
Automated Type-Based Analysis of Data Races and
Atomicity ∗

Amit Sasturkar Rahul Agarwal Liqiang Wang Scott D. Stoller

ABSTRACT
Concurrent programs are notorious for containing errors that
are difficult to reproduce and diagnose at run-time. This
motivated the development of type systems that statically
ensure the absence of some common kinds of concurrent
programming errors including data races and atomicity vi-
olations. A method is atomic if every execution of the
concurrent program is equivalent to an execution in which
the atomic method is executed without being interleaved
with other concurrently executed methods. Atomicity is a
common correctness requirement in concurrent programs;
atomicity violations may indicate incorrect synchronization.
This paper presents Extended Parameterized Atomic Java
(EPAJ), a type system for specifying and verifying atomicity
in Java programs. EPAJ combines Flanagan and Qadeer’s
atomicity types [11] with a new and significantly more ex-
pressive type system for analyzing data races, called Ex-
tended Parameterized Race-Free Java (EPRFJ), allowing a
more accurate analysis of atomicity. The paper also presents
a type discovery algorithm to automatically obtain EPRFJ
types, and a static interprocedural type inference algorithm
that, given EPRFJ types, infers atomicity types. These al-
gorithms can be incorporated into testing and debugging
tools, benefiting users who know nothing about type sys-
tems. We report our experience with a prototype imple-
mentation.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.4 [Software/Program Verification]: Formal
Methods, Reliability—type systems; D.2.5 [Testing and

∗Address: Computer Science Dept., SUNY at Stony
Brook, Stony Brook, NY 11794-4400. This work
was supported in part by NSF under Grants CCR-
9876058 and CCR-0205376 and by ONR under Grants
N00014-02-1-0363 and N00014-04-1-0722. Email:
{amits,ragarwal,liqiang,stoller}@cs.sunysb.edu Web:
http://www.cs.sunysb.edu/˜{amits,ragarwal,liqiang,stoller}

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

Debugging]: Debugging Aids; D.3.3 [Language Constructs
and Features]: Concurrent Programming Structures

Keywords
Atomicity, Data Races, Type System, Type Inference

General Terms
Languages, Verification, Reliability

1. INTRODUCTION
Concurrent programs are notorious for containing errors

that are difficult to reproduce and diagnose at run-time. A
data race occurs when two threads simultaneously access a
shared variable and at least one of the accesses is a write;
data races often indicate the presence of synchronization
errors. However, the absence of race conditions is neither
sufficient nor necessary to show the absence of synchroniza-
tion errors. Atomicity is a common higher-level correctness
requirement that expresses non-interference between concur-
rently executed methods. A method is atomic if every execu-
tion of the concurrent program is equivalent to an execution
in which the atomic method is executed without being in-
terleaved with other concurrently executed methods. This
is analogous to serializability (also called isolation) of trans-
actions in databases.

Type systems are a promising approach for detecting data
races and atomicity violations, and verifying their absence.
Flanagan and Freund [7] and Boyapati and Rinard [4] de-
veloped type systems that ensure statically that a Java pro-
gram is race-free, i.e., contains no data races. The resulting
programming languages (i.e., Java with their extensions to
the type system) are called Race Free Java (RFJ) and Pa-
rameterized Race Free Java (PRFJ), respectively. Flanagan
and Freund applied their race-free type system [8] to about
49 KLOC, finding several bugs and showing that most of the
code is race-free. Flanagan and Qadeer proposed a type
system for specifying and verifying atomicity [11] by extend-
ing RFJ; the resulting extension of Java is called Atomic
Java. Flanagan, Freund and Lifshin [9] applied their atom-
icity type system to around 49 KLOC of application code
and 11 KLOC of Java library code, verifying that most of
the methods are atomic and discovering several non-atomic
methods.

This paper presents Extended Parameterized Atomic Java
(EPAJ), a type system for atomicity that combines the atom-
icity types of Atomic Java with a new race-free type system,
called Extended Parameterized Race-Free Java (EPRFJ).

EPRFJ extends PRFJ and is significantly more expressive
than both PRFJ and RFJ. This allows a more accurate anal-
ysis of atomicity as well as race conditions.

Type inference [8, 9] and type discovery [3, 2] algorithms
can greatly reduce or completely eliminate the need for users
to manually annotate programs with extra type information.
Type discovery is a combination of static and dynamic tech-
niques; the main idea is to monitor executions of the pro-
gram and generate candidate types based on the observed
behavior and the results of static analysis.

This paper presents a two-step algorithm that infers the
EPAJ types for a program. First, an extension of the type
discovery algorithm in [3, 2] is used to obtain EPRFJ types.
Second, a static interprocedural algorithm is used to infer
the atomicity types. The latter algorithm does not assume
that the input program is well-typed in EPRFJ, and it can
determine the atomicity of methods in programs with races.

Our system can be useful even to users who have no knowl-
edge of the type system, even for programs for which type
discovery (or type inference) does not completely succeed.
The resulting warnings from the type checker can be used to
focus manual code inspections: users can inspect the lines
of code that caused the warnings and check that correct
synchronization is used. The warnings can also be used
fully automatically to reduce the overhead of run-time data
race detection tools, such as [16, 14], and run-time atomicity
checking tools, such as [10, 17], by allowing them to avoid
monitoring parts of the program for which type-checking
succeeded. Section 9 describes our experience optimizing
run-time atomicity checking. The warnings can also be used
to guide scheduling heuristics in tools like ConTest [6], which
perturb thread scheduling in ways intended to make syn-
chronization errors manifest themselves.

In summary, the main contributions of our paper are (1)
a significantly more expressive type system for analyzing
data races, leading to fewer false alarms in the analysis of
data races and atomicity; (2) one of the first type inference
algorithms for atomicity types; (3) experiments demonstrat-
ing the effectiveness of our type system at verifying atomic-
ity, catching subtle bugs and optimizing run-time atomicity
checking of concurrent programs.

The rest of the paper is organized as follows. We give an
overview of the EPAJ type system in Section 2 and describe
the typing rules in Section 3. Sections 4 and 5 give the in-
ference algorithms for race-free types and atomicity types.
Section 6 briefly describes our implementation. We examine
the expressiveness of EPAJ in Section 7, describe our expe-
rience in Section 8, and present our technique for optimizing
run-time atomicity analysis in Section 9. Finally we survey
related work in Section 10.

2. EXTENDED PARAMETERIZED ATOMIC
JAVA

This section gives an overview of the EPAJ type system.
We briefly review race-free types in PRFJ [4], describe our
modifications to them and then describe atomicity types
[11].

2.1 Overview of PRFJ
In PRFJ, types are extended to indicate the synchro-

nization discipline (also called ‘protection mechanism’ or
‘owner’) used to co-ordinate accesses to objects. Each class

class Node<thisOwner> {

int value;

void setValue(int v) requires this {

value = v;

}

void getValue() {

return value;

}

}

Node<thisThread> n1 = new Node<thisThread>();

Node<self> n2 = new Node<self>();

n1.setValue(10);

n2.setValue(20);

synchronized (n2) {

n2.setValue(30);

}

Figure 1: An example program in PRFJ

is parameterized by owner parameters which may be instan-
tiated with other formal owner parameters, final expressions
(i.e. expressions whose value does not change) or special
owners. This allows different instances of a class to use dif-
ferent protection mechanisms. The first owner parameter
indicates the owner of the object, and the other owner pa-
rameters are used to propagate ownership information to the
object’s fields (an example appears in Section 2.2.1). There
are four special owners : thisThread, self, readonly and
unique. readonly indicates that the object is readonly and
cannot be updated. unique means that there is a unique ref-
erence to the object. thisThread means that the object is
thread-local (i.e., unshared). self means that the object is
protected by its own lock (i.e., self-synchronized object). A
final expression used as an owner specifies a lock that must
be held when the object is accessed. The ownership relation
forms a forest of trees. The root of each tree is referred to as
the root owner of each object in the tree. Method declara-
tions may have a requires clause that contains a set of final
expressions; the locks on the root owners of these expressions
must be held when the method is invoked. The locks on the
special owners thisThread, unique and readonly are always
assumed to be in the lockset. PRFJ ensures that whenever
a field of an object is accessed, the lock on the root owner
of the object is held, thus avoiding races. The root owner of
an object is said to guard all of its fields.

