
Discovering Auxiliary Information for Incremental Computation

Yanhong A. Liu∗ Scott D. Stoller† Tim Teitelbaum∗

Department of Computer Science, Cornell University, Ithaca, New York 14853
{yanhong,stoller,tt}@cs.cornell.edu

Abstract

This paper presents program analyses and transformations
that discover a general class of auxiliary information for any
incremental computation problem. Combining these tech-
niques with previous techniques for caching intermediate re-
sults, we obtain a systematic approach that transforms non-
incremental programs into efficient incremental programs
that use and maintain useful auxiliary information as well
as useful intermediate results. The use of auxiliary informa-
tion allows us to achieve a greater degree of incrementality
than otherwise possible. Applications of the approach in-
clude strength reduction in optimizing compilers and finite
differencing in transformational programming.

1 Introduction

Importance of incremental computation. In
essence, every program computes by fixed-point iteration,
expressed as recursive functions or loops. This is why loop
optimizations are so important. A loop body can be re-
garded as a program f parameterized by an induction vari-
able x that is incremented on each iteration by a change
operation ⊕. Efficient iterative computation relies on effec-
tive use of state, i.e., computing the result of each itera-
tion using stored results of previous iterations. This is why
strength reduction [2] and related techniques [48] are crucial
for performance.

Given a program f and an input change operation ⊕,
a program f ′ that computes f(x ⊕ y) efficiently by using
the result of the previous computation of f(x) is called an
incremental version of f under ⊕. Sometimes, information
other than the result of f(x) needs to be maintained and
used for efficient incremental computation of f(x ⊕ y). We
call a function that computes such information an extended

∗The author gratefully acknowledges the support of the Office of
Naval Research under contract No. N00014-92-J-1973.

†Supported in part by NSF/DARPA Grant No. CCR-9014363,
NASA/DARPA Grant NAG-2-893, and AFOSR Grant F49620-94-1-
0198. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not
reflect the views of these agencies.

Appears in Proceedings of POPL’96: the 23rd An-
nual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, St. Petersburg Beach,
Florida, January 21-24, 1996.

version of f . Thus, the goal of computing loops efficiently
corresponds to constructing an extended version of a pro-
gram f and deriving an incremental version of the extended
version under an input change operation ⊕.

In general, incremental computation aims to solve a prob-
lem on a sequence of inputs that differ only slightly from
one another, making use of the previously computed out-
put in computing a new output, instead of computing the
new output from scratch. Incremental computation is a
fundamental issue relevant throughout computer software,
e.g., optimizing compilers [1, 2, 15, 20, 60], transforma-
tional program development [7, 17, 47, 49, 59], and inter-
active systems [4, 5, 9, 19, 27, 33, 53, 54]. Numerous tech-
niques for incremental computation have been developed,
e.g., [2, 3, 22, 28, 29, 30, 41, 48, 51, 52, 55, 58, 61, 64].

Deriving incremental programs. We are enga-
ged in an ambitious effort to derive incremental extended
programs automatically (or semi-automatically) from non-
incremental programs written in standard programming lan-
guages. This approach contrasts with many other approaches
that aim to evaluate non-incremental programs incremen-
tally. We have partitioned the problem (thus far) into three
subproblems:

• P1. Exploiting the result, i.e., the return value, of
f(x).

• P2. Caching, maintaining, and exploiting intermediate
results of the computation f(x).

• P3. Discovering, computing, maintaining, and exploit-
ing auxiliary information about x, i.e., information not
computed by f(x).

Our current approaches to problems P1 and P2 are described
in [41] and [40], respectively. In this paper, we address issue
P3 for the first time and contribute:

• A novel proposal for finding auxiliary information.

• A comprehensive methodology for deriving incremen-
tal programs that addresses all three subproblems.

Some approaches to incremental computation have exploited
specific kinds of auxiliary information, e.g., auxiliary arith-
metic associated with some classical strength-reduction rules
[2], dynamic mappings maintained by finite differencing rules
for aggregate primitives in SETL [48] and INC [64], and
auxiliary data structures for problems with certain prop-
erties like stable decomposition [52]. However, until now,

systematic discovery of auxiliary information for arbitrary
programs has been a subject completely open for study.

Auxiliary information is, by definition, useful informa-
tion about x that is not computed by f(x). Where, then,
can one find it? The key insight of our proposal is:

A. Consider, as candidate auxiliary information
for f , all intermediate computations of an in-
cremental version of f that depend only on x;
such an incremental version can be obtained us-
ing some techniques we developed for solving P1
and P2.1

How can one discover which pieces of candidate auxiliary
information are useful and how they can be used? We pro-
pose:

B. Extend f with all candidate auxiliary infor-
mation, then apply some techniques used in our
methods for P1 and P2 to obtain an extended
version and an incremental extended version that
together compute, exploit, and maintain only
useful intermediate results and useful auxiliary
information.

Thus, on the one hand, one can regard the method for P3
in this paper as an extension to methods for P1 and P2.
On the other hand, one can regard methods for P1 and P2
(suitably revised for their different applications here) as aids
for solving P3. The modular components complement one
another to form a comprehensive principled approach for in-
cremental computation and therefore also for efficient iter-
ative computation generally. Although the entire approach
seems complex, each module or step is simple.

We summarize here the essence of our methods:

P1. In [41], we gave a systematic transformational ap-
proach for deriving an incremental version f ′ of a program
f under an input change ⊕. The basic idea is to identify in
the computation of f(x⊕y) those subcomputations that are
also performed in the computation of f(x) and whose values
can be retrieved from the cached result r of f(x). The com-
putation of f(x⊕y) is symbolically transformed to avoid re-
performing these subcomputations by replacing them with
corresponding retrievals. This efficient way of computing
f(x ⊕ y) is captured in the definition of f ′(x, y, r).

P2. In [40], we gave a method, called cache-and-prune,
for statically transforming programs to cache all intermedi-
ate results useful for incremental computation. The basic
idea is to (I) extend the program f to a program f̄ that
returns all intermediate results, (II) incrementalize the pro-
gram f̄ under ⊕ to obtain an incremental version f̄ ′ of f̄
using our method for P1, and (III) analyze the dependencies

in f̄ ′, then prune the extended program f̄ to a program f̂
that returns only the useful intermediate results, and prune

the program f̄ ′ to obtain a program f̂ ′ that incrementally
maintains only the useful intermediate results.

P3. This paper presents a two-phase method that discov-
ers a general class of auxiliary information for any incremen-
tal computation problem. The two phases correspond to A

1We use techniques developed for solving P1 and P2, instead of
just P1, so that the candidate auxiliary information includes auxiliary
information useful for efficiently maintaining the intermediate results.

and B above. For Phase A, we have developed an embedding
analysis that helps avoid including redundant information in
an extended version, and we have exploited a forward depen-
dence analysis that helps identify candidate auxiliary infor-
mation. All the program analyses and transformations used
in this method are combined with considerations for caching
intermediate results, so we obtain incremental extended pro-
grams that exploit and maintain intermediate results as well
as auxiliary information.

We illustrate our approach by applying it to problems in
list processing, VLSI design, and graph algorithms.

The rest of this paper is organized as follows. Section 2
formulates the problem. Section 3 discusses discovering can-
didate auxiliary information. Section 4 describes how candi-
date auxiliary information is used. Two examples are given
in Section 6. Finally, we discuss related work and conclude
in Section 7.

2 Formulating the problem

We use a simple first-order functional programming lan-
guage, with expressions given by the following grammar:

e ::= v variable
| c(e1, ..., en) constructor application
| p(e1, ..., en) primitive function application
| f(e1, ..., en) function application
| if e1 then e2 else e3 conditional expression
| let v = e1 in e2 binding expression

A program is a set F of mutually recursive function defini-
tions of the form

f(v1, ..., vn) = e (1)

and a function f0 that is to be evaluated with some input
x = 〈x1, ..., xn〉. Figure 1 gives some example definitions.
The semantics of the language is strict.

An input change operation ⊕ to a function f0 combines
an old input x = 〈x1, ..., xn〉 and a change y = 〈y1, ..., ym〉
to form a new input x′ = 〈x′

1, ..., x
′
n〉 = x ⊕ y, where each

x′
i is some function of xj ’s and yk’s. For example, an input

change operation to the function cmp of Figure 1 may be
defined by x′ = x ⊕ y = cons(y, x).

We use an asymptotic cost model for measuring time
complexity and write t(f(v1, ..., vn)) to denote the asymp-
totic time of computing f(v1, ..., vn). Thus, assuming all
primitive functions take constant time, it is sufficient to con-
sider only the values of function applications as candidate
information to cache. Of course, maintaining extra informa-
tion takes extra space. Our primary goal is to improve the
asymptotic running time of the incremental computation.
We attempt to save space by maintaining only information
useful for achieving this.

