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Abstract can be regarded as a thread that runs the program corre-
sponding to one role of the protocol and then terminates. A
Electronic payment protocols are designed to work cor- central hypothesis of our reduction is the bounded support
rectly in the presence of an adversary that can prompt hon- restriction (BSR), which states that in every histdrg.( ev-
est principals to engage in an unbounded number of con-ery possible behavior) of the protocol, each regular strand
current instances of the protocol. This paper establishes andepends on at most a given number of other regular strands.
upper bound on the number of protocol instances needed toOur notion of dependence, embodied in the definition of
attack a large class of protocols, which contains versions support is a variant of Lamport’s happened-before relation
of some well-known electronic payment protocols, includ- [15], modified to handle freshness of nonces appropriately.
ing SET and 1KP. Such bounds clarify the nature of attacks BSR is not easily checked by static analysis, so we propose
on and provide a rigorous basis for automated verification to check it by state-space exploration, while checking the
of payment protocols. correctness requirements. With statically checkable restric-
tions alone, it seems difficult to find restrictions that are both
. strong enough to justify a reduction and weak enough to be
1. Introduction satisfied by well-known protocols.

To check BSR by state-space exploration, we need a re-
Many protocols, including electronic payment protocols, duction for it. We prove: if a protocol satisfies its correct-
are designed to work correctly in the presence of an adver-pess requirements and BSR when appropriate bounds are
sary (also called a penetrator) that can prompt honest prinqmposed on the number of regular strands in a history, then
cipals to engage in an unbounded number of concurrent in-the protocol also satisfies its correctness requirements and
stances of the protocol. Payment protocols should satisfy atgsr without those bounds.
least two kinds of correctness requiremestcrecywhich Most existing techniques for automated analysis of sys-

states that certain values are not obtained by the penetrag, < with unbounded numbers of concurrent processes,
tor, andagreementwhich states that a principal executes such as [9, 11, 2, 3, 14], are not applicable to payment pro-
a certain action only if appropriate oth(_er principals previ- tocols, because they assume the set of values (equivalently,
ously executed corresponding other actiang(a paymeljt the set of local states of each process) is independent of the
gateway approves a charge to custoieraccount only it aher of processes, whereas payment protocols generate
customerC' previously authorized that charge). fresh values, so the set of values grows as the number of
Allowing an unbounded number of concurrent protocol processes (strands) increases.
instances makes the number of reachable states unbounded. Roscoe and Broadfoot use data-independence techniques

The case studies ie,g, [13, 6, 19, 10, 17] show that state- to bound the number of nonces needed for an attack [20].

space exploration of security protocols is feasible when ) o :
: . Their result assumes that each trustworthy principal partic-
small upper bounds are imposed on the size of messages

and the number of protocol instances. In most of those cas [pates in at most a given number of protocol instances at a

studies, the bounds are not rigorously justified, so the resultjlme‘ Our reduction does not require that assumption; in-

i deed, our goal is to justify such assumptions. Lowe’s re-
do not prove correctness of the protocols. Rigorous auto- . L : )
e . . duction [16] has similar goals as our reduction and provides
mated verification of these protocols requires either sym- . T ) L .
. i . . tighter bounds in its domain of applicability, but it does not
bolic state-space exploration algorithms that directly ac-

o handle agreement requirements and does not apply to the
commodate these infinite state spaces or theorems that re o riants of SET and 1KP described in Section 2.1.

duce correctness of these protocols to finite-state problems. ] T
This paper presents a reduction for a large class of pro- The reduction embodied in Theorems 2 and 3 handles se-

tocols. It uses the strand space model [24]. A regular strandC€CcY and agreement requirements and applies to simplified
versions of SET [21] and 1KP [4]. It extends the reduc-
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be designated as a secret) and to allow use of more genquences. ((a,b,...)) denotes a sequeneewith o(0) = a,

eral predicates to characterize the desired relationship beo (1) = b, and so on.

tween actions in agreement properties. The class of proto- A directed termis +t or —t, wheret is a term. Positive
cols is extended by allowing hash functions, allowing ar- and negative terms represent sending and receiving mes-
bitrary nesting of hashing and encryption in protocol mes- sages, respectively. We sometimes refer to directed terms
sages, and relaxing the restriction that the recipient of aas “terms” and treat them as terms, for instance as having

message be able to recognize the entire structure of the messubterms.
sage! These extensions necessitate substantial changes to A traceis a finite sequence of directed terms. [tice
the statement and proof of Theorem 1. That theorem is thedenote the set of traces.

crux of the proof of our reduction: it provides a statically-

calculated bound on a “dynamic” quantitiye(, a quantity

A trace mappings a functiontr € dom(tr) — Trace,
wheredom(¢r) is an arbitrary set whose elements are called

defined by a maximum over all possible executions of the gtrands

protocol); that quantity is the dependence width, defined in

Section 4.