The PRFJ program in Figure 1 illustrates how the PRFJ
type system discovers potential race conditions. The pro-
gram defines a Node class parameterized by a single owner
thisOwner. The read access to the field value in the method
getValue can lead to a data race because it can occur si-
multaneously with the write access to value in the method
setValue. PRFJ detects this race condition by ensuring
that whenever the field value is accessed, the lock on rootowner
of this is held. Thus, the access to value in the method
setValue typechecks because setValue has a requires this

clause, whereas the access to value in the method getValue

does not typecheck.
Since n1 is parameterized by thisThread, it is a thread-

local object; accesses to fields of n1 cannot be involved in
any data races. The method invocation n1.setValue(10)

typechecks since the rootowner of n1 is thisThread which

P ::= defn∗ local∗ e
defn ::= class cn < formal+ >

extends c body
c ::= cn < formal+ >

body ::= { field∗ meth∗ }
field ::= final? t fd [guardedby lock]? = e
meth ::= t mn(arg∗) requires (lock∗)

atomicity atom { local∗ e}
arg ::= t x

t ::= prim type | obj type
obj type ::= cn < owner+ > |

Object < owner >
prim type ::= int | bool | long

local ::= t y = e
owner ::= formal |self | thisThread | efinal

| owner$efinal

guardedby ::= guarded by | write guarded by

lock ::= efinal | formal$efinal

atom ::= const | mover | atomic | cmpd | error
| owner ? atom : atom

e ::= new obj type | e ; e | x
| x = e | e.fd | e.fd = e
| e.mn(e∗) | synchronized (e) {e}
| e.fork | if e e e | while e e

cn ∈ classnames

fd ∈ fieldnames

mn ∈ methodnames

x, y ∈ variablenames

formal ∈ formalownernames

Figure 2: Grammar for mini EPAJ. Asterisk (*),
plus (+), and question mark (?) indicate any num-
ber, 1 or more, and 0 or 1 occurrences, respectively.
Square brackets are used for grouping. efinal ranges
over final expressions, as defined in the text.

is always assumed to be held. Since n2 is parameterized by
self, it is a self-synchronized object that can be shared by
multiple threads. The method invocation n2.setValue(20),
which writes to the field value, can be involved in a data
race since no lock is held when this method is invoked. PRFJ
detects this race condition by checking that the requires

clause on setValue is satisfied at all its invocation sites.
Since the rootowner of n2 is n2 itself and the lock on n2 is
not held when n2.setValue(20) is called, this invocation
of setValue does not typecheck. But, n2.setValue(30)

typechecks since it is enclosed within a synchronized(n2)

{..} block. Thus, by guarding all fields of an object by
the rootowner of the object, and specifying requires clauses
on methods, PRFJ can catch possible data races and verify
their absence.

2.2 Race-Free Types in EPAJ
We present our type system in the context of a multi-

threaded subset of Java, which is based on Concurrent Java
[7]. We call the resulting language mini EPAJ. The gram-
mar is given in Figure 2. Due to space constraints, and since
support for readonly and unique is orthogonal to atomicity
types, this grammar and the typing rules in Section 3 omit
support for readonly and unique. The complete grammar

and typing rules appear in [13]. Our implementation sup-
ports all four special owners.

In the grammar in Figure 2, efinal ranges over final ex-
pressions which are built from final variables including this,
final fields, and fields that are assigned only once in the en-
closing class’s constructor and are not accessed in the con-
structor before that assignment. In mini EPAJ, the only
final variable is this (assignments to this are prohibited);
in EPAJ, any local variable (including parameters) may be
annotated as final. The expression e.fork evaluates e to
an object o, creates a new thread, invokes o.run in the new
thread, and returns 0. We use Java-like syntactic sugar in
examples. For example, a method declaration synchronized

t mn(arg∗) e abbreviates t mn(arg∗) synchronized (this)

{e}.
In EPAJ, as in PRFJ, a class is parameterized by owner

parameters. The main difference in expressiveness between
EPAJ and PRFJ is that in EPAJ each field may have a dif-
ferent guard. A guard may be (1) empty or (2) a guarded by

clause or (3) a write guarded by clause. Since each field has
a different guard, the concept of root owner of an object is
no longer well-defined and hence EPAJ completely dispenses
with it. Another difference is that in EPAJ, the requires

clause may contain formal owners; this helps compensate for
removing root ownership.

If a bare formal owner parameter appeared in a requires

clause, its meaning when instantiated with self might be
ambiguous. For example, consider the class Node for nodes
in a linked list.

class Node<f1,f2> {

Node<f1,f2> next guarded_by f1;

int value guarded_by f2;

setValue() requires (f2) {

this.value = ...

}

}

In PRFJ, both fields would be forced to have the same owner
(and hence the same root owner), which is the owner of
the entire object, and setValue would have a “requires
(this)” clause, meaning that the lock on the root owner of
this must be held when the method is called. In EPRFJ,
it is natural to use requires (f2), meaning that the lock
on f2 (if f2 refers to an object, not a special owner) should
be held when the method is called. However, when f2 is
instantiated with self, it is unclear which object is being
referred to.

The problem is strikingly evident in the following exam-
ple, which involves a method owner parameter, i.e., a formal
owner parameter that appears in a method declaration and
not in the declaration of the enclosing class.

class Node<f1> {

swap(Node<g1> a1, Node<g1> a2) requires (g1) {

....

}

}

In this example, when g1 is instantiated with self, it is
unclear whether the lock on a1 or a2 should be held when the
method is called. We eliminate such ambiguity by qualifying
each formal owner parameter f with a final expression e

that indicates the object that f refers to when instantiated
with self. The notation for this is f$e. In practice, formal
owner parameters almost always get qualified with the final
expression this; by making this the default when a qualifier
is omitted in a requires, guarded by or write guarded by

clause, few $e annotations are needed in most programs.
Formally, the meaning of f$e is expressed by the effect of

substitutions (applied by the typing rules) on it. Let σ be a
substitution that maps variables to expressions. The result
of applying a substitution σ to f$e is

f$e[σ] =

8

<

:

e[σ] if f [σ] = self

f [σ]$e[σ] if f [σ] is a formal owner parameter
f [σ] otherwise

Here, f [σ] denotes the effect of applying substitution σ
to f . Note that applying the empty substitution [] may
simplify an expression. For example, thisThread$e[] =
thisThread. Every substitution σ can be composed with the
empty substitution without changing it. Thus, the result of
applying a substitution never has the form g$e where g is a
special owner.

A guarded by clause contains a well-formed lock expres-
sion, which is either a final expression or f$e where e is a
final expression and f is the first formal owner parameter in
the type of e. A guarded by clause cannot contain a special
owner explicitly, but the formal owner parameter in it may
be instantiated with a special owner, providing the same
effect.

If a field fd of an object o is guarded by thisThread, it is
accessed by only one thread and hence cannot be involved
in a data race. Thus, no lock is required to access fd. If
a field is guarded by a final expression e, then the lock on
e must be held when fd is accessed. If a field is guarded
by f$e, it means that when f is instantiated with self, the
field is guarded by e, otherwise it is guarded by whatever f
is instantiated with.