Given a program f0 and an input change operation ⊕,
we use the approach in [41] to derive an incremental version
f ′
0 of f0 under ⊕, such that, if f0(x) = r, then whenever

f0(x ⊕ y) returns a value, f ′
0(x, y, r) returns the same value

and is asymptotically at least as fast.2 For example, for
the function sum of Figure 1 and input change operation
x⊕ y = cons(y, x), the function sum′ in Figure 2 is derived.

2While f0(x) abbreviates f0(x1, ..., xn), and f0(x⊕y) abbreviates
f0(〈x1, ..., xn〉 ⊕ 〈y1, ..., ym〉), f ′

0(x, y, r) abbreviates f ′
0(x1, ..., xn,

y1, ..., ym, r). Note that some of the parameters of f ′
0 may be dead

and eliminated [41].

2

cmp(x) = sum(odd(x)) ≤ prod(even(x)) — compare sum of odd and product of even positions of list x

o d d (x) = if null(x) then nil
else cons(car(x), even(cdr(x)))

even(x) = if null(x) then nil
else odd(cdr(x))

sum(x) = if null(x) then 0
else car(x) + sum(cdr(x))

prod(x) = if null(x) then 1
else car(x) ∗ prod(cdr(x))

Figure 1: Example function definitions

In order to use also intermediate results of f0(x) to com-
pute f0(x⊕y) possibly faster, we use the approach in [40] to
cache useful intermediate results of f0 and obtain a program
that incrementally computes the return value and maintains
these intermediate results. For example, for the function
cmp of Figure 1 and input change operation x ⊕ 〈y1, y2〉 =
cons(y1, cons(y2, x)), the intermediate results sum(odd(x))
and prod(even(x)) are cached, and the functions ĉmp and

ĉmp
′
in Figure 2 are obtained.

However, auxiliary information other than the intermedi-
ate results of f0(x) is sometimes needed to compute f0(x⊕y)
quickly. For example, for the function cmp of Figure 1
and input change operation x ⊕ y = cons(y, x), the val-
ues of sum(even(x)) and prod(odd(x)) are crucial for com-
puting cmp(cons(y, x)) incrementally but are not computed
in cmp(x). Using the method in this paper, we can de-

rive the functions c̃mp and c̃mp
′
in Figure 2 that compute

these pieces of auxiliary information, use them in computing
cmp(cons(y, x)), and maintain them as well. c̃mp

′
computes

incrementally using only O(1) time. We use this example as
a running example.

Notation. We use <> to construct tuples that bundle
intermediate results and auxiliary information with the orig-
inal return value of a function. The selector nth returns the
nth element of such a tuple.

We use x to denote the previous input to f0; r, the cached
result of f0(x); y, the input change parameter; x′, the new
input x ⊕ y; and f ′

0, an incremental version of f0 under ⊕.
We let f̄0 return all intermediate results of f0, and let f̌0

return candidate auxiliary information for f0 under ⊕. We

use ¯̌f0 to denote a function that returns all intermediate
results and candidate auxiliary information; ¯̌r, the cached

result of ¯̌f0(x); and ¯̌f0
′, an incremental version of ¯̌f0 under ⊕.

Finally, we use f̃0 to denote a function that returns only the
useful intermediate results and auxiliary information; r̃, the

cached result of f̃0(x); and f̃0
′, a function that incrementally

maintains only the useful intermediate results and auxiliary
information. Note that (useful) intermediate results include
the original return value. Figure 3 summarizes the notation.

3 Phase A: Discovering candidate auxiliary
information

Auxiliary information is, by definition, useful information
not computed by the original program f0, so it can not be
obtained directly from f0. However, auxiliary information is
information depending only on x that can speed up the com-

function return value
denoted

as
incremental
function

f0 original value r f ′
0

f̄0 all i.r. r̄

f̌0 candidate a.i.
¯̌f0 all i.r. & candidate a.i. ¯̌r ¯̌f0

′

f̃0 useful i.r. & useful a.i. r̃ f̃0
′

Figure 3: Notation

putation of f0(x ⊕ y). Seeking to obtain such information
systematically, we come to the idea that when computing
f0(x ⊕ y), for example in the manner of f ′

0(x, y, r), there
are often subcomputations that depend only on x and r,
but not on y, and whose values can not be retrieved from
the return value or intermediate results of f0(x). If the val-
ues of these subcomputations were available, then we could
perhaps make f ′

0 faster.
To obtain such candidate auxiliary information, the basic

idea is to transform f0(x ⊕ y) as for incrementalization and
to collect subcomputations in the transformed f0(x⊕y) that
depend only on x and whose values can not be retrieved from
the return value or intermediate results of f0(x). Note that
computing intermediate results of f0(x) incrementally, with
their corresponding auxiliary information, is often crucial
for efficient incremental computation. Thus, we modify the
basic idea just described so that it starts with f̄0(x ⊕ y)
instead of f0(x ⊕ y).

Phase A has three steps. Step 1 extends f0 to a function
f̄0 that caches all intermediate results. Step 2 transforms
f̄0(x⊕y) into a function f̄0

� that exposes candidate auxiliary
information. Step 3 constructs a function f̌0 that computes
only the candidate auxiliary information in f̄0

�.

3.1 Step A.1: Caching all intermediate re-
sults

Extending f0 to cache all intermediate results uses the trans-
formations in Stage I of [40]. It first performs a straight-
forward extension transformation to embed all intermediate
results in the final return value and then performs adminis-
trative simplifications.

Certain improvements to the extension transformation
are suggested, although not given, in [40] to avoid caching
redundant intermediate results, i.e., values of function appli-
cations that are already embedded in the values of their en-
closing computations, since these omitted values can be re-

3

If sum(x) = r, then sum′(y, r) = sum(cons(y, x)).
For x of length n, sum′(y, r) takes time O(1);

sum(cons(y, x)) takes time O(n).

cmp(x) = 1st(ĉmp(x)).
For x of length n, ĉmp(x) takes time O(n);

cmp(x) takes time O(n).

If ĉmp(x) = r̂, then ĉmp
′
(y1, y2, r̂) = ĉmp(cons(y1, cons(y2, x))).

For x of length n, ĉmp
′
(y1, y2, r̂) takes time O(1);

ĉmp(cons(y1, cons(y2, x))) takes time O(n).

cmp(x) = 1st(c̃mp(x)).
For x of length n, c̃mp(x) takes time O(n);

cmp(x) takes time O(n).

If c̃mp(x) = r̃, then c̃mp
′
(y, r̃) = c̃mp(cons(y, x)).

For x of length n, c̃mp
′
(y, r̃) takes time O(1);

c̃mp(cons(y, x)) takes time O(n).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sum′(y, r) = y + r

ĉmp(x) = let v1 = sum(odd(x)) in
let v2 = prod(even(x)) in
< v1≤ v2, v1, v2 >

ĉmp
′
(y1, y2, r̂) = let v1 = y1 + 2nd(r̂) in

let v2 = y2 ∗ 3rd(r̂) in
< v1≤ v2, v1, v2 >

c̃mp(x) = let v1 = odd(x) in
let u1 = sum(v1) in
let v2 = even(x) in
let u2 = prod(v2) in
<u1≤ u2, u1, u2, sum(v2), prod(v1)>

c̃mp
′
(y, r̃) = <y+4th(r̃) ≤ 5th(r̃),

y+4th(r̃), 5th(r̃), 2nd(r̃), y∗3rd(r̃)>

Figure 2: Resulting function definitions

trieved from the results of the enclosing applications. These
improvements are more important for discovering auxiliary
information, since the resulting program should be much
simpler and therefore easier to treat in subsequent analy-
ses and transformations. These improvements also benefit
the modified version of this extension transformation used
in Step A.3.

We first briefly describe the extension transformation in
[40]; then, we describe an embedding analysis that leads to
the desired improvements to the extension transformation.

Extension transformation. Basically, for each func-
tion definition f(v1, ..., vn) = e, we construct a function def-
inition

f̄(v1, ..., vn) = Ext[[e]] (2)

where Ext[[e]] extends an expression e to return the values
of all function calls made in computing e, i.e., it considers
subexpressions of e in applicative and left-to-right order,
introduces bindings that name the results of function calls,
builds up tuples of these values together with the values of
the original subexpressions, and passes these values from
subcomputations to enclosing computations.

The definition of Ext is given in Figure 4. We assume
that each introduced binding uses a fresh variable name.
For a constructed tuple <>, while we use 1st to return the
first element, which is the original return value, we use rst
to return a tuple of the remaining elements, which are the
corresponding intermediate results here. We use an infix
operation @ to concatenate two tuples. For transforming a
conditional expression, the transformation Pad[[e]] generates
a tuple of ’s of length equal to the number of the function
applications in e, where is a dummy constant that just oc-
cupies a spot. The length of the tuple generated by Pad[[e]]
can easily be determined statically. The use of Pad ensures
that each possible intermediate result appears in a fixed po-
sition independent of value of the Boolean expression.

