
A Bound on Attacks on Payment Protocols

Scott D. Stoller∗

Computer Science Dept., SUNY at Stony Brook, Stony Brook, NY 11794-4400 USA

Abstract

Electronic payment protocols are designed to work cor-
rectly in the presence of an adversary that can prompt hon-
est principals to engage in an unbounded number of con-
current instances of the protocol. This paper establishes an
upper bound on the number of protocol instances needed to
attack a large class of protocols, which contains versions
of some well-known electronic payment protocols, includ-
ing SET and 1KP. Such bounds clarify the nature of attacks
on and provide a rigorous basis for automated verification
of payment protocols.

1. Introduction

Many protocols, including electronic payment protocols,
are designed to work correctly in the presence of an adver-
sary (also called a penetrator) that can prompt honest prin-
cipals to engage in an unbounded number of concurrent in-
stances of the protocol. Payment protocols should satisfy at
least two kinds of correctness requirements:secrecy, which
states that certain values are not obtained by the penetra-
tor, andagreement, which states that a principal executes
a certain action only if appropriate other principals previ-
ously executed corresponding other actions (e.g., a payment
gateway approves a charge to customerC ’s account only if
customerC previously authorized that charge).

Allowing an unbounded number of concurrent protocol
instances makes the number of reachable states unbounded.
The case studies in,e.g., [13, 6, 19, 10, 17] show that state-
space exploration of security protocols is feasible when
small upper bounds are imposed on the size of messages
and the number of protocol instances. In most of those case
studies, the bounds are not rigorously justified, so the results
do not prove correctness of the protocols. Rigorous auto-
mated verification of these protocols requires either sym-
bolic state-space exploration algorithms that directly ac-
commodate these infinite state spaces or theorems that re-
duce correctness of these protocols to finite-state problems.

This paper presents a reduction for a large class of pro-
tocols. It uses the strand space model [24]. A regular strand
∗The author gratefully acknowledges the support of NSF under Grant

CCR-9876058 and the support of ONR under Grants N00014-99-1-
0358 and N00014-01-1-0109. Email: stoller@cs.sunysb.edu Web:
http://www.cs.sunysb.edu/˜stoller/ Phone: 631-632-1627

can be regarded as a thread that runs the program corre-
sponding to one role of the protocol and then terminates. A
central hypothesis of our reduction is the bounded support
restriction (BSR), which states that in every history (i.e., ev-
ery possible behavior) of the protocol, each regular strand
depends on at most a given number of other regular strands.
Our notion of dependence, embodied in the definition of
support, is a variant of Lamport’s happened-before relation
[15], modified to handle freshness of nonces appropriately.
BSR is not easily checked by static analysis, so we propose
to check it by state-space exploration, while checking the
correctness requirements. With statically checkable restric-
tions alone, it seems difficult to find restrictions that are both
strong enough to justify a reduction and weak enough to be
satisfied by well-known protocols.

To check BSR by state-space exploration, we need a re-
duction for it. We prove: if a protocol satisfies its correct-
ness requirements and BSR when appropriate bounds are
imposed on the number of regular strands in a history, then
the protocol also satisfies its correctness requirements and
BSR without those bounds.

Most existing techniques for automated analysis of sys-
tems with unbounded numbers of concurrent processes,
such as [9, 11, 2, 3, 14], are not applicable to payment pro-
tocols, because they assume the set of values (equivalently,
the set of local states of each process) is independent of the
number of processes, whereas payment protocols generate
fresh values, so the set of values grows as the number of
processes (strands) increases.

Roscoe and Broadfoot use data-independence techniques
to bound the number of nonces needed for an attack [20].
Their result assumes that each trustworthy principal partic-
ipates in at most a given number of protocol instances at a
time. Our reduction does not require that assumption; in-
deed, our goal is to justify such assumptions. Lowe’s re-
duction [16] has similar goals as our reduction and provides
tighter bounds in its domain of applicability, but it does not
handle agreement requirements and does not apply to the
variants of SET and 1KP described in Section 2.1.

The reduction embodied in Theorems 2 and 3 handles se-
crecy and agreement requirements and applies to simplified
versions of SET [21] and 1KP [4]. It extends the reduc-
tion in [22] in several significant ways. The class of pre-
served properties is extended to allow protocol-specific se-
crecy properties (roughly, any non-cryptographic value can

1

be designated as a secret) and to allow use of more gen-
eral predicates to characterize the desired relationship be-
tween actions in agreement properties. The class of proto-
cols is extended by allowing hash functions, allowing ar-
bitrary nesting of hashing and encryption in protocol mes-
sages, and relaxing the restriction that the recipient of a
message be able to recognize the entire structure of the mes-
sage.1 These extensions necessitate substantial changes to
the statement and proof of Theorem 1. That theorem is the
crux of the proof of our reduction: it provides a statically-
calculated bound on a “dynamic” quantity (i.e., a quantity
defined by a maximum over all possible executions of the
protocol); that quantity is the dependence width, defined in
Section 4.

Our results implicitly describe a simulation relation be-
tween systems with bounded-size histories and systems
with unbounded-size histories. It would be interesting to
see whether similar results could be obtained more easily in
a process-algebraic framework, such as Spi calculus [1].

2. Model of Protocols

We use the strand space model [24], with minor modifi-
cations.

The set ofprimitive termsis Prim = Text∪Key , where
Text is a set of values other than cryptographic keys, and
Key = {key(x, y) | x, y ∈ Name∧x 6= y}∪{pub(x) | x ∈
Name}∪{pvt(x) | x ∈ Name}. Informally,key(x, y) is a
symmetric key intended for use byx andy, andpub(x) and
pvt(x) representx’s public and private keys, respectively,
in a public-key cryptosystem.Name is the subset ofText
containing names of principals.Nonce is the subset ofText
containing nonces.

The setTerm of terms is defined inductively as follows.
(1) All primitive terms are terms. (2) Ift andt′ are terms
andk ∈ Key , thenencr(t, k) (encryption oft with k, usu-
ally written {t}k), pair(t, t′) (pairing of t and t′, usually
written t·t′), andh(t) (hash oft, whereh represents a one-
way collision-resistant hash function [18]) are terms.

inv ∈ Key → Key maps each key to its inverse: de-
crypting{t}k with inv(k) yieldst. For a symmetric keyk,
inv(k) = k. We usually writeinv(k) ask−1.

[t]pvt(x) abbreviatest · {h(t)}pvt(x), i.e., t signed byx.
A ciphertextis a term whose outermost operator isencr .