A field can have a write guarded by clause instead of
a guarded by clause. A write guarded by clause has the
same meaning as a guarded by clause, except that the pro-
tection mechanism specified by a write guarded by clause
is required only at write accesses to the field.

The requires clause on a method declaration contains
lock expressions, and indicates the locks that must be held
when the method is called.

2.2.1 Example
The following program from [4] is a typical example that

demonstrates the usefulness of the root owner concept of
PRFJ. We show that EPAJ, though lacking root owner, is
expressive enough to prove that the program is race-free.
Ignore the atomicity clauses for now; atomicity types are
described below.

Figures 3 and 4 give EPAJ code for an implementation
of a stack of type T objects using a linked list. The TStack

class is parameterized by two formal owner parameters :
the first one guards TStack.head, and the second one is
used to instantiate a formal owner parameter in the type of
TStack.head therby propagating ownership information to
the guards of the fields of the elements in the stack. The
substitutions described below reflect the instantiations of
parameterized types as they are used in this program; the
typing rules in Section 3 perform such substitutions.

The head field of TStack has different protection mecha-
nisms in the stacks s1, s2 and s3. s1 and s2 are thread-
local and hence s1.head and s2.head can be accessed with-
out any synchronization. The requires clauses of push and
pop methods evaluate to thisThread under the substitu-
tion σ1 = [thisOwner/thisThread] for stacks s1 and s2

and hence no lock needs to be held at their call sites. On
the other hand, stack s3 is self-synchronized, and s3.head

is guarded by thisOwner$this which evaluates to s3 un-
der the substitution σ3 = [self/thisOwner][s3/this]. The
methods push and pop require thisOwner$this, which eval-
uates to s3 under σ3. Thus, the accesses to s3.head in these
methods type-check and the lock on s3 needs to be held at
the call sites of s3.push and s3.pop.

The value and next fields of TNode have the guard
thisOwner$this. For the stacks s1 and s2, this guard eval-
uates to thisThread and hence the fields can be accessed
without synchronization. The requires clause of the meth-
ods init, value and next contains thisOwner$this which
evaluates to thisThread for s1 and s2. Thus, no lock needs
to be held when these methods are called in push and pop.
In the case of s3, the guard of the above fields and the lock
expression in the requires clause of the above methods both
evaluate to s3 (since thisOwner$this under the substitution
[thisOwner$this/thisOwner] evaluates to thisOwner$this

which under substitution σ3 evaluates to s3). Thus, the lock
on s3 must be held when the methods s3.init, s3.value

and s3.next are called, and we have already seen that the
requires clause on s3.push and s3.pop ensures that this is
indeed the case.

This example illustrates that programs whose PRFJ typ-
ings are based on root ownership are also typable in EPAJ.
Informally, instead of implicitly defining a root owner, we
explicitly specify the root owner in the type of the object
and pass it through the type parameters, transforming it by
applying substitutions (for e.g., while evaluating the locks
in a requires clause or a guarded by clause) as needed.

2.3 Atomicity Types
The atomicity types proposed in [11] are adopted un-

changed in EPAJ. The type system associates an atomic-
ity with each expression. The atomicity of each method
is declared in the program; atomicities of other expressions
are implicit. An atomicity is a basic atomicity or a con-
ditional atomicity. The basic atomicities and their mean-
ings are: const: evaluation of the expression does not de-
pend on or change any mutable state; mover: the expres-
sion left-commutes with every operation of another thread
that could occur immediately before it and right-commutes
with every operation of another thread that could occur im-
mediately after it; atomic: evaluation of the expression is
always equivalent to evaluation of the expression without in-
terleaved actions of other threads; cmpd (compound): none
of the preceding atomicities apply; error: evaluation of the
expression violates the locking discipline specified by the
guarded by or the write guarded by clauses.

Conditional atomicities are used when the atomicity of
an expression depends on the locks held by the thread eval-
uating it. A conditional atomicity l ? a : b is equivalent to
atomicity a if lock l is held when the expression is evaluated,
and is equivalent to atomicity b otherwise. l ? a abbreviates
l ? a : error.

class TStack<thisOwner,TOwner> {

TNode<thisOwner$this,TOwner> head

guarded_by thisOwner = null;

void push(T<TOwner> value) requires (thisOwner)

atomicity thisOwner ? mover {

TNode<thisOwner$this,TOwner> newNode =

new TNode<thisOwner$this,TOwner>();

newNode.init(value,head);

this.head = newNode;

}

T<TOwner> pop() requires (thisOwner)

atomicity thisOwner ? mover {

if (this.head == null) return null;

T<TOwner> value = this.head.value();

this.head = this.head.next();

return value;

}

}

class TNode<thisOwner,TOwner> {

T<TOwner> value guarded_by thisOwner;

TNode<thisOwner,TOwner> next guarded_by thisOwner;

void init(T<TOwner> v, TNode<thisOwner,TOwner> n)

requires (thisOwner)

atomicity thisOwner ? mover {

this.value = v;

this.next = n;

}

T<TOwner> value() requires (thisOwner)

atomicity thisOwner ? mover {

return this.value;

}

TNode<thisOwner,TOwner> next()

requires (thisOwner)

atomicity thisOwner ? mover {

return this.next;

}

}

class T<thisOwner> {

int x guarded_by thisOwner = 0;

}

Figure 3: EPAJ code for the TStack example (part
1).

Let α and a, b range over basic atomicities and atom-
icities, respectively. Each atomicity a is interpreted as a
function [[a]] from the set ls of locks currently held to a ba-
sic atomicity: [[α]] (ls) = α and [[l ? a1 : a2]] (ls) = if l ∈
ls then [[a1]] (ls) else [[a2]] (ls).

Following [11], we define a partial order v on atomici-
ties. The ordering on basic atomicities is const v mover v
atomic v cmpd v error. The ordering on conditional atom-
icities is the pointwise extension of the ordering on basic
atomicites, i.e., a v b iff ∀ls : [[a]] (ls) v [[b]] (ls). Rules for
effectively determining the ordering on atomicities appear

class Worker<thisOwner> {

final TStack<self,self> s3;

Worker(TStack<self,self> s) { s3 = s; }

int run() {

T<self> t = new T<self>();

synchronized (s3) { s3.push(t) }

}

}

T<thisThread> t1 = new T<thisThread>();

T<self> t2 = new T<self>();

TStack<thisThread,thisThread> s1 =

new TStack<thisThread,thisThread>();

TStack<thisThread,self> s2 =

new TStack<thisThread,self>();

TStack<self,self> s3 =

new TStack<self,self>();

s1.push(t1); s2.push(t2);

(new Worker<self>(s3)).fork;

(new Worker<self>(s3)).fork;

Figure 4: EPAJ code for the TStack example (part
2).

in [11].
The typing rules express the atomicity of an expression

in terms of the atomicities of its subexpressions using five
operations on atomicities: sequential composition a; b, iter-
ative closure a∗, join a t b (based on the partial order v
described above), conditional l ? a : b, and the operation
S(l, a) described below. Sequential composition for basic
atomicities is defined by: α1; α2 equals cmpd if α1 and α2

are both atomic, and equals α1 t α2 otherwise. The itera-
tive closure a∗ denotes the atomicity of an expression that
repeatedly executes an expression with atomicity a. For ba-
sic atomicities, it is defined by: a∗ equals cmpd if a is atomic,
and equals a otherwise. Sequential composition and itera-
tive closure for conditional atomicities are defined as follows
[11].