Administrative simplifications are performed on the re-
sulting functions to simplify tuple operations for passing in-

termediate results, unwind binding expressions that become
unnecessary as a result of simplifying their subexpressions,
and lift bindings out of enclosing expressions whenever pos-
sible to enhance readability.

The following improvements can be made to the above
brute-force caching of all intermediate results. First, be-
fore applying the extension transformation, common sub-
computations in both branches of a conditional expression
are lifted out of the conditional. This simplifies programs
in general. For caching all intermediate results, this lifting
saves the extension transformation from caching values of
common subcomputations at different positions in different
branches, which makes it easier to reason about using these
values for incremental computation. The same effect can
be achieved by explicitly allocating, for values of common
subcomputations in different branches, the same slot in each
corresponding branch.

Next, we concentrate on major improvements. These
improvements are based on an embedding analysis.

Embedding analysis. First, we compute embedding
relations. We use Mf(f, i) to indicate whether the value of vi

is embedded in the value of f(v1, ..., vn), and we use Me(e, v)
to indicate whether the value of variable v is embedded in
the value of expression e. These relations must satisfy the
following safety requirements:

if Mf(f, i) = true, then there exists an expression f−1
i

such that, if u = f(v1, ..., vn), then vi = f−1
i (u)

if Me(e, v) = true, then there exists an expression e−1
v

such that, if u = e, then v = e−1
v (u)

(3)

For each function definition f(v1, ..., vn) = ef , we define
Mf(f, i) = Me(ef , vi), and we define Me recursively as in
Figure 5. For a primitive function p, ∃p−1

i denotes true if p
has an inverse for the ith argument, and false otherwise.
For a conditional expression, ife1

e2e3 denotes true if the value
of e1 can be determined statically or inferred from the value

4

Ext[[v]] = < v >

Ext[[g(e1, ..., en)]] where g is c or p = let v1=Ext[[e1]] in ... let vn=Ext[[en]] in
< g(1st(v1), ..., 1st(vn)) > @ rst(v1) @ ... @ rst(vn)

Ext[[f(e1, ..., en)]] = let v1=Ext[[e1]] in ... let vn=Ext[[en]] in
let v= f̄(1st(v1), ..., 1st(vn)) in
< 1st(v) > @ rst(v1) @ ... @ rst(vn) @ < v >

Ext[[if e1 then e2 else e3]] = let v1=Ext[[e1]] in
if 1st(v1) then let v2=Ext[[e2]] in

< 1st(v2) > @ rst(v1) @ rst(v2) @ Pad[[e3]]
else let v3=Ext[[e3]] in

< 1st(v3) > @ rst(v1) @ Pad[[e2]] @ rst(v3)

Ext[[let v=e1 in e2]] = let v1=Ext[[e1]] in
let v=1st(v1) in let v2=Ext[[e2]] in

< 1st(v2) > @ rst(v1) @ rst(v2)

Figure 4: Definition of Ext

Me(u, v) =

{
true if v = u
false otherwise

Me(c(e1, ..., en), v) = Me(e1, v) ∨ ... ∨ Me(en, v)

Me(p(e1, ..., en), v) =
(
∃p−1

1 ∧ Me(e1, v)
)

∨ ... ∨
(
∃p−1

n ∧ Me(en, v)
)

Me(f(e1, ..., en), v) =
(
Mf(f, 1) ∧ Me(e1, v)

)
∨ ... ∨

(
Mf(f, n) ∧ Me(en, v)

)
Me(if e1 then e2 else e3, v) = ife1

e2e3 ∧
(
e1
Me(e2, v)

)
∧

(
e1
Me(e3, v)

)
Me(let u = e1 in e2, v) = Me(e2, v) ∨

(
Me(e1, v) ∧ Me(e2, u)

)
Figure 5: Definition of Me

of if e1 then e2 else e3, and false otherwise. For example,
ife1

e2e3 is true if e1 is T (for true) or F (for false), or if the two
branches of the conditional expression return applications
of different constructors. For a Boolean expression e1, e1

Me(e, v) means that whenever e1 is true, the value of v is
embedded in the value of e. In order that the embedding
analysis does not obviate useful caching, it considers a value
to be embedded only if the value can be retrieved from the
value of its immediately enclosing computation in constant
time; in particular, this constraint applies to the retrievals
when ∃p−1

i or ife1
e2e3 is true.

We can easily show by induction that the safety require-
ments (3) are satisfied. To compute Mf , we start with
Mf(f, i) = true for every f and i and iterate using the above
definitions to compute the greatest fixed point in the point-
wise extension of the Boolean domain with false � true.
The iteration always terminates since these definitions are
monotonic and the domain is finite.

Next, we compute embedding tags. For each function
definition f(v1, ..., vn) = ef , we associate an embedding tag
Mtag(e) with each subexpression e of ef , indicating whether
the value of e is embedded in the value of ef . Mtag can be
defined in a similar fashion to Me. We define Mtag(ef) =
true, and define the true values of Mtag for subexpressions
e of ef as in Figure 6; the tags of other subexpressions of

ef are defined to be false. These tags can be computed
directly once the above embedding relations are computed.

Finally, we use the embedding tags to compute, for each
function f , an embedding-all property Mall(f) indicating
whether all intermediate results of f are embedded in the
value of f . We define, for each function f(v1, ..., vn) = ef ,

Mall(f) =
∧

all function applications
g(e1, ..., en) occurring in ef

Mtag(g(e1, ..., em)) ∧Mall(g)

(4)
where Mtag is with respect to ef . To compute Mall, we
start with Mall(f) = true for all f and iterate using the
definition in (4) until the greatest fixed point is reached.
This fixed point exists for similar reasons as for Mf .

Improvements. The above embedding analysis is used
to improve the extension transformation as follows. First,
if Mall(f) = true, i.e., if all intermediate results of f are
embedded in the value of f , then we do not construct an
extended function for f . This makes the transformation for
caching all intermediate results idempotent.

If there is a function not all of whose intermediate re-
sults are embedded in its return value, then an extended

5

if Mtag(c(e1, ..., en)) = true then Mtag(ei) = true, for i = 1..n

if Mtag(p(e1, ..., en)) = true then Mtag(ei) = true if ∃p−1
i , for i = 1..n

if Mtag(f(e1, ..., en)) = true then Mtag(ei) = true if Mf(f, i), for i = 1..n

if Mtag(if e1 then e2 else e3) = true then Mtag(ei) = true if ife1
e2e3 , for i = 1, 2, 3

if Mtag(let v=e1 in e2) = true then Mtag(e2) = true; Mtag(e1) = true if Me(e2, v)

Figure 6: Definition of Mtag

function for it needs to be defined as in (2). We modify the
definition of Ext[[f(e1, ..., en)]] as follows. If Mall(f) = true,
which includes the case where f does not contain function
applications, then, due to the first improvement, f is not
extended, so we reference the value of f directly:

Ext[[f(e1, ..., en)]]
= let v1=Ext[[e1]] in ... let vn=Ext[[en]] in

let v=f(1st(v1), ..., 1st(vn)) in
< v > @ rst(v1) @ ... @ rst(vn) @ < v >

(5)

Furthermore, if Mall(f) = true, and Mtag(f(e1, ..., en)) =
true, i.e, the value of f(e1, ..., en) is embedded in the value
of its enclosing application, then we avoid caching the value
of f separately:

Ext[[f(e1, ..., en)]]
= let v1=Ext[[e1]] in ... let vn=Ext[[en]] in

<f(1st(v1), ..., 1st(vn))> @ rst(v1) @ ... @ rst(vn)
(6)

To summarize, the transformation Ext remains the same as
in Figure 4 except that the rule for a function application
f(e1, ..., en) is replaced with the following: if Mall(f) = true
and Mtag(f(e1, ..., en)) = true, then define Ext[[f(e1, ..., en)]]
as in (6); else if Mall(f) = true but Mtag(f(e1, ..., en)) =
false, then define Ext[[f(e1, ..., en)]] as in (5); otherwise de-
fine Ext[[f(e1, ..., en)]] as in Figure 4. Note that function
applications f(e1, ..., en) such that Mall(f) = true and
Mtag(f(e1, ..., en)) = true should not be counted by Pad.
The lengths of tuples generated by Pad can still be statically
determined.

For the function cmp of Figure 1, this improved extension
transformation yields the following functions:

cmp(x) = let v1 = odd(x) in
let u1 = sum(v1) in
let v2 = even(x) in

let u2 = prod(v2) in
< 1st(u1) ≤ 1st(u2), v1, u1, v2, u2 >

sum(x) = if null(x) then < 0, >
else let v1 = sum(cdr(x)) in

< car(x) + 1st(v1), v1 >

prod(x) = if null(x) then < 1, >

else let v1 = prod(cdr(x)) in
< car(x) ∗ 1st(v1), v1 >

(7)

Functions odd and even are not extended, since all their
intermediate results are embedded in their return values.