A hashis a term whose outermost operator ish. A term t′

occurs in the clearin t if there is an occurrence oft′ in t
that is not in the scope ofencr or h.

Let dom(f) denote the domain of a functionf . A se-
quence is a function whose domain is a finite prefix of the
natural numbers. Letlen(σ) denote the length of a se-

1Session keys are not used in the examples in this paper, so we omitted
them from the framework. They can be handled roughly as in [22].

quenceσ. 〈〈a, b, . . .〉〉 denotes a sequenceσ with σ(0) = a,
σ(1) = b, and so on.

A directed termis +t or−t, wheret is a term. Positive
and negative terms represent sending and receiving mes-
sages, respectively. We sometimes refer to directed terms
as “terms” and treat them as terms, for instance as having
subterms.

A trace is a finite sequence of directed terms. LetTrace
denote the set of traces.

A trace mappingis a functiontr ∈ dom(tr) → Trace,
wheredom(tr) is an arbitrary set whose elements are called
strands.

A nodeof tr is a pair〈s, i〉 with s ∈ dom(tr) and0 ≤
i < len(tr(s)). LetNtr denote the set of nodes oftr . We
say that node〈s, i〉 is on strands. Let nodestr (s) denote
the set of nodes on strands in tr . Let strand(〈s, i〉) = s,
index(〈s, i〉) = i, andtermtr (〈s, i〉) = tr(s)(i).

The local dependence relation is:〈s1, i1〉
lcl→ 〈s2, i2〉 iff

s1 = s2 andi2 = i1 + 1.
A term t originatesfrom a node〈s, i〉 in tr iff 〈s, i〉 is

positive,t is a subterm oftermtr (〈s, i〉), andt is not a sub-
term oftermtr (〈s, j〉) for anyj < i.

A term t uniquely originatesfrom a noden in tr iff it
originates fromn in tr and not from any other node intr .
Typically, nonces are uniquely-originated. This is the strand
space way of expressing freshness.

For S ⊆ Ntr , let termtr (S) = {termtr (n) | n ∈ S}.
For symbols subscripted by the trace mapping, we elide the
subscript when the trace mapping is evident from context.

2.1. Roles, Protocols, and Penetrator

A role is a parameterized sequence of directed terms. As-
sociated with each parameter is a type,i.e., a set of allowed
terms. Some parameters with typeNonce may be desig-
nated as uniquely-originated; informally, this means that
the value of that parameter must be uniquely-originated.
Uniquely-originated parameters are designated by underlin-
ing in the parameter list. We require that for every roler,
for every parameterx of r with typeNonce, x is uniquely-
originated iff the first occurrence ofx in r is in a positive
term. Let r.x denote parameterx of role r. For exam-
ple,R(nc : Nonce) = 〈〈+nc〉〉 defines a roleR with one
uniquely-originated parameternc with typeNonce.

A trace for role r is a prefix of a trace obtained by
substituting for each parameterx of r a term in the type
of x. A role r and a traceσ for r uniquely determine
a mapping, denotedargs(r, σ), from the set of parame-
ters of r that appear inr(0), r(1), . . . , r(len(σ) − 1) to
Term. For example, for roleR(x1 : Name, x2 : Name) =
〈〈+x1,+x2〉〉 andσ = 〈〈+A〉〉, dom(args(R, σ)) = {x1}
andargs(R, σ)(x1) = A.

A protocol Π is a set of roles, together with a set
Π.Secret ⊆ (Text \ (Name ∪ Nonce)) of terms that are
“secrets” (i.e., terms that should not be revealed to the pen-
etrator). Excluding names here implies that the penetrator
knows all names. Specialized notions of secrecy are used
for keys and nonces, as described in Section 2.5.

The penetrator model is parameterized by a setKeyP ⊂
Key of keys initially known to the penetrator. The set
ΠP (KeyP) of penetrator rolescontains:

Pair:P (x : Term, y : Term) = 〈〈−x, −y, +x·y〉〉
Separation:S(x : Term, y : Term) = 〈〈−x·y, +x, +y〉〉
Encryption:E(k : Key , x : Term) = 〈〈−k, −x, +{x}k〉〉
Decryption:D(k :Key , x :Term)=〈〈−k−1, −{x}k, +x〉〉
Message:M(x : Text ∪Nonce) = 〈〈+x〉〉
Key: K(k : KeyP) = 〈〈+k〉〉
Hash:H(x : Term) = 〈〈−x, +h(x)〉〉

Typically, KeyP = {key(x, y) ∈ Key | x = P ∨ y = P}
∪ {pvtkey(P)} ∪ {pubkey(x) | x ∈ Name}.

2.2. History

A history of protocolΠ is a tupleh = 〈tr ,msg→ , role〉,
wheretr is a trace mapping,

msg→ is a binary relation onNtr ,
androle ∈ dom(tr)→ (Π ∪ΠP (KeyP)) such that

1. For all n1, n2 ∈ Ntr , if n1
msg→ n2, then there ex-

ists t ∈ Term such thattermtr (n1) = +t and
termtr (n2) = −t. This represents thatn1 sendst,
andn2 receivest.

2. For alln1 ∈ Ntr , if termtr (n1) is negative, then there
exists exactly onen2 ∈ Ntr such thatn2

msg→ n1.

3. �h is acyclic and well-founded (i.e., does not have infi-
nite descending chains), where�h is the reflexive and

transitive closure of(
msg→ ∪ lcl→). Note that�h is a

partial order, first defined by Lamport [15].

4. For all s ∈ dom(tr), tr(s) is a trace forrole(s). A
regular strandis a strands with role(s) ∈ Π. A pen-
etrator strandis a strands with role(s) ∈ ΠP (KeyP).
Nodes on regular and penetrator strands are calledreg-
ular nodesand penetrator nodes, respectively. (For
convenience, we assumeΠ ∩ΠP (KeyP) = ∅.)

5. For alls ∈ dom(tr), for all x ∈ dom(args(role(s),
tr(s))), if parameter x is uniquely-originated,
thenargs(role(s), tr(s))(x) uniquely originates from
〈s, i〉, wherei is the index of the first term inr that
containsx.

6. For all t ∈ Π.Secret , t originates only from regular
nodes.

Note that a history may contain multiple traces for the
same role with identical bindings for parameters that are
not uniquely originated.

To reduce clutter, we sometimes use a history instead of a
trace mapping as a subscript;e.g., for a historyh = 〈tr ,msg→
, role〉, we defineNh = Ntr .

The set ofpredecessorsof a noden in a historyh is
predsh(n) = {n′ ∈ Nh | n′ �h n ∧ n′ 6= n}.