(l ? a : b)∗ = l ? a∗ : b∗

(l ? a1 : a2); b = l ?(a1; b) : (a2; b)
α; (l ? b1 : b2) = l ?(α; b1) : (α; b2)

The operation S(l, a) defined in Figure 5 is used to sim-
plify the atomicity a of an expression based on the fact that
lock l is known to be held during evaluation of the expression
[11]. S is used in the typing rule for synchronized expres-
sions to simplify conditional atomicities in the atomicity of
the body of the synchronized expression.

3. TYPING RULES
This section presents representative typing rules for EPAJ.

Typing rules for EPRFJ can be obtained from typing rules
for EPAJ by erasing the parts that mention atomicities, re-
quiring that every field has a guarded by clause (i.e., the
guarded-by clause may not be absent or write guarded by)
and deleting the rules [EXP REF RACE] and [EXP ASSIGN

S(l, const) = l ? const : atomic
S(l, mover) = l ? mover : atomic
S(l, atomic) = atomic

S(l, cmpd) = cmpd

S(l, error) = error

S(l, l ? a : b) = S(l, a)
S(l, l1 ? a : b) = l1 ? S(l, a) : S(l, b) if l 6= l1

Figure 5: Definition of S.

RACE]. This ensures that programs typable in EPRFJ are
race-free.

The core of the type system is a set of rules for reasoning
about type judgments of the form P ; E; ls ` e : t & a. Here
P is the program being checked, E is the environment that
contains types of local variables and formal owner parame-
ters, e is the expression being checked, t is the type of e, a is
the atomicity of e and ls is the set of locks that are known to
be held during the evaluation of e. Several auxiliary judg-
ments are also needed. Table 1 summarizes the judgments
used in this paper.

The rest of this section presents some representative typ-
ing rules. A complete presentation of our version of PRFJ
which includes support for readonly and unique appears in
[2]. The typing rules for EPAJ extend the rules in [2] and
add judgments for inferring atomicity types. Due to space
constraints, and since support for unique and readonly

objects is mostly orthogonal to atomicity types, the rules
presented in this section are stripped down versions of the
actual EPAJ rules with support for unique and readonly

eliminated. The complete typing rules for EPAJ (with sup-
port for unique and readonly) appear in [13]. We have
proved soundness of the core of our type system by extend-
ing the soundness proof in [1]. The proof can be found at
http://www.cs.sunysb.edu/˜amits/papers/atomicity-inference/.

3.1 Well-formed method
Figure 6 contains the [METHOD] rule for typechecking

methods. We allow the this parameter to be declared ex-
plicitly, to allow its owner parameters to be instantiated. For
uniformity, we require that this be declared in each method.
As syntactic sugar, if the declaration of this is absent in a
method in class cn〈f1...n〉, the declaration “cn〈f1...n〉 this”
is inserted. The rule adds ordinary parameters, method
owner parameters and local variables to the typing environ-
ment. It checks that the declared atomicity of the method
and the locks in the requires clause are well-formed. It
typechecks the method body assuming the locks in the requires
clause are held and verifies that the type and the atomicity
of the method body match the return type and the declared
atomicity of the method.

3.2 Well-formed expressions
The rule [EXP SYNC] for synchronized(e1) { e2 } adds

the acquired lock e1 to the lockset and checks e2 with this
enlarged lockset. It uses the function S defined in Section
2.3 to simplify the atomicity a of the body e2 based on the
fact that e1 is held during evaluation of the body.

[METHOD]

P ` t mn(arg0..n) requires (e1..m)
atomicity a {local1..l e} ∈ cn〈f1..k〉

each formal owner in t appears in some arg i

arg0 matches cn〈. . .〉 . . . this
E′ = E, final arg0, . . . , final argn

E′′ = E′ ∪ { ownerformal f | f appears in some arg i }
∀i = 1 . . . m : P ; E′′ `lock ei

P ; E′′ `atom a
P ; E′′, local1..l; thisThread, e1..m ` e : t & a
P ; E ` t mn(arg0..n) requires (e1..m)

atomicity a {local1..l e}

Figure 6: Typing rule for methods.

[EXP SYNC]

P ; E; ls `final e1 : cn < o1, o2, ..., on > & const
P ; E; ls, e1 ` e2 : t2 & a
P ; E; ls ` synchronized(e1){e2} : t2 & S(e1, a)

The lock l in a conditional atomicity l ? a : b may be a lock
expression (defined in 2.2). Thus, l may be instantiated with
the special owner thisThread. Since thisThread is always
assumed to be in the lockset, l ? a : b can be simplified to a
in this case. 1 The simplify function does this.

simplify(α) = α

simplify(l ? a : b) =



simplify(a) if l = thisThread

l ? simplify(a) : simplify(b) otherwise

The rule [EXP REF GUARD] in Figure 7 checks that a
read e.fd of a guarded field fd is well-typed. Suppose e has
atomicity a. If field fd is a final field, the read is allowed, and
the atomicity of e.fd is a; const. If e.fd has a guarded by

l clause, the rule checks that l is in the current lockset, and
the atomicity of e.fd is a; simplify(l ? mover) (since race-free
accesses are movers and the access is an error if l is not held).
If e.fd has a write guarded by l clause, atomicity of e.fd
is a; simplify(l ? mover : A(t)); this says that if l is held, the
read has atomicity mover, otherwise the atomicity is A(t)
where A(t) is cmpd if t is long (since long integers occupy
2-words and are presumably read in separate instructions),
and is atomic otherwise.

The rule [EXP REF RACE] is used for read accesses e.fd
to unguarded fields. [EXP REF RACE] is similar to [EXP
REF GUARD], except that hypotheses related to the guard
are omitted, and the atomicity in the conclusion is a; A(t).

In the rule for method invocation in Figure 8, the index j
ranges over 0 . . . k; note that y0 is this. formalOwners(t0...k)
denotes the set of formal owner parameters that appear in
the types t0...k. The rule uses a substitution σ to instan-
tiate formal owner parameters; this ensures that a formal
owner parameter that occurs multiple times is instantiated
consistently. The hypothesis containing P ; E `owner f [σ] en-
sures that σ replaces f with a valid owner. The hypothesis
e′′i ∈ ls where i ∈ { 1, 2, . . . , m } checks that all the locks in
the requires clause of the method declaration are held at
the call site. The atomicity of the method call is the sequen-

1readonly and unique are also allowed in the full type sys-
tem, and are simplified similarly.

http://www.cs.sunysb.edu/~amits/papers/atomicity-inference/

Judgment Meaning
P ; E; ls ` e : t & a expression e has type t and atomicity a provided locks in ls are held
P ` meth ∈ cn〈f1...n〉 class cn with owner parameters f1...n declares or inherits method meth
P ` field ∈ cn〈f1...n〉 class cn with owner parameters f1...n declares or inherits field field
P ; E; ls `final e : t & a e is a final expression with type t and atomicity a
P ; E `owner o o is a well-formed owner
P ; E `lock e e is a well-formed lock
P ; E `atom a a is a well-formed atomicity
P `final cn.fd cn.fd is a final field declared or inherited in class cn

Table 1: Type judgments.

[EXP REF GUARD]

P ; E; ls ` e : cn〈o1...n〉 & a
P ` [final]? t fd guardedby l ∈ cn〈f1...n〉
t′ = t[e/this][o1/f1][o2/f2] . . . [on/fn]
l′ = l[e/this][o1/f1][o2/f2] . . . [on/fn]
P `final cn.fd ⇒ b = const

P 0final cn.fd ∧ (guardedby = guarded by) ⇒
l′ ∈ ls ∧ b = l′ ? mover

P 0final cn.fd ∧ (guardedby = write guarded by) ⇒
b = l′ ? mover : A(t)

P ; E; ls ` e.fd : t′ & a; simplify(b)

Figure 7: Typing rule for reading from guarded
fields.