3.2 Step A.2: Exposing auxiliary informa-
tion by incrementalization

This step transforms f̄0(x ⊕ y) to expose subcomputations
depending only on x and whose values can not be retrieved
from the cached result of f̄0(x). It uses analyses and trans-
formations similar to those in [41] that derive an incremen-
tal program f̄0

′(x, y, r̄), by expanding subcomputations of
f̄0(x ⊕ y) depending on both x and y and replacing those
depending only on x by retrievals from r̄ when possible.

Our goal here is not to quickly retrieve values from r̄, but
to find potentially useful auxiliary information, i.e., subcom-
putations depending on x (and r̄) but not y whose values
can not be retrieved from r̄. Thus, time considerations in
[41] are dropped here but are picked up after Step A.3, as
discussed in Section 5.

In particular, in [41], a recursive application of a function
f is replaced by an application of an incremental version f ′

only if a fast retrieval from some cached result of the previ-
ous computation can be used as the argument for the param-
eter of f ′ that corresponds to a cached result. For example,
if an incremental version f ′(x, y, r) is introduced to compute
f(x⊕ y) incrementally for r = f(x), then in [41], a function
application f(g(x)⊕h(y)) is replaced by an application of f ′

only if some fast retrieval p(r) for the value of f(g(x)) can
be used as the argument for the parameter r of f ′(x, y, r), in
which case the application is replaced by f ′(g(x), h(y), p(r)).
In Step A.2 here, an application of f is replaced by an ap-
plication of f ′ also when a retrieval can not be found; in this
case, the value needed for the cache parameter is computed
directly, so for this example, the application f(g(x)⊕ h(y))
is replaced by f ′(g(x), h(y), f(g(x))). It is easy to see that,
in this case, f(g(x)) becomes a piece of candidate auxiliary
information.

Since the functions obtained from this step may be dif-
ferent from the incremental functions f ′ obtained in [41], we
denote them by f �.

For the function cmp in (7) and input change opera-
tion x ⊕ y = cons(y, x), we transform the computation of
cmp(cons(y, x)), with cmp(x) = r̄:

1. unfold cmp(cons(y, x))
= let v1 = odd(cons(y, x)) in

let u1 = sum(v1) in
let v2 = even(cons(y, x)) in
let u2 = prod(v2) in
< 1st(u1) ≤ 1st(u2),

v1, u1, v2, u2 >

6

2. unfold odd, sum, even and simplify
= let v′

1 = even(x) in
let u′

1 = sum(v′
1) in

let v2 = odd(x) in
let u2 = prod(v2) in
< y+1st(u′

1) ≤ 1st(u2),
cons(y, v′

1), <y+1st(u′
1), u′

1 >, v2, u2 >

3. replace applications of even and odd by retrievals
= let v′

1 = 4th(r̄) in
let u′

1 = sum(v′
1) in

let v2 = 2nd(r̄) in
let u2 = prod(v2) in
< y+1st(u′

1) ≤ 1st(u2),
cons(y, v′

1), <y+1st(u′
1), u′

1 >, v2, u2 >

Simplification yields the following function cmp� such that,
if cmp(x) = r̄, then cmp�(y, r̄) = cmp(cons(y, x)):

cmp�(y, r̄) = let u′
1 = sum(4th(r̄)) in

let u2 = prod(2nd(r̄)) in
<y+1st(u′

1)≤1st(u2),
cons(y, 4th(r̄)), < y+1st(u′

1), u
′
1 >,

2nd(r̄), u2 >

(8)

3.3 Step A.3: Collecting candidate auxil-
iary information

This step collects candidate auxiliary information, i.e., in-
termediate results of f̄0

�(x, y, r̄) that depend only on x and
r̄. It is similar to Step A.1 in that both collect intermediate
results; they differ in that Step A.1 collects all intermediate
results, while this step collects only those that depend only
on x and r̄.

Forward dependence analysis. First, we use a
forward dependence analysis to identify subcomputations of
f̄0

�(x, y, r̄) that depend only on x and r̄. The analysis is in
the same spirit as binding-time analysis [32, 37] for partial
evaluation, if we regard the arguments corresponding to x
and r̄ as static and the rest as dynamic. We compute the
following sets, called forward dependency sets, directly.

For each function f(v1, ..., vn) = ef , we compute a set Σf

that contains the indices of the arguments of f such that, in
all uses of f , the values of these arguments depend only on x
and r̄, and, for each subexpression e of ef , we compute a set
Σ[e] that contains the free variables in e that depend only
on x and r̄. The recursive definitions of these sets are given
in Figure 7, where FV (e) denotes the set of free variables in
e and is defined as follows:

FV (v) = {v}
FV (g(e1, ..., en)) = FV (e1) ∪ ... ∪ FV (en)

where g is c, p, or f
FV (if e1 then e2 else e3) = FV (e1) ∪ FV (e2) ∪ FV (e3)
FV (let v = e1 in e2) = FV (e1) ∪ (FV (e2) \ {v})

To compute these sets, we start with Σf̄0� containing the

indices of the arguments of f̄0
� corresponding to x and r̄,

and, for all other functions f , Σf containing the indices of
all arguments of f , and iterate until a fixed point is reached.
This iteration always terminates since, for each function f ,
f has a fixed arity, Σf decreases, and a lower bound ∅ exists.

For the running example, we obtain Σcmp� = {2} and
Σsum = Σ

prod
= {1}. For every subexpression e in the

definition of cmp�(y, r̄), r̄ ∈ Σ[e]. For every subexpression e

in the definitions of sum(x) and prod(x), Σ[e] = {x}.

Collection transformation. Next, we use a collec-
tion transformation to collect the candidate auxiliary infor-
mation. The main difference between this collection trans-
formation and the extension transformation in Step A.1 is
that, in the former, the value originally computed by a
subexpression is returned only if it depends only on x and
r̄, while in the latter, the value originally computed by a
subexpression is always returned.

Basically, for each function f(v1, ..., vn) = e called in
the program for f̄0

� and such that Σf �= ∅, we construct a
function definition

f̌(vi1 , ..., vik) = Col[[e]] (9)

where Σf = {i1, ..., ik} and 1 ≤ i1 < ... < ik ≤ n. Col[[e]]
collects the results of intermediate function applications in
e that have been statically determined to depend only on x
and r̄. Note, however, that an improvement similar to that
in Step A.1 is made, namely, we avoid constructing such a
collected version for f if Σf = {1, ..., n} and Mall(f) = true.

The transformation Col always first examines whether its
argument expression e has been determined to depend only
on x and r̄, i.e., FV (e) ⊆ Σ[e]. If so, Col[[e]] = Ext[[e]], where
Ext is the improved extension transformation defined in Step
A.1. Otherwise, Col[[e]] is defined as in Figure 8, where
Pǎd[[e]] generates a tuple of ’s of length equal to the number
of the function applications in e, except that function ap-
plications f(e1, ..., en) such that Σf = ∅, or Σf = {1, ..., n}
but Mall(f) = true and Mtag(f(e1, ..., en)) = true are not
counted. Note that if e has been determined to depend only
on x and r̄, then 1st(Col[[e]]) is just the original value of e;
otherwise, Col[[e]] contains only values of intermediate func-
tion applications.

Although this forward dependence analysis is equivalent
to binding time analysis, the application here is different
from that in partial evaluation [31]. In partial evaluation,
the goal is to obtain a residual program that is specialized
on a given set of static arguments and takes only the dy-
namic arguments, while here, we construct a program that
computes only on the “static” arguments. In this respect,
the resulting program obtained here is similar to the slice
obtained from forward slicing [63]. However, our forward
dependence analysis finds parts of a program that depend
only on certain information, while forward slicing finds parts
of a program that depend possibly on certain information.
Furthermore, our resulting program also returns all inter-
mediate results on the arguments of interest.

For the function cmp� in (8), collecting all intermediate
results that depend only on its second parameter yields

ˇcmp(r̄) = < sum(4th(r̄)), prod(2nd(r̄)) > (10)

We can see that computing ˇcmp(r̄) is no slower than com-
puting cmp(x). We will see that this guarantees that incre-
mental computation using the program obtained at the end
is at least as fast as computing cmp from scratch.

