common in C programs that use the
pthreads thread library [17]. In general, when exploring the
1 Introduction state space of a concurrent program, context switches be-
tween threads must be allowed before each access to a shared

Development of correct software is difficult, especially for variable. If that variable is protected by a lock—in other words,
concurrent and distributed systems. Ideally, software wouldhe lock is held whenever the variable is accessed—then it
be generated from requirements, yielding programs that arguffices to allow context switches before acquire operations
correct by construction. Until that ideal is reached, softwareon the lock, prohibiting them before accesses to the vari-
verification—checking whether a given program satisfies itsable. Limiting the points where context switches may occur
requirements—will remain an important problem. A variety effectively increases the granularity of transitions. One can
of techniques are being brought to bear oistate-space ex- regard this as defining mduced systenwhich is a coarser-

ploration starts from the simple idea of exhaustive searchgrained version of the original system. The reduced system
of all possible behaviors—and hence all reachable states-May have significantly fewer reachable states than the origi-
of a system and checking, either during or after the searchal system. For example, when Jigsaw, the World Wide Web

whether the explored behaviors/states satisfy the requiremerfensortium’s web server (www.w3.org/Jigsaw/), is serving
small web pages, on average, every 35th bytecode performs

* Present address: Computer Science Dept., SUNY at Stony Brook, Ston ; ; ; ; ;
Brook, NY 11794-4400. The author gratefully acknowledges the support of}é'n acquire operation (usually an invocation of a synchronized

ONR under Grants N00014-99-1-0358 and N00014-01-1-0109 and the supM€thod). Such an increase in the granularity of transitions
port of NSF under Grant CCR-9876058. can have an even larger impact on the number of reachable

Key words: reduction — locks — model checking — partial-
order methods — Java

2 Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

states, depending on the number of threads and the pattern of Section 8 describes a prototype state-space exploration
requests. tool for single-process multi-threaded Java programs. It uses
The use of mutual exclusion to justify deducing prop- state-less search [9] and incorporates our reduc8tate-less
erties of a system from properties of a reduced system is aearchsystematically explores different schedules, without
well-known special case of several reduction theorems, suchtoring the set of states that have been visited. Section 9 de-
as [15,4,2]. When used to justify this lock-based reduction,scribes a prototype implementation of our reduction in Java
all of these reduction theorems assume that one knows staRathFinder (JPF) [1], a more traditional (state-based) state-
ically (i.e.,, before state-space exploration) that selected varispace exploration tool for Java bytecode. The main advan-
ables are protected by locks. Static analyses like Extendethge of state-less search is that it can be applied more easily
Static Checking [6], type-based race detection [7], and proto systems whose state is not easily captured and stewgd,
tected variable analysis [5] can automatically provide a conlarge systems written in a combination of Java and other pro-
servative approximation to this information. gramming languages. The main disadvantage is that it may
For general finite-state systems, it might seem that théinnecessarily explore some states multiple times. Section 10
only way to automatically and accurately determine whethercontains some initial experimental results that compare the
selected variables are protected by locks is state-space explspeed of the two implementations and measure the effective-
ration of the original system, using a variant of the lockset al-ness of the reduction.
gorithm [17] to keep track of which variables are protected by ~ Sections 3-5, 7 and 10 form the core of the paper. Read-
which locks. If this were the case, then the reduction woulders interested in implementation of reductions in state-based
be almost pointless, because the goal is to avoid exploring thtools might want to read Section 9 as well. Readers interested
entire state-space of the original system. We show in Sectioin partial-order methods might want to read Section 6. Sec-
7 that one can determine exactly during state-space expldion 8 is mainly for readers interested in state-less search.
ration of thereducedsystem whether all variables in a given
set are protected by locks in the original system. Intuitively,
this is possible because of commutativity properties of the op2 Related Work
erations used in the lockset algorithm, which reflect the fact

that whether a variable is protected by a lock depends onl)gomparison to VeriSoft [9] and traditional reduction theo-

on which accesses occur and which locks are held at eac s .
. . rems [15,4] appears in Section 1.
access, not on the order in which accesses occur. Actually,

this is not true for the Eraser locking discipline [17], whose Bruening's ExitBlock algorithm [2] corresponds roughly

treatment of initialization is slightly too liberal and therefore to the invisible-first state-less selective search (IF-SSS) algo-
order-dependent. Our result is for a slightly stricter locking rithm in Sect|on 5.1 without the use of persistent sets_ or sleep
discipline, introduced in Section 7. Our proofs are based o et EXItBI.OCkRW co_rresponds roughly to IF'SSS.W'th sleep
partial-order methods, specifically, on persistent sets [8]. sets and without persistent sets. ExitBlock and ExitBlockRW

.) . . treat release as visible and acquire as invisible. This com-
The results in Section 7 cannot be derived from classic 4

. ; - plicates deadlock detection in ExitBlock, and ExitBlockRW
reduction theorems such as [15,4]. One might try to derive_. :)
. L might miss deadlocks. The framework in [2] assumes LD
them by constructing a transformed system that is instrumente

’ .) i . .. 1S"used for all shared variables. Bruening does not discuss
to halt immediately before it would violate the locking disci- whether ExitBlock or ExitBlockRW is quaranteed to find a
pline (LD). The idea is that the transformed system would 9

.) violation of LD for systems that violate LD.
always satisfy LD, which would ensure that the hypotheses Corbett’s protected variable reduction [5] is similar to the

of the classic reduction theorem hold. This does not Work’reduction in Section 5.2. Corbett's reduction allows context
because the necessary instrumentation would itself perforngwitches before all fivé 6f Java’s synchronization operations
accesses that violate LD. y P

Our framework handles distributedle, multi-process) (described in Section 3.2). Our reduction prohibits some of

. . : ; these context switches and hence can provide more benefit.
multi-threaded systems. It combines and extends ideas in Verj- . : .
Iso, [5] does not provide results on checking LD during

Soft [9], which targets distributed systems of single-threade :

. . _state-space exploration.
processes and does not incorporate a lock-based reduction,
and ExitBlock [2], which incorporates a lock-based reduction
for single-process multi-threaded systems. A more detaile% Backaround
comparison with [2] appears in Section 2. 9

Section 3 provides background. Section 4 presents two
partial-order methods, called persistent sets and sleep setSection 3.1 describes our system model. Sections 3.2 and 3.3
Sections 5 and 7 describe our lock-based reductions. Sectigorovide an informal introduction to and a more formal model
6 gives an algorithm for computing persistent sets. This al-of the relevant aspects of synchronization in Java. Section 3.4
gorithm is not included in Section 4 because the lock-base@xpresses Eraser’s locking discipline in our system model.
reductions do not rely on it. This algorithm completes the pic-Section 3.5 classifies operations, transitions, control points,
ture of how to combine a lock-based reduction with generaland states as visible or invisible. Section 3.6 defines some
use of persistent sets. conditions on systems.

Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs 3

3.1 System Model call stack of a Java program are always unshared. There is
also flexibility in the details of how to model references, ex-

We adopt Godefroid’s model of concurrent systems [8], ex-ceptions, object creation, etc. Generally, this can be done as in
cept that we call the concurrent entities threads rather thahl2], which describes a translation from Java to PROMELA
processes, disallow transitions that affect the control state oflike [12], we assume, Ounsh, Osyn, Ota, and Ocoy, are
multiple threads, and divide objects into four categories. Anlarge enough to accommodate all Java threads and objects
objectis characterized by a pa{tDom, Op), whereDomis that will be created). Such details are irrelevant here, because
the set of possib|e values of the Object, ﬂ'pjs the set of op- our implementations, described in Sections 8 and 9, do not
erations that can be performed on the Object.ogarationis actually construct such models: they work directly with Java
a partial function that takes an argument and the current valuytecode. The important points about modeling are: (1) any
of the object and returns a return value and an updated valuéava program with a finite number of reachable states can be
for the object. Aconcurrent systerfor systemfor brevity) is ~ modeled as a concurrent system, and (2) one can determine
atuple(©, Ounshi, Osyn, Ot Ocom, Sinit, T), Where which bytecodes in the Java program correspond to visible

. - . . operations in the model.
© is afinite set of threads. A thread is a finite set of elements

calledcontrol points Threads are required to be pairwise
disjoint.
O.nsh is the set of unshared objects., objects accessed

Our framework handles distributed and multi-threaded sys-
tems. For example, a system containing Java processes com-
municating over sockets would contain some instances of java.-

by at most one thread. _ne_t.Socket, which are if?;,, anq an underlying socket, Wh_ic_h
Osyn is the set of synchronization objects, defined in Sec-S N Ocom- F.o_r our purposes, Itis T‘Ot necessary to explicitly

tion 3.3. model the division of the system into processes. What mat-
ters is how variables are accessed. For example, a variable
shared only by threads in a single process could be regarded
as a communication object (if accesses to that variable do not
satisfy the locking discipline); conversely, if some form of
distributed shared memory is used, then a variable shared by
threads in multiple processes could be classified as an ele-
ment of Oy,.

0.4 i1s the set of objects for which a locking discipline, de-
fined in Section 3.4, is used.

O.om 1S @ set of objects, called communication objects.

sinie 1S the initial state. State is defined below.

7 is afinite set of transitions. A transitidns a tuple(S, G,
C, F'), where:S is a control point of some thread, which
we denote bythread(t); F is a control point of the same
thread:; G is a guard'i_e_, a boolean-valued expression A stateis a pair(L, V>, whereL is a collection of control
built from read-only operations on objects and mathemat{oints, one from each thread, akds a collection of values,
ical functions; and”' is a commandi.e., a sequence of o0ne for each object. For a stateand an objecb, we abuse
expressions built from operations on objects and mathenotation and writes(6) to denote the control point of thread

matical functions. We calb and F' the starting and fi- 9 in states. Similarly, we writes(o) to denote the value of
nal control points oft and denote them bytart(t) and 1N s.
final(t), respectively. A transition (S, G, C, F) of threadd is pendingin state

s if S = s(#), and it isenabledin states if it is pend-

This four-way classification of objects is the basis for . dc | s F I
classifying operations into two categories: visible and invisi-'""9 "' 5 N evaduates s, Iﬂ-d rote ShyStemM,f p
ble. All operations on communication objects are visible, andPending v(s,0) andenabled (s,) denote the sets of tran-

operations on synchronization objects that may block are vis_—S'tIons of thread that are pending and enabled, respectively,

ible (details are given below). This classification of opera-'r:c states (in Systirr]é\/l_). Let e"ar?led/‘r/]‘(s) denot(te) the Z‘?t
tions determines the reduced system: informally, in the ref transitions enabled in staze When the system being dis-

duced system, context switches are allowed only before tran(—:_u,s“:'ed is clear fr‘?m context,.we elide the subscript._ If a tran-

sitions containing visible operations. sition (S, G, Q, Fyis 'enabled in state = (L, V'), then it can
The objects from any Java program can be classified e executed in, leading to the statd L\ {S})U{ F'}, apply(C,

this way. No assumptions are made about communication obY), whereapply(C', V) denotes the values obtained by us-

jects, soitis safe to classify all objects as communication ob"Y the operations i to update the values ivi. Commands

jects. However, classifying more objects as communication‘”‘r(_3 assumgd to be q§terministic; .non;determ'inis.m is modeled
objects means that more operations are visible and hence th#$ing multiple transitions. We write — s’ to indicate that
the reduction provides less benefit. Therefore, objects shoulfansitiont is enabled in stateand that executingin s leads
be put in the other categories whenever possible. to states’.

There is considerable flexibility in modeling Java pro- A sequences a function whose domain is the natural
grams as concurrent systems. For example, an object in sugtumbers or a finite prefix of the natural numbers. |cétde-
a model might correspond to a single storage location in thenote the length of a sequengelLet o (i..j) denote the sub-
Java programe(.g, a static field, an instance field of a Java sequence o& from indexi to indexj. Let last(o) denote
object, or a variable on the call stack), or it might correspondo (|| — 1). Let{ag, a1, . . .) denote a sequence containing the
to a collection of storage locations.(, all fields of a Java indicated elements) denotes the empty sequence. ketos
object). Note that objects corresponding to variables on thelenote the concatenation of sequenegandos.