[EXP INVOKE]

P ; E; ls ` ej : t′j & aj

P ` (t mn(tj modj y j∈0...k
j) requires(e′1...m)

atomicity b) ∈ cn〈f1...n〉
dom(σ) = formalOwners(t0...k)
∀f ∈ dom(σ) : P ; E `owner f [σ]
t′j = tj [σ][e0/this]
e′′i = e′i[σ][e0/this][e1/y1] . . . [ek/yk]
e′′i ∈ ls
b′ = simplify(b[σ][e0/this][e1/y1] . . . [ek/yk])
P ; E; ls ` e0.mn(e1...k) : t[σ][e0/this] & a0; a1; · · · ; ak; b′

Figure 8: Typing rule for method invocation.

tial composition of the atomicity of each of the arguments
and the declared atomicity of the method.

The [EXP FORK] rule in Figure 9, when checking e.fork,
checks the invocation this.run() with an environment E ′

that declares this to have the same type as e (except for
the effect of the substitution described below) and with a
lockset that contains only thisThread.

To ensure that fields protected by thisThread in objects
reachable from e do not become shared as a result of the
fork, we substitute otherThread for thisThread in the type
of e when constructing E′, as in [4]. Thus, when type-
checking the invocation of this.run() in the third hypoth-
esis, the guarded-by clauses of fields that are local to the old
thread (i.e., fields that were guarded by thisThread) now
have owner otherThread, causing a type error if the new
thread tries to access them, because otherThread is never
in the lockset. Since guarded-by clauses cannot contain spe-
cial owners explicitly, applying this substitution to the type
of e ensures that the effect propagates to accesses of fields
of objects reachable from e.

[EXP FORK]

P ; E; ls ` e : cn〈o1...n〉 & a
E′ = final cn〈o1...n〉[otherThread/thisThread] this
P ; E′; thisThread ` this.run() : int & cmpd

P ; E; ls ` e.fork : int & a t atomic

Figure 9: Typing rule for fork.

4. TYPE DISCOVERY FOR EPRFJ
This section describes an extension to the type discov-

ery algorithm for PRFJ in [3, 2] to automatically discover
EPRFJ types. Section 5 describes an algorithm that uses
these annotations to infer atomicity types.

The type discovery algorithm has three main steps. First,
the target program is instrumented by an automatic source-
to-source transformation and executed on test inputs. The
instrumented program monitors accesses to fields of certain
objects and writes relevant information (mainly information
about which locks were held when the field was accessed) to
a log file. Second, the information in the log file is used
to statically infer owners for fields, method parameters and
return values, and owners in class declarations. Third, the
intra-procedural type inference algorithm in [4], is used to
infer the owners in the types of local variables and alloca-
tion sites whose types have not already been determined.
Local type-inference has the crucial effect of propagating
type information into branches of the program that were
not exercised in the monitored executions.

Type discovery is not guaranteed to produce correct typ-
ings for all typable programs, but experience shows that it
is very effective in practice. In our experiments in [2], 98%
of the race-free types were automatically discovered. As de-
scribed in Section 1, these partial typings can be useful even
to users who never look at or fix them.

The main change to type discovery needed to handle EPRFJ
is to maintain information on a per-field basis instead of a
per-object basis. For example, during run-time monitor-
ing, the type discovery algorithm for PRFJ keeps track of
whether each object is shared (i.e., has been accessed by
multiple threads), while the type discovery algorithm for
EPRFJ keeps track of whether each field of each object is
shared. The elimination of root owner has no direct impact
here, because our type discovery algorithm for PRFJ does
not exploit the distinction between owner and root owner.
Another minor change is extending the algorithm to track
information for determining write-guarded-by relationships
(in addition to guarded-by relationships).

Type discovery for EPRFJ works roughly as follows. (i)
If, for all monitored instances of a class, a field fd of a class

C is guarded by the same special owner or final expression
o, then fd gets annotated with guarded by o (ii) Other-
wise, fd gets annotated with guarded by f$this where f
is the first formal owner parameter of class C. For each
use of class C in a field type, method parameter type, or
method return type, f gets instantiated based on how fields
of C that are guarded by f are accessed for the instances of
C stored in that field, method parameter, or return value.
write guarded by is handled similarly.

The complexity of the type discovery algorithm is dis-
cussed below. Let |P | denote the size of the original pro-
gram and let |T | denote the size of the execution traces for
the test inputs. The complexity of the first step of the algo-
rithm is measured in terms of the overhead incurred while
executing the instrumented program. On an average, for
the benchmarks in our experiments, the first step incurs an
overhead of 20%. In the second step, the execution trace
is scanned once to discover types, and this has a time com-
plexity of O(|T |). The third step (local type-inference) uses
a standard UNION-FIND data structure to propagate the
types inferred in the second step. This phase runs in time
almost linear (O(|P | log∗(|P |)) in the size of the program.
Thus, the static phases of the type-discovery algorithm have
an overall time complexity of O(|T | + |P | log∗(|P |)).

In our experience, the result of the type discovery algo-
rithm is mainly affected by which methods are exercised by
the test inputs, and is otherwise mostly insensitive to the
choice of inputs. In our experiments, we did not carefully
choose the inputs to obtain correct types. We just used the
test inputs provided with the benchmarks, and these were
sufficient to discover accurate types.

5. INFERENCE OF ATOMICITY TYPES
This section describes our algorithm for inferring the atom-

icity of each method. It assumes that the program is anno-
tated with race-free types (requires clauses in the race-free
typing are ignored; required locks are computed as part of
conditional atomicities). Soundness of this algorithm does
not depend on correctness of the race-free typing. In other
words, the algorithm does not assume that the input pro-
gram is well-typed in EPRFJ, and it can determine atomic-
ity of methods in programs with races. However, incorrect
race-free typings generally lead to weak conclusions about
atomicity. For example, an incorrect guarded by clause on
a field may cause the algorithm to infer that a method that
uses the field has atomicity cmpd or error, even though the
method might actually be atomic.

For a set S and number k, let S∗ denote the set of finite
sequences of elements of S, and Sk = {s ∈ S∗ : |s| = k}. For
a sequence s, let s[i] denote the ith element of the sequence.
Let 〈〈x0, x1, . . .〉〉 denote a sequence with elements x0, x1,
etc.

Let M denote the set of all methods in the program. Let
Invoke : M → M∗ be a function such that Invoke(m) is a
sequence containing the methods that m invokes; the order
of elements in this sequence is arbitrary but fixed (e.g., lex-
icographic order). Let Atom denote the set of atomicities.

For each method m, the definition of m and the typing
rules define an atomicity transfer function fm, with type
fm : Atom |Invoke(m)| → Atom. The arguments to fm are the
atomicities of the methods that m invokes. fm returns the
atomicity of method m. Basically, fm(a1, a2, . . . , an) applies
the atomicity typing rules to the body of m, using ai to

determine the atomicity of a call to a method Invoke(m)[i],
and constructs the atomicity of m.

For example, for the method TStack.push in Figure 3,
Invoke(TStack.push) = 〈〈TNode.init〉〉, and fTStack.push(ainit) =
mover; ainit; (thisOwner$this ? mover), where the first mover
corresponds to the new expression, ainit corresponds to the
invocation of TNode.init, and the conditional atomicity cor-
responds to the assignment to this.head. For brevity, oc-
currences of mover; · · · and const; · · · corresponding to ac-
cesses to local variables (including parameters) have been
simplified away.