A nodeof tr is a pair(s, i) with s € dom(¢r) and0 <
i < len(ir(s)). Let Ny, denote the set of nodes of. We

Our results implicitly describe a simulation relation be- say that nodds, i) is on strands. Let nodes,, (s) denote

tween systems with bounded-size histories and systemsne set of nodes on strandn . Let strand((s, 7))
with unbounded-size histories. It would be interesting 10 j;dex((s, i)) = 4, andtermy, ((s, 1)) = tr(s)(i)
see whether similar results could be obtained more easily in

a process-algebraic framework, such as Spi calculus [1].

2. Model of Protocols

We use the strand space model [24], with minor modifi-

cations.
The set oprimitive termds Prim = TextU Key, where

:8,

The local dependence relation i, i1) L (82, 19) iff
S1 = 82 andig =141+ 1.

A term t originatesfrom a node(s, ) in ¢r iff (s, i) is
positive,t is a subterm oferm;,((s, ¢)), andt is not a sub-
term oftermy,((s, j)) foranyj < i.

A term t uniquely originatefrom a noden in tr iff it
originates fromn in ¢r and not from any other node in.
Typically, nonces are uniquely-originated. This is the strand

Teaxt is a set of values other than cryptographic keys, and space way of expressing freshness.

Key = {key(z,y) | z,y € NameAzx # y}U{pub(x) | x €
Name} U{pvt(x) | € Name}. Informally, key(z,y) is a
symmetric key intended for use hyandy, andpub(z) and
put(x) representr’s public and private keys, respectively,
in a public-key cryptosystemName is the subset oflext
containing names of principal®lonce is the subset of ext
containing nonces.

The setTerm of terms is defined inductively as follows.
(1) All primitive terms are terms. (2) If and¢’ are terms
andk € Key, thenencr(t, k) (encryption oft with k, usu-
ally written {t}x), pair(t,t’) (pairing of¢ andt’, usually
written¢-t'), andh(t) (hash oft, whereh represents a one-
way collision-resistant hash function [18]) are terms.

inv € Key — Key maps each key to its inverse: de-
crypting {¢}, with inv(k) yieldst. For a symmetric key,
inv(k) = k. We usually writeinv(k) ask 1.

[t] pot(2) @bbreviates - {h(t)} pui(x), i.€. t Signed byz.

A ciphertextis a term whose outermost operatoeig:r.

A hashis a term whose outermost operatonhisA term¢’
occurs in the cleain ¢ if there is an occurrence df in ¢
that is not in the scope afucr or h.

Let dom(f) denote the domain of a functioh A se-

For S C Ny, lettermy, (S) = {termy.(n) | n € S}.
For symbols subscripted by the trace mapping, we elide the
subscript when the trace mapping is evident from context.

2.1. Roles, Protocols, and Penetrator

A roleis a parameterized sequence of directed terms. As-
sociated with each parameter is a type, a set of allowed
terms. Some parameters with typ@nce may be desig-
nated as uniquely-originated; informally, this means that
the value of that parameter must be uniquely-originated.
Uniquely-originated parameters are designated by underlin-
ing in the parameter list. We require that for every rple
for every parameter of r with type Nonce, x is uniquely-
originated iff the first occurrence af in r is in a positive
term. Letr.x denote parametet of role ». For exam-
ple, R(nc : Nonce) = ((+nc)) defines a roleR with one
uniquely-originated parameter: with type Nonce.

A trace for role r is a prefix of a trace obtained by
substituting for each parameterof r a term in the type
of z. A role r and a traces for » uniquely determine
a mapping, denotedrgs(r,c), from the set of parame-

quence is a function whose domain is a finite prefix of the (< of, that appear in-(0),7(1),...,r(len(s) — 1) to

natural numbers. Lekn(o) denote the length of a se-

Term. For example, for rol&(z; : Name, x4 : Name) =

1session keys are not used in the examples in this paper, so we omitted( 21, +22)) ando = ((+A)), dom(args(R,0)) = {z1}

them from the framework. They can be handled roughly as in [22].

andargs(R,o)(z1) = A.



A protocol IT is a set of roles, together with a set Note that a history may contain multiple traces for the

IT.Secret C (Text \ (Name U Nonce)) of terms that are

same role with identical bindings for parameters that are

“secrets” {.e., terms that should not be revealed to the pen- not uniquely originated.

etrator). Excluding names here implies that the penetrator

To reduce clutter, we sometimes use a history instead of a

knows all names. Specialized notions of secrecy are usedrace mapping as a subscriptg, for a historyh = (tr, =

for keys and nonces, as described in Section 2.5.
The penetrator model is parameterized by alS@jr C

, role), we defineN;, = Ny,
The set ofpredecessoref a noden in a historyh is

Key of keys initially known to the penetrator. The set preds,(n) = {n' € N}, |n’ = n A 0’ #n}.

I1p(Keyp) of penetrator rolesontains:

Pair: P(x : Term, y : Term) = {(—z, —y, +x-y))
SeparationS(z : Term, y : Term) = {(—z-y, +x, +y))
Encryption: E(k : Key, z : Term) = (—k, —z, +{x}x))
Decryption:D(k: Key, x: Term)={—k~t, —{z}x, +x))
MessageM (x : Text U Nonce) = (+z))

Key: K(k : Keyp) = (+k))

Hash:H(z : Term) = {—z, +h(x)))

Typically, Keyp = {key(z,y) € Key | x = PVy = P}
U {putkey(P)} U {pubkey(x) | x € Name}.