Let Hist(Π) denote the set of histories of a protocolΠ.
A setS of nodes isbackwards-closedwith respect to a

binary relationR iff, for all nodesn1 andn2, if n2 ∈ S and
n1 R n2, thenn1 ∈ S.

Given a historyh of a protocolΠ, a setS of nodes ofh
that is backward-closed with respect to�h can be regarded
as a history, denotednodesToHistΠ

h (S), in a natural way.

2.3. Examples

Consider a payment protocolΠSET based closely on [5]
and reminiscent of SET [21], including the use of a dual-
signature technique, so that the customer produces only one
digital signature. LetOrder ⊂ Text andPayDesc ⊂ Text
denote sets of order and payment descriptions, respectively.
Let Price ⊂ Text andResult ⊂ Text denote sets of prices
and results (e.g., “approved”), respectively. LetNamec,
Namem, andNameg be disjoint subsets ofName not con-
tainingP . For a setS of terms, letHash(S) = {h(t) | t ∈
S}. The roles of protocolΠSET appear in Figure 1, and
ΠSET.Secret = ∅, for reasons given below. We uselet
expressions to avoid repetition of large subterms. We allow
Cust.m = P andGate.m = P to model malicious mer-
chants; similarly for malicious clients and gateways. There
is no reason to allow the “me” variable of each role (namely,
Cust.c, Mrch.m, andGate.g) to equalP , becauseP ’s ac-
tions are modeled by penetrator strands.

Use ofHash(PayDesc) instead of the set of all hashes
as the type forMrch.hpd requires some justification, be-
cause a merchant cannot determine whether the hash re-
ceived inhpd is the hash of a payment description or, say,
a ciphertext. Attacks involving terms that are not of the ex-
pected type are calledtype flaw attacks. Use of the types
Hash(PayDesc) andHash(Order) can be justified by re-
sults like those in [12], which show that type flaw attacks
can be prevented by using type tags in the protocol imple-
mentation. Extending their results to accommodate hashing
and to accommodate the slightly larger class of agreement
properties introduced below is fairly straightforward.

As another example, consider a version of the 1KP pro-
tocol [4] based closely on [8]. Following [8], we assume
the customer account number (CAN) is secret and hence
(for brevity) omit the PIN. We also omit the date field,
since it does not affect the secrecy or agreement proper-
ties of Π1KP given below, assuming nonces are uniquely-

Cust(c : Namec, m : Namem ∪ {P}, g : Nameg ∪ {P}, nc : Nonce, nm : Nonce,
price : Price, od : Order , pd : PayDesc, result : Result) =

let trans = c·m·g ·nc·nm·price·h(od)·h(pd) in
〈〈+c·m, (∗ 1. to merchant∗)
−nm, (∗ 2. from merchant∗)
+[trans]pvt(c) ·{od}pub(m) ·{pd}pub(g), (∗ 3. to merchant∗)
−[result ·h(trans)]pvt(g)〉〉 (∗ 4. from gateway∗)

Mrch(c : Namec ∪ {P}, m : Namem, g : Nameg ∪ {P}, nc : Nonce, nm : Nonce,
price : Price, od : Order , hpd : Hash(PayDesc), epd : Term, result : Result) =

let trans = c·m·g ·nc·nm·price·h(od)·hpd in
〈〈−c·m, (∗ 1. from customer∗)

+nm, (∗ 2. to customer∗)
−[trans]pvt(c) ·{od}pub(m) ·epd, (∗ 3. from customer∗)
+[trans]pvt(c) ·[trans]pvt(m) ·epd, (∗ 4. to gateway∗)
−[result ·h(trans)]pvt(g)〉〉 (∗ 5. from gateway∗)

Gate(c : Namec ∪ {P}, m : Namem ∪ {P}, g : Nameg, nc : Nonce, nm : Nonce,
price : Price, hod : Hash(Order), pd : PayDesc, result : Result) =

let trans = c·m·g ·nc·nm·price·hod·h(pd) in
〈〈−[trans]pvt(c) ·[trans]pvt(m) ·{pd}pub(g) (∗ 1. from merchant∗)

+[result ·h(trans)]pvt(g)〉〉 (∗ 2. to merchant∗)

Figure 1. Roles for ΠSET. Comments indicate step number and intended source or destination of
message.

originated. LetAcctNum ⊂ Text be a set of account
numbers. To model dishonest customers (i.e., customers
that collude with the penetrator), we partitionAcctNum
into two sets,AcctNum0 and AcctNum1, which contain
account numbers of honest and dishonest customers, re-
spectively. LetOrder , Result , Namem, andNameg be as
above. We assume these subsets ofText are disjoint. 1KP
is designed for settings where the gateway has a private key
with a well-known public key, but the customer and mer-
chant do not. Consequently, 1KP provides few guarantees
if the gateway is dishonest, so we do not includeP in the
types ofCust.g andMrch.g. The roles of protocolΠ1KP

appear in Figure 2, andΠ1KP.Secret = AcctNum0.

2.4. Derivability

Informally, a termt is derivable (by the pentrator) from a
setS of nodes if the penetrator can computet from term(S)
andKeyP . A formal definition follows.

For a nonceg that uniquely originates in a historyh, let
originh(g) denote the node from whichg originates inh.

For a setS of nodes in a historyh = 〈tr ,msg→ ,
role〉 of a protocolΠ, let uniqOrigReqrdΠ

h (S) denote the
set of noncesg such that there exists〈s, i〉 ∈ S and
x ∈ dom(args(role(s), tr(s))) such that parameterx is

uniquely originated andargs(role(s), tr(s))(x) = g and
originh(g) = 〈s, i〉.

For a directed termt, the absolute value oft, denoted
abs(t), is t without its sign. ForT ⊆ Term, abs(T) =
{abs(t) | t ∈ T}, and the roleSrcT is defined bySrcT (x :
T) = 〈〈+x〉〉.

A term t is derivable(by the penetrator) from a setS
of nodes of a historyh of a protocolΠ, denotedS `Π

h t,

if there exists a historyh′ = 〈tr ′,msg→
′
, role ′〉 of the proto-

col {Srcabs(termh(S))} such that: (1) arguments of strands
for Message inh′ are not inuniqOrigReqrdΠ

h (S); and (2)
there exists a noden ∈ Ntr ′ with termtr ′(n) = +t. This
relation is equivalent to the derivability relation in [7] and
can be computed using the approach in [7].

2.5. Correctness Requirements

We consider the following kinds of correctness require-
ments. For a correctness requirementφ, we say that a pro-
tocolΠ satisfiesφ iff every history ofΠ satisfiesφ.