4 Phase B: Using auxiliary information

Phase B determines which pieces of the collected candidate
auxiliary information are useful for incremental computa-
tion of f0(x ⊕ y) and exactly how they can be used. The

7

For each function f(v1, ..., vn) = ef , define Σ[ef] = {vi | i ∈Σf} and, for each subexpression e of ef ,

if e is c(e1, ..., en) or p(e1, ..., en) then Σ[e1] = ... = Σ[en] = Σ[e]

if e is f1(e1, ..., en) then Σ[e1] = ... = Σ[en] = Σ[e] and Σf1 ={i |FV (ei) ⊆ Σ[e]} ∩ Σf1

if e is if e1 then e2 else e3 then Σ[e1] = Σ[e2] = Σ[e3] = Σ[e]

if e is let v = e1 in e2 then Σ[e1] = Σ[e] and Σ[e2] =

{
Σ[e] ∪ {v} if FV (e1) ⊆ Σ[e]

Σ[e] \ {v} otherwise

Figure 7: Definition of Σ

Col[[v]] = <>

Col[[g(e1, ..., en)]] where g is c or p = Col[[e1]] @ ... @ Col[[en]]

Col[[f(e1, ..., en)]] = let v1=Col[[e1]] in ... let vn=Col[[en]] in e′1 @ ... @e′n @ e′

where e′i =

{
rst(vi) if i ∈ Σf

vi otherwise

e′ =

{
<> if Σf = ∅
<f̌(1st(vi1), ...,1st(vik))> otherwise

where Σf = {i1, ..., ik} and 1≤ i1 <...<ik ≤ n

Col[[if e1 then e2 else e3]] = let v1=Col[[e1]] in
if 1st(v1) then let v2=Col[[e2]] in

rst(v1) @ v2 @ Pǎd[[e3]]
else let v3=Col[[e3]] in

rst(v1) @ Pǎd[[e2]] @ v3

if FV (e1) ⊆ Σ[e1]

= let v1=Col[[e1]] in let v2=Col[[e2]] in
let v3=Col[[e3]] in
v1 @ v2 @ v3

otherwise

Col[[let v=e1 in e2]] = let v1=Col[[e1]] in
let v=1st(v1) in let v2=Col[[e2]] in

rst(v1) @ v2

if FV (e1) ⊆ Σ[e1]

= let v1=Col[[e1]] in let v2=Col[[e2]] in
v1 @ v2

otherwise

Figure 8: Definition of Col

basic idea is to merge the candidate auxiliary information
with the original computation of f0(x), derive an incremen-
tal version for the resulting program, and determine the least
information useful for computing the value of f0(x ⊕ y) in
that incremental version.

However, we want the incremental computation of f0(x⊕
y) to have access to the auxiliary information in addition to
the intermediate results of f0(x). Thus, we merge the candi-

date auxiliary information in f̌0(x, r̄) with f̄0(x) instead of
f0(x). After deriving an incremental version for the result-
ing program, we prune out the useless auxiliary information
and the useless intermediate results.

Phase B has three steps. Step 1 merges f̌0 with f̄0 to

form a function ¯̌f0 that returns candidate auxiliary informa-
tion as well as all intermediate results. It also determines a
projection Π0 that projects the return value of f0 out of ¯̌f0.

Step 2 incrementalizes ¯̌f0 under ⊕ to obtain an incremental

version ¯̌f0
′. Step 3 prunes out of ¯̌f0 and ¯̌f0

′ the intermediate

results and auxiliary information that are not useful.

4.1 Step B.1: Combining intermediate re-
sults and auxiliary information

To merge the candidate auxiliary information with f̄0, we

could simply attach it onto f̄0 by defining ¯̌f0 to be the pair
of f̄0 and f̌0:

¯̌f0(x) = let r̄ = f̄0(x) in let ř = f̌0(x, r̄) in < r̄, ř >

and use the projection Π0(̄ř) = 1st(1st(̄ř)) to project out
the original return value of f0. However, we can do bet-
ter by using a transformation to integrate the computation
of f̌0 more tightly into the computation of f̄0, as opposed
to carrying out two disjoint computations. The integrated
computation is usually more efficient; so is its incremental
version.

8

We do not describe the integration in detail. Basically,
it uses traditional transformation techniques [13] like those
used in tupling tactic [21, 50, 14]. We require only that

Π0(¯̌f0(x)) always project out 1st(f̄0(x)), which is the value
of f0(x), and that the values of all other components of f̄0(x)

and f̌0(x, r̄) are embedded in the value of ¯̌f0(x). This allows
re-arranging the order of the components in the return value.

For the functions cmp in (7) and ˇcmp in (10), we first
define a function

¯̄ ˇcmp(x) = let r̄ = cmp(x) in let ř = ˇcmp(r̄) in < r̄, ř >

and a projection Π0(̄ř) = 1st(1st(̄ř)). Next, we transform
¯̄ ˇcmp(x) to integrate the computations of cmp and ˇcmp,

1. unfold ¯̄ ˇcmp, then cmp and ˇcmp
= let r̄ = let v1 = odd(x) in

let u1 = sum(v1) in
let v2 = even(x) in
let u2 = prod(v2) in
< 1st(u1) ≤ 1st(u2),

v1, u1, v2, u2 > in
let ř = < sum(4th(r̄)),

prod(2nd(r̄)) > in
< r̄, ř >

2. lift bindings for v1, u1, v2, u2, and simplify
= let v1 = odd(x) in

let u1 = sum(v1) in
let v2 = even(x) in
let u2 = prod(v2) in
let r̄ = <1st(u1) ≤ 1st(u2),

v1, u1, v2, u2 > in
let ř = < sum(v2),

prod(v1) > in
< r̄, ř >

3. unfold bindings for r̄ and ř
= let v1 = odd(x) in

let u1 = sum(v1) in
let v2 = even(x) in

let u2 = prod(v2) in
< <1st(u1) ≤ 1st(u2),

v1, u1, v2, u2 >,
< sum(v2), prod(v1) >>

Simplifying the return value and Π0, we obtain the function

¯̄ ˇcmp(x) = let v1 = odd(x) in
let u1 = sum(v1) in
let v2 = even(x) in

let u2 = prod(v2) in
< 1st(u1) ≤ 1st(u2),

v1, u1, v2, u2, sum(v2), prod(v1) >

(11)

and the projection Π0(̄ř) = 1st(̄ř).

4.2 Step B.2: Incrementalization

To derive an incremental version ¯̌f0
′ of ¯̌f0 under ⊕, we can

use the method in [41], as sketched in Section 1. Depending
on the power expected from the derivation, the method can
be made semi-automatic or fully automatic.

For the function ¯̄ ˇcmp in (11) and input change operation
x⊕ y = cons(y, x), we derive an incremental version of ¯̄ ˇcmp
under ⊕:

1. unfold ¯̄ ˇcmp(cons(y, x))
= let v1 = odd(cons(y, x)) in

let u1 = sum(v1) in
let v2 = even(cons(y, x)) in

let u2 = prod(v2) in
< 1st(u1) ≤ 1st(u2),

v1, u1, v2, u2, sum(v2), prod(v1) >

2. unfold odd, sum, even, prod and simplify
= let v′

1 = even(x) in
let u′

1 = sum(v′
1) in

let v2 = odd(x) in
let u2 = prod(v2) in

let u′
4 = prod(v′

1) in
<y + 1st(u′

1) ≤ 1st(u2),
cons(y, v′

1), <y+1st(u′
1), u

′
1 >, v2, u2,

sum(v2), <y∗1st(u′
4), u

′
4 >>

3. replace all applications by retrievals
= let v′

1 = 4th(̄ř) in
let u′

1 = 6th(̄ř) in
let v2 = 2nd(̄ř) in
let u2 = 7th(̄ř) in
let u′

4 = 5th(̄ř) in
<y + 1st(u′

1) ≤ 1st(u2),
cons(y, v′

1), <y+1st(u′
1), u

′
1 >, v2, u2,

3rd(̄ř), <y∗1st(u′
4), u

′
4 >>

Simplification yields the following incremental version ¯̄ ˇcmp′

such that, if ¯̄ ˇcmp(x) =¯̌r, then ¯̄ ˇcmp′(y,¯̌r) = ¯̄ ˇcmp(cons(y, x)):

¯̄ ˇcmp′(y,¯̌r) = <y+1st(6th(̄ř)) ≤ 1st(7th(̄ř)),
cons(y, 4th(̄ř)), <y+1st(6th(̄ř)), 6th(̄ř)>,
2nd(̄ř), 7th(̄ř),
3rd(̄ř), <y∗1st(5th(̄ř)), 5th(̄ř)>>

(12)
Clearly, ¯̄ ˇcmp′(y,¯̌r) computes ¯̄ ˇcmp(cons(y, x)) in only O(1)
time.

4.3 Step B.3: Pruning

To prune ¯̌f0 and ¯̌f0
′, we use the analyses and transforma-

tions in Stage III of [40]. A backward dependence analysis

determines the components of ¯̌r and subcomputations of ¯̌f0
′

whose values are useful in computing Π0(¯̌f0
′(x, y,¯̌r)), which

is the value of f0. A pruning transformation replaces use-
less computations with . Finally, the resulting functions
are optimized by eliminating the components, adjusting
the selectors, etc.