2.2. History

A history of protocolll is a tupleh = (tr, ™, role),

wheretr is a trace mapping- is a binary relation on;,.,
androle € dom(tr) — (ITUIIp(Keyp)) such that

1. For allng,ny € Ny, if n1 = no, then there ex-
istst € Term such thatterm.(n;) = -+t and
terms-(ny) = —t. This represents that; sendst,
andn, receives.

2. Forallny € Ny, if termy,(ny) is negative, then there
exists exactly one, € N, such than, = n.

3. = isacyclic and well-founded.€., does not have infi-
nite descending chains), whesg, is the reflexive and

. lel .
transitive closure of =¥ U -%). Note that=;, is a

partial order, first defined by Lamport [15].

4. For alls € dom(tr), tr(s) is a trace forrole(s). A
regular strandis a strands with role(s) € II. A pen-
etrator strandis a strands with role(s) € IIp(Keyp).
Nodes on regular and penetrator strands are cedted
ular nodesand penetrator nodesrespectively. (For
convenience, we assurieN I p(Keyp) = 0.)

5. For alls € dom(¢r), for all x € dom(args(role(s),
tr(s))), If parameter z is uniquely-originated,
thenargs(role(s), tr(s))(x) uniquely originates from
(s,1), wherei is the index of the first term im that
containse.

6. For allt € II.Secret, t originates only from regular
nodes.

Let Hist(IT) denote the set of histories of a protoghl

A set .S of nodes ishackwards-closewvith respect to a
binary relationR iff, for all nodesn; andn., if n, € S and
ny R no, thenny; € S.

Given a historyh of a protocolll, a setS of nodes ofh
that is backward-closed with respecttq can be regarded
as a history, denotesbdes ToHist;, (S), in a natural way.

2.3. Examples

Consider a payment protockgr based closely on [5]
and reminiscent of SET [21], including the use of a dual-
signature technique, so that the customer produces only one
digital signature. LeOrder C Text and PayDesc C Text
denote sets of order and payment descriptions, respectively.
Let Price C Text and Result C Text denote sets of prices
and results€.g, “approved”), respectively. LeName,,
Name,,, andName, be disjoint subsets a¥ame not con-
taining P. For a setS of terms, letHash(S) = {h(t) | t €
S}. The roles of protocollggr appear in Figure 1, and
IIsgr.Secret = @, for reasons given below. We udet
expressions to avoid repetition of large subterms. We allow
Cust.m = P andGate.m = P to model malicious mer-
chants; similarly for malicious clients and gateways. There
is no reason to allow the “me” variable of each role (namely,
Cust.c, Mrch.m, andGate.g) to equalP, because’’s ac-
tions are modeled by penetrator strands.

Use of Hash(PayDesc) instead of the set of all hashes
as the type foMrch.hpd requires some justification, be-
cause a merchant cannot determine whether the hash re-
ceived inhpd is the hash of a payment description or, say,
a ciphertext. Attacks involving terms that are not of the ex-
pected type are calletype flaw attacks Use of the types
Hash(PayDesc) and Hash(Order) can be justified by re-
sults like those in [12], which show that type flaw attacks
can be prevented by using type tags in the protocol imple-
mentation. Extending their results to accommodate hashing
and to accommodate the slightly larger class of agreement
properties introduced below is fairly straightforward.

As another example, consider a version of the 1KP pro-
tocol [4] based closely on [8]. Following [8], we assume
the customer account number (CAN) is secret and hence
(for brevity) omit the PIN. We also omit the date field,
since it does not affect the secrecy or agreement proper-
ties of II;xp given below, assuming nonces are uniquely-



Cust(c : Name., m : Name,, U{P}, g : Namey U {P}, nc: Nonce, nm : Nonce,
price : Price, od : Order, pd : PayDesc, result : Result) =

let trans = ¢c-m-g-nc-nm-price-h(od)-h(pd) in

{(+c-m, (* 1. to merchank)

—nm, (* 2. from merchank)

+[trans] por ey - 10} pub(m) {2} pub(g) (x 3. to merchank)

—[result-h(trans)]pu(g)) (x 4. from gatewayx)

Mrch(c : Name. U {P}, m : Namen,, g : Namey U {P}, nc: Nonce, nm : Nonce,
price : Price, od : Order, hpd : Hash(PayDesc), epd : Term, result : Result) =

let trans = c¢-m-g-nc-nm-price-h(od)-hpd in

{(—c:m,

+nm

x 1. from customek)

, * 2. 10 customer)
—[trans]pyi(c)-{0d} pus(m) -€pd, * 3. from customek)
+[trans] por(c) - [trans] puim) -epd, * 4. to gateway)
—[result-h(trans)]pu(g)) (x 5. from gateway)