Long-Term Secrecy. A history h of a protocolΠ satis-
fies long-term secrecy iff, for everyt ∈ Π.Secret ∪ (Key \
KeyP),Nh 6`Π

h t.

Cust(od : Order , price : Price, saltc : Nonce, Rc : Nonce, CAN : AcctNum0,
IDm : Namem ∪ {P}, TIDm : Nonce, noncem : Nonce, g : Nameg, YesNo : Result) =

let cid = h(Rc · CAN)
and common = price ·IDm ·TIDm ·noncem ·cid ·h(od·saltc)
and clear = IDm ·TIDm ·noncem ·h(common)
and slip = price ·h(common)·CAN ·RC in
〈〈+saltc ·cid , (∗ 1. to merchant∗)
−clear (∗ 2. from merchant∗)
+{slip}pub(g), (∗ 3. to merchant∗)
−YesNo ·[h(YesNo ·h(common))]pvt(g)〉〉 (∗ 4. from merchant∗)

Mrch(od : Order , price : Price, saltc : Nonce, cid : Hash(Nonce ×AcctNum), IDm : Namem,
TIDm : Nonce, noncem : Nonce, g : Nameg, YesNo : Result , eslip : Term) =

let common = price ·IDm ·TIDm ·noncem ·cid ·h(od·saltc)
and clear = IDm ·TIDm ·noncem ·h(common) in
〈〈−saltc ·cid , (∗ 1. from customer∗)

+clear , (∗ 2. to customer∗)
−eslip, (∗ 3. from customer∗)
+clear ·h(od·saltc)·eslip, (∗ 4. to gateway∗)
−YesNo ·[h(YesNo ·h(common))]pvt(g), (∗ 5. from gateway∗)
+YesNo ·[h(YesNo ·h(common))]pvt(g)〉〉 (∗ 6. to customer∗)

Gate(price : Price, Rc : Nonce, CAN : AcctNum, IDm : Namem ∪ {P},
TIDm : Nonce, noncem : Nonce, g : Nameg, hodsalt : Hash(Order ×Nonce), YesNo : Result) =

let cid = h(Rc · CAN)
and common = price ·IDm ·TIDm ·noncem ·cid ·hodsalt
and clear = IDm ·TIDm ·noncem ·h(common)
and slip = price ·h(common)·CAN ·RC in
〈〈−clear ·hodsalt ·{slip}pub(g), (∗ 1. from merchant∗)

+YesNo ·[h(YesNo ·h(common))]pvt(g)〉〉 (∗ 2. to merchant∗)

Figure 2. Roles for Π1KP.

Nonce Secrecy. Informally, nonce secrecy says: the val-
ues of specified nonce parameters are not revealed to
the penetrator. A nonce secrecy requirement has the
form “r.x is secret unlessr.y ∈ S”, where r ∈ Π,
x and y are parameters ofr, and S ⊆ Text (typi-
cally, S ⊆ Name). A history h = 〈tr ,msg→ , role〉
of a protocol Π satisfies that requirement iff, for ev-
ery strands ∈ dom(tr), if role(s) = r and y ∈
dom(args(role(s), tr(s))) and args(role(s), tr(s))(y) 6∈
S, thenNtr 6`Π

h args(role(s), tr(s))(x).

Agreement. Informally, agreement says: if some strand
executed a certain role to a certain point with certain argu-
ments, then some strand must have executed a correspond-
ing role to a corresponding point with corresponding argu-
ments. An agreement requirement has the form “〈r2, len2〉
satisfyingx2 6∈ S2 is preceded by〈r1, len1〉 satisfyingt1 =
t2”, wherex2 is a parameter ofr2, S2 is a subset ofText ,

andt1 andt2 are terms containing parameters ofr1 andr2,
respectively, as free variables. A historyh = 〈tr ,msg→ , role〉
of a protocolΠ satisfies that agreement requirement iff, ifh
contains a strands2 such thatrole(s2) = r2, len(tr(s2)) ≥
len2, and args(r2, tr(s2))(x2) 6∈ S2, then tr contains a
strands1 for role r1 such thatlen(tr(s1)) ≥ len1 and t1
instantiated with the arguments ofs1 equalst2 instantiated
with the arguments ofs2.

One of Bolignano’s requirements forΠSET is that the
gateway has proof of transaction authorization by the mer-
chant [5, p. 12]. This can be expressed as an agreement
requirement:〈Gate, 1〉 satisfyingGate.m 6∈ {P} is pre-
ceded by〈Mrch, 4〉 satisfying

let transm = Mrch.c·Mrch.m·Mrch.nc·Mrch.nm
·Mrch.price·h(Mrch.od)·Mrch.hpd

and transg = Gate.c·Gate.m·Gate.nc·Gate.nm
·Gate.price·Gate.hod·h(Gate.pd) in

transm = transg ∧Mrch.g = Gate.g

This requirement applies even ifGate.c = P , i.e., even
if the customer is dishonest.2 SET is designed to pro-
vide secrecy for order and payment descriptions.ΠSET

as defined above does not provide such secrecy, because,
e.g., a customer strand withCust.m = P can reveal an
order description to the penetrator. This is why we take
ΠSET.Secret = ∅. To express secrecy of order descrip-
tions from gateways, we use a variantΠo

SET in which mer-
chants are assumed to be honest; specifically,Πo

SET differs
from ΠSET as follows: the type forCust.m is Namem, and
Πo

SET.Secret = Order . Dishonest gateways are modeled
by penetrator strands (the types ofCust.g andMrch.g con-
tain P), so if order descriptions are not known to the pen-
etrator, then they are not known to dishonest gateways, so
they are not known to honest gateways. Secrecy of payment
descriptions from merchants can be expressed similarly.

Requirements for 1KP can be expressed similarly; for
details, see [23]. 1KP also has a nonce secrecy requirement:
Cust.Rc is secret unlessCust.g ∈ {P}.

3. Support

Informally, a setS′ of nodes of a historytr supports a
setS of nodes oftr if S′ ⊇ S andS′ contains all of the reg-
ular nodes on which regular nodes inS depend. A formal
definition follows.

For T ⊆ Term, the set of nonces that occur inT is
nonces(T) = {g ∈ Nonce | ∃t ∈ T : g occurs int}.

LetRNΠ
h denote the set of regular nodes in historyh of

protocolΠ.
A setS′ of nodes is asupportfor a setS of nodes in a

historyh of a protocolΠ if:

1. Nh ⊇ S′ ⊇ S.

2. S′ is backwards-closed with respect to
lcl→.

3. For all negative nodesn in S′, predsh(n) ∩ S′ ∩
RNΠ

h `Π
h termh(n).