For the functions ¯̄ ˇcmp in (11) and ¯̄ ˇcmp′ in (12), we obtain

c̃mp(x) = let v1 = odd(x) in
let u1 = sum(v1) in
let v2 = even(x) in
let u2 = prod(v2) in
< 1st(u1) ≤ 1st(u2),

, < 1st(u1), >, , < 1st(u2), >,
< 1st(sum(v2)), >, < 1st(prod(v1)), >>

9

c̃mp
′
(y,¯̌r) = <y+1st(6th(̄ř)) ≤ 1st(7th(̄ř)),

, < y+1st(6th(̄ř)), >,
, < 1st(7th(̄ř)), >,

< 1st(3rd(̄ř)), >, < y∗1st(5th(̄ř)), >>

Optimizing these functions yields the final definitions of c̃mp
and c̃mp

′
, which appear in Figure 2:

5 Discussion

Correctness. Auxiliary information is maintained in-
crementally, so at the step of discovering it, we should not
be concerned with the time complexity of computing it from
scratch; this is why time considerations were dropped in
Step A.2. However, to make the overall approach effective,
we must consider the cost of computing and maintaining
the auxiliary information. Here, we simply require that
the candidate auxiliary information be computed at least
as fast as the original program, i.e., t(f̌0(x, r̄)) ≤ t(f0(x))
for r̄ = f̄0(x). This can be checked after Step A.3. We
guarantee this condition by simply dropping pieces of candi-
date auxiliary information for which it can not be confirmed.
Standard constructions for mechanical time analysis [57, 62]
can be used, although further study is needed. Automatic
space analysis and the trade-off between time and space are
problems open for study.

Suppose Step B.1 projects out the original value using
1st. With the above condition, in a similar way to [40], we
can show that, if f0(x) = r, then

1st(f̃0(x)) = r and t(f̃0(x)) ≤ t(f0(x)) (13)

and if f0(x ⊕ y) = r′ and f̃0(x) = r̃, then

1st(f̃0
′(x, y, r̃)) = r′, f̃0

′(x, y, r̃) = f̃0(x ⊕ y),

and t(f̃0
′(x, y, r̃)) ≤ t(f0(x ⊕ y)).

(14)

i.e., the functions f̃0 and f̃0
′ preserve the semantics and com-

pute asymptotically at least as fast. Note that f̃0(x) may

terminate more often than f0(x), and f̃0
′(x, y, r̃) may termi-

nate more often than f0(x ⊕ y), due to the transformations
used in Steps B.2 and B.3.

Multi-pass discovery of auxiliary informa-
tion. The function f̃0 can sometimes be computed even
faster by maintaining auxiliary information useful for incre-
mental computation of the auxiliary information already in

f̃0. We can obtain such auxiliary information of auxiliary
information by iterating the above approach.

Other auxiliary information. There are cases
where the auxiliary information discovered using the above
approach is not sufficient for efficient incremental computa-
tion. In these cases, classes of special parameterized data
structures are often used. Ideally, we can collect them as
auxiliary information parameterized with certain classes of
data types. Then, we can systematically extend a program
to compute such auxiliary information and maintain it in-
crementally. In the worst case, we can code manually discov-
ered auxiliary information to obtain an extended program

f̃0, and then use our systematic approach to derive an incre-

mental version of f̃0 that incrementally computes the new
output using the auxiliary information and also maintains
the auxiliary information.

6 Examples

The running example on list processing illustrates the ap-
plication of our approach to solving explicit incremental
problems for, e.g., interactive systems and reactive systems.
Other applications include optimizing compilers and trans-
formational programming.

This section presents an example for each of these two
applications. The examples are based on problems in VLSI
design and graph algorithms, respectively.

6.1 Strength reduction in optimizing com-
pilers: binary integer square root

This example is from [45], where a specification of a non-
restoring binary integer square root algorithm is transformed
into a VLSI circuit design and implementation. In that
work, a strength-reduced program was manually discovered
and then proved correct using Nuprl [16]. Here, we show
how our method can automatically derive the strength re-
ductions. This is of particular interest in light of the recent
Pentium chip flaw [24].

The initial specification of the l-bit non-restoring binary
integer square root algorithm [23, 45], which is exact for
perfect squares and off by at most 1 for other integers, is

m := 2l−1

for i := l − 2 downto 0 do
p := n − m2;
if p > 0 then

m := m + 2i

else if p < 0 then
m := m − 2i

(15)

In hardware,multiplications and exponentials are much more
expensive than additions and shifts (doublings or halvings),
so the goal is to replace the former by the latter.

To simplify the presentation, we jump to the heart of the
problem, namely, computing n−m2 and 2i incrementally in
each iteration under the change m′ = m± 2i and i′ = i− 1.
Let f0 be

f0(n, m, i) = pair(n − m2, 2i)

where pair is a constructor with selectors fst(a, b) = a and
snd(a, b) = b, and let input change operation ⊕ be

〈n′, m′, i′〉 = 〈n, m, i〉 ⊕ 〈 〉 = 〈n, m ± 2i, i − 1〉
Step A.1. We cache all intermediate results of f0, obtaining

f̄0(n, m, i) = let v = m2 in < pair(n − v, 2i), v >

Step A.2. We transform f̄0 under ⊕, obtaining
f̄0

�(n, m, i, r̄)
= let v = 2nd(r̄)± 2∗m∗snd(1st(r̄)) + (snd(1st(r̄)))2 in

< pair(n − v, snd(1st(r̄))/2), v >

Step A.3. We collect candidate auxiliary information, ob-
taining

f̌0(n, m, i, r̄) = < 2∗m∗snd(1st(r̄)), (snd(1st(r̄)))2 > (16)

Step B.1. We merge the collected candidate auxiliary in-
formation with f̄0, obtaining Π0(̄ř) = 1st(̄ř) and

¯̌f0(n, m, i) = let v = m2 in let u = 2i in
<pair(n − v, u), v, 2∗m∗u, u2 >

10

Step B.2. We derive an incremental version of ¯̌f0 under ⊕,
obtaining

¯̌f0
′(n, m, i,¯̌r) = let v = 2nd(̄ř)± 3rd(̄ř) + 4th(̄ř) in

let u = snd(1st(̄ř))/2 in
< pair(fst(1st(̄ř))∓ 3rd(̄ř)− 4th(̄ř), u),

v, 3rd(̄ř)/2± 4th(̄ř), 4th(̄ř)/4 >

Step B.3. We prune the functions ¯̌f0 and ¯̌f0
′, eliminating

their second components and obtaining

f̃0(n, m, i)
= let u = 2i in < pair(n − m2, u), 2∗m∗u, u2 >

(17)

f̃0
′(n, m, i, r̃)

= < pair(fst(1st(r̃))∓ 2nd(r̃)− 3rd(r̃), snd(1st(r̃))/2),
2nd(r̃)/2± 3rd(r̃), 3rd(r̃)/4 >

(18)
The expensive multiplications and exponentials have been
completely replaced with additions and shifts. We even dis-
cover that an unnecessary shift is done in [45]. Thus, a
systematic approach such as ours is desirable not only for
automating designs and guaranteeing correctness, but also
for reducing costs.

6.2 Transformational programming: path
sequence problem

This example is from [7]. Given a directed acyclic graph,
and a string whose elements are vertices in the graph, the
problem is to compute the length of the longest subsequence
in the string that forms a path in the graph. We focus on
the second half of the example, where an exponential-time
recursive solution is improved (incorrectly in [7], correctly
in [8]).

The function llp defined below computes the desired
length. The input string is given explicitly as the argument
to llp. The input graph is represented by a predicate arc
such that arc(a, b) is true iff there is an edge from vertex a
to vertex b in the graph. The primitive function max returns
the maximum of its two arguments.

llp(l) = if null(l) then 0
else max(llp(cdr(l)), 1+f(car(l), cdr(l)))

f(n, l) = if null(l) then 0
else if arc(n, car(l)) then

max(f(n, cdr(l)), 1+f(car(l), cdr(l)))
else f(n, cdr(l))

(19)
The problem is to compute llp incrementally under the

input change operation l⊕i = cons(i, l). Using the approach
described in this paper, we obtain

l̃lp(l) = if null(l) then <0>

else let v = f̃(car(l), cdr(l)) in
<max(llp(cdr(l)), 1+1st(v)), v >

f̃(n, l) = if null(l) then <0>

else let u = f̃(car(l), cdr(l)) in
if arc(n, car(l)) then

<max(f(n, cdr(l)), 1+1st(u), u>
else <f(n, cdr(l)), u>

(20)

and

l̃lp′(i, l, r̃) = if null(l) then <1, <0>>

else let v = f̃ ′(i, l, 2nd(r̃)) in
<max(1st(r̃), 1+1st(v)), v>

f̃ ′(i, l, r̃1) = if null(cdr(l)) then
if arc(i, car(l)) then <1, <0>>
else <0, <0>>

else let v = f̃ ′(i, cdr(l), 2nd(r̃1)) in
if arc(i, car(l)) then

<max(1st(v), 1+1st(r̃1)), r̃1 >
else <1st(v), r̃1 >

(21)
Computing llp(cons(i, l)) from scratch takes exponential

time, but computing l̃lp′(i, l, r̃) takes only O(n) time, where

n is the length of l, since l̃lp′(i, l, r̃) calls f̃ ′, which goes
through the list l once.