Gate(c : Name. U {P}, m : Name,, U{P}, g : Namey, nc: Nonce, nm : Nonce,

price : Price, hod : Hash(Order), pd : PayDesc, result : Result) =

let trans = ¢-m-g-nc-nm-price-hod-h(pd) in

{(—[trans] put(c) - [trans] por(m) - APd} pub(g) (+ 1. from merchant)
+[result-h(trans)]pot(g)) (* 2. to merchank)

NN N N

Figure 1. Roles for TIggr. Comments indicate step number and intended source or destination of
message.

originated. LetAcctNum C Text be a set of account uniquely originated andirgs(role(s), tr(s))(x) = g and
numbers. To model dishonest customers,(customers  origin, (g) = (s, ).

that collude with the penetrator), we partitiotcctNum For a directed ternt, the absolute value of denoted
into two sets,AcctNumy and AcctNumy, which contain  abs(t), is ¢ without its sign. Forl’ C Term, abs(T) =
account numbers of honest and dishonest customers, re{abs(t) | t € T}, and the roléSrey is defined bySrer (z :
spectively. LetOrder, Result, Name,,, and Name, be as  T) = (+x)).

above. We assume these subset§aft are disjoint. 1KP A term t is derivable (by the penetrator) from a sét
is designed for settings where the gateway has a private keyf nodes of a history: of a protocolll, denotedS Hi! ¢,
with a well-known public key, but the customer and mer- it i are exists a history’ = (tr”, wgq” role) of the proto-

chant do not. Consequently, 1KP provides few guarantees.,, {SCabs(termy (5y) } SUCh that: (1) arguments of strands

if the gateway is dishonest, so we do not includén the for Message i’ are not inunqurigReqrdE(S); and (2)
types ofCust.g andMrch.g. The roles of protocoll;xp . . ;
appear in Figure 2, andkp.Secret = AcctNumg there exists a node € Ay with termy, (n) = +¢. This

' ' ' relation is equivalent to the derivability relation in [7] and

2.4. Derivability can be computed using the approach in [7].

Informally, a termt is derivable (by the pentrator) from a 2.5. Correctness Requirements

setS of nodes if the penetrator can compufeom term(.S)

and Keyp. A formal definition follows. We consider the following kinds of correctness require-
For a noncey that uniquely originates in a histofy let ~ Ments. For a correctness requirementve say that a pro-
origin,, (g) denote the node from whichoriginates in. tocol T1 satisfiesp iff every history ofII satisfiesp.
For a setS of nodes in a historyh = (tr,,

role) of a protocolll, let uniqOrigReqrd;! (S) denote the  Long-Term Secrecy. A history & of a protocolll satis-
set of noncesy such that there existés,i) € S and fies long-term secrecy iff, for evettyc II.Secret U (Key \
x € dom(args(role(s), tr(s))) such that parameter is Keyp), N, tA6 t.



Cust(od : Order, price : Price, salt; : Nonce, R. : Nonce, CAN : AcctNumy,
ID,, : Name,, U{P}, TID,, : Nonce, nonce,, : Nonce, g : Namegy, YesNo : Result) =
let cid = h(R. - CAN)
and common = price-ID,,- TID,, -nonce,, - cid-h(od- salt.)
and clear = ID,,- TID,, - nonce,,-h(common)
and slip = price-h(common)- CAN-R¢ in

{(+salt.-cid, (x 1. to merchank)
—clear (* 2. from merchank)
+{slip} pus(g) (* 3. to merchank)
—YesNo-[h(YesNo-h(common))]pu(g))) (x 4. from merchank)

Mrch(od : Order, price : Price, salt. : Nonce, cid : Hash(Nonce X AcctNum), ID,, : Name,y,,
TID,, : Nonce, noncey, : Nonce, g : Name,, YesNo : Result, eslip : Term) =

let common = price-ID,, - TID,,-nonce,,-cid-h(od- salt.)

and clear = ID,,- TID,,-nonce,,-h(common) in

{(—salt.-cid, (x 1. from customer)
+clear, (* 2. to customex)
—eslip, (*x 3. from customek)
+clear-h(od-salt.)- eslip, (x 4. to gateway)
—YesNo-[h(YesNo-h(common))]pui(q) (x 5. from gatewayx)
+ YesNo-[h( YesNo-h(common))]pui(g) ) (* 6. to customer)

Gate(price : Price, R. : Nonce, CAN : AcctNum, ID,, : Name,, U {P},
TID,, : Nonce, noncey, : Nonce, g : Namegy, hodsalt : Hash(Order x Nonce), YesNo : Result) =

let cid = h(R. - CAN)
and common = price-ID,, - TID,, -nonce,, - cid-hodsalt
and clear = ID,,- TID,,-nonce,,-h(common)
and slip = price-h(common)- CAN-R¢ in
{(—clear-hodsalt-{slip} pus(q), (* 1. from merchank)

+YesNo-[h( YesNo-h(common))]pui(g) ) (* 2. to merchank)

Figure 2. Roles for IIikp.