4. For allg ∈ nonces(termh(S′)) ∩D, where

D = uniqOrigReqrdΠ
h (Nh) \ uniqOrigReqrdΠ

h (S′),

g occurs in the clear intermh(originh(g)). (This con-
dition ensures the compositionality property expressed
in Lemma 2.)

For a strands, if S′ supportsnodes(s), we say thatS′ sup-
portss.

2Bolignano’s version of the protocol omitsg from trans and conse-
quently violates the conjunctMrch.g = Gate.g (in his presentation,
this conjunct corresponds tost′.mcht.gateway = G in the second filter
function on p. 12).

For example, consider the following history of a generic
payment protocol. Supposesc,1, sm,1, andsg,1 are cus-
tomer, merchant, and gateway strands, respectively, that in-
teract without interference from the penetrator. Letg be a
nonce that uniquely originates onsm,1 and is revealed to
the penetrator (e.g., the value ofMrch.nm in ΠSET). The
penetrator then behaves as a merchant, interacting with a
customer strandsc,2 and a gateway strandsg,2, except that
the penetrator usesg instead of a fresh nonce. A support for
sc,2 or sg,2 need not contain nodes onsm,1 or sc,1. In that
sense,sc,2 andsg,2 do not depend onsm,1, even though the
chain of messages that conveysg means that there is causal
dependence between those nodes in the classical sense of
Lamport [15]. Informally, that classical dependence can be
ignored here because the penetrator could generate a nonce
g′ and replaceg with g′ in the terms of nodes onsc,2 and
sg,2. The careful treatment of unique origination in the def-
inition of derivability allows such inessential classical de-
pendencies to be ignored. The following lemma says that a
support can be transformed into a history by adding pene-
trator nodes, without adding or changing regular nodes.

For a setS of nodes, letstrand(S) = {strand(n) | n ∈
S}. For a trace mappingtr , a strands ∈ dom(tr), and a
setS of nodes oftr that is backwards-closed with respect to
lcl→, S contains nodes on a prefix oftr(s); let prefixtr (s, S)
denote that prefix.

Lemma 1. Let Π be a protocol. IfS′ is a support forS in a
historyh = 〈tr ,msg→ , role〉 of Π, then there exists a history

h′ = 〈tr ′,msg→
′
, role ′〉 of Π such that

(∀s∈strand(S′) : s∈dom(tr ′) ∧ tr ′(s)=prefixtr (s, S′)
∧ role ′(s) = role(s))

∧ (∀s ∈ dom(tr ′) \ strand(S′) : role ′(s) ∈ ΠP (KeyP))
∧ (∀n1, n2 ∈ S′ : n1

msg→
′
n2 ⇒ n1

msg→ n2)
(1)

Proof: h′ is constructed by combining nodes inS with his-
tories that witness the derivability of terms (as required by
item 3 in the definition of support). For details, see [23].

Lemma 2. If S′0 andS′1 supportS0 andS1, respectively, in
a historyh = 〈tr ,msg→ , role〉 of a protocolΠ, thenS′0 ∪ S′1
supportsS0 ∪ S1 in historyh of Π.

Proof: The only complication is dealing with nonces
in uniqOrigReqrdΠ

h (S′0) \ uniqOrigReqrdΠ
h (S′1) or

uniqOrigReqrdΠ
h (S′1) \ uniqOrigReqrdΠ

h (S′0). The fourth
condition in the definition of support ensures that such
nonces are available to the penetrator even if they are
uniquely-originated. For details, see [23].

3.1. Bounded Support Restriction

A strand countfor a protocolΠ is a function from the
roles of Π to the natural numbers. A setS of nodeshas
strand countf iff, for each roler, S contains nodes from
exactlyf(r) strands forr. If Nh has strand countf , then
we say that historyh has strand countf . Let f1(r) = 1 for
every roler. We define a partial ordering�SC on strand
counts for a protocol;�SC is simply the pointwise exten-
sion of the standard ordering on natural numbers.

A historyh satisfies thebounded support restriction, ab-
breviated BSR, iff for each regular strands in h, there exists
a support fors in h with strand count at mostf1. A protocol
satisfies BSR iff all of its histories do.

ΠSET and Π1KP satisfy BSR. We proved these re-
sults manually; the proofs are similar to the proof in [22]
for Lowe’s corrected version of the Needham-Schroeder
public-key authentication protocol. Theorem 2 in Section
5 shows that in principle, these results can be obtained
automatically by state-space exploration of histories with
bounded strand counts; an algorithm like the one in [22]
can be used to compute a (small) support for a given set of
nodes. The current bounds probably need to be decreased
somewhat before this is feasible,e.g., by finding a tighter
bound on the dependence width (see Section 4).

4. Dependence Width

Informally, the dependence width of a negative termr(i)
in a roler of a protocolΠ, denotedDW(〈r, i〉,Π), is the
maximum number of “additional” positive regular nodes
needed in any historyh of Π to provide the penetrator with
enough knowledge to produce the term received by any
node〈s, i〉 of h such thatrole(s) = r. “Additional” here
means “beyond those needed for the penetrator to produce
negative terms that occur earlier in the same strand”. The
dependence width of a protocolΠ, denotedDW(Π), is the
maximum over all negative termsr(i) in roles r in Π of
DW(〈r, i〉,Π). The concept of dependence width is used in
the proof of Theorem 2 in Section 5 to bound the number of
strands involved in a violation of BSR.

Let n be a negative node of a historyh of a protocolΠ,
and lett be a subterm oftermh(n). A revealing setfor t
atn in h is a setS of positive regular nodes oftr such that
S ⊆ predsh(n) andS `Π

h t.
For a setS of numbers, letmin(S) andmax(S) denote

the minimum and maximum element ofS, respectively. We
definemin(∅) = 0 andmax(∅) = 0.

Therevealing set min-sizeof t at 〈s, i〉 in h is

rvlSetMinSz(t, 〈s, i〉, h) =
min({size(R \ nodesh(s)) |

R is a revealing set fort at 〈s, i〉 in h})
(2)

Nodes inR that are on the same strand asn are not
counted in the revealing set min-size (and hence not in
the dependence width), because in the proof of Theorem
2—specifically, in equation (5)—those nodes appear in
supportΠ

h0
(s0) and hence are excluded from the index set of

the rightmost union, and the dependence width is designed
to bound the size of that index set.

Note that, if there are no revealing sets fort at n in h
(i.e., t is not known to the penetrator at that point), then
rvlSetMinSz(t, n, h) = 0.