4 Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

An executionof a systemM is a finite or infinite se- A waiting thread can also be awoken by a call to Thread.-
guencer of transitions ofM such that there exist statesg, interrupt. For simplicity, we do not consider this possibility
a(0) ~o(1) _in our model. Also, we do not consider Java’s controversial

s1, 82, ... such thatSQ = Sinit andso —' 81 — 89--..0 X . :
erations are deterministic, so the sequence of states,... Weakly consistent memory model [10, 16], which provides

is completely determined by the sequence of transitions. Wheifduéntial consistency for objects protected by locks [2, Sec-
convenient, we regard the sequence of states as part of tHin 2.3.3] but not necessarily for other objects.

execution. A state iseachablein M if it appears in some

execution ofM. A control point isreachableif it appears in - 3.3 Synchronization Objects

some reachable state.

In our framework, a synchronization object embodies the syn-
3.2 Synchronization in Java chronization state that the JVM maintains for each Java ob-
ject. In Java, every object contains its own synchronization
Java’s concurrency model allows non-deterministic interleav-State; there are no separate synchronization objects. This dif-
ing of the actions of different threads. Threads have prioritiesference is inconsequential.
“Threads with higher priority are generally executed in pref- The fields of a synchronization object a@wvner (the
erence to threads with lower priority. Such preference is nothame of a thread, dree), depth(the number of unmatched
however, a guarantee...” [10, Section 17.12]. Our framework@cquire operations), andaiters(the set of waiting threads).
is designed to verify only guaranteed properties, not proba¥Ve assume that the initial state,,,;, of each synchroniza-
bilistic properties, so we ignore such preference and henclon object haswwner = free, depth = 0, andwaiters = 0.
priorities. The “operations” on synchronization objects are: acquire, re-
Java provides five built-in synchronization operations basé@fse, wait, notify, and notifyAll. Each of these high-level
on the classic operations on monitors [14]: acquire, releaseOPerations” is represented in a straightforward way as one
wait, notify, and notifyAll. Java also provides bounded-time OF more transitions that use multiple (lower-level) operations.
variants of wait; we do not consider them, because our systeriOr concreteness, we describe one representation here.
model is untimed. Thread6 acquiringo’s lock corresponds to a transition
One lock and one condition variable are implicitly asso- With guardo.owner € {free, 0} and commana.owner :=
ciated with each object. Aynchronized statemeistused to ~ ¢; 0-depth++.

acquire and release a lock. The statement Thread# releasingo’s lock corresponds to two transi-
. tions: one with guart.owner # 6 and a command that
synchronizedéxpi) { stmt} throws an lllegalMonitorStateException, and one with guard

evaluates expressicexprto an object reference, acquires ~ ¢-owner = 6 and command

the lock associated with, executes statemestmt and then
release®’s lock. Synchronized statements are compiled into
bytecode that uses monitorenter and monitorexit inStrUCtion%herenewOwner(depth 0)
to acquire and release the lock, respectively. turns free otherwise. ’

Java also allows the keyword “synchronized” to be used Let lkDepth, denote an unshared object usedégnd

as a modifier in method declarations. Declaring an i”Sta”C‘x’Nhose domain is the natural numbers. Thréaiting ono
method as synchronized is equivalent to replacing its body corresponds to three transitions: one with guardimer # 6

with: synchronized (th'si,b,}' . . and a command that throws an lllegalMonitorStateException,
The locks are recursive.e, a lock is free iff each exe- 44 one with guard. owner — 6 and command

cution of the acquire operation has been matched by an ex-

o.depth——; o.owner := newOwner(o.depth,),

returnsé if depth > 0 and re-

ecution of the release operation. Recursive locks conveniently o.waiters.add(); lkDepth, = o.depth;
support nested or recursive invocations of synchronized meth- o.depth = 0; 0.owner = free
ods.

wait, notify, and notifyAll are final native methods of java.- followed by one with guard.owner = free A 6 ¢ o.waiters
lang.Object. They are inherited by all objects. They throw II- and commana.owner := 6; o.depth := lkDepth,.
legalMonitorStateException if invoked by a thread that does Threadé invoking notify ono corresponds td@| + 1
not own the target object’s lock; otherwise, they behave agransitions: one with guard.owner # 6 and a command
follows. o.wait() adds the calling threatito o’s wait set (.e., that throws an lllegalMonitorStateException, one with guard
the set of threads waiting as), releases’s lock, and sus- o.owner = 6 A o.waiters = () and a command that does
pendsh. When another thread notifi@s(by invoking notify ~ nothing, and, for each’ € © \ {4}, a transition with guard
or notifyAll), contends to re-acquirgs lock. Whenf ac- o.owner = 6 A 8" € o.waiters and a command that removes
quires the lock, the invocation efwait() returns.o.notify() 0’ from o.waiters. All of these transitions except the one that
non-deterministically selects a threddn o's wait set, re- throws the exception have the same final control point.
movesf from the set, and notified. o.notifyAll() removes Threadf doing notifyAll on o corresponds to two tran-
all threads fronv’s wait set and notifies each of them. sitions: one with guar@.owner # 6 and a command that

Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs 5

throws an lllegalMonitorStateException, and one with guardFor example, the first transition 6f is officially
o.owner = § and a command that makesvaiters empty.
We mformally refer.to acquire, releasse, as operations 01.ouner € {free, 01},
on synchronization objects, when we actually mean the oper- / .
. . " 1.owner := 01;41.depth++,
ations used by the corresponding transitions. b)
A useful observation is: '

<a17

If M., were obtained by systematic translation of a complete
SyncWithoutLock:If a thread¢ executes an operationp Java program, it would be much larger, due to modeling of
other than acquire on a synchronization objecta state creation and starting of threads in appropriate ThreadGroups,
s in which § does not owrv’s lock, then (1) execution of invocations of run methods, etc. Also, the granularity would
op in s does not modify the state of and (2) execution be smallere.g, 6-’s two releases would be separate transi-
of op in s has the same effeat.@, it throws lllegalMoni- tions; we merged them into one transition to keep the state
torStateException) regardless of other aspectssidtate space small. Figure 1 shows the reachable statdd gf.
(e.g, regardless of which thread, if any, own's lock,
and regardless of which threads, if any, are blocked wait- 4 Locking Discipline
ing ono).
One might consider including synchronization objects inThe Iocking_discip_lipe_ of [17]_allows objects to be initialized
without locking. Initialization is assumed to be completed be-

Oy4 or O, instead of treating them specially. They can- . - .
not be included in0;,, because operations on them accessore the object becomes sharee (accessed by two different

o.owner in away that violates LD. Classifying them as com- threads). We formalize this as follows. Transitioaccesses

munication objects would mean that all operations on thenPPi€Cto in states if (1) ¢ is pending ins andt's guarld ac-
are visible (see Section 3.5), which would increase the Coscfesses,l(e., contains an operation onjor (2)¢ is en.ab eo! n
of the selective search. s andt’s command accesses Threadd accessesbjecto in

To illustrate the definitions, consider a Java program WithStats‘?' dengtetﬁzctcess(s, 9, 0).' if there exists a transitiofin
two threads that execute the following snippets of code, wher&®"di9 (s,) that accessesin s.

z is alocal variable, andl is an instance of a class with field For an executionr = s 0 81) s+, endInit(o, 0)
x, ando2 is an instance of a class with field is the index of the first state i in which o is accessed by
a second thread; formallgndinit(o, o) is the least value
Code ford, : of i such that(Jiy,ip < i : 301,00 € O : 61 # 05 A
synchronized (01jol.x++3}; access(s;,, 01,0) A access(s;,,02,0)), or|o| if no such val-
synchronized (02]02.y++;} ues exist.
Code forf,: _ o _ o) o(l)
synchronized (02§ 02.y++; Locking Discipline (LD). An executiono = s — s —
synchronized (01Jz=01.x+02.y} } sg -+ - of asystem®, Ounshs Osyn, Otd, Ocom s Sinit,) Sat-
isfies LD iff, for all o € 0,4, one of the following conditions
This program is modeled by the concurrent systéfy, = pglds:

mit, 1), where : :
(0, Ounsn Osyn; Ot Ocoms Simit, T) LD-RO: o is read-only after initialization,e., there exists a

_ _ _ constant such that for ali > endInit(o, 0), s;(0) = c.
g N ji’ ?z% ?91 N {:(11{761 ézg}l} ?921(1_2{?{21; y}’fQ} LD-lock: ois lock-protected after initializationg., there ex-
o 0 s ’ ’ ists a synchronization objeet € O,,,, such that, for all
SIC(;TTL: Har.as} i > endInit(o,0), forall @ € O, if access(s;,0,0), then
e Vel 0 ownso;'s lock in s;.
{20,y 0,2+ 0,01 50init, Lo — 50init})
A system satisfies LD iff all of its executions do. For example,

and7, in a self-explanatory shorthand with the operations of M, satisfies LD.
a transition sandwiched between the starting and final control Godefroid [8] defines: transition uses objecb iff t's

points of the transition, is given by guard or command contains an operatiomohhus, the com-
mand of a disabled transition usesSuch uses cannot be
Transitions of); detected by run-time monitoring, so we do not want the defi-
¢ .acquire() T++ ¢y .release() nition of LD to depend on such uses. This motivates our def-

inition of “accesses”.
{y.acquire() y++ £y.release()
Transitions of)s:

ly.acquire() y++ £1.acquire() Recall that operations are classified as visible or invisible. In
the reduced system, context switches are allowed only imme-

z=x+y 01 .release(); o.release() diately before transitions containing visible operations.

3.5 Visible and Invisible

6 Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

Fig. 1. State Space aM ... The first and second letters within each state indicate the control poiflisafdéz, respectively; for exampléa abbreviates

{b1,a2}. Values of objects are not shown but can easily be inferred. Edges represent transitions. Transitioasd#> point diagonally up and down,
respectively. States are numbered in depth-first order. Thick circles denote visible states (see Section 3.5). The sleep set technique (see Section 4) avoid:
exploring the dotted edges.

All operations on communication objects are visible, astrue iff the lock is free. This would invalidate SyncWithout-
in [9]. Operations on synchronization objects that may blockLock and require re-classifying release as visible.
are visible; specifically, operations in the transitions for ac-
quire and wait that do not throw exceptions are visible. All
other operations are invisible. A transitiois visible if (1) ¢'s
command or guard contains a visible operation ot {&)part
of a non-deterministic choice,e., in some reachable state, We define some conditions on systems.
multiple transitions with starting control poistart(t) are) . L .
enabled. An over-approximation of the second condition car>eParation(of visible and invisible transitions): For every
be used when classifying transitions: unnecessarily classify- thréadd, for every control points' € ¢, all transitions
ing a transition as visible is safed,, all the theorems below W't_h starting control poin are visible, or all of them are
still hold). For concurrent systems that model Java programs, mws,b_lg. i .
a simple over-approximation of the second condition is that MtViS (initial control locations are visible): For every thread
it holds for transitions corresponding to invocations of no- ¢» Sinit(¢) is visible. This condition is inessential but con-
tify(), which non-deterministically chooses a waiting thread _ VEMnient.

to awaken, and invocations of methods of java.utiI.Random,Bounqed'nV'S(bound on |nV|S|bIetranS|t|or_1 sequences): There
exists a bound on the length of contiguous sequences

which we interpret as non-deterministic (see Section 8.3). N o . !
of invisible transitions by a single thread. Thus, in every

',? c:lontrolg omts ".c’b\ll's_"blﬁ i a!l tra.rt\§|t|.on's .Vl\)/:th 2'[61:2;69 execution, for every threal every contiguous sequence
control points> are VisIble, Otherwise, LIS INVISIDle. A S of b + 1 transitions executed b (ignoring interspersed

IS y|s_|ble i a_II control points ins are visible; otherW|s_e, Itis transitions of other threads) contains at least one visible
invisible. Visible states correspond to global states in [9].

3.6 Conditions on Systems

transition.
For example, inM.,, control pointsay, d1, g1, a2, ¢2, Determinvis(determinism of invisible control points): For
and f> are visible. In Figure 1, thick circles denote visible every reachable state for every thread), 6 has at most
states ofM ;. one enabled invisible transition in

If additional operations on synchronization objects wereNonBlockinvis(non-blocking invisible control points): For
introduced, the invisibility of existing operations would need every thread, for every invisible control pointS of 6,
to be re-evaluated. For example, consider introducing a non- for every reachable statecontainingsS, enabled(s, 0) is
blocking operation on synchronization objects that returns non-empty.

Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs 7

PureVis (pure visible transitions): Visible transitions do not explored on paths from s that start with a different transi-
contain operations on objects@. tion, as long as the path contains only transitions that are

Th diti iblv Boundedinvi independent with. Informally, it is safe to defer execution of
__'hesecon ltions, except possibly Boundedinvis, are saly along paths containing only transitions independent with
isfied by all reasonable models of Java programs with th

o . " ecause the transitions in such a path were already explored
natural granularity in which a transition corresponds roughly ,» <o me path froms that starts with, so it is unnecessary

g) a bytlecgdfe I?r affragn;]en(; (:f a bytecfod_e_.bISeparat_K_)n ang also explore interleavings in whighoccurs immediately
eterminvis follow from the definitions of visible ransitions e those transitions. Consequentlys not explored from

a.nd. visible qontrol po_ints. nitVis is easily enforpgd b.y clas- such states’; this is implemented by subtractingeep from
sifying the_ f!rst trans!tl_on of ea(_:h_ thrgad as visible; recall PSes) in the first line of procedure DFS. If a transition depen-
that cIa§S|fy|ng transitions as visible is ".’"Ways saf'e. Non'dent witht is executed; is removed from the sleep set; this is
Blockinvis holds because the only blocking operations ar%mplemented by the calculation efeep’ in procedure DFS.
acquire, wait, and some operations on communication objects

(e.g, receive on a socket), and all of these operations are ViSiDependency RelationLet T andState be the sets of transi-
ble. PureVis holds for models in which transitions correspond;;o s and states respectively, of a systéth D C T x T is
roughly to bytecodes or fragments of bytecodes, because all, nconditional dependency relatidar M iff D is reflex-
bytecodes satisfy this condition. PureVis typically does noty,e ang symmetric and for alh, t» € T, (t1,t2) & D (“t:

hold for coarse-grained models, sucltas) in Section 5.2. 54y, are independent”) implies that for all states State,
BoundedInvis is checked during state-space exploration: if an

executing thread does not execute a visible transition withinl. if ¢t; € enabled(s) ands b ¢, thent, € enabled(s)
a user-specified amount of time, an error (“possible violation iff to € enabled(s’). (Independent transitions neither dis-

of BoundedInvis”) is reported. able nor enable each other.)
A straightforward generalization, not considered further 2. if {t1,12} C enabled(s), then there is a unique staté
in this paper, is to allow conditional invisibilityi.e., allow such thats 2 s; 2 s’ ands 2 s, % . (Enabled

operations to be invisible in some states and visible in others) independent transitions commute.)
and to classify an acquire operation®wgs invisible in states

whereowner — 6. D C T x T x State is aconditional dependency relatidor

M iff for all ti,to € 7 and alls State, <t1, to, 8> Q D (“t1

andt, are independent ig") implies that(ts, t1,s) ¢ D and

conditions 1 and 2 above hold. This definition of conditional

dependency assumes that commands of transitions satisfy the

no-access-after-updatestriction [8, p. 21]: an operation that

Two techniques used to make state-space exploration morgodifies the value of an objeotcannot be followed by any

efficient are persistent sets and sleep sets. They attempt tsther operations oo.

reduce the number of explored states and transitions by ex-

ploiting independence of transitions. They are cafleléctive Persistent Set.A setT C enabled(s) is persistentin s iff,

searchtechniques, because they justify ex_p_lorlng only a carexop o) nonempty sequences of transitiansuch thats, a(0)

fully selected subset of the enabled transitions from each vis- ,y) o(n—1) o(n)])

ited state. We start with informal descriptions of these tech-51 — 527+~ sn = Sp41, if 5o = s and (Vi €

niques and then give formal definitions. The material in this[0-7] : (i) & T), theno(n) is independent i, with all

section is paraphrased from [8,9]. transitions inf". _ _ _
Informally, two transitions aréndependentf they com- ConsidetM .., introduced in section 3.3. For control points

mute. A sefl’ of transitions enabled in a statés persistentn ~ © @nd F', lettsp denote the transition with starting control

s if everything the system can do froswhile staying outside ~ P0Int S and final control point, if any. The sef{t,, } is
T (i.e. while not executing transitions iff) is independent persistent in statéa. To see this, note thatin the definition

with transitions in7". In this case, transition$ outsideZ can Of Persistent set effectively ranges over non-empty prefixes of
safely be deferred until after a transitioin 7" has executed, (fazbz: fhzc;), @nd that these two transitions are independent
because and ¢’ are independent. Thus, in the first line of With tv,c,. We do not need to consider sequeneemntain-
procedure DFS in the selective search algorithm in Figure 2iN9 fczd., because such sequences must also cofifajnand

the sefl” of transitions to be explored is based on a persistenfe:d: (Pecause of contention fdi’s lock), so the antecedent
set PS§), rather tharenabled(s). An algorithm for comput- o(i) ¢ T in the definition of persistent set is false.

ing persistent sets, based on the static structure of the system, -t PS6) return a set of transitions that is persistent in
appears in Section 6. s. Let D be an unconditional dependency relatio@ode-

Sleep sets are computed by the selective search aIgorithFﬁOid’s state-less selecti\{e s_earch (SSS) using persistent sets
in Figure 2 and reflect the history of the search. After ex-and Sleep sets appears in Figure 2, where andundo are

ipe g
ploring a transitiort from a states and recursively exploring ~ SPecified by:ifs — s, thenezec(s, t) = s’ andundo(s', t) =
a;” statgs reachable therefrom (nOte that the search is depth'l A conditional dependency relation can be used, but this involves some
first), t is propagated into the sleep sets of statethat are minor complications [18].

4 State-less Selective Search

8 Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

SSS(){ DFSEleep { Following Godefroid [8] but deviating from standard us-
stack:=empty; T := PS(curState) \ sleep; age, adeadlocks a states such thatnabled(s) is empty. We
curState= s;n; for eacht in T

focus on determining reachability of deadlocks and control
points. Reachability of control points can easily encode infor-
mation about values of objects. For example, a Java program
might assert that a conditian holds using the statemeifit

DFS(0); stackpush();
curState := exec(curState,t);
I next line is in IF-SSS, not in SSS
curState := execInvis o (CurState

thread(t)); (! e1) throw eo; violation of this assertion corresponds to
sleep’ = {t' € sleep | (t,t') & D}; reachability of the control point at the beginningtbfow
DFS(sleep’); es. If necessary (as in Section 5.2), assertion violations can
stackpop(); // popt from stack easily be encoded as reachability of visible control points,
curState := undo(curState,t); by introducing a communication object with a single visible
sleep := sleep U {t}; operation that is called when any assertion is violated. Ques-
} tions about reachability of states can be encoded as questions

Fig. 2. State-less Selective Search (SSS) and Invisible-First State-less Sele@P0Ut reachability of control points using standard techniques
tive Search (IF-SSS) using persistent sets and sleep sets. The two algorithnj8, chapter 7]. We say that a search algorithm explores a con-

differ only in the presence of the indicated assignment staterstarckand trol point S ifit explores a state containin@.
curStateare global variablesstack is needed to report error traces to the

user. Also,stack is needed ifundois implemented using reset+replay, as

discussed in Section B.4. Theorem 1. Let M be a system with a finite state space. (a)

If M'’s state space is acyclic, then SSS explores all reachable
deadlocks and control points d¥1. (b) SSS.,. explores all
reachable deadlocks and control points/of.

s. Because SSS is state-less, it may visit states multiple timeroof: (a) This is a paraphrase of Theorem 2 of [9]. Assertion
persistent sets and sleep sets help reduce this redundancy. violations correspond to reachability of control points. (b) As

ConsiderM.,. SupposePS(s) = enabled(s), and the discussed above, allowing cycles in the state space potentially

dependency relation used to compute sleep sets is: two trarﬁ;ﬁusf‘s tv;/o_ prﬁbllgms, a'sgsséyc a(;/.mds both of them. Note
sitions are independent if they use disjoint sets of objectst att € claim holds even cyc OIVErges. o , i
Persistent sets and sleep sets can also be used in tradi-

Then SSS explores all states in Figure 1, and all edges ex-

cept the dotted ones. The depth-first numbering in Figure flonal (i.e., state-based) selective search [8]. We omit details
reflects the order in which states ., are explored for the of traditional selective search algorithms, because the results

first time during execution of SSS. Some states are explore&or raditional selectivg search in Sections 5.2 and 7 are inde-
again later in the search. Specifically, a statis explored pendent of those details.

once for each path from,,,;; to s in Figure 1, ignoring paths
containing dotted edges. To see that the sleep set techniq
avoids exploration ofe.g, the dotted edge from staté to
statebb, consider the relevant steps of the algorithm: (1) ini-))
tially, DFS() is invoked in statewa, (2) in the second itera- S€ctions 5.1 and 5.2 describe two approaches to lock-based
tion of thefor loop in that statesleep = {ta,p, }, (3) ta,p, i rgductlon, baged on perglstent sets and composition of transi-
independent with,_,,, S0 DFS(t,,5, }) is invoked in state tions, respectively. Section 5.3 compares the two approaches.

ab, SOt,,p, IS NoOt explored from that state.

Y Two Approaches to Lock-Based Reduction

SSS works best for acyclic state spaces. Two problems5 -1 Invisible-First State-less Selective Search

arise if the state space contains cycles. First, a state-less search

cannot recognize that it is in a cycle, so a purely depth-firslPers'St_em set_s can be useo_l _to justify not exploring some in-
approach may get stuck in a cycle and never explore somirieavings of invisible transitions.

states. This problem can avoided by using iterative deepenrnaorem 2. Let M be a system satisfying LD and Separa-
ing. Second, persistent sets might cause some enabled tranﬁ'bn_ For all threads® and all reachable states of M. if

tions to be permanently deferreicg, notincluded inthe per- ., 1104 (s, 9) contains an invisible transition, themabled s, 0)
sistent sets), causing the selective search to miss some Staﬁ@ﬁ)ersistent irs.

[8, Chapter 6]; this is called thignoring problem[19]. This
motivates definition of a state-less search that uses iterativBroof: See Appendix. O
deepening and sleep sets but not persistent sets (or, as we will Suppose the system satisfies LD, Separation, Bounded-

see, uses persistent sets only in a restricted V#8384 (d) Invis, and Determinvis. If a threal has an enabled invisi-
denotes a depth-bounded variant of SSS that explores exéle transition in a state, then Separation and Determinvis
cutions of length at mosi and usePS(s) = enabled(s). imply that# has exactly one enabled transitionsnTheo-

SSScyc denotes an iterative-deepening variant of SSS, thatem 2 implies that it is sufficient to explore only that tran-
callsSSSy,,q With increasingly larger bounds until the longest sition from s. This can be done repeatedly, urttiihas no
execution explored bgSSy,.,.4 is shorter than the bound. enabled invisible transitions. Boundedinvis implies that this

Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs 9

iteration terminates. LetrecInvis o (s, 6) be the unique state For exampleC (M.,) has exactly 9 reachable states. These
obtained by performing this procedure starting from state are the visible states o¥1.,, denoted by thick circles in Fig-

if 6 has no enabled invisible transitions in statethen let ure 1. The transitions af(M.,) lead between these states.
execInvis pq(s,0) = s. Specializing SSS to work in this way For example, the first transition, 4, of 6; in C(M.;) is
yields Invisible-First State-less Selective Search (IF-SSS), give?a

in Figure 2. IFSSS..,. is defined analogously. b

2)
ly.oumer € {free, 01},

. . £y.owner := 01;f1.depth++; x + +; £1.depth——;
Theorem 3. Let M be a system with a finite state space and 01.oumer := newOuwner(£y.depth, 61),

satisfying LD, Separation, Boundedinvis, Determinvis, and dy).
NonBlocklinvis. (a) IM’s state space is acyclic, then IF-SSS
explores all reachable deadlocks and control points\af ~ The guard of the release i, 4, does not contribute to the
(b) IF-SSS.,. explores all reachable deadlocks and control guard of the composed transition, because

points of M. wp(€y.owner = 6, {1.owner := 6) = true. 3)
Proof: See Appendix. O The command in (2) can be simplified; we do not consider
this further.