Nonce Secrecy. Informally, nonce secrecy says: the val- andt; andt, are terms containing parameters-pfandr,,
ues of specified nonce parameters are not revealed tgespectively, as free variables. A histdry= (tr, ”ﬁ{mle)
the penetrator. A nonce secrecy requirement has theof a protocoll satisfies that agreement requirement iff, if

form “r.z is secret unless.y € S”, wherer € TI,  contains a strans, such thatrole(ss) = 79, len(tr(s2)) >

z and y are parameters of, and S C Test (typi- lena, and args(rq, tr(sse))(ze) € Sa, thentr contains a
cally, S C Name). A history h = (tr,"™¥ role) strands; for role r; such thatlen(tr(s;)) > len; andt,

of a protocol IT satisfies that requirement iff, for ev- instantiated with the arguments of equalst, instantiated
ery strands € dom(tr), if role(s) = r andy € with the arguments of,.

dom(args(role(s), tr(s))) and args(role(s), tr(s))(y) & One of Bolignano’s requirements fafsgr is that the

S, thenN,, 14! args(role(s), tr(s))(z). gateway has proof of transaction authorization by the mer-

chant [5, p. 12]. This can be expressed as an agreement
requirement:(Gate, 1) satisfyingGate.m ¢ {P} is pre-
Agreement. Informally, agreement says: if some strand ceded by(Mrch, 4) satisfying
executed a certain role to a certain point with certain argu-
ments, then some strand must have executed a correspond-let trans,, = Mrch.c-Mrch.m-Mrch.ne-Mrch.nm

ing role to a corresponding point with corresponding argu- -Mrch.price-h(Mrch.od)-Mrch.hpd
me_nts._ An agreement requirement has the fo(m,“len2> and trans, = Gate.c-Gate.m-Gate.nc-Gate.nm
satisfyingzs & S, is preceded byry, len;) satisfyingt; = -Gate.price-Gate.hod-h(Gate.pd) in

t2”, wherez, is a parameter ofy, S, is a subset offext, trans,, = trans, A Mrch.g = Gate.g



This requirement applies even fate.c = P, i.e,, even For example, consider the following history of a generic
if the customer is dishone$t. SET is designed to pro- payment protocol. Suppose i, s, 1, ands,; are cus-
vide secrecy for order and payment descriptio$sgr tomer, merchant, and gateway strands, respectively, that in-
as defined above does not provide such secrecy, becausggract without interference from the penetrator. Ldie a
e.g, a customer strand witust.m = P can reveal an  nonce that uniquely originates o), ; and is revealed to
order description to the penetrator. This is why we take the penetratorg.g, the value ofMrch.nm in IIsgT). The
IIsgr.Secret = (. To express secrecy of order descrip- penetrator then behaves as a merchant, interacting with a
tions from gateways, we use a varidify in which mer- customer strand, » and a gateway strang, », except that
chants are assumed to be honest; specificdBy, differs the penetrator usesinstead of a fresh nonce. A support for
from IIggr as follows: the type fo€ust.m is Name,,, and s¢,2 OF 542 Need not contain nodes @p, ; Or s. ;. In that
IIgpr.Secret = Order. Dishonest gateways are modeled senses. » andsg » do not depend os,, 1, even though the
by penetrator strands (the types(bist.g andMrch.g con- chain of messages that conveymeans that there is causal
tain P), so if order descriptions are not known to the pen- dependence between those nodes in the classical sense of
etrator, then they are not known to dishonest gateways, sd_amport [15]. Informally, that classical dependence can be
they are not known to honest gateways. Secrecy of paymentgnored here because the penetrator could generate a nonce
descriptions from merchants can be expressed similarly. ¢’ and replace with ¢’ in the terms of nodes os. » and

Requirements for 1KP can be expressed similarly; for s, 2. The careful treatment of unique origination in the def-
details, see [23]. 1KP also has a nonce secrecy requirementnition of derivability allows such inessential classical de-
Cust.R, is secret unles€ust.g € {P}. pendencies to be ignored. The following lemma says that a
support can be transformed into a history by adding pene-
trator nodes, without adding or changing regular nodes.

For a setS of nodes, lettrand(S) = {strand(n) | n €
S}. For a trace mappingr, a strands € dom(¢r), and a

Informally, & setS” of nodes of a historyr SUpPOMs & a4 of nodes oftr- that is backwards-closed with respect to
setS of nodes oftr if S’ O S andS’ contains all of the reg- 1

ular nodes on which regular nodes$ndepend. A formal 5 contains npdes on a prefix of(s); let prefix,, (s, 5)
definition follows. denote that prefix.

For T C Term, the set of nonces that occur i is
nonces(T) = {g € Nonce | It € T : g occurs int}.