Let r be a role in a protocolΠ, and leti be the index of a
negative term inr. Thedependence widthof 〈r, i〉 in Π is

DW(〈r, i〉,Π) =
max({rvlSetMinSz(termtr (〈s, i〉), 〈s, i〉, 〈tr ,msg→, role〉) |

〈tr ,msg→ , role〉 ∈ Hist(Π) ∧ 〈s, i〉 ∈ Ntr

∧ role(s) = r})
(3)

Thedependence widthof a protocolΠ is

DW(Π) = max({DW(〈r, i〉,Π) |
r ∈ Π ∧ r(i) is a negative term})

(4)

The proof of Theorem 2, and therefore also the proof
of Theorem 3, rely on an upper bound on the dependence
width of the protocol. If the protocol might send terms
of the forms{g}k1 , {k1}k2 , {k2}k3 , . . ., {ki−1}ki , ki,
then i + 1 terms are needed to revealg to the penetrator.
Our long-term secrecy requirement prohibits such behavior.
Secrecy-limited dependence width, abbreviated SL depen-
dence width and denotedDWSL, is defined in the same way
as dependence width, except that the maximum over histo-
ries is restricted to histories satisfying long-term secrecy.

Let Π be a protocol, and lett be a term, possibly
containing parameters.nSecret0(t,Π) is a bound on the
number of subterms oft that are not known to the pene-
trator, ignoring keys and values of parameters; formally,
nSecret0(t,Π) = Nc + Nh + Nprim , whereNc is the
number of subterms oft whose outermost operator isencr ,
ignoring those whose second argument is always inKeyP
(based on parameter types),Nh is the number of subterms
of t with outermost operatorh, andNprim is the number of
elements ofNonce∪Π.Secret that occur int. In computing
Nc andNh, identical subterms are counted only once. For
a parameterr.x of a role r of Π, nSecret(r.x,Π) =
max({nSecret0(t,Π) | t is in the type ofr.x}).
Let nSecret(〈r, i〉,Π) = nSecret0(r(i),Π) +∑
x∈params(r(i)) nSecret(r.x,Π), where params(t) is

the set of parameters that occur int.

Theorem 1. Let r(i) be a negative term in a roler of a
protocolΠ. DWSL(〈r, i〉,Π) ≤ nSecret(〈r, i〉,Π).

Proof: Consider a strands for r in a history h for
Π. We consider each subtermt1 of termh(〈s, i〉)

and show that each hash, ciphertext, and element
of uniqOrigReqrdΠ

h (Nh) ∪ Π.Secret that occurs in
termh(〈s, i〉) contributes at most 1 toDWSL(〈r, i〉,Π).
The number of such subterms is bounded by
nSecret(〈r, i〉,Π). Other subterms contribute nothing.
The definition of dependence width implies that terms
not derivable by the penetrator contribute nothing to the
dependence width (because such terms have no revealing
sets), so in computing the bound, we conservatively assume
all subterms are derivable by the penetrator. Consider cases
based on the type oft1.

case1: t1 ∈ Key . Long-term secrecy implies that no keys
are revealed, so keys contribute nothing toDWSL(〈r, i〉,Π).

case2: t1 ∈ uniqOrigReqrdΠ
h (Nh) ∪ Π.Secret . The def-

inition of history implies thatt1 originates from a regu-
lar node inh and (according to the conservative assump-
tion discussed above) is derivable by the penetrator (using
strands for Separation and Decryption), so there is a posi-
tive regular noden such thatt1 occurs intermh(n) either in
the clear or encrypted only with keys known to the penetra-
tor. Long-term secrecy implies that those keys (if any) are
in KeyP . Thus,t1 is derivable from{n}, sot1 contributes
at most 1 toDWSL(〈r, i〉,Π).

case3: t1 ∈ Text \(uniqOrigReqrdΠ
h (Nh)∪Π.Secret). t1

is directly available to the penetrator through the Message
role, sot1 contributes nothing toDWSL(〈r, i〉,Π).

case4: t1 is a pair. Revealing a pair is equivalent to reveal-
ing its two components, so proper subterms oft1 contribute
to DWSL(〈r, i〉,Π), but t1 itself does not.

case5: t1 is a ciphertext or hash, andt1 originates from a
penetrator node inpredsh(〈s, i〉). The penetrator performs
the encryption or hashing to construct its copy oft1, so
proper subterms oft1 contribute toDWSL(〈r, i〉,Π), but
t1 itself does not.

case6: t1 is a ciphertext or hash, andt1 does not originate
from a penetrator node inpredsh(〈s, i〉). Then t1 origi-
nates from a regular node, and the argument is the same
as in case 2. Note that it is not necessary for proper sub-
terms oft1 to contribute toDWSL(〈r, i〉,Π). Our bound on
DWSL(〈r, i〉,Π) might be loose because it does not attempt
to exploit this observation; exploiting it is left for future
work.

Now we justify ignoring, in the definition ofNc in
nSecret0, occurrences ofencr whose second argument is
always inKeyP . Let {t′}k be such a ciphertext.

case 1: ∅ `Π
h t′; in other words, t′ contains no se-

crets. Then∅ `Π
h {t′}k, so {t′}k contributes nothing to

DWSL(〈r, i〉,Π).

case2: ∅ 6`Π
h t′; in other words,t′ contains one or more

secrets. Thus, subterms oft′ contribute at least 1 to our
bound onDWSL(〈r, i〉,Π).

case 2.1: predsh(〈s, i〉) `Π
h t′. The penetrator

can perform the encryption to construct its copy
of {t′}k, so proper subterms of{t′}k contribute to
DWSL(〈r, i〉,Π), but {t′}k itself does not, so ignor-
ing {t′}k in Nc is safe.

case2.2: predsh(〈s, i〉) 6`Π
h t′. The ciphertext{t′}k

must originate from a regular node and be revealed to
the penetrator. The ciphertext actually contributes 1 to
DWSL(〈r, i〉,Π) (cf. case 6 above), and its subterms
actually contribute nothing. Our bound counts 0 from
the ciphertext but counts at least 1 from subterms oft′.
Thus, although the bookkeeping might seem skewed,
the sum of the contributions is sufficient.

We simplify ΠSET and Π1KP as follows. Parameters
epd andeslip are used to forward messages in a trivial way
(specifically, all occurrences of these parameters are unen-
crypted), andTIDm is redundant because it always appears
together withnoncem. Thus, eliminating these parameters
has no impact on correctness. LetΠ′SET andΠ′1KP refer
to versions of the protocols in which these parameters have
been eliminated. Theorem 1 impliesDWSL(Π′SET) ≤ 6
andDWSL(Π′1KP) ≤ 7. In both protocols, the first term of
Gate has the largest dependence width.