Consider applying IF-SSS td1., from Section 3.3, with

PS(s) = enabled(s) and with the same dependency relation Theorem 4. Let M be a system satisfying LD, Separation,
for sleep sets as in Section 4. IF-SSS avoids exploring stategitVis, Boundedinvis, and Determinvi$4 andC(M) have
bb andcb (see Figure 1). For example, the dotted inedge ofthe same reachable visible states.

bb is not explored because of sleep sets, and the solid ined
of bb is not explored becauseeclnvis r4,, (ba, 61) explores
Only tb101'

gF(?roof: See Appendix. O

An invisible control pointS is defined to be reachable
in C(M) if a composed transition passes throufjin some
execution o’ (M).

5.2 Composing Transitions . -
P g Theorem 5. Let M be a system with a finite state space and

o satisfying LD, Separation, InitVis, BoundedInvis, Determin-
Another approach to lock-based reduction is to aggregate gis, and NonBlockinvisM andC(M) have the same reach-

visible transition and the subsequent sequence of invisiblgple deadlocksM andC (M) have the same reachable con-
transitions of the same thread into a single transition. Trantro| points.

sitions are aggregated (composed) as follows. For a sequence

o of transitions, letemd.. (o) be the sequential composition Proof: See Appendix. O .
of the commands of the transitions dn and letguard (o) Theorems 1(a) (or 1(b)) and 5 imply that, for a systéin

be the weakest predicate ensuring that when each transitionSatisfying their hypotheses, SSS §8iS..,..) applied taC(M)
in o is executedt’s guard holdsguard, can be expressed in explores all reachable deadlocks and control point&fof

terms of the weakest-precondition predicate transformer Theorem 5 is also useful with traditional selective search.

[11]:2 For example, Theorems 5.2 and 6.14 of [8] together with The-
orem 5 imply that, for a systenM satisfying their hypothe-
guard (o) = A guard(c(0)) (1) ses, tradit_ional selective _search with persistent sets and sleep
A /\O<i<\a\ wp(guard(c(3)), sets [8, Figure 6.2] applied ©6(M) explores all reachable

emd,o(0(0..i — 1)), deadlocks and control points gff.

whereguard({S, G, C, F)) = G. We assume@uard .(c) can 5.3 Comparison of the Two Approaches
be expressed in terms of the available operations on objects.

For a systemM satisfying LD, Separation, BoundedIn- The invisible-first approach (Section 5.1) is worthwhile for
vis, and Determinvis, the transformed syst@(1) with com- three reasons. First, Theorem 2 shows that this reduction is
posed transitions is the same/atexcept that the set of tran- a special case of persistent sets, thereby demonstrating the
sitions is as follows. Leb be the bound in Boundedinvis for relationship to existing partial-order methods. Second, Theo-
M. For each visible transition = (S,G,C, F) in T, for rem 3 shows that, with IF-SSS, operations in invisible transi-
each sequenceof invisible transitions such th&k| < band tions do not need to be recorded, because they do not intro-
guard ,((t) - o) # false and the intermediate control points duce dependencies that could cause transitions to be removed
match up (e, final(t) = start(c(0)) and for alli < |o| —1, from sleep sets. Third, the guards of composed transitions

final(o(i)) = start(o(i + 1))) and final(last(c)) is visi- sometimes introduce dependencies that cause SSS applied to
ble,C(M) has the transitionS, guard ,((t) -), emd.((t) - C(M) to explore more interleavings than IF-SSS applied to
o), final(last(0))). M. For example, consider a thre@dhat is ready to execute

2 We let a list of formulas bulleted with, or v denote the conjunction someVisibleOp; 4

or disjunction, respectively, of the formulas, using indentation to eliminate if (301) { if (332) ¢ elsecy }
parentheses. else{ if (z3) c3 elsecy }

10 Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

where thex; are inO;; and thec; do not contain visible op- To compute small persistent sets, an upper bound on the
erations. LetS denote the starting control point of this state- set of operations used by the pending transitions of a thread
ment. In the original systernM, § does not accesss or is also needed. Letsed VisOps(t) be the set of visible oper-

xzz atS. In C(M), 0 accesses,, zo2, andxs at.S, because ations used by a transition We assume that in each visible
the composed transitions with starting control pdshhave states, for each thread, the following set is known:

guards liker; A x5 and—z1 A —z3. In C(M), the access by

0 to x5 in a states with s(§) = S ands(z;) = false is an pendVisOps(s,0) = {usedVisOps(t) | ¢ € pending(s, 6)}.
?t:gzi((:)tu?; gZumsrzaosgIr(;?s.tesr?tcshegctf)eSZ?;r;n;(ﬁi ?ﬁ;ﬁﬁj‘enc'%send VisOps(s, 0) is typically obtained by intercepting each

!) visible operation. A non-trivial upper bound on the set of in-
Whether this occurs depends partly on how persistent sets aABiple operations used by pending transitiong)ah s can
computed. This would not occur if they are computed as de—b . . ,
: . . e obtained by exploiting LD. For concreteness, we describe
scribed in Section 6, becaugendInvisOps(s,) would be y exp 9

h iVl andC(M). Thi Id it 1h lculati how to calculate a bound from the data structures maintained
€samel X andc(_)' IS could occuritine calcuiation by the lockset algorithm [17]. We assume in this section that
of pendInvisOps exploited information from static analysis.

have a S|gn|f|can't.|mpact on overall pgrformanc;e. . _ysis, then running the lockset algorithm during the search is
The composition approach (Section 5.2) is worthwhlleunnecessary

because it sometimes achieves a stronger reducti(_)n. For ex- The lockset algorithm maintains the following values for
ample, suppose two threads are both ready to acquire the Iocé%leh objec: o.mode, which can be virgin (allocated but

that protects a shared variahlecopy v's value into an un- uninitialized), exclusive (accessed by only one thread), shared

tsr? areotlj dvarlat;)rllg, ant(r:i] the?‘ rtlelease the IgctkC@m'/tll), eachd th accessed by multiple threads, but threads after the first did
read does this with a single composed transition, an Aot modify o), or shared-modified (none of the above con-

two composed transitions are independent (because atomip, o o14):o first Thread, which is the first thread that ac-
cally acquiring and then releasing a lock has no net effec%

. . _~cessed (i.e, the thread that initializes o. first Thread is un-
on the state of the synchronization object), so SSS applie efined whem is in virgin mode); ana. candLkSet (“candi-

tp C(M) could explore a single interlgaving of these transi- date lock set”), which is the set of locks that were held during
tions. In M, each thread does this with a sequence of threg,), ;o to after initialization (-e., starting with the ac-

transitions, and the transitions that manipulate the lock are, .o that changegmode from exclusive to shared or shared-
dependent, so IF-SSS appliedAd explores multiple inter- modified).o.candLkSet contains all locksi(e., equalsQ;,,,)

leavings. . g .
. . . while o is in exclusive mode.
Which approach yields better performance depends mainl/ held(s, 0) is the set of synchronization objects whose locks

on whether the stronger reduction of the composition approacg}e owned byl in states. acqing(s, 6) is the set of synchro-
_out\{vei_ghs the COSt.Of recording invisiblg operations. Re.cord'nization objectso such thatpendl’/isOps(s #) contains an
ing invisible operatlons and using them in _the_ (_:omputatlpn of cquire operation on. rdOnly(o.op) holds if o.0p is read-
sleep sets typically does not consume a significant fraction Ognly. mayInit (s, 8, 0) holds if & may be the first thread to
the overall running time, in part because the lockset aIgorithmaCCess virgin ok;jéeiin states. For example, in Java, for in-
is more expensive than this recording. Thus, the Composm%tance variables, one might require thate ,the threr;ld that
transitions approach typically has similar or better perfor- '

L . allocated; for static variables of a clags, one might require
mance, compared to the invisible-first approach. The strong_etrhaw be the thread that caused cla@so be loaded. An up-

reduction provided by the composing transitions approach I%er bound on the set of invisible operations used by pending
particularly attractive when used with state-less search, be

-) . . fransitions of in s is
cause avoiding exploration of one of the interleavings that
leads to a state can avoid one redundant exploration of the pendInvisOps(s, 0) =
entire subgraph of the state space reachable from {0.0p € invisOps(0) | Vo € Osyn
V Joy € held(s,0) U acqing(s, 0) :
LDallows(s,8,01,0.0p)}
6 Computing Persistent Sets
LDallows(s,0,01,0.0p) =
V o.mode = virgin A maylInit(s, 6, 0)
V o.mode = exclusive A V 0 = o.first Thread
V rdOnly(o.0p)
V 01 € o.candLkSet
V o.mode = shared A (rdOnly(op) V 01 € o.candLkSet)
V o.mode = shared-modified\ o, € o.candLkSet

Computing persistent sets in a given state requires informa-
tion about possible future behaviors of each thread. Static
analysis or user-supplied annotations may be used to obtain
an upper bound (with respect to the subset ordering) on the
set of operations that each thread may perform. dzat6)
denote such an upper bound for thread_et invisOps(6)
be the set of invisible operations ips(6). Throughout this We can obtain a tighter bound gwendlnvisOps (and
section, we ignore operations on unshared objects. hence potentially smaller persistent sets) if the system sat-

Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

isfies the following stricter version of LD-lock: in every exe-
cution in whicho is shared, the same lock protects accesses
to o; formally, this corresponds to switching the order of the

11

02:0.acquire are independent im,,. If s, (0.owner) #
02, thenfy must freeo’s lock at some point during,

guantifications “for all executions af1” and “there exists
o1 € Oy,". With this stricter requirement, we can mod-

i.e., for somei € [0..n], s;(0.owner) = free, and the re-
lease operation by, in the transitions (i — 1) enables
0, :0.acquire and hence is dependent with itdp_;.

ify undo so that it does not undo changes to the candidatease: s(o.owner) = 63, wherefl; € 6 \ {61,602}. In this

lock set. This modification potentially makescandLkSet
andpendInvisOps smaller.

Persistent sets can be computed using a variant of Algo-

rithm 2 of [8], which is based on Overman’s Algorithm. It
uses the following relation.

Might-be-the-first-to-interfere-with Operationop’ might be
the first to interfere with operationp from states, denoted
op s op’, if [8, Definition 4.26]: (1) op and op’ are oper-

ations on the same object and (2) there exists a sequené

a(0)
— 51

o(1)

o of transitions such that (2&) = sy and sg -

sy 705D g, 7 L and (2b) for alli € [0..n — 1],
all operations irv () are independent withp in s;, and (2c)
o(n) usesop’, andop andop’ are dependent ig,.

Algorithm 2-LD, our variant of Algorithm 2 of [8], is:

. Selectone transitione enabled(s). LetT = {thread(t)}.
2. For eachd € T, for eachop € pendVisOps(s,6) U
pendInvisOps(s,), for eachthread’ € O\T, if (Fop’ €
ops(0') : ops op’), theninsery’ in T.

=

3. Repeat step 2 until no more threads can be inserted. Re-

turn Uperenabled (s, 6).

casefl;s must freev’s lock beforef,:o.acquire can occur;
that release operation Iy also enable8; :0.acquire and
hence is dependent with it.

Another example i®;:0.notifyAll >, 05:0.wait,. These
two operations are independent in all states, because in any
state, at most one of them is enabled (because the guard of
each requires’s lock), and executing the enabled one (if any)
does not enable the other one. This argument blurs the dis-
'g_;lction between guards and commands. The operatioms on
in the command of a transitian that performswait; do not
commute with the operations in the command of a transition
t; that performsnotify All. Nevertheless;; andt, are inde-
pendent in all states, because of their guards, by the above
argument. Thus, this dependency between the operations in
the commands can safely be ignored, because it never induces
dependency between transitions. Dependency between tran-
sitions is what matters, because it is the basis for defining
persistent sets and sleep sets.

Theorem 6. Let M be a system satisfying LD. In every state
5 of M, Algorithm 2-LD returns a set that is persistentdn

The might-be-the-first-to-interfere-with relation is deter- Proof: This follows from correctness of Algorithm 2 of [8].

mined manually for each kind of object and stored in a library

[8, Section 4.7]. A might-be-the-first-to-interfere-with rela- ~ For example, Algorithm 2-LD can compute non-trivial
tion for synchronization objects appears in Figure 3. AccuratePersistent sets for dining philosophers. Ignoring initialization,
analysis of dependencies between operations on synchronizie heart of the code for each philosopher is

tion objects involves th.e value of the.object and the identities asynchronized (Ifork) synchronized (rforky eat} }

of the threads performing the operations. We assume that the

latter can be inferred from the operation (or from a constantvherea andb are labels representing control points, Ifork and
argument to the operation in the transition; such argumentéfork are instance fields that refer to objects representing this

can be considered as part of the operation) A.ep denote a
synchronization operationp performed by thread. Figure

philosopher’s left and right forks, respectively, and eat is an
operation on an unshared object. Consider using Algorithm

3 gives, only for operations on synchronization objects in 2-LD on a model of this program with three philosophers,

transitions that do not throw lllegalMonitorStateException;

for operations (irop; or op,) in thetransitions that throw II-

corresponding to threads, 6, andf,. Let f; be a synchro-
nization object representing a fork. Fore [0..2], the left

legalMonitorStateException, SyncWithoutLock implies that and right forks of philosopherare f; and f;«1, respectively,

op, s 0p, IS false.