The type inference algorithm determines an atomicity for
each method. This is expressed as an atomicity assignment
atom : M → Atom. An atomicity assignment is consistent
if, for all methods m, the atomicity assigned to m is greater
than or equal to the atomicity computed for m using the
transfer function fm, i.e.,

fm(atom(Invoke(m)[1]), atom(Invoke(m)[2]), . . .) v atom(m)

The partial order on atomicity assignments is the point-
wise extension of the partial order on atomicities. Smaller
atomicity assignments provide stronger guarantees, thus our
aim is to compute the least consistent atomicity assignment
for the program. This can be done using a simple fixed-point
calculation since all atomicity transfer functions are mono-
tonic and continuous. Recall that every atomicity transfer
function is composed from the five operations listed in Sec-
tion 2.3. It is easy to check that all of these operations, and
therefore all compositions of them, are monotonic. Conti-
nuity follows from the fact that, for a given program, the
set of relevant atomicities is finite.2 Thus, the least solution
to the above constraints can be computed using a standard
work-list algorithm based on Tarski’s fixed-point theorem
[15].

Simplified pseudo-code for the algorithm appears in Fig-
ure 10. It uses the Invoke function defined above. It main-
tains two data structures, atom and tmp atom, both of
which are indexed by method name. The algorithm starts
by instantiating every method’s atomicity with const. In
every iteration of the while loop, the transfer function fm

is used to compute a new atomicity for each method using
the previously computed atomicities of all methods. If some
method’s atomicity changed, another iteration of the loop is
started; otherwise the algorithm terminates, and atom(m)
contains the inferred atomicity of method m. The algorithm
we implemented is similar to this pseudo-code but is more
efficient, because it avoids re-computing the atomicity of a
method in iterations where the atomicities of methods it
invokes have not changed.

The time complexity of the atomicity inference algorithm
is discussed below. Let |P | denote the size of the program
and Lm denote the set of lock expressions that are in scope at
the declaration of the method m. Lm includes the method’s
formal parameters, the the enclosing class’s owner param-
eters, fresh owner parameters in the method declaration,
and final fields - in the enclosing class and static fields in
the entire program - that appear in a guarded by or a
write guarded by clause. Let Am denote the set of atom-

2There are an infinite number of conditional atomicities if
one allows arbitrarily deep nesting, but a given program
contains only a finite number of lock expressions, and appli-
cation of a few simplification rules reduces any conditional
atomicity to an equivalent one from a finite set.

/** instantiate atomicities **/
foreach method m in the program do

atom(m) = const

done

/** fix point computation **/
while (change) do

change = false
/** compute new atomicity using old atomicities **/
foreach method m in the program do

tmp atom(m) = fm(atom(Invoke(m)[1]), . . .)
done

/** set atomicities and check if any change **/
foreach method m in the program do

if (atom(m) < tmp atom(m))
change = true
atom(m) = tmp atom(m)

endif

done

done

Figure 10: Atomicity inference algorithm

icities constructed from the lock expressions in Lm. Then, if
atomm is m’s atomicity, atomm ∈ Am. Let B denote the set
of basic atomicities (|B| = 5 in this paper). A conditional
atomicity evaluates to one of the basic atomicities for each

subset L′
m ⊆ Lm of locks held. Thus, |Am| = O(|B|2

|Lm|

).
Let Lmax = max{|Lm|} and Amax = max{|Am|} Then

Amax = O(|B|2
Lmax

).
Each iteration of the while loop of atomicity inference al-

gorithm in Figure 10 has a time complexity of O(|P |), since
applying the transfer function to a method and computing
its new atomicity entails scanning the method once. In each
iteration, at least one method’s atomicity increases by at
least one unit. If the number of methods is N , the number of
iterations necessary to increase every method’s atomicity by
at least one unit is O(N). The height of the lattice of atom-
icities is bounded by O(Amax). Thus, the time complexity
of the atomicity inference algorithm is O(N × |P | × Amax).

Though Lmax = O(|P |) in the worst case, typically Lmax

is much smaller than |P |. For example, in our benchmarks
described in Section 8, each class has at most one owner
parameter, at most three different final fields of each class
are used as guards, very few static fields are used as guards,
and the number of formal parameters and owner param-
eters in method declarations is quite small. We observed
that for our benchmarks, the atomicity-inference algorithm
took, on an average, 4N iterations to terminate. This obser-
vation demonstrates that for typical programs, Amax can be
bounded by a small constant and the complexity of atomic-
ity inference can be approximated to O(N × |P |).

6. IMPLEMENTATION
Our implementation of type discovery for PRFJ is based

on the Kopi compiler (http://www.dms.at/kopi/); we simu-
lated by hand the effects of the changes needed for EPRFJ.
Our type checker for EPAJ is based on Flanagan and Fre-
und’s Rccjava. We implemented only partial support for
owners of the form owner$efinal, sufficient for the bench-
marks described in Section 8. The type checker fully sup-
ports special owners unique and readonly which are fre-
quently used in the benchmarks in Section 8. Our imple-

mentation of the atomicity type inference algorithm is based
on Rccjava and uses Soot (http://www.sable.mcgill.ca/soot)
to compute the Invoke function.

7. EXPRESSIVENESS OF EPAJ
Any program typable in either Race Free Java or PRFJ is

also typable in EPAJ. EPAJ is more expressive than PRFJ
primarily because it allows different protection mechanisms
for different fields of a class, and because it allows one field
of a class to protect other fields in the same class. Figure
11 illustrates a fragment of java.io.Writer that is not ty-
pable in PRFJ, because the lock field protects the other
fields. Other examples include 12 classes in java.io and
some classes in java.lang, java.lang.ref, java.util and
java.rmi.server. The class TspSolver in tsp [16], de-
scribed in Section 8, is not typable in PRFJ because its
fields TourStackTop and MinTourLen have different guards.
Jigsaw, a web-server [12], contains a class ThreadCache which
accesses fields of the class CacheThread. The field alive

of CacheThread is protected by the CacheThread object,
whereas the fields prev and next of CacheThread are pro-
tected by the enclosing ThreadCache object. Since different
fields have different guards, Jigsaw is not typable in PRFJ.
EPAJ can handle these examples since it allows different
fields to be guarded by different locks.

Race Free Java allows different protection mechanisms
for different fields of a class, but, as discussed in [4], is
less expressive in several other respects relative to PRFJ
and hence EPAJ. EPAJ provides better support for pa-
rameterization, in particular for self-synchronized objects
and readonly objects. For example, in the TStack pro-
gram in Figures 3 and 4 the TStack class is parameter-
ized by a thisOwner parameter, which is instantiated with
thisThread in some places and with self in others. In the
program raytracer described in Section 8, the class Vec is
parameterized by a thisOwner parameter, which is instan-
tiated with thisThread in some places and with readonly

in others. Race Free Java does not support such param-
eterization. As a result, these programs are not typable
in Race Free Java but are typable in PRFJ and EPAJ. In
addition, EPAJ incorporates a uniqueness analysis to track
objects accessed through unique pointers. Race Free Java
does not incorporate any uniqueness analysis. For exam-
ple, in the elevator program described in Section 8, the
constructor for the Elevator class creates instances of the
Lift class and initializes its fields. Each Lift object then
spawns a new thread, which is the only thread that accesses
fields of the Lift object during later execution. EPAJ gives
these Lift instances a unique annotation. The EPAJ typing
rules support transfer of unique references from one thread
to another, allowing fields of the Lift objects to be accessed
without holding any locks, in both the instantiating thread
and the newly spawned thread. These Lift objects are not
typable in Race Free Java. They remain untypable in the
extension of Race Free Java described in [8], which incor-
porates an escape analysis but not a uniqueness analysis.
EPAJ could easily be made strictly more expressive than
that type system, by incorporating the same escape analy-
sis.

public abstract class Writer {

protected Object lock;

private char[] writeBuffer;

private final int writeBufferSize = 1024;

protected Writer(Object lock) {

if (lock == null)

throw new NullPointerException();

this.lock = lock;

}

public void write(int c) throws IOException {

synchronized (lock) {

if (writeBuffer == null)

writeBuffer = new char[writeBufferSize];

writeBuffer[0] = (char) c;

write(writeBuffer, 0, 1);

}

}

}

Figure 11: A fragment of java.io.Writer

8. EXPERIENCE WITH TYPE INFERENCE
We tested our atomicity inference algorithm on 6 bench-

mark programs. Three of the programs (elevator, tsp and
hedc) were developed at ETH Zürich and used as bench-
marks in [16]. The other three programs (moldyn, raytracer
and montecarlo) are part of the Java Grande Forum Bench-
mark Suite, available at http://www.epcc.ed.ac.uk/.