The bound onDWSL provided by Theorem 1 can some-
times be decreased by replacing a negative term of the form
−t1 ·t2 in a role with the sequence of terms−t1,−t2. For
example, letΠ′′SET denote the protocol obtained fromΠ′SET

by splitting the first term ofGate into a sequence of three
terms. Theorem 1 impliesDWSL(Π′′SET) ≤ 5. This trans-
formation preserves all correctness requirements, provided
the lengths in agreement requirements are adjusted appro-
priately.

5. Reduction for BSR and Long-Term Secrecy

The following lemma says, roughly, that constructing a
historyh′ from a supportS′ of a setS of nodes of a history
h does not create new supports forS.

Lemma 3. SupposeS0 supportsS in a historyh of a pro-
tocolΠ. Leth′ be a history ofΠ whose existence is implied
by Lemma 1 applied toS0. SupposeS1 supportsS in his-
tory h′ of Π. ThenS1 ∩ RNΠ

h supportsS in historyh of
Π.

Proof: The proof is similar to that of Lemma 3 in [22].
For a protocol Π, define a strand countβ(Π) by

β(Π)(r) = DWSL(Π) + 1.

Theorem 2. A protocolΠ satisfies BSR and long-term se-
crecy iff all histories ofΠ with strand countβ(Π) do.

Proof: The forward direction (⇒) of the “iff” is easy. For
the reverse direction (⇐), we prove the contrapositive,i.e.,
we suppose there exists a historyh of Π that violates BSR
or long-term secrecy, and we construct a history ofΠ with
strand count at mostβ(Π) that violates the same property.

BSR and long-term secrecy are safety properties satisfied
by histories with zero nodes, and�h is well-founded, so
there exists a�h-minimal noden0 such that

1. nodesToHistΠ
h (predsh(n0)) satisfies BSR and long-

term secrecy.

2. nodesToHistΠ
h (predsh(n0)) ∪ {n0} violates BSR or

long-term secrecy.

Let h0 = nodesToHistΠ
h (predsh(n0)). Let s0 =

strand(n0) andi0 = index(n0). Note that inh0, s0 does
not includen0. For a strands in a historyh′ that satis-
fies BSR, letsupporth′(s) denote a support fors in h′ with
strand count at mostf1. The definitions of BSR and long-
term secrecy implyn0 is a regular node. Consider cases
based on the sign ofn0.

case: n0 is a negative node.n0 cannot cause a violation
of secrecy, so it causes a violation of BSR. Supposei0 > 0.
n0 directly depends on〈s0, i0 − 1〉 and on a revealing set
R for term(n0) atn0 in h; more precisely, for allS′, if S′

supports{〈s0, i0 − 1〉} ∪ R in h, thenS′ ∪ {n0} supports
{n0} in h. h0 satisfies long-term secrecy, so Theorem 1
impliessize(R \ nodesh0(s0)) ≤ DWSL(Π). Let

S1 = {n0} ∪ supporth0
(s0)

∪
⋃
n∈R\nodestr0 (s0) supporth0

(strand(n)).
(5)

h0 satisfies BSR, so each of the supports in (5) has strand
count at mostf1, soS1 has strand count at mostβ(Π) (note
thatn0 is ons0, so{n0} ∪ supporth0

(s0) contributes at
mostf1 to the strand count ofS1).

Lemma 2 implies thatS1\{n0} supports{〈s0, i0−1〉}∪
R in h; thus,S1 supports{n0} in h. Lemma 1 implies that
S1 can be transformed into a historyh1 of Π by adding pen-
etrator nodes. Adding penetrator nodes does not affect the
strand count, soh1 has strand count at mostβ(Π). We show
by contradiction thatn0 also causes a violation of BSR in
h1. Supposen0 does not cause such a violation. Then there
exists a supportS′ for {n0} in h1 with strand count at most
f1. Lemma 3 implies thatS′ ∩RNΠ

h1
is a support for{n0}

in h with strand count at mostf1, a contradiction.
Supposei0 = 0. The proof is similar to the case

i0 > 0, exceptn0 does not depend on the non-existent node
〈s0, i0 − 1〉, so we omitsupporth0

(s0) from the definition
of S1, and Lemma 2 implies thatS1 \{n0} supportsR in h.

case: n0 is a positive node.n0 cannot cause a vio-
lation of BSR, so it causes a violation of long-term se-
crecy. predsh(n0) satisfies long-term secrecy, so there is
somet ∈ Π.Secret ∪ (Key \ KeyP) such thatt appears in
termh(n0) either in the clear or encrypted only with keys
in KeyP . Supposei0 > 0. Let S0 = supporth0

(s0)
and S1 = {n0} ∪ S0. h0 satisfies BSR, soS0 and S1

have strand count at mostf1 (note thatn0 is on s0, and
s0 ∈ strand(S0), son0 does not increase the strand count
of S1). S1 can be transformed into a historyh1 by adding
penetrator nodes; this follows from Lemma 1 and the obser-
vation thatn0 is positive and is an immediate successor of
the last node ons0 in h0. It is easy to show that adding pen-
etrator nodes does not change the strand count or destroy
the violation of long-term secrecy. Thus,h1 is a history of
Π with strand count at mostβ(Π) that violates long-term
secrecy. Supposei0 = 0. Thenpredsh(n0) = ∅, and the
history containing only noden0 has strand count at mostf1

and violates long-term secrecy.

6. Reduction for Nonce Secrecy and Agree-
ment

Define a strand countf2 by: f2(r) = 2 for every roler.

Theorem 3. Let φ be a nonce secrecy or agreement re-
quirement. Suppose all histories of a protocolΠ with strand
countβ(Π) satisfy BSR and long-term secrecy.Π satisfies
φ iff all histories ofΠ with strand countf2 do.

Proof: The forward direction (⇒) of the “iff” is easy. For
the reverse direction (⇐), we prove the contrapositive,i.e.,
we suppose there exists a historyh = 〈tr ,msg→ , role〉 of Π
that violatesφ, and we construct a history ofΠ with strand
count at mostf2 that violatesφ. Nonce secrecy and agree-
ment requirements are safety properties satisfied by histo-
ries with zero nodes, and�h is well-founded, so there exists
a�h-minimal noden0 such that

1. nodesToHistΠ
h (predsh(n0)) satisfiesφ.

2. nodesToHistΠ
h (predsh(n0)) ∪ {n0} violatesφ.