Justifying the relation in Figure 3 is not difficult. For ex-
ample, consider the entry fdh :0.acquirer, 65:0.acquire.
Consider a statein whicho.owner & {free,6,}. Leto be a

sequence of transitions starting frarand ending with a tran-

o (0) o(1)
— 81 —

sition that perform#s:o0.acquire. As usual, letsy

o(n—1) o(n)
—

So .- Sn — Spa1, With sg = s. It suffices to show
that either an operation dependent witho.acquire occurs
beforef,:o0.acquire in o, or 8 :0.acquire is independent with
0>:0.acquire in s,. Consider two cases.

case: s(o.owner) = 0. If s,(0.owner) = 65 holds, then
0,:0.acquire is disabled irs,,, and executing,:o.acquire
in s, leavesé;:o.acquire disabled, s@;:0.acquire and

where® denotes addition modulo 3. We trace the execution
of Algorithm 2-LD in the unique reachable statén which

0, is at labelb, andf; andé, are at labek. The relevant sets
of operations are

{f2.acquire}
{f2.acquire}
{fi.release, f;q1.release}

pendVisOps(s, 0p)
pendVisOps(s, 601)
)
)

pendInvisOps(s, 0;

ops(02) = { f2.acquire, fy.acquire,
fa.release, fo.release}

Suppose we start with' = {6y }. In step 2 withd = 6, and
0" = 01, we haved, : fy.acquire, 01 : fo.acquire, SO0y
is inserted inT'. In step 2 withd = 6, andd’ = 6,, all of

12 Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

0
op, P2 acquire release walit; wality notifyAll

acquire owner € {free,61} | owner =60 | owner = 03 V 02 € waiters N\ owner = 61
V 02 & waiters A\ owner € {free, 01}

release

wait; owner = 0

waitp owner = free owner € {free, 01}
notifyAll

Fig. 3. op, >s op, holds only if the predicate in the appropriate box holds. An empty box defistes op; is an operation performed by threég on
synchronization objeat, with 61 # 62. The row forop; = notify and the column fobp, = notify are not shown; all entries in them dtdse. We do not
conside¥; = 02, because Algorithm 2-LD does not depend omvitit; andwaite correspond to the operations in the first and second non-exception-throwing
transitions inwait, respectivelyowner andwaiters abbreviate.owner ando.waiters, respectively.

the relevant might-be-the-first-to-interfere-with relations areincluded as part of the system. Fo¢ domain(initThread),
false, s, is notinserted ir". Next, step 2 is executed again, let endInit’(c,0) = 0. Foro € domain(initThread), for
and there is a new combination of threads to consider, namely, _ s o(9) st o(1) so--- let endnit'(0,0) be the sec-

0 = 6, and®’ = 6. All of the relevant might-be-the-first-to- ond smallest such that(3¢ ¢ © : access(;i 8,0)), or |o]|
interfere-with relations are false, so the algorithm terminatess o such value exists. Let LDdenote LD withendInit re-
with T' = {60, 61 }. placed withendInit’, and extended with the requirement that
for each object in the domain ofnit Thread, init Thread (o)

is the first thread to access The lockset algorithm can eas-
ily be modified to check LD} we call the modified version

i) . the lockset algorithm. We assume guards of transitions in
If accesses to ObJeCt_S 14 are expected to satisfy LD, bUt_ C(M) are constructed using short-circuiting conjunction, so
no static guarantee is available, LD can be checked during,q artifacts described in Section 5.3 do not affect the lotkset

state-space exploration using the lockset algorithm [17]. They 4 orithm (in contrast, persistent sets are calculated from the
results in Sections 5 and 6 do not directly apply in this casegtayic structure of the system, with incomplete information

because they assume that the original (unreduced) system sas ¢ object values, so short-circuiting has limited impact on

isfies LD. Here we extend those results to ensure that, if they, ;¢ calculation). We assume that accesses to objec@s,in
original system violates a slightly stricter variant of LD, then by the guard of a transition are checked in each state in

state-space exploration of the reduced system finds a violashich ¢ is pending (in other words, in each state, guards of
tion. all pending transitions are evaluated). It suffices to check ac-

. _Sayageet al. observe, that th_eir Iiberal.treatment of ini- agses to objects ift,; by the command of a transition only
tialization makes Eraser’s checking undesirably dependent o hen that transition is explored by the search algorithm; to

the scheduler [17, p. 398]. For the same reason, IF-SSS Mightae this, note that the following variant of Ldck is equiv-

indeed miss violations of LD. Consider a system in whigh giant to | D-lock, in the sense that it does not change the set
can perform the sequence of two transitions (control points systems satisfying LD

are omitted in this informal shorthandyem.up(),v := 1),

7 Checking LD on the Reduced System

andé, can perform the sequence of four transitions o is lock-protected after initialization,e., there exists a
_ synchronization objeat; € O,,, such that, for alk >
(sem.down(), o.acquire(), v:=2, o.release()), endInit'(o,0), (1) if access(s;, o(i), 0), thenthread (o ())

ownso;'slockins;, and (2) foralb € O, if pending(s;, 0)
contains a transition whose guard access#isend owns
o1’s lock in s;.

wherev € Oy is an integer variabley € Os,,,, andsem €
O.om IS @ semaphore, initialized to zero. This system vio-
lates LD, because := 1 can occur aften := 2, andf;
owns no locks when it executes= 1. IF-SSS does not find Let o; t denote execution of followed by evaluation of

a violation, because afteem.Up(), execInvis immediately s guard and, it is enabled, execution % command. Re-
executes := 1. Similarly, SSS applied t6(M) would not call that conditions on systems (Separation, Boundedinvis,

find a violation of LD. etc.) are defined in Section 3.6.
We strengthen the locking discipline’s constraints on ini-

tialization by requiring that the thread (if any) that initializes Theorem 7. Let M be a system satisfying Separation. For
each object be specified in advance and by allowing at mosall threads#, all reachable states, and all executiong
one initialization transition per object (a more flexible alter- leading tos, if enabled(s,#) contains an invisible transi-
native is to allow multiple initialization transitions per ob- tion, then either (a)enabled(s,8) is persistent ins or (b)
ject, but to require that the initializing thread not perform any enabled(s,#) contains a transition: such that either (b1)
visible operations between the first access @nd the last 3 It is easy to show that LDis stricter than LD. This observation does

access tw that is part of i_nitialization ob). Formally, we ot enable simple proofs of the theorems in this section from the theorems
require that a partial functiomitThread from O;; to © be in previous sections orice versa

Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs 13

00;t violates LD or (b2) s -5 s’ and a violation of LD is
reachable frons’.

Proof: See Appendix. O

Theorem 8. Let M be a system with a finite state space and
satisfying Separation, BoundedInvis, Determinvis, NonBlock

Invis, and PureVis. Assumi1 runs the locksétalgorithm.
(a) If M'’s state space is acyclic\ violates LD iff IF-SSS
finds a violation of LD. (b) M violates LD iff IF-SSSy.
finds a violation of LD.

Proof: See Appendix. O

Consider applying SSS with Algorithm 2-I'lbo C(M).
Theorems 1(a) and 10 imply that if no violation of L3
found, thenC(M) satisfies LD. Theorem 9 implies thait
satisfies LD and hence LD. Theorems 1(a) and 5 together
imply that all reachable deadlocks and control points\éf
were explored.

Consider applying Godefroid's traditional selective search
with persistent sets and sleep sets [8, Figure 6.2](td1),
where M is as above except without the acyclicity require-
ment. By the same reasoning as in the previous paragraph,
except with references to Theorem 1(a) replaced with refer-
ences to [8, Theorem 6.12], if no violation of LB found,
thenC (M) satisfies LD and all reachable deadlocks and con-

Theorem 9. Let M be a system with a finite state space trol points of M were explored.

and satisfying Separation, InitVis, BoundedInvis, Determin-

vis, NonBlocklnvis, and PureVis. Assumeruns the locksét
algorithm. M violates LD iff C(M) violates LD.

Proof: («<): Leto be an execution af(M) that violates LD.

Expanding each transition im into the sequence of transi-
tions of M from which it is composed yields an execution of

M that violates LD.
(=): Theorem 8(b) implies that IBSS.,. explores an

8 Implementation of State-less Search with Lock-Based
Reduction

JavaChecker is a prototype implementation of state-less search
for multi-threaded single-process Java programs. It incorpo-

executiono of M that violates LD. Composing sequences rates our lock-based reduction and has been applied to some

of transitions ofM in ¢ to form transitions o (M) yields
an execution ot (M) that violates LD. Note thatC(M) is
not expected to satisfy PureVisO

The stricter constraints on initialization in LRllow the

definition of pendInvis Ops to be tightened. LetendInvisOps’

denote that variant ofendlnvisOps. Let Algorithm 2-LD
denote the variant of Algorithm 2-LD that usgsidInvisOps’.

Theorem 10. Let M be a system that runs the locksago-
rithm. In every state of M, Algorithm 2-LD returns a set”
such that eithelP is persistent irs or P contains a transition
t such that violates LD in s.

Proof: pendInvisOps’ is the only part of Algorithm 2-LD
that depends on LD pendInvisOps’(s,) is invoked only
for thread¥) that have already been addeditoSuppose for
all threadd in T, all transitions inenabled (s, 0) satisfy LD
in s. Then all invocations ofendInvisOps’ in this invocation

simple programseg.g, dining philosophers). It currently has
several limitationsg.g, array accesses are not intercepted,
and Algorithm 2-LD and support for communication objects
and RMI are unimplemented.

JavaChecker transforms Java class files (source code is
not needed) by inserting calls to a scheduler at visible opera-
tions and inserting calls to the locksatgorithm at accesses
to shared objects. The scheduler, written in Java, performs
state-less selective search. Markus Dahm’s Byte Code Engi-
neering Library, available from bcel.sourceforge.net, greatly
facilitated the implementation.

The scheduler runs in a separate thread. The scheduler
gives a selected user thread permission to execute (by un-
blocking it) and then blocks itself. The selected user thread
executes until it tries to perform a visible operation, at which
point it unblocks the scheduler and then blocks itself (waiting
for permission to continue). Thus, roughly speaking, only one

of Algorithm 2-LD’ return accurate results, so Theorem 6 im- thread is runnable at a time, so the JVM’s built-in scheduler
plies thatP is persistent irs. Suppose there exists a thread does not affect the execution.

in T such that some transitiarin enabled(s, 6) violates LD
in s. ThenP containst, andt violates LD in s. O

JavaChecker exploits annotations indicating which objects
are (possibly) shared. We use allocation sites as static names

The results in Theorems 8-10 can easily be generalizefor (equivalence classes of) objects [3]. Specifically, object
to reflect that, if static analysis ensures that accesses to soneeeation instructions (hamely, the new instruction and invo-

objects inQ,, satisfy LD, then it suffices to run the lockset

algorithm only for the other objects i1,.

cations of java.lang.Class.newlInstance and java.lang.Object.-
clone) may be annotated as creating unshared objects, ac-

Let M be a system with a finite and acyclic state spacecesses to which are not intercepted, or as creating tentatively
and satisfying Separation, InitVis, BoundedInvis, DetermIn-unshared objects, accesses to which are intercepted only to

vis, NonBlocklInvis and PureVis. Assurie runs the locksét

verify that the objects are indeed unshared. Objects created

algorithm. Consider applying IF-SSS with Algorithm 2-LD by unannotated instructions are potentially shared; accesses
to M. Theorems 8(a) and 10 imply that if no violation of to them are intercepted to check LBnd, if necessary, are

LD’ is found, thenM satisfies LD and hence LD. Theorem

recorded to determine dependencies. Currently, annotations

3 implies that all reachable deadlocks and control points ofare provided by the user; escape analysis, such as [20], could

M were explored.

provide some of them automatically.