3. Support

Lemma 1. LetII be a protocol. IfS" is a support folS' in a

Let R\ denote the set of regular nodes in histérgf history h = <’§7"7 "', role) of I, then there exists a history
protocolll. B = (tr',"™ role’) of II such that
A set S’ of nodes is asupportfor a setS of nodes in a
history h of a protocollT if: (Vsestrand(S’) : sedom(ir’) A tr'(s) =prefix,, (s, S’)
A role’(s) = role(s))
1. N,2 8 25S. A (Vs € dom(tr') \ strand(S”) : role’(s) € 1lp(Keyp))
’ msg’/ msg
2. S is backwards-closed with respect'fé. A (Fn1,my € §7imy = ng = ny = n) )

3. For all negative nodes in S, preds,(n) N S" N

I |11
RN ) termy (n). Proof: k' is constructed by combining nodesStwith his-

4. For allg € nonces(termy (S’)) N D, where tories that witness the derivability of terms (as required by
item 3 in the definition of support). For details, see [MB].
D = uniqOrigReqrd} (NV},) \ uniqOrigReqrd;! (S'),
Lemma 2. If S and.S] supportS, and.Sy, respectively, in
a historyh = (tr, ™ role) of a protocolll, thenS), U S}
supportsSy U Sy in history h of I1.

g occurs in the clear inermy, (origing (g)). (This con-
dition ensures the compositionality property expressed

in Lemma 2.)
For a strand, if S” supportsiodes(s), we say thatS’ sup- Proof: The only complication is dealing with nonces
portss. in  uniqOrigReqrd}'(S;) \ uniqOrigReqrd} (S}) or

P : ‘ ) uniqOrigReqrd;! (1) \ uniqOrigReqrd;! (S}). The fourth
Bolignano's version of the protocol omitsfrom ¢rans and conse-  oqnqition in the definition of support ensures that such
quently violates the conjundtirch.g = Gate.g (in his presentation,

this conjunct corresponds ta’.mcht.gateway = G in the second filter ~ NONCES are _ava"able to the. penetrator even if they are
function on p. 12). uniquely-originated. For details, see [2B].



3.1. Bounded Support Restriction

A strand countfor a protocollI is a function from the
roles of I to the natural numbers. A sét of nodeshas
strand countf iff, for each roler, S contains nodes from
exactly f(r) strands for-. If N, has strand counf, then
we say that history: has strand coung. Let f1(r) = 1 for
every roler. We define a partial ordering s on strand
counts for a protocol=s¢ is simply the pointwise exten-
sion of the standard ordering on natural numbers.

A history & satisfies thdounded support restrictigrab-
breviated BSR, iff for each regular stranth h, there exists
a support fos in h with strand count at mogt;. A protocol
satisfies BSR iff all of its histories do.

IIggr and II;kp satisfy BSR. We proved these re-
sults manually; the proofs are similar to the proof in [22]

for Lowe’s corrected version of the Needham-Schroeder

Nodes in R that are on the same strand asare not
counted in the revealing set min-size (and hence not in
the dependence width), because in the proof of Theorem
2—specifically, in equation (5)—those nodes appear in
support;. (so) and hence are excluded from the index set of
the rightmost union, and the dependence width is designed
to bound the size of that index set.

Note that, if there are no revealing sets foatn in h
(i.e., t is not known to the penetrator at that point), then
rvlSetMinSz(t, n, h) = 0.

Letr be arole in a protocdll, and let; be the index of a
negative term in-. Thedependence widthf (r, ¢) in IT is

DW((r,:),II) =

max({rvlSetMinSz(termy,((s, 1)), (s, i), (tr,= role)) |
(tr, ™ role) € Hist(IT) A (s,i) € Ny
A role(s) =1})

public-key authentication protocol. Theorem 2 in Section ] ] ®)
5 shows that in principle, these results can be obtained Thedependence widtbf a protocolll is
automatically by state-space exploration of histories with DW(IT) = max({DW((r,4), 1) | 4)

bounded strand counts; an algorithm like the one in [22]
can be used to compute a (small) support for a given set of
nodes. The current bounds probably need to be decreased The proof of Theorem 2, and therefore also the proof

r € II A r(i) is a negative terry)

somewhat before this is feasible.g, by finding a tighter
bound on the dependence width (see Section 4).

4. Dependence Width

Informally, the dependence width of a negative tei(#)
in a roler of a protocolll, denotedDW ((r, ¢}, II), is the
maximum number of “additional” positive regular nodes
needed in any history of II to provide the penetrator with

enough knowledge to produce the term received by any

node (s, i) of h such thatrole(s) = r. “Additional” here

means “beyond those needed for the penetrator to produc
negative terms that occur earlier in the same strand”. The

dependence width of a protocHl, denotedDW (II), is the
maximum over all negative termgi) in rolesr in II of

DW({r,4),II). The concept of dependence width is used in
the proof of Theorem 2 in Section 5 to bound the number of

strands involved in a violation of BSR.

Let n be a negative node of a histohyof a protocolll,
and lett be a subterm oferm,(n). A revealing sefor ¢
atn in h is a setS of positive regular nodes af- such that
S C preds, (n) andS ]! ¢.

For a setS of numbers, leinin(S) andmax(S) denote
the minimum and maximum element §f respectively. We
definemin()) = 0 andmax (@) = 0.