Finally, we use these derived functions to compute the

original function llp. Note that llp(l) = 1st(l̃lp(l)) and,

if l̃lp(l) = r̃, then l̃lp′(i, l, r̃) = l̃lp(cons(i, l)). Using the

definition of l̃lp′ in (21) in this last equation, we obtain:

l̃lp(cons(i, l)) = if null(l) then <1, <0>>

else let r̃ = l̃lp(l) in

let v = f̃ ′(i, l, 2nd(r̃)) in
<max(1st(r̃), 1+1st(v)), v>

Using this equation and the base case l̃lp(nil) = < 0>, we

obtain a new definition of l̃lp:

l̃lp(l) = if null(l) then <0>
else if null(cdr(l)) then <1, <0>>

else let r̃ = l̃lp(cdr(l)) in

let v = f̃ ′(car(l), cdr(l), 2nd(r̃)) in
<max(1st(r̃), 1+1st(v)), v>

(22)

where f̃ ′ is defined in (21). This new l̃lp takes only O(n2)

time, since it calls f̃ ′ only O(n) times.

7 Related work and conclusion

Work related to our analysis and transformation techniques
has been discussed throughout the presentation. Here, we
take a closer look at related work on discovering auxiliary
information for incremental computation.

Interactive systems and reactive systems often use incre-
mental algorithms to achieve fast response time [4, 5, 9,
19, 27, 33, 53, 54]. Since explicit incremental algorithms
are hard to write and appropriate auxiliary information is
hard to discover, the general approach in this paper pro-
vides a systematic method for developing particular incre-
mental algorithms. For example, for the dynamic incremen-
tal attribute evaluation algorithm in [55], the characteris-
tic graph is a kind of auxiliary information that would be
discovered following the general principles underlying our
approach. For static incremental attribute evaluation algo-
rithms [34, 35], where no auxiliary information is needed,
the approach can cache intermediate results and maintain
them automatically [40].

11

Strength reduction [2, 15, 60] is a traditional compiler op-
timization technique that aims at computing each iteration
incrementally based on the result of the previous iteration.
Basically, a fixed set of strength-reduction rules for prim-
itive operators like times and plus are used. Our method
can be viewed as a principled strength reduction technique
not limited to a fixed set of rules: it can be used to reduce
strength of computations where no given rules apply and,
furthermore, to derive or justify such rules when necessary,
as shown in the integer square root example.

Finite differencing [46, 47, 48] generalizes strength re-
duction to set-theoretic expressions for systematic program
development. Basically, rules are manually developed for
differentiating set expressions. For continuous expressions,
our method can derive such rules directly using properties
of primitive set operations. For discontinuous set expres-
sions, dynamic expressions need to be discovered and rules
for maintaining them derived. How to discover these dy-
namic expressions remains to be studied, but once discov-
ered, our method can be used to derive rules that maintain
them. In general, such rules apply only to very-high-level
languages like SETL; our method applies also to lower-level
languages like Lisp.

Maintaining and strengthening loop invariants has been
advocated by Dijkstra, Gries, and others [18, 25, 26, 56]
for almost two decades as a standard strategy for devel-
oping loops. In order to produce efficient programs, loop
invariants need to be maintained by the derived programs
in an incremental fashion. To make a loop more efficient,
the strategy of strengthening a loop invariant, often by in-
troducing fresh variables, is proposed [26]. This corresponds
to discovering appropriate auxiliary information and deriv-
ing incremental programs that maintain such information.
Work on loop invariants stressed mental tools for program-
ming, rather than mechanical assistance, so no systematic
procedures were proposed.

Induction and generalization [10, 44] are the logical foun-
dations for recursive calls and iterative loops in deductive
program synthesis [42] and constructive logics [16]. These
corpora have for the most part ignored the efficiency of the
programs derived, and the resulting programs “are often
wantonly wasteful of time and space” [43]. In contrast, the
approach in this paper is particularly concerned with the ef-
ficiency of the derived programs. Moreover, we can see that
induction, whether course-of-value induction [36], structural
induction [10, 12], or well-founded induction [10, 44], enables
derived programs to use results of previous iterations in each
iteration, and generalization [10, 44] enables derived pro-
grams to use appropriate auxiliary information by strength-
ening induction hypotheses, just like strengthening loop in-
variants. The approach in this paper may be used for sys-
tematically constructing induction steps [36] and strength-
ening induction hypotheses.

The promotion and accumulation strategies are proposed
by Bird [7, 8] as general methods for achieving efficient trans-
formed programs. Promotion attempts to derive a program
that defines f(cons(a, x)) in terms of f(x), and accumula-
tion generalizes a definition by including an extra argument.
Thus, promotion can be regarded as deriving incremental
programs, and accumulation as identifying appropriate in-
termediate results or auxiliary information. Bird illustrates
these strategies with two examples. However, we can discern
no systematic steps being followed in [7]. As demonstrated
with the path sequence problem, our approach can be re-
garded as a systematic formulation of the promotion and

accumulation strategies. It helps avoid the kind of errors
reported and corrected in [8].

Other work on transformational programming for im-
proving program efficiency, including the extension tech-
nique in [17], the transformation of recursive functional pro-
grams in the CIP project [11, 6, 49], and the finite differenc-
ing of functional programs in the semi-automatic program
development system KIDS [59], can also be further auto-
mated with our systematic approach.

In conclusion, incremental computation has widespread
applications throughout computing. This paper proposes a
systematic approach for discovering a general class of aux-
iliary information for incremental computation. It is natu-
rally combined with incrementalization and reusing interme-
diate results to form a comprehensive approach for efficient
incremental computation. The modularity of the approach
lets us integrate other techniques in our framework and re-
use our components for other optimizations.

Although our approach is presented in terms of a first-
order functional language with strict semantics, the under-
lying principles are general and apply to other languages as
well. For example, the method has been used to improve
imperative programs with arrays for the local neighborhood
problems in image processing [39]. A prototype system, CA-
CHET [38], based on our approach is under development.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers,
Principles, Techniques, and Tools. Addison-Wesley Se-
ries in Computer Science. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1986.

[2] F. E. Allen, J. Cocke, and K. Kennedy. Reduction of
operator strength. In S. S. Muchnick and N. D. Jones,
editors, Program Flow Analysis, chapter 3, pages 79–
101. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[3] B. Alpern, R. Hoover, B. Rosen, P. Sweeney, and
K. Zadeck. Incremental evaluation of computational
circuits. In Proceedings of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 32–42, San
Francisco, California, January 1990.

[4] R. Bahlke and G. Snelting. The PSG system: From
formal language definitions to interactive programming
environments. ACM Transactions on Programming
Languages and Systems, 8(4):547–576, October 1986.

[5] R. A. Ballance, S. L. Graham, and M. L. Van De Van-
ter. The Pan language-based editing system. ACM
Transactions on Software Engineering and Methodol-
ogy, 1(1):95–127, January 1992.

[6] F. L. Bauer, B. Möller, H. Partsch, and P. Pepper.
Formal program construction by transformations—
computer-aided, intuition-guided programming. IEEE
Transactions on Software Engineering, 15(2):165–180,
February 1989.

[7] R. S. Bird. The promotion and accumulation strategies
in transformational programming. ACM Transactions
on Programming Languages and Systems, 6(4):487–504,
October 1984.

12

[8] R. S. Bird. Addendum: The promotion and accumula-
tion strategies in transformational programming. ACM
Transactions on Programming Languages and Systems,
7(3):490–492, July 1985.

[9] P. Borras and D. Clément. CENTAUR: The system.
In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software De-
velopment Environments, pages 14–24, Boston, Mas-
sachusetts, November 1988. Published as SIGPLAN
Notices, 24(2).

[10] R. S. Boyer and J. S. Moore. A Computational Logic.
ACM Monograph Series. Academic Press, New York,
1979.

[11] M. Broy. Algebraic methods for program construction:
The project CIP. In P. Pepper, editor, Program Trans-
formation and Programming Environments, volume 8 of
NATO Advanced Science Institutes Series F: Computer
and System Sciences, pages 199–222. Springer-Verlag,
Berlin, 1984. Proceedings of the NATO Advanced Re-
search Workshop on Program Transformation and Pro-
gramming Environments, directed by F. L. Bauer and
H. Remus, Munich, Germany, September 1983.

[12] R. M. Burstall. Proving properties of programs by
structural induction. The Computer Journal, 12(1):41–
48, 1969.

[13] R. M. Burstall and J. Darlington. A transformation
system for developing recursive programs. Journal of
the ACM, 24(1):44–67, January 1977.

[14] W.-N. Chin. Towards an automated tupling strategy.
In Proceedings of the ACM SIGPLAN Symposium on
PEPM, Copenhagen, Denmark, June 1993.

[15] J. Cocke and K. Kennedy. An algorithm for reduc-
tion of operator strength. Communications of the ACM,
20(11):850–856, November 1977.

[16] R. L. Constable et al. Implementing Mathematics with
the Nuprl Proof Development System. Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

[17] N. Dershowitz. The Evolution of Programs, volume 5
of Progress in Computer Science. Birkhäuser, Boston,
1983.