14 Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

8.1 Granularity gives it ownership of the appropriate lock and lets it continue,
it invokes supern and then releases the lock.
By default, classes havild granularity i.e., the intercepted An “invokevirtual C.m” instruction requires no explicit

operations are field accesses. For some classes, it is desfRodification; the JVM's built-in method lookup mechanism
able to consider execution of a method to be one operatioﬁﬁ'c'e”tly determines whether the target object is shared (i.e.,
(or, for some blocking methods, a small number of Opera_whether it is an instance of the original class or the wrapper
tions) for purposes of checking 'land computing depen- class) and invokes the appropriate method. For method invo-
dencies. We say that such classes haethod granularity cations on unshared instances, the overhead is negligible.
For example, with semaphores, it is desirable for operations AN obvious alternative approach, which we call Inline, is
seen by the scheduler to be up (also called V or signal) andP insert near each invocation instruction some bytecode that
down (also called P or wait), not field accesses. Method gran€Xplicitly tests whether the instance is shared and, if so, per-
ularity reduces overhead and allows use of class-specific ddOrms the steps described above. With Inline, the overhead is
pendency relations. User-supplied annotations indicate whicROn-negligible even for unshared instances. Another benefit
classes have method granularity. Currently, method granulai@f Using wrappers to intercept invokevirtual is that, when gen-
ity is supported only for instance methods; static fields are€rating & wrapper, it is easy to determine whether the method
always handled with field granularity. being wrapped is synchronized. With Inline, if the instance is
When methods are considered as operations, the bounghared, the inserted bytecode would need to explicitly check
aries of the operation must be defined carefully, so that dethe cllass of the instance,. because a synghronized method can
pendencies are defined and computed appropriately. In olfverride an unsynchronized method, aride versa Also,
framework, by default, an invocatiarof an instance method Wrappers are convenient for intercepting RMIs on the server
of a class with method granularity represents accessbisto Side. Wrappers forun methods of classes that implement
performed byi but not accesses this performed by meth- Runnable or extend Thread are special (we assume such meth-
ods invoked withini; furthermore, it does not represent ac- 0ds areé notinvoked directly by the application): their first ac-
cesses to objects other thems or accesses to static fields. 10N is to block, waiting for permission to proceed.
Accesses by to other objects are intercepted based on the The other visible synchronization operations are intercepted
granularities of the classes of those objects. Thus, indicating/Sing Inline; this includes “invokespeci@l:m”, monitorenter,
that a clasg” has method granularity determines only how and invocations of java.lang.Object.wait. The bytecode in-
accesses to instances(@fare intercepted. For a clagswith serted near these instructions must efficiently determine whether
method granularity, we require: (G1) all instance methods ofthe target object s shared. Inserting a boolean field in java.lang.-
C (including inherited methods) perform no visible opera- Object would be a nice solution if it didn’t give the JVM (in-
tions, except that the methods may be synchronized. Sun JDK 1.2.1) a heart attack. Our transformation inserts in
Ideally, for a clas€” with method granularity, all accesses iava.lang.Object a boolean-valued method, called isShared,
to instances of” are intercepted at the level of method invo- Whose body is “return false”. This method |s_0\£err|dden n
cations. If an instance of C' has fields that are accessed by !l Wrapper classes by a method whose body is “return true”.
methods invoked on objects other tharthose field accesses 1NiS works fine with Sun JDK 1.2, but causes the HotSpot
would also need to be recorded. Therefore, for a afassth ~ YMinJDK1.3 and JDK 1.4 to die. More portable but slower
method granularity, we also require: (G2) all instance fieldsaltérnatives are to look up the object in a hash table or use
(including inherited fields) are private or final (accesses to fijava.lang.Object.getClass to check whether the object is an
nal fields are not intercepted) and (G3) instance methods dfistance of a wrapper class. _
C do not directly access fields of other instance<ofi.e., Invocations of notify and notifyAll are intercepted, so that
instances other thathis). If (G3) turns out to be undesir- OUr System can keep track of which threads, if any, are cur-
ably restrictive €.g, for classes that use such accesses to imrently waiting on an object; the JVM provides no direct way
plement comparisons, such as equals), we can deviate frof@ determine this. Slmllarly, releases are intercepted, aqd our
this ideal and explicitly record such field accesses; a simpl&ystem keeps track of which thread, if any, owns an object's

static analysis can identify getfield and putfield instructions!0Cck, because the JVM provides no direct way to determine

ception of the implicit release performed when a synchro-
o) nized method returns is slightly tricky; in particular, if a syn-

8.2 Synchronization Operations chronized method invoked with invokespecial throws an ex-

ception, the inserted code must catch this exception, record
Synchronized methods are intercepted using automaticallyhe release, and then re-throw the exception from within the
generated wrapper classes. Unshared objects are instancessebpes of the same exception handlers as the original invoke-
the original clasg”; shared objects are instance<t$ wrap- special instruction.
per class, which extends. For each synchronized method Our system maintains its own copy of all synchroniza-
of C, the wrapper class contains a wrapper method that ovettion-related state, so executing the JVM’s built-in synchro-
ridesm. The wrapper method yields control to the schedulernization operations would be redundant. Those operations are
and then waits for permission to proceed. When the scheduleemoved by the transformation.

Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs 15

8.3 Method Invocations and Field Accesses precedence in case of conflicts. Objects not explicitly classi-
fied by .commun or .unshared are@h,; by default. Correct-

Methods of classes with method granularity are interceptediess of the classification is fully checked during state-space

in a similar way as synchronized methods. In short, invoke-€xploration, using the modified lockset algorithm for objects

virtual instructions are intercepted using wrapper methoddn Ou, and using a straightforward algorithm for objects in

that call the locksétalgorithm, record the operation (if nec- Ounsh-

essary), and invoke super. Invokespecial instructions and Locksets are stored in a hash table, so at most one copy

field accesses (and, in principle, array accesses, though this & each distinct lockset is stored, as in Eraser [17]. We plan to

unimplemented) are intercepted using the Inline approach. implement the memoization optimization described in [17],
The lockset algorithm requires associating a candidate Which caches the results of set intersection operations.

lock set,etc, with each potentially shared storage location.

We maintain this information for each object and each static)

field, by inserting an instance field in each wrapper class and® EXPerimental Results

inserting appropriate static fields in each class. The prototype

currently does not maintain this information separately forWe report two kinds of experiments. The first compares the

each instance field, so a violation of L3 reported if differ- execution speeds of state-less search in JavaChecker and tra-

ent locks protect different fields of an object. ditional search in JPF. The second measures the benefit of
java.util. Random is treated specially. Instances of it gen-the lock-based reduction, using the JPF implementation. The

erate pseudo-random sequences of numbers. Instances thab kinds of experiments used Sun JDK 1.2.2 and Sun JDK

are created with a specified seed behave the same way in t1e3.0, respectively. All experiments were done with a Sun

original and transformed program. Instances created without/ltraSPARC-11 300 MHz CPU. One should not generalize

a specified seed behave differently. In the original programtoo much from the results of these few experiments. More

they are implicitly seeded from the real-time clock. In the experiments with a variety of larger programs are needed.

transformed program, they are non-deterministic: the sched- To compare the execution speeds of JavaChecker and JPF,

uler explores transitions corresponding to each possible reae ran the usual deadlock-prone dining philosophers pro-

turn value. This is similar to VSoss in VeriSoft [9]. gram in both systems. Due to differences in the granularity
used by the two implementations for some system classes,
8.4 Undo the two tools do not explore exactly the same number of in-

terleavings with multiple philosophers, so we performed this

)) experiment with a single philosopher that executes its main
undo(s,), as used in SSS or IF-SSS, can be implementeq,,, acquire both chopsticks, eat, release both chopsticks)
in Fhr_ee ways. reverse computa_tlon,_reset+replz_iy, and C_hedS,OOO times. Context switches consume a small fraction of
pointing. Reverse computation is efficient t_)ut dlﬁlpult to im- e running time, so the relative speed of the two implemen-
plement. JavaChecker uses reset+replay (like VeriSoft), mainlyjons is about the same with any number of philosophers.
_be.cause it is relatively easy to implement. .Sp'egl'flcally, undorp,q running times are 563.0 sec for JPF, and 5.79 sec for
is implemented by resetting the system to its initial state andy,\ s checker. Thus, JavaChecker's execution speed is about
replay_mg the sequence of tran_smons stuck (see F'gl_”e_ two orders of magnitude faster than JPF's. The reasons are
2). ExitBlock [2] and Java PathFinder [1] use checkpointing, gimple JPF incurs the cost of hashing and storing states and
which requires a custom JVM but is more efficient than re- < interpretive overhead for execution of every bytecode in-
set+replay for systems with long executions. struction. JavaChecker does not hash or store states, and it
incurs no overhead for accesses to unshared variablgs (
bytecodes that manipulate the operand stack) and relatively
little overhead (only the cost of recording invisible opera-
tions) for accesses to unshared objects. However, in overall
performance on non-trivial systems, this constant factor in fa-
Java PathFinder (JPF) [1] is based on a custom JVM, writtervor of JavaChecker can very easily be outweighed by the cost
in Java, that supports traditional selective search, as in Spiof replay (which can be arbitrarily large, depending on the
[13]. We implemented the lock-based reduction in JPF bylength of executions) and the cost of redundant exploration
(1) modifying the existing JPF implementation of the lock- of states (which can be exponential in the number of distinct
set algorithm to use a different notion of initialization, and visited states, depending on the structure of the computation
(2) modifying the scheduler so that context switches are aland the effectiveness of the partial-order reductions). Con-
lowed only in visible states. The user supplies two files, .com-sequently, state-less search is useful in practice mainly for
mun and .unshared, that classify objects ittg,.;,, O;4, and systems whose state is not easily captured and stergd,
O.om- Each file contains a list of class names and objectsystems written in a combination of programming languages.
creation instructions. Instances of those classes and objects To measure the benefit of the reduction, we used two pro-
created by those instructions are in the corresponding categrams supplied by the developers of JPF. HaltException, de-
gory. The classification based on object creation site takescribed in [12], involves a producer thread and a consumer

9 Implementation of Lock-Based Reduction in Java
PathFinder

16 Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

thread that exchange data itewis a shared FIFO buffer. Atomicity | Lockset| States| RAM | Time
In our experiments, the threads exchange 10 items, and the bytecode | off 201,688| 56.1| 2453
buffer has capacity 6. Clean, which is roughly the same as [1, bytecode | on 323,854 923 | 1729.9
Figure 1], is based on code in NASAs Remote Agent and in- line off 8266| 28| 230
volves two threads that use bounded counters, synchronized | "€ on 11457| 39| 546
methods, wait, and notifyAll. The measurements appear in reduced | off /88| 0/8] 197
Figure 4. In the Atomicity column, “bytecode” and “line” reduced | on 788] 083 928
mean that a transition corresponds to execution of one byte- Atomicity | Lockset| States| RAM | Time
code instruction and one line of source code, respectively; bytecode | off 58370 159| 77.9
“reduced” means that the lock-based reduction is used. The bytecode | on 58,370| 13.7 | 167.0
Lockset column indicates whether the (modified) lockset al- line off 8,365 25| 239
gorithm was turned on. line on 8,365 25| 322
. .) reduced off 209 | 0.55| 103
For HaltException, the reduction (with lockset on) re- reduced | on 209 056 116

duces memory usage by a factor of 67, and running time by
a factor of 2.6, compared to bytecode atomicity with locksetFig: 4. Experimental results for HaltException (top) and Clean (bottom). The

. . units for memory and running time are MB and seconds, respectively. Mem-
off. For Clean, the reduction (with lockset on) reduces mem- Y g pecivey

> . ory is “Memory used after gc” (garbage collection), as reported by JPF. Run-

ory usage by a factor of 28.2, and running time by a factor Ofning time is user+system time. For measurements with bytecode and line

6.7, compared to bytecode atomicity with lockset off. If static atomicity, we used unmodified JPF version 0.9 from NASA.

analysis can show that objectsdh, are lock-protected, then

running the reduction with lockset off would be more appro-

priate. For both programs, if the user is interested in verifyingReferences

absence of race conditions, and static analysis cannot verify

this, then comparing the reduction with lockset on to byte- 1. G. Brat, K. Havelund, S.-J. Park, and W. Visser. Model check-

code atomicity with lockset on would be more appropriate. ing programs. INEEE International Conference on Automated

Software Engineering (ASH)ages 3-12, Sept. 2000.