Therevealing set min-sizef ¢ at (s, ) in his

rvlSetMinSz(t, (s,4), h) =
min({size(R \ nodesy(s)) |
Ris arevealing set farat (s, ) in h})

)

of Theorem 3, rely on an upper bound on the dependence
width of the protocol. If the protocol might send terms
of the forms{g}i,, {k1}ryr {k2trss - {kic1i}iir Kis
theni + 1 terms are needed to revealto the penetrator.
Our long-term secrecy requirement prohibits such behavior.
Secrecy-limited dependence widt#bbreviated SL depen-
dence width and denotddW g, is defined in the same way
as dependence width, except that the maximum over histo-
ries is restricted to histories satisfying long-term secrecy.
Let IT be a protocol, and let be a term, possibly
containing parametersnSecrety(t,II) is a bound on the
number of subterms of that are not known to the pene-

Ft’rator, ignoring keys and values of parameters; formally,

nSecreto (¢, II) = N, + N + Nprim, Where N, is the
number of subterms dfwhose outermost operatordsacr,
ignoring those whose second argument is alway& égp
(based on parameter typesy; is the number of subterms
of ¢ with outermost operatdt, andNV,;,, is the number of
elements ofVonce UII. Secret that occur int. In computing
N, and Ny, identical subterms are counted only once. For
a parameter~.z of a role r of II, nSecret(r.z,II) =
max({nSecretq (¢, IT) | tis in the type ofr.z}).
Let nSecret({r,d),II) = nSecreto(r(i), II) +
> veparams(r(i)) BSecret(r.z, II),  where params(t) is
the set of parameters that occurin

Theorem 1. Let r(i) be a negative term in a role of a
protocolIl. DWgy,((r, ), II) < nSecret((r, ), II).

Proof: Consider a strand for » in a history h for
II. We consider each subternty of termy((s,i))



and show that each hash, ciphertext, and elementcase2: §) I#}' ¢/; in other words’ contains one or more

of uniqOrigReqrd; (N},) U IL.Secret that occurs in
termy, ((s,4)) contributes at most 1 t®Wgy,({r, ), II).

secrets. Thus, subterms tfcontribute at least 1 to our
bound onDWgy, ({r, ), II).

The number of such subterms is bounded by
nSecret((r,4),II). Other subterms contribute nothing.
The definition of dependence width implies that terms
not derivable by the penetrator contribute nothing to the
dependence width (because such terms have no revealing
sets), so in computing the bound, we conservatively assume
all subterms are derivable by the penetrator. Consider cases

case2.1: preds,((s,i)) FI ¢. The penetrator
can perform the encryption to construct its copy
of {t'}x, so proper subterms dft'}; contribute to
DWgr, ({r,),1I), but {¢'} itself does not, so ignor-
ing {t'} in N, is safe.

based on the type of.

casel: t; € Key. Long-term secrecy implies that no keys

are revealed, so keys contribute nothin® sy, ((r, 7), IT).

case2: t; € uniqOrigReqrd} (N},) U II.Secret. The def-
inition of history implies thatt; originates from a regu-

lar node inh and (according to the conservative assump-

case2.2: preds, ((s,i)) Al ¢'. The ciphertexf{t'}
must originate from a regular node and be revealed to
the penetrator. The ciphertext actually contributes 1 to
DWgy,((r,4),1I) (cf. case 6 above), and its subterms
actually contribute nothing. Our bound counts 0 from
the ciphertext but counts at least 1 from subterms.of
Thus, although the bookkeeping might seem skewed,
the sum of the contributions is sufficiellt.

tion discussed above) is derivable by the penetrator (using

strands for Separation and Decryption), so there is a posi-

tive regular node: such that; occurs intermy, (n) eitherin

the clear or encrypted only with keys known to the penetra-
tor. Long-term secrecy implies that those keys (if any) are

in Keyp. Thus,t; is derivable from{n}, sot; contributes
at most 1 tadDWgr, ((r, i), IT).

case3: t; € Text\ (uniqOrigReqrd; (N}, ) UIL Secret). t,

We simplify IIsgr andII;kp as follows. Parameters
epd andeslip are used to forward messages in a trivial way
(specifically, all occurrences of these parameters are unen-
crypted), andl'ID,,, is redundant because it always appears
together withnonce,,. Thus, eliminating these parameters
has no impact on correctness. &, andIl}. refer
to versions of the protocols in which these parameters have
been eliminated. Theorem 1 impli€&Wgr,(Ilggp) < 6

is directly available to the penetrator through the MessageandDWgy, (II} xp) < 7. In both protocols, the first term of

role, sot; contributes nothing tOWey, ((r, ), IT).

cased: t; is a pair. Revealing a pair is equivalent to reveal-

ing its two components, so proper subterms;ofontribute
to DWgy,((r, i), II), butt, itself does not.

caseb: t; is a ciphertext or hash, ang originates from a
penetrator node ipreds, ({s,)). The penetrator performs
the encryption or hashing to construct its copytof so
proper subterms of; contribute toDWgy, ({r, ), IT), but
t; itself does not.

case6: t; is a ciphertext or hash, angd does not originate
from a penetrator node ipreds,, ({(s,7)). Thent; origi-

Gate has the largest dependence width.

The bound oDWgy, provided by Theorem 1 can some-
times be decreased by replacing a negative term of the form
—t1 -t5 in a role with the sequence of termg, —t>. For
example, lefIg, . denote the protocol obtained fraiff,
by splitting the first term ofzate into a sequence of three
terms. Theorem 1 implieBWgr, (II¢, ) < 5. This trans-
formation preserves all correctness requirements, provided
the lengths in agreement requirements are adjusted appro-
priately.