[18] E. W. Dijkstra. A Discipline of Programming. Prentice-
Hall Series in Automatic Computation. Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

[19] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang.
Programming environments based on structure editor:
The Mentor experience. In D. R. Barstow, H. E.
Shrobe, and E. Sandewall, editors, Interactive Program-
ming Environments, pages 128–140. McGraw-Hill, New
York, 1984.

[20] J. Earley. High level iterators and a method for
automatically designing data structure representation.
Journal of Computer Languages, 1:321–342, 1976.

[21] M. S. Feather. A system for assisting program transfor-
mation. ACM Transactions on Programming Languages
and Systems, 4(1):1–20, January 1982.

[22] J. Field and T. Teitelbaum. Incremental reduction in
the lambda calculus. In Proceedings of the ACM ’90
Conference on LFP, pages 307–322, 1990.

[23] I. Flores. The Logic of Computer Arithmetic. Prentice-
Hall International Series in Electrical Engineering.
Prentice-Hall, Englewood Cliffs, New Jersey, 1963.

[24] J. Glanz. Mathematical logic flushes out the bugs in
chip designs. Science, 267:332–333, January 20, 1995.

[25] D. Gries. The Science of Programming. Texts and
Monographs in Computer Science. Springer-Verlag,
New York, 1981.

[26] D. Gries. A note on a standard strategy for developing
loop invariants and loops. Science of Computer Pro-
gramming, 2:207–214, 1984.

[27] A. N. Habermann and D. Notkin. Gandalf: Soft-
ware development environments. IEEE Transactions on
Software Engineering, SE-12(12):1117–1127, December
1986.

[28] R. Hoover. Alphonse: Incremental computation as a
programming abstraction. In Proceedings of the ACM
SIGPLAN ’92 Conference on PLDI, pages 261–272,
California, June 1992.

[29] S. Horwitz and T. Teitelbaum. Generating editing en-
vironments based on relations and attributes. ACM
Transactions on Programming Languages and Systems,
8(4):577–608, October 1986.

[30] F. Jalili and J. H. Gallier. Building friendly parsers. In
Conference Record of the 9th Annual ACM Symposium
on POPL, pages 196–206, Albuquerque, New Mexico,
January 1982.

[31] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation. Pren-
tice Hall, Englewood Cliffs, New Jersey, 1993.

[32] N. D. Jones, P. Sestoft, and H. Søndergaard. An exper-
iment in partial evaluation: The generation of a com-
piler generator. In J.-P. Jouannaud, editor, Rewrit-
ing Techniques and Applications, volume 202 of Lec-
ture Notes in Computer Science, pages 124–140, Dijon,
France, May 1985. Springer-Verlag, Berlin.

[33] G. E. Kaiser. Incremental dynamic semantics for
language-based programming environments. ACM
Transactions on Programming Languages and Systems,
11(2):168–193, April 1989.

[34] U. Kastens. Ordered attributed grammars. Acta Infor-
matica, 13(3):229–256, 1980.

[35] T. Katayama. Translation of attribute grammars into
procedures. ACM Transactions on Programming Lan-
guages and Systems, 6(3):345–369, July 1984.

[36] S. C. Kleene. Introduction to Metamathematics. Van
Nostrand, New York, 1952. Tenth reprint, Wolters-
Noordhoff Publishing, Groningen and North-Holland
Publishing Company, Amsterdam, 1991.

[37] J. Launchbury. Projections for specialisation. In Par-
tial Evaluation and Mixed Computation, pages 299–315.
North-Holland, 1988.

13

[38] Y. A. Liu. CACHET: An interactive, incremental-
attribution-based program transformation system for
deriving incremental programs. In Proceedings of the
10th Knowledge-Based Software Engineering Confer-
ence, Boston, Massachusetts, November 1995. IEEE
Computer Society Press.

[39] Y. A. Liu. Incremental Computation: A Semantics-
Based Systematic Transformational Approach. PhD
thesis, Department of Computer Science, Cornell Uni-
versity, Ithaca, New York, January 1996. To appear as
Cornell Technical Report, October, 1995.

[40] Y. A. Liu and T. Teitelbaum. Caching intermediate
results for program improvement. In Proceedings of the
ACM SIGPLAN Symposium on PEPM, pages 190–201,
La Jolla, California, June 1995.

[41] Y. A. Liu and T. Teitelbaum. Systematic derivation of
incremental programs. Science of Computer Program-
ming, 24(1):1–39, February 1995.

[42] Z. Manna and R. Waldinger. A deductive approach to
program synthesis. ACM Transactions on Programming
Languages and Systems, 2(1):90–121, January 1980.

[43] Z. Manna and R. Waldinger. Fundamentals of deduc-
tive program synthesis. IEEE Transactions on Software
Engineering, 18(8):674–704, August 1992.

[44] Z. Manna and R. Waldinger. The Deductive Foun-
dations of Computer Programming. Addison-Wesley,
Reading, Massachusetts, 1993.

[45] J. O’Leary, M. Leeser, J. Hickey, and M. Aagaard. Non-
restoring integer square root: A case study in design by
principled optimization. In R. Kumar and T. Kropf, ed-
itors, Proceedings of TPCD ’94: the 2nd International
Conference on Theorem Provers in Circuit Design—
Theory, Practice and Experience, volume 901 of Lec-
ture Notes in Computer Science, pages 52–71, Bad
Herrenalb (Black Forest), Germany, September 1994.
Springer-Verlag, Berlin, 1995.

[46] B. Paige and J. T. Schwartz. Expression continuity and
the formal differentiation of algorithms. In Conference
Record of the 4th Annual ACM Symposium on POPL,
pages 58–71, January 1977.

[47] R. Paige. Transformational programming—applica-
tions to algorithms and systems. In Conference Record
of the 10th Annual ACM Symposium on POPL, pages
73–87, January 1983.

[48] R. Paige and S. Koenig. Finite differencing of com-
putable expressions. ACM Transactions on Program-
ming Languages and Systems, 4(3):402–454, July 1982.

[49] H. A. Partsch. Specification and Transformation of
Programs—A Formal Approach to Software Develop-
ment. Texts and Monographs in Computer Science.
Springer-Verlag, Berlin, 1990.

[50] A. Pettorossi. A powerful strategy for deriving effi-
cient programs by transformation. In Proceedings of the
ACM ’84 Symposium on LFP, Austin, Texas, August
1984.

[51] L. L. Pollock and M. L. Soffa. Incremental global
reoptimization of programs. ACM Transactions on
Programming Languages and Systems, 14(2):173–200,
April 1992.

[52] W. Pugh and T. Teitelbaum. Incremental computa-
tion via function caching. In Conference Record of the
16th Annual ACM Symposium on POPL, pages 315–
328, January 1989.

[53] S. P. Reiss. An approach to incremental compilation.
In Proceedings of the ACM SIGPLAN ’84 Symposium
on Compiler Construction, pages 144–156, Montreal,
Canada, June 1984. Published as SIGPLAN Notices,
19(6).

[54] T. Reps and T. Teitelbaum. The Synthesizer Genera-
tor: A System for Constructing Language-Based Ed-
itors. Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1988.

[55] T. Reps, T. Teitelbaum, and A. Demers. Incremen-
tal context-dependent analysis for language-based ed-
itors. ACM Transactions on Programming Languages
and Systems, 5(3):449–477, July 1983.

[56] J. C. Reynolds. The Craft of Programming. Prentice-
Hall, 1981.

[57] M. Rosendahl. Automatic complexity analysis. In Pro-
ceedings of the 4th International Conference on FPCA,
pages 144–156, London, U.K., September 1989.

[58] B. G. Ryder and M. C. Paull. Incremental data
flow analysis algorithms. ACM Transactions on Pro-
gramming Languages and Systems, 10(1):1–50, January
1988.

[59] D. R. Smith. KIDS: A semiautomatic program devel-
opment system. IEEE Transactions on Software Engi-
neering, 16(9):1024–1043, September 1990.

[60] B. Steffen, J. Knoop, and O. Rüthing. Efficient code
motion and an adaption to strength reduction. In Pro-
ceedings of the 4th International Joint Conference on
TAPSOFT, volume 494 of Lecture Notes in Computer
Science, pages 394–415, Brighton, U.K., 1991. Springer-
Verlag, Berlin.

[61] R. S. Sundaresh and P. Hudak. Incremental computa-
tion via partial evaluation. In Conference Record of the
18th Annual ACM Symposium on POPL, pages 1–13,
January 1991.

[62] B. Wegbreit. Mechanical program analysis. Communi-
cations of the ACM, 18(9):528–538, September 1975.

[63] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, SE-10(4):352–357, July 1984.

[64] D. M. Yellin and R. E. Strom. INC: A language
for incremental computations. ACM Transactions on
Programming Languages and Systems, 13(2):211–236,
April 1991.

14