HaltException and Clean are little more than synchro- 2. D. L. Bruening. Systematic testing of multithreaded Java pro-

nization skeletons. They perform few local computations. This grams. Master’s thesis, Massachusetts Institute of Technology,

is an unfavorable case for the reduction, which is more bene- 1999. Available via http://sdg.lcs.mit.edu/rivet.html.

ficial for programs that perform more local computation. 3. D.R. Chase, M. Wegman, and F. K. Zadeck. Analysis of point-
ers and structures. IRroc. ACM SIGPLAN Conference on

For both programs, the reduction in the number of visited =~ Programming Language Design and Implementation (PLDI)
states is larger than the reduction in memory, because JPF Pages 296-310. ACM Press, 1990. o
uses substructure sharing, so storing a new state that differ$- E- Cohenand L. Lamport. Reduction in TLA. In D. Sangiorgi

only slightly from the previous state requires only a small ~ 2"d R. de Simone, editorBjoc. 9th Int'. Conference on Con-
adgitior?al gmount of m%mory q y currency Theory (CONCURYolume 1466 of_ecture Notes in

Computer Sciencgages 317-331. Springer-Verlag, 1998.

A performance comparison of lock-based reduction and 5. J. C. Corbett. Using shape analysis to reduge finite-state models
of concurrent Java program#CM Transactions on Software

source-line atomicity has limited significance, because the Engineering and Methodolog9(1):51-93, Jan. 2000
former is a sound reduction (relative to bytecode atomicity), 5 p | petlefs. K. R. M. Leino. G. Nelson. and J. B. Saxe.

and the latter is not. Extended static checking. Research Report 159, Compaq
. , . . SRC, 1998. Extended Static Checking for Java is available at

_ The lockset algorithm’s data structures (described in Sec- http://www.research.compag.com/SRC/esc/.

tion 6) are part of the state, so turning on the lockset algo- 7. c. Flanagan and S. Freund. Type-based race detection for

rithm can increase the number of visited states as well as the java. InProc. ACM SIGPLAN Conference on Programming

amount of memory used. For Clean with bytecode atomicity, Language Design and Implementation (PLOdxges 219-232.

turning on the lockset algorithm decreases the final memory ACM Press, 2000.

usage (reported in the table) by about 14%; we are investi- 8. P. Godefroid. Partial-Order Methods for the Verification of

gating this anomaly. The time overhead of the lockset algo- ~ Concurrent Systemsolume 1032 ofLecture Notes in Com-

rithm is significant but can be decreased using memoization, Puter ScienceSpringer-Verlag, 1996. .
as mentioned in Section 9. 9. P. Godefroid. Model checking for programming languages us-

ing VeriSoft. InProc. 24th ACM Symposium on Principles of
Programming Languages (POPRlpages 174-186. ACM Press,
1997.

AcknowledgementsGregory Alexander, Aseem Asthana, Sean Broadp. J. Gosling, B. Joy, G. Steele, and G. Brachiae Java Language
ley, Sriram Krishnan, and Adam Wick implemented JavaChecker. Specification Addison Wesley, 2nd edition, 2000.

Han Li implemented the reduction in JPF, with help and advice11. D. Gries.The Science of Programmin§pringer-Verlag, 1981.
from Flavio Lerda and Willem Visser. | thank Patrice Godefroid for 12. K. Havelund and T. Pressburger. Model checking java programs
his comments about partial-order methods, and Ernie Cohen for his using java pathfindennternational Journal on Software Tools
comments about reduction theorems. for Technology Transfe2(4), Apr. 2000.

Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs 17

13. G. J. Holzmann and D. Peled. An improvement in formal veri- S0 accesses hy(0..7) to unshared objects cannot enahle
fication. InProc. International Conference on Formal Descrip- Finally, consider accesses by a transitiqi) to an objecb
tion Techniques (FORTE)1994. . . in 0,4, where0 < j <.

14. B. W. Lampson and D. D. Redell. Experience with pro- .
cesses and monitors in Mes&ommunications of the AGM ~ Case:ta’s guard does notaccesin s;,1. Theno(j)'s access
23(2):106-117, Feb. 1980. to o does not affect;’s enabledness.

15. R. J. Lipton. Reduction: A method of proving properties of case:ty's guard accessesn s;;1. SinceS; = S, t4's guard
parallel programs.Communications of the ACM8(12):717— also accesses in s. thread(o(j)) # 6, soo becomes
721, 1975. shared at or before;, soo(j) is not part of initialization

16. W. Pugh. ~ The Java memory model. Available at of o, so LD-RO or LD-lock holds foro at s; and there-
http://www.cs.umd.edu/"pugh/java/memoryModel/. after.

1. iﬁdS:r\;?)%e’ '\é';azggoxvsa S&r:ilzoargé '?ACS:?(;':’:;:; f:)r;melij' case: LD-RO holds foro. o(j) is not part of initialization
’ - A ay of o, soo(j) does not update, soo(j)’'s access t@

threaded programsACM Transactions on Computer Systems]
15(4):391—411, Nov. 1997. cannot affect,’s enabledness.
18. S. D. Stoller. Model-checking multi-threaded distributed Java ~ CaS€:LD-lock holds foro. This case is impossible. Let
programs. Technical Report 536, Computer Science Dept., In- o1 be the synchronization object whose lock protects
accesses to. o(j) is not part of initialization ob, so

diana University, Jan. 2000. Revised May 2000.
19. A. Valmari. The state explosion problem. lectures on Petri LD-lock impliesthread(o(j)) ownso;'s lock in state
sj, s06 does not owrp;’s lock in s;. By the induc-

Nets |: Basic Modelsvolume 1491 ofLecture Notes in Com-
puter Sciencepages 429-528. Springer-Verlag, 1998. tion hypothesisy (;..i) does not contain transitions of
6, sof does not owm, s lock in s;; 1, S0 LDdock im-

20. J. Whaley and M. Rinard. Compositional pointer and escape
ana_1|ysis f_or Java programs. [kroc. ACM Con_fergnce on plies thatt, (including t,’s guard) does not access

Object-Oriented Systems, Languages and Applications (OO_P- in s+ acontradiction.

SLA) pages 187-206. ACM Press, Oct. 1999. Appeared in +1

ACM SIGPLAN Notice84(10). This completes the proof that does not contain transitions
of 4.

Supposer(n) accesses an objegin s,,; thus,o(n) con-
tains an operatiomp,, on o. We show that the presence of
this operation inr(n) does not cause dependence between
Proof of Theorem 2 Let o be a sequence of transitions such andao(n) in s,. If ¢t does not accessin s, this is obvious.

that s, O'E))) 51 a(_l)) S - U(H_—)l) s Uﬂf) Snt1 with sy = frlljppOSGf accesses in s,; thus,t contains an operatioop
0.

sand (Vi € [0.n] : o(i) & enabled(s,8)). It suffices to
show thato(n) is independent in,, with all transitionst =

Appendix

case:o € Oy,q,- This case is impossible, becausg:) and

(S,C,G, F) in enabled(s, §). By hypothesisenabled(s, 0)
contains an invisible transition, so Separation impliestit
invisible. Note that(f) = S.

We first prove by induction that does not contain tran-
sitions of §. Base cases(0) is executed from state, and
o(0) ¢ enabled(s,), soo(0) is not a transition of). Step
case: The induction hypothesis is th&D..i) does not con-
tain transitions of), and we need to show that(i + 1) is
not a transition of). We assume that(i + 1) is a transition
ta = (Sq, Gq, Cy, Fy) of § and show a contradiction. By hy-
pothesisg (i + 1) ¢ enabled(s, 0), i.e., tq is disabled irs, so
to reach a contradiction, it suffices to show théb..i) does
not cause any transition éfthat is disabled irs to become
enabled ins; ;1. By the induction hypothesis;(0..i) does
not contain transitions df, so it does not changés current
control point, saS; = S. By hypothesisgnabled(s, §) con-

t are transitions of different threads and both aceess

case:o € Oy, t is invisible, soop is release, notify, or

notifyAll.

case: # ownso’s lock in s,,. As shown aboveiread(o(n))
is not#, sothread(o(n)) does not owm's lock in s,,.
o(n) is enabled ins,, so op,, IS not acquire. Sync-
WithoutLock-1 implies thabp,, does not modify the
state ofo, so op,, does not affect execution afp.
op cannot causehread(o(n)) to hold o's lock, so
SyncWithoutLock-2 implies that execution op,, is
unaffected by execution afp.

case:f does not owm’s lock in s,,. SyncWithoutLock-1
implies thatop does not modify the state of soop
does not affect execution @p,,. op,, cannot causé
to hold o’s lock, so SyncWithoutLock-2 implies that
execution ofop is unaffected by execution @b,,.

tains an invisible transition. The starting control point of that case:o € Oy4. By hypothesisg andthread(o(n)) both ac-

transition must b&'. Thus, Separation implies thatis invis-
ible. t; can become enabled by 0..7) only through updates

cesso in s, andf # thread(o(n)), So0o is shared irs,,,
soo(n) andt are not part of initialization ob.

to objects accessed by. t, is invisible, so it does not access case:LD-RO holds foro. LD-RO implies thatr(n) andt
communication objects or perform acquire or wait on syn- do not update in s,,, Soop,, andop are independent
chronization objects. All other operations on synchronization in s,.

objects are non-blocking and therefore do not affect whether case:LD-lock holds foro. This case is impossible. Let
tq is enabled, even if; uses some of those operations. By 01 be the synchronization object whose lock protects
hypothesisg (0..4) andt, are transitions of different threads, accesses to. By hypothesisg(n) andt both access

18 Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs

oin s,, sof andthread(o(n)) both ownoy’s lock in for i =0tom o . _
sn, @ contradiction, becauge# thread(o(n)). while (fche transitiort immediately preceding,
case:o € O.,.m. This case is impossible, because all oper- in o hasthread(t) # thread(t;))
ations on a communication object are visible, armbn- swapt,; andt in o,
tains an operation omand is invisible. O We show that each swap preserves the factdhiatan exe-

cution of M. Suppose a fragmeant-5 s’ % of o is modified
Proof of Theorem 3 (a) This follows directly from Theo- py a swapj.e, ¢ andt; get swapped. Note thabread(t) #
rems 1 and 2, by comparing an execution of IF-SSS with arycqq(t,). It suffices to show that; is enabled ins, and
execution of SSS using a persistent set function PS that, fofhat+ and+; are independent in. For the former, since,
invisible states, returns a singleton set containing an invisis enapled ins’, it suffices to show that cannot change;’s
ible transition; NonBlockinvis (defined in Section 3.6) im- gtatys from disabled to enabletland; are transitions of
plies that IF-SSS applies PS to visible states only, so there igjfferent threads, so accessesibip unshared objects can-
no need to restrict the behavior of PS for visible states. The,ot enable;. ¢ is invisible and hence cannot access commu-
only significant difference between the two executions is inpjcation objects or perform acquire or wait on synchroniza-
the calculation of sleep sets. SSS inserts invisible transitiongon opjects. The other operations on synchronization objects
in sleep sets, and IF-SSS does not, but using smaller sleege non-blocking, so even #f uses them, they do not affect
sets is clearly safe. Separation, Determinvis, and the abovghethert, is enabled. Suppose's guard contains some op-
hypothesis about PS for invisible states together imply thalrationop on some objech € ©,,. We prove by contradic-
T = 1 whenever]” contains an invisible transition, so the tjon thatt’s command does not updatewhich implies that
argument of DFS never contains invisible transitions. Thus goes not affect;’s enabledness viep. Suppose’s command
inserting invisible transitions in sleep sets (in the last line of ypqates. ¢ is enabled irs, sot accessesin s. t;'s guard ac-
the for loop) does not reduce the number of transitions ex-cesses), andt; is pending ins (because; is pending ins’,
plored by SSS. andt does not chang#read (t;)’s control location), s@; ac-
IF-SSS does not explicitly check whether transitions incesse® in s. Thus, neither nort; is part of initialization of
sleep are independent with invisible transitions executed byo in o.
execlnvis. This is safe because the former and the latter are._ ...\ n_rRo holds foro. LD-RO implies that does not up-
always independent, because (1)ifabled(s) contains an dateo, a contradiction.
|n\I/|S|_bI§ traln5|rt]|ort.of ﬁ thre|ad9, thep.Sepgr.anon ell)r;ddDeter— case: LD-lock holds foro. Leto; be the synchronization ob-
minvis imply t e}tt 'S.t eon y_transmon ov In cnabie (5), ject whose lock protects accessestd D-lock implies
and Theorem 2 implies thats independent ir with all tran- ; :
L oy that thread(t) and thread(t;) both owno;’s lock in s,
§|t|9ns me”abl.e.d(s).\ enabled(s, 6); (2) in IF-SSS, when an and thread(t;) ownso;’s lock in s. This is impossible,
invisible transition is executedjeep C enabled(curState) becausehread(t) # thread(t;)
(similarly, in SSSsleep C enabled(curState) whenezec is ’ e
called). This completes the proof thatis enabled irs.
t; isinvisible, so Theorem 2 impliesiabled (s, thread(t;))
is persistent irs. By hypothesisthread(t) # thread(t;), SO
t & enabled(s, thread(t;)). Sincet € enabled(s), the defi-
nition of persistent set implies thatand¢; are independent
in s. This completes the proof that each swap yields an ex-
ecution of M. In the remainder of this proo#; denotes the

(b) BoundedInvis implies that the limited use of persis-
tent sets in IF3SS.,. does not introduce the ignoring prob-
lem, because a call tececInvis defers transitions only until
the next visible transition is explored, which occurs within a
bounded number of stepsO

Proof of Theorem 4 Let s be a visible state. We show that .