Let s0 = strand(n0).
By hypothesis, all histories ofΠ with strand countβ(Π)

satisfy BSR and long-term secrecy, so Theorem 2 implies
thatΠ satisfies BSR. Fors ∈ dom(h), let supporth(s) de-
note a support fors with strand count at mostf1.

Supposeφ is a nonce secrecy requirement.φ has the
form “r.x is secret unlessr.y ∈ S”. n0 is a posi-
tive regular node, and there is a regular strandsg such
that args(role(sg), tr(sg))(y) 6∈ S and predsh(n0) 6`Π

h

g and predsh(n0) ∪ {n0} `Π
h g, where g =

args(role(s), tr(s))(x). By the same reasoning as in case

2 of the proof of Theorem 1, this implies that{n0} `Π
h g.

LetS1 = supporth(s0)∪ supporth(sg). Lemma 2 implies
thatS1 is a support fornodesh(s0) ∪ nodesh(sg). Lemma
1 implies thatS1 can be transformed into a historyh1 by
adding penetrator nodes. Note thatS1 andh1 have strand
count at mostf2. It is easy to see thatn0 causes a violation
of nonce secrecy inh1.

Supposeφ is an agreement requirement.φ has the form:
“〈r2, len2〉 satisfyingx2 6∈ S2 is preceded by〈r1, len1〉 sat-
isfying t1 = t2”. n0 causes a violation ofφ, sos0 is a strand
for r2 and args(r2, tr(s2))(x2) 6∈ S2 and index(n0) =
len2. Lemma 1 implies thatsupporth(s0) can be trans-
formed into a historyh0 of Π with strand count at most
f1. Note thatn0 ∈ Nh0 . Removing nodes inNh \ Nh0

and adding penetrator nodes preserve the lack of a node
〈s1, len1〉 such thatrole(s1) = r1 and such thatt1 instan-
tiated with the arguments ofs1 equalst2 instantiated with
the arguments ofs0. Thus,h0 violatesφ.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus.Information and Computation,
143:1–70, 1999.

[2] P. A. Abdulla and B. Jonsson. Verifying networks of timed
processes. InProc. 4th Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS).
Springer-Verlag, 1998.

[3] K. Baukus, K. Stahl, S. Bensalem, and Y. Lakhnech. Ab-
stracting ws1s systems to verify parameterized networks. In
Proc. 6th Intl. Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 188–203.
Springer-Verlag, 2000.

[4] M. Bellare, J. A. Garay, R. Hauser, A. Herzberg,
H. Krawczyk, M. Steiner, G. Tsudik, E. V. Herreweghen,
and M. Waidner. Design, implementation and deployment
of a secure account-based electronic payment system.IEEE
Journal on Selected Areas in Communications, 18(4):611–
627, 2000.

[5] D. Bolignano. Towards the formal verification of electronic
commerce protocols. InProc. 10th IEEE Computer Secu-
rity Foundations Workshop (CSFW). IEEE Computer Soci-
ety Press, 1997.

[6] D. Bolignano. Integrating proof-based and model-checking
techniques for the formal verification of cryptographic pro-
tocols. In A. J. Hu and M. Y. Vardi, editors,Proc. Tenth Int’l.
Conference on Computer-Aided Verification (CAV), vol-
ume 1427 ofLecture Notes in Computer Science. Springer-
Verlag, 1998.

[7] E. Clarke, S. Jha, and W. Marrero. Using state space ex-
ploration and a natural deduction style message derivation
engine to verify security protocols. InProc. IFIP Working
Conference on Programming Concepts and Methods (PRO-
COMET), June 1998.

[8] E. Clarke, W. Marrero, and S. Jha. A machine check-
able logic of knowledge for specifying security properties

of electronic commerce protocols. InProc. IFIP Working
Conference on Programming Concepts and Methods (PRO-
COMET), June 1998.

[9] E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameter-
ized networks using abstractions and regular languages. In
Proc. Sixth Int’l. Conference on Concurrency Theory (CON-
CUR), 1995.

[10] B. Donovan, P. Norris, and G. Lowe. Analyzing a li-
brary of security protocols using Casper and FDR. In
Proc. 1999 Workshop on Formal Methods and Secu-
rity Protocols, July 1999. Available via http://cm.bell-
labs.com/cm/cs/who/nch/fmsp99/.

[11] E. A. Emerson and K. S. Namjoshi. Automated verification
of parameterized synchronous systems. InProc. 8th Int’l.
Conference on Computer-Aided Verification (CAV), 1996.

[12] J. Heather, G. Lowe, and S. Schneider. How to prevent type
flaw attacks on security protocols. InProc. 13th IEEE Com-
puter Security Foundations Workshop (CSFW). IEEE Com-
puter Society Press, 2000.

[13] N. Heintze, J. D. Tygar, J. Wing, and H.-C. Wong. Model
checking electronic commerce protocols. InProc. USENIX
1996 Workshop on Electronic Commerce, 1996.

[14] B. Jonsson and M. Nilsson. Transitive closures of regu-
lar relations for verifying infinite state systems. InProc.
6th Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 220–234. Springer-
Verlag, 2000.

[15] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–564, 1978.

[16] G. Lowe. Towards a completeness result for model checking
of security protocols. The Journal of Computer Security,
7(2/3):89–146, 1999.

[17] D. Marchignoli and F. Martinelli. Automatic verification
of cryptographic protocols through compositional analy-
sis techniques. InProc. 5th Intl. Workshop on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), pages 148–162. Springer-Verlag, 1999.

[18] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[19] J. C. Mitchell, V. Shmatikov, and U. Stern. Finite-state anal-
ysis of SSL 3.0. InSeventh USENIX Security Symposium,
pages 201–216, 1998.

[20] A. W. Roscoe and P. J. Broadfoot. Proving security protocols
with model checkers by data independence techniques.The
Journal of Computer Security, 7(2/3), 1999.

[21] SET: Secure Electronic Transaction Specification, version
1.0, May 1997. Available from www.setco.org.

[22] S. D. Stoller. A bound on attacks on authentication proto-
cols. Technical Report 526, Computer Science Dept., Indi-
ana University, July 1999. Revised April 2001.

[23] S. D. Stoller. A bound on attacks on payment protocols.
Technical Report 537, Computer Science Dept., Indiana
University, February 2000. Revised April 2001. Available
via http://www.cs.sunysb.edu/˜stoller/ .

[24] F. J. Thayer F́abrega, J. C. Herzog, and J. D. Guttman.
Strand spaces: Why is a security protocol correct? InProc.
18th IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society Press, 1998.