Our type checker signals a warning for all methods that
are non-atomic at some call site. A method is said to be
non-atomic at a call site if its atomicity does not simplify
to a basic atomicity less than or equal to atomic taking
into account the locks held at the call site. For example, a
method m with conditional atomicity l ? mover : error

is labeled as non-atomic at a call site if the lock l is not held
at the call site. Some methods labeled non-atomic might
actually be atomic for reasons not recognized by the type
checker, e.g., methods that are only executed when no other
threads exist. Such warnings are counted as false alarms. In
summary, our system verified that 91% (640 out of 701) of
the methods in the benchmarks are atomic at all call sites.

We reduce the number of warnings reported to the user
by clustering related warnings from the type checker into
groups and reporting only those warnings that seem to re-
flect the root cause of errors. For each lock l, we calculate
the set of methods whose atomicity possibly becomes non-
atomic if the lock l is not held. We partition this set into
clusters (with label l) such that m1 and m2 belong to the
same cluster if one is an ancestor of the other in the pro-
gram’s method invocation graph. Two equal clusters with
different labels can be merged into a single cluster. For each
cluster, warnings only on the lowest methods in the cluster
are reported, where the ordering is defined by m1 ≥ m2 if
there is a path from m1 to m2 in the method invocation
graph.

Table 2 lists the results of running our atomicity checker
on the benchmarks. The columns are: LOC (lines of code),
Meth. (number of methods), False Alar. (number of false

False Ben.
Benchmark LOC Meth. Alar. Viol. Bugs

elevator 535 24 4 0 0
tsp 736 24 1 1 0

moldyn 730 23 3 0 0
raytracer 1308 72 2 0 1

montecarlo 3198 179 4 0 0
hedc 7072 379 9 3 2
Total 13581 701 23 4 3

Table 2: Experimental Results

alarms, i.e., warnings signaled by the checker that do not
correspond to actual violations of atomicity), Ben. Viol.
(number of benign violations, i.e., atomicity violations that
do not lead to incorrect program behavior) and Bugs (num-
ber of atomicity violations that can lead to incorrect pro-
gram behavior). The numbers reflect the effect of clustering.
Although the number of false alarms is fairly high (about
76% of the warnings), many of them are due to imprecise
analysis of race-free static fields and start-join synchroniza-
tion. This can be addressed either by enhancing the type
system or by using types together with run-time atomicity
checking, which can already analyze these aspects with fewer
false alarms (but gives weaker guarantees).
elevator is a simple discrete event simulator. Our atom-

icity type checker produces 4 warnings on elevator, all
of which are false alarms. 2 false alarms are reported on
methods that are executed before any new threads are cre-
ated. The remaining 2 are in methods Controls.claimUp

and Controls.claimDown. Controls.claimUp has the struc-
ture

claimUp() {

if (Controls.checkUp()) {

synchronized(floors[floor]){

...

} } }

Both Controls.checkUp and the synchronized statement are
atomic, so claimUp gets atomicity cmpd. However, claimUp
is effectively atomic, because the synchronized block re-checks
the condition checked by checkUp. The analysis for
Controls.claimDown is similar.
tsp solves the traveling salesman problem. The type-

checker produces 2 warnings on tsp, of which 1 is a benign
atomicity violation and the other is a false alarm. The be-
nign violation is in the method TspSolver.set best, which
gets atomicity cmpd because it reads TspSolver.MinTourLen
without holding the lock that write-guards it and then enters
a synchronized block. The false alarm is on Tsp.main, which
gets atomicity cmpd because it starts multiple threads.
moldyn simulates molecular dynamics. The type checker

gives 3 false alarms for moldyn due to imprecise analysis of
possible races on some static fields (i.e. the type checker
does not recognize that they are race-free).
montecarlo is a financial simulation. The type checker

produces 4 false alarms for montecarlo due to imprecise
analysis of start-join synchronization.
raytracer implements a parallel 3-dimensional ray trac-

ing algorithm. There are 2 false alarms in raytracer and 1
atomicity bug. The false alarms are due to imprecise anal-
ysis of possible races on the static fields
JGFRayTracerBench.staticnumobjects and

JGFRayTracerBench.checksum1 The bug is due to a possi-
ble race on JGFRayTracerBench.checksum1 in the method
JGFRayTracerRunner.run which results in the method get-
ting atomicity error and can lead to incorrect program be-
haviour.
hedc is a meta-crawler for searching Internet archives in

parallel. It uses Doug Lea’s synchronization library, which
we treat as part of the program. The type-checker reports
14 warnings of which 9 are false alarms, 3 are benign viola-
tions and 2 are bugs. The bugs are due to races on the fields
Task.valid and MetaSearchResult.request as a result of
which the methods Task.run and Worker.run get atomic-
ity error. The race on Task.valid might result in a task
being executed even after it has been cancelled. The race
on MetaSearchResult.request might lead to a NullPoint-
erException. The false alarms are mostly due to imprecise
analysis of possible races.

9. OPTIMIZATION OF RUN-TIME
ATOMICITY ANALYSIS

Our type system can be used to improve the efficiency
of algorithms for run-time detection of atomicity violations
[17, 18, 10]. Runtime techniques might miss some atomicity
violations, but they produce very few false alarms (e.g., the
algorithms in [18] produce zero false alarms for the bench-
marks in Table 2). Thus, users might want to use both
run-time and type-based atomicity analysis and give higher
priority to the investigation of warnings from the run-time
checker. Run-time atomicity checking might slow down the
program by a factor of 10 to 100. Types can be used to
decrease this overhead drastically.

We use types to optimize the run-time atomicity analysis
algorithms in [18]. The algorithms work in part by classify-
ing race-free accesses to fields as movers and other accesses
as non-movers. A multi-lockset algorithm based on the lock-
set algorithm in Eraser [14] monitors all field accesses and
synchronization events to determine which fields can be in-
volved in data races. [18] gives two reduction-based algo-
rithms : online (i.e., atomicity is checked on-the-fly as the
program executes) and offline (i.e., atomicity is checked after
execution of the program). The online algorithm avoids the
overhead of storing and retrieving data but may miss atom-
icity violations by misclassifying an access to a field as race-
free, since a subsequent access might lead to a possible race.
The offline algorithm augments the online algorithm by in-
corporating dynamic escape analysis and start-join analysis.
Therefore, the offline algorithm is more precise, but slower
than the online algorithm.

The EPAJ type-checker can list all the fields in a program
that are not involved in a data race (race-free fields). The
type-checker can also list the methods that are verified to
be atomic. We optimize the reduction based algorithm by
monitoring only the fields that are not verified to be race-
free by the type-checker and by analyzing atomicity only
for methods that are not verified to be atomic by the type-
checker.