. NI X re-arranged execution.

Is reachable i\ iff s is reachable it (M). Let j + 1 be the number of visible transitions én and
(«): This direction follows immediately from the obser- et ¢ [0..5] — [0..n] be such thato(v(0)), o (v(1)),. ..,

vation that for every executiom of C(M), expanding each 5 (y (1)) is the subsequence of visible transitionsinnitVis
transitiont’ in o’ into the sequence of transitions.®f from impliesv(0) = 0. Letw; = o(v(i)..v(i+1)—1). Lets] , de-

whicht" is composed yields an execution.bt. note the state after executionwf in o. We show that/_ , is
(=): Let s be a reachable visible state 6f; thus, there visible.w; changes the control point only ékread(w;(0)),

is an execution of M such that, (0) st o(1) - o(n-1) so it suffices to show that , , (thread(w;(0))) is visible.

s T 0 With 50 = Sinie @Ndspg = 5. case:w; contains the last transition ahread(w;(0)) in o.

Then visibility of s, ; follows from visibility of s.
case: w; does not contain the last transitiontafead (w;(0))
in o. The next transition ofhread(w;(0)) afterw; in o
is the first transition in some;, and hence is visible, so
Separation implies that _, (thread(w;(0))) is visible.

Let (to, t1,...,tn) be the subsequence of invisible tran-
sitions ino. We re-arrange using the following procedure,
which moves the invisible transitions (if any) @that appear
between the’'th and (¢ + 1)’th visible transitions of) back-
wards so that those invisible transitions form a contiguous
subsequence of starting immediately after théth visible By definition of C(M), for eachw;, C(M) has a transition
transition off. that is the sequential composition of the transitionsjnlet

Scott D. Stoller: Model-Checking Multi-Threaded Distributed Java Programs 19

o'(i) equal that transition. Thusy " s %) &, ...

174 ¢ ands), | = s, s0s is reachable i€(M). O
Proof of Theorem 5 NonBlocklnvis (defined in Section 3.6)
implies that all deadlocks o¥1 are visible, so Theorem 4 im-
plies that thatM andC (M) have the same reachable dead-
locks.

For a control pointS, we show thatS is reachable int
iff S'is reachable i€ (M). The proof of the backward direc-
tion («) is the same as for Theorem 4. Consider the forward
direction &). By hypothesisS is reachable inM, so there
exists an execution, of M that ends in a state containing
S. NonBlocklinvis implies that, can be extended to form
an executiorr of M that ends in a visible state. The con-
struction in the proof of the forward direction of Theorem 4
shows that can be re-arranged by swapping transitions into
an executiorns’ of C(M). o ando’ contain the same control
points, saS is reachable i€(M). O
Proof of Theorem 7. Some observations about accesses: (O1)
in all states in which a transitiohis enabled; accesses the
same set of objects, namely, those used in its guard or com-
mand; (O2) in all states in which a transitieris pending
and disabled accesses the same set of objects, namely those
used in its guard. Some observations about:I(D3) a tran-
sitiont that is pending in a statecan violate LD in s even if
t is disabled irs; (O4) after initialization, whether accesses to
an object satisfy LDRO is independent of the order in which
the accesses occur (what matters is whether the set contains
a non-read-only operation); (O5) after initialization, whether
accesses to an object satisfy kbck is independent of the
order of the accesses, because set intersection is commutative
and associative.

Let s, 6, andog be as in the statement of this theorem.
Let o andt be as in the proof of Therorem 2. Note that
enabled(s,). Consider cases corresponding to the places in

o'(G-1)
R

is enabled irs and hence accessessdmll of the
objects that it accesses éf. Thus, disjunct (b1)
holds. (Forj; > 0, we could conclude that this
case is impossible, since it contradicts the defini-
tion of 5.)

case 2.1.2:0(0..j—1) does not contain an initializa-

tion transition foro. Observations O1-05 and
invisibility of ¢ imply thatog - (t) - 0(0..5 — 1)
also violates LD, since the same set of accesses
to o with the same sets of held locks occur in
00-0(0..j—1)-(t) andog- (t)-o(0..j—1), because
thread(o(i)) # 6 for i < j. The violation might
occur at any point irf{t) - ¢(0..5—1); depending

on when it occurs, disjunct (b1) or disjunct (b2)
holds.

case 2.2:0¢ - 0(0..7 — 1); ¢ satisfies LD. Thus, inog -
a(0..5), some access ly(;)'s guard or command vi-
olates LD.
case 2.2.1:aftergy-0(0..j—1), some access y(j)'s

guard violates LD Observations O1-05 and in-
visibility of ¢ imply thatoy - (t) - 0(0..j—1); 0(5)
also violates LD, even thougla () might be dis-
abled aftewy - (t)-o(0..j—1). Thus, disjunct (b2)
holds.

case 2.2.2:afterog-0(0..j—1), all accesses by(j)'s

guard satisfy LD. Thus, ino - o(0..5), some ac-
cess by (j)’'s command violates LD As in the
proof of Theorem 2¢ does not affect(j)'s en-
abledness (this follows from the hypotheses of
cases 2.2 and 2.2.2), 8¢j) is enabled aftesy -

(ty - 0(0..j—1). Observations O1-05 and invisi-
bility of ¢ imply thatoy - (¢) -(0..5) also violates
LD’, so disjunct (b2) holds. O

which a violation of LD could affect the proof of Theorem 2 Proof of Theorem & (a) The proof of the reverse direction

case l:forall j € [0..|c|-1], 09-0(0..5) andog -0 (0..57—1); ¢
both satisfy LD. In this case, the proof of Theorem 2 goes
through, so disjunct (a) in the statement of the theorem
holds.
case 2:there existg € [0..|o| —1] such thaiog - 0(0..5) or
oo -0(0..j—1); ¢t violates LD. Let j denote the least such
j. The proof of Theorem 2 goes through fof0..j —1);
specifically, fori < j, thread(o(i)) # 6 andt is indepen-
dent witho (i) in s;. Independence dfwith transitions in
0(0..7—1) and the definitions of ando together imply
that(t) - 0(0..j—1) can be executed from and¢ can be
executed froms;.
case 2.1:0¢ - 0(0..j —1);t violates LD. The violation
occurs whert accesses some objecin s;.
case 2.1.1:.5(0..j—1) contains an initialization transi-
tion o () for o. This implieso is in the domain of
initThread. The definition ofj implies thatoy -
0(0..7) does not violate LD sothread(o(i)) =
init Thread (o). LD’ requires thatthread(o(i))

(«=) of the “iff” is straightforward. For the forward direction
(=), we supposeM violates LD and show that IF-SSS finds

a violation. The proof involves an invariant about states in the
stack of the depth-first search. To express the invariant con-
veniently, we introduce a new local variahleof procedure
DFS, and insertV := curStaté before the assignment 6.
Also, we assume there is a global variabigatedthat is ini-
tially false and is set torue by the lockset algorithm when a
violation of LD’ is encountered. LatallStackdenote the call
stack, ignoring frames for functions other than DFS. fet
denote the value of a local variablein a stack framef. Let
violR(s) denote that a violation of LDis reachable frons;
because the system is running the lockakgorithm, the state
contains the locksealgorithms data structures, so this prop-
erty is a function of the state independent of the execution

that led tos. Let s $61 denote evaluation ofs guard ins
and, ift is enabled ins, execution oft’s command, leading
to a states’, followed by execInvis(s’, thread(t)), leading to

a states”; if ¢ is enabled ins, then we writes —t>e[s, Itis

be the first thread to accesssooy;t violates sensible to ask whetheri>61 violates LD, independent of
LD’, becausehread(c(i)) # 6, and becauseé the execution that led tg for the same reasons. The invariant

20 Scott D. Stoller: Model-Checking Mul

Iis
V violated
V (Vf € callStack : violR(f.v) = (3t € f.T,s € State :

(f.v 5. violates LD) V (f.v 5. s’ AviolR(s))))

To avoid clutter, this formula relies on the pretense that cre
ation of a stack fram¢ for DFS and the assignments fow
and f.T occur atomically.

By hypothesis,M runs the locksétalgorithm, so viola-
tion of LD’ corresponds to reachability of a control point.
Theorem 1(a) can be generalized to show that selective sear
starting from any state explores all control points reachable
from s. This implies that if persistent sets and sleep sets ar
computed correctly, theri is preserved, and a violation of
LD’ is found.

Consider a stack framg, a (visible) transitiont,, € f.T,
and a (invisible) transition; executed in a statg by the call
to execInvis after execution of, from f.v. Letog be the se-
quence of transitions that led to this visit4p Violations of
LD’ can potentially cause two problems whgiis explored:
(P1) {t;} might not be persistent ig;; (P2)¢; might be de-
pendent ins; with a transitiort’ in sleep, in which casé’ in-
correctly remains inleep. We show that these potential prob-
lems do not falsifyl. Specifically, we suppose theiblR(s;)
holds and show that one of the disjuncts in the last liné of
holds.

(P1) Supposé€t; } is not persistent is;. Theorem 7, Sep-
aration (defined in Section 3.6), and Determinvis imply that
eitheroo; t; violates LD, or s; 25 s’ A violR(s"). The for-
mer impliess ﬂel violates LD, so the first disjunct in the
last line of I holds. The latter, Separation, and Determlinvis

imply that eithers ﬁng violates LD or there exists’ such

thats 2%, s’ andviolR(s), so one of the disjuncts in the
last line of I holds.

(P2) Separation and Determlnvis imply that all transitions
in sleep are visible, sa’ is visible, so PureVis implies that
t' does not access any objectdh,. Thus, a LD-violating
access bhyt; to an object inQ;; cannot cause dependency
between:t andt’. Thus, such errors in computing sleep sets
are impossible.

Now we show thatl implies that a violation is found.
SinceM violates LD, the disjunci(3t € f.T') of I holds for

ti-Threaded Distributed Java Programs

state space means that it is possible for the second disjunct in
the existential in/ to hold along an infinite path. We need to
show that the search does not get stuck in a cycle and miss
violations outside the cycle. This holds, because Boundedin-
vis implies that every cycle contains a visible state, and in a
visible state, even if LDis violated, IFSSS,,. explores all
enabled transitions except those in the sleep set. (Recall that
sleep sets are computed correctly, even if iDviolated.)

ch

e

the first frame for DFS. Consider the execution defined by

repeatedly following the transitionthat witnesses the exis-

tential inI. The state space is finite and acyclic, so the second

disjunct in the existential cannot hold indefinitely, so eventu-
ally the first disjunct in the existential holds, as desired.

(b) The proof of the reverse directior=) of the “iff” is
straightforward. For the forward directior), we suppose
M violates LD, and show that IFSSS.. finds a violation.
The proof thatl is an invariant is the same as in part (a), ex-

cept that we refer to Theorem 1(b) instead of Theorem 1(a).

The proof thatl implies a violation is found is the same as
in part (a), except for two points. First, we consider a call

to SSSyna With a depth bound large enough for the search to

reach a violation of LD Second, the presence of cycles in the