The results of our experiments are summarized in Table
3. ’Base’ gives the execution time of the uninstrumented
benchmark. ’Online Slowdown’ and ’Offline Slowdown’ give
the slowdown for the online and offline reduction-based al-
gorithms compared to the Base time. ’OptOnl Slowdown’
and ’OptOffl Slowdowm’ are similar but reflect the effect of

Base Slowdown
Benchmark (sec) Online Offline OptOnl OptOffl

elevator 0.2 1.25 3.30 1.25 1.5
tsp 1.8 119.17 421.11 2.56 2.57

moldyn 25.49 22.97 73.88 1.73 4.37
raytracer 13.88 111.07 45.82 6.87 6.31

montecarlo 16.07 8.47 30.42 1.12 1.12
hedc 0.53 1.13 1.89 1.04 1.51

median 7.84 15.72 38.12 1.49 2.09

Table 3: Optimization of Run-time atomicity anal-
ysis

the above optimization. The table demonstrates that the
optimization reduces the median slowdown for the online
algorithm from 15.7 to 1.5 and the median slowdown for the
offline algorithm from 38.1 to 2.1.

Type discovery uses a lockset algorithm, but the overhead
for type discovery is low (less than 20%) because it monitors
only a sampling of objects. Furthermore, types discovered
after running a program once can be used to optimize run-
time atomicity checking for an entire test suite, making the
amortized cost of type-discovery negligible.

10. RELATED WORK
The EPAJ type system combines the useful features of

Race Free Java [7] (different protection mechanisms for dif-
ferent fields) and Parameterized Race Free Java (parameter-
ization of classes, special owners). A comparison of EPAJ
with these type systems appears in Section 7

In independent work, done concurrently with ours, Flana-
gan, Freund and Lifshin [9] combine Race Free Java 2 (RFJ2)
[8] with the atomicity types of [11] extended with protected
locks. Support for protected locks makes their atomicity
type system more expressive than ours; this feature can be
added to our type system. However, their race-free type sys-
tem is less expressive than EPRFJ. Specifically, it does not
support unique as a protection mechanism and it does not
allow classes to be parameterized by the protection mech-
anisms readonly and self (for self-synchronized objects).
It allows a field to be guarded by final (corresponding to
readonly) or this (corresponding to self), but then all in-
stances of the class must use the same protection mechanism
for the field. For example, the program in section 2.2.1 is not
typable in their type system. EPRFJ fully supports unique
and readonly and their use as parameters although this sig-
nificantly complicates the type system [2]. Flanagan et al.
also present a two step atomicity inference algorithm [9];
race-free types are inferred statically by solving constraints
[8], and then atomicity types are inferred using an inference
algorithm similar to ours. Their race-free type inference is
complete (i.e. succeeds for all typable programs) and has
a worst case time complexity exponential in the size of the
program; this seems unavoidable since the type inference
problem is NP-complete. Our run-time type discovery algo-
rithm for race-free types discovers most of the types (98%,
in our experiments [2]) and has a worst case time complexity
that is linear in the size of the program and the length of
the monitored runs.

Choi et al. [5] use static analysis to optimize their dy-
namic data race detection algorithm. This is similar in spirit
to our use of types to optimize run-time atomicity checking.

Their static analysis is less effective than type-discovery in
some cases, as discussed in [2]. Also, they perform some op-
timizations that are not possible in the context of atomicity
checking.

Acknowledgement. We thank Cormac Flanagan, Stephen
Freund and Chandra Boyapati for many helpful comments.

11. REFERENCES
[1] M. Abadi, C. Flanagan, and S. Freund. Types for safe

locking: Static race detection for Java. ACM
Transactions on Programming Languages and
Systems, to appear.

[2] R. Agarwal, A. Sasturkar, and S. D. Stoller. Type
discovery for parameterized race-free Java. Technical
Report DAR-04-16, Computer Science Department,
SUNY at Stony Brook, Sept. 2004. Available at
http://www.cs.sunysb.edu/˜stoller/type-discovery/.

[3] R. Agarwal and S. D. Stoller. Type inference for
parameterized race-free Java. In Proceedings of the
Fifth International Conference on Verification, Model
Checking and Abstract Interpretation, volume 2937 of
Lecture Notes in Computer Science, pages 149–160.
Springer-Verlag, Jan. 2004.

[4] C. Boyapati and M. C. Rinard. A parameterized type
system for race-free Java programs. In Proc. 16th
ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA),
volume 36(11) of SIGPLAN Notices, pages 56–69.
ACM Press, 2001.

[5] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 258–269. ACM Press, 2002.

[6] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded Java
programs. Concurrency and Computation: Practice
and Experience, 15(3-5):485–499, 2003.

[7] C. Flanagan and S. Freund. Type-based race detection
for Java. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 219–232. ACM Press, 2000.

[8] C. Flanagan and S. Freund. Type inference against
races. In Proc. 11th International Static Analysis
Symposium (SAS), volume 3148 of Lecture Notes in
Computer Science. Springer-Verlag, Aug. 2004.

[9] C. Flanagan, S. Freund, and M. Lifshin. Type
inference for atomicity. In Proc. ACM SIGPLAN
International Workshop on Types in Languages Design
and Implementation (TLDI). ACM Press, 2005.

[10] C. Flanagan and S. N. Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. In
Proc. 31st ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL), Jan. 2004.

[11] C. Flanagan and S. Qadeer. A type and effect system
for atomicity. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 338–349. ACM Press, 2003.

[12] A. Greenhouse and W. L. Scherlis. Assuring and
evolving concurrent programs: annotations and policy.
In Proc. 24th international Conference on Software
Engineering (ICSE), pages 453–463. ACM Press, May
2002.

[13] A. Sasturkar, R. Agarwal, and S. D. Stoller. Typing
rules for Extended Parameterized Atomic Java.
Technical Report DAR-05-21, Computer Science
Department, SUNY at Stony Brook, Sept. 2004.
Available at
http://www.cs.sunysb.edu/˜amits/papers/atomicity-inference/.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, Nov. 1997.

[15] A. Tarski. A lattice theoretical fixed point theorem
and its applications. Pacific J. of Math, 5:285–309,
1955.

[16] C. von Praun and T. R. Gross. Object race detection.
In Proc. 16th ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA), volume 36(11) of SIGPLAN Notices,
pages 70–82. ACM Press, Oct. 2001.

[17] L. Wang and S. D. Stoller. Run-time analysis for
atomicity. In Proc. Third Workshop on Runtime
Verification (RV), volume 89(2) of Electronic Notes in
Theoretical Computer Science. Elsevier, July 2003.
Available at http://www.cs.sunysb.edu/˜stoller/.

[18] L. Wang and S. D. Stoller. Runtime analysis of
atomicity for multi-threaded programs. Technical
Report DAR-04-2, SUNY at Stony Brook, Computer
Science Dept., July 2004. Available at
http://www.cs.sunysb.edu/˜liqiang/atomicity.html.

http://www.cs.sunysb.edu/~stoller/type-discovery/
http://www.cs.sunysb.edu/~amits/papers/atomicity-inference/
http://www.cs.sunysb.edu/~stoller/
http://www.cs.sunysb.edu/~liqiang/atomicity.html

	Introduction
	Extended Parameterized Atomic Java
	Overview of PRFJ
	Race-Free Types in EPAJ
	Example

	Atomicity Types

	Typing Rules
	Well-formed method
	Well-formed expressions

	Type Discovery for EPRFJ
	Inference of Atomicity Types
	Implementation
	Expressiveness of EPAJ
	Experience with Type Inference
	Optimization of run-time atomicity analysis
	Related Work
	REFERENCES -9pt