5. Reduction for BSR and Long-Term Secrecy

nates from a regular node, and the argument is the same

as in case 2. Note that it is not necessary for proper sub-

terms oft; to contribute tadDWgr, ({r, 7), IT). Our bound on

The following lemma says, roughly, that constructing a
historyh’ from a supportS’ of a setS of nodes of a history

DWar ({r, i), II) might be loose because it does not attempt /> does not create new supports far

to exploit this observation; exploiting it is left for future
work.

Now we justify ignoring, in the definition ofN. in
nSecretg, occurrences oéncr whose second argument is
always inKeyp. Let {t'} be such a ciphertext.

casel: ( ! ¢'; in other words,t contains no se-
crets. Therd HII {#'}, so{t'}, contributes nothing to
DWsr, ((r, i), II).

Lemma 3. SupposeS, supportsS in a historyh of a pro-
tocolII. Let i’ be a history ofI whose existence is implied
by Lemma 1 applied t&y. Supposes; supportsS in his-
tory &’ of I. ThenS; N RN/} supportsS in history h of
II.

Proof: The proof is similar to that of Lemma 3 in [24A.
For a protocolll, define a strand count(II) by
B(IT)(r) = DWer(IT) + 1.



Theorem 2. A protocolll satisfies BSR and long-term se-
crecy iff all histories oflI with strand coung(IT) do.

Proof: The forward direction=-) of the “iff” is easy. For
the reverse directiorn€), we prove the contrapositivee.,
we suppose there exists a histérpf II that violates BSR
or long-term secrecy, and we construct a historylofith
strand count at mogt(IT) that violates the same property.

case ng is a positive node.ng cannot cause a vio-
lation of BSR, so it causes a violation of long-term se-
crecy. preds, (ng) satisfies long-term secrecy, so there is
somet € II.Secret U (Key \ Keyp) such that appears in
termy (ng) either in the clear or encrypted only with keys
in Keyp. Supposeip > 0. Let Sy = support, (so)
and S; {no} U Sy. ho satisfies BSR, s&, and S;
have strand count at mogi (note thatny is on sy, and

BSR and long-term secrecy are safety properties satisfiedsp € strand(Sp), Sony does not increase the strand count

by histories with zero nodes, ang, is well-founded, so
there exists a;,-minimal nodeng such that

1. nodesToHist;, (preds, (no)) satisfies BSR and long-
term secrecy.

2. nodesToHist), (preds; (ng)) U {no} violates BSR or
long-term secrecy.

Let hg nodesToHist,! (preds;, (no)).  Let sg
strand(ng) andiy = index(ng). Note that inhg, so does
not includeny. For a strands in a historyh’ that satis-
fies BSR, lekupport,, (s) denote a support forin A’ with
strand count at most;. The definitions of BSR and long-
term secrecy implyh, is a regular node. Consider cases
based on the sign ofj.

case ny is a negative noden, cannot cause a violation
of secrecy, so it causes a violation of BSR. Suppgse 0.
ng directly depends offsg, iy — 1) and on a revealing set
R for term(ng) atng in h; more precisely, for alb’, if S’
supports{(sg,iop — 1)} U R in h, thenS’ U {ny} supports
{no} in h. hy satisfies long-term secrecy, so Theorem 1
impliessize(R \ nodesy, (sp)) < DWsr(II). Let

Sy = {no} U support,, (so)
U LJnGR\nodestr0 (s0) Supportho (Strand(n))'

®)

of S1). S; can be transformed into a histoky by adding
penetrator nodes; this follows from Lemma 1 and the obser-
vation thatn is positive and is an immediate successor of
the last node oRy in hyg. It is easy to show that adding pen-
etrator nodes does not change the strand count or destroy
the violation of long-term secrecy. Thus, is a history of

IT with strand count at mogt(II) that violates long-term
secrecy. Supposg = 0. Thenpreds;(ng) = ), and the
history containing only node, has strand count at mogt

and violates long-term secred.

6. Reduction for Nonce Secrecy and Agree-
ment

Define a strand counf, by: fo(r) = 2 for every roler.

Theorem 3. Let ¢ be a nonce secrecy or agreement re-
guirement. Suppose all histories of a protadokith strand
countS(II) satisfy BSR and long-term secredy. satisfies

¢ iff all histories of IT with strand counffs do.

Proof: The forward direction£) of the “iff” is easy. For
the reverse directiorkf), we prove the contrapositivee.,
we suppose there exists a histdry= (tr, =% role) of II
that violatesp, and we construct a history of with strand
count at mostffy that violatesp. Nonce secrecy and agree-

ho satisfies BSR, so each of the supports in (5) has strandment requirements are safety properties satisfied by histo-

count at mosff;, s0.5; has strand count at mos{II) (note
thatng is onsg, S0 {ng} U support, (so) contributes at
most f; to the strand count o).

Lemma 2 implies tha$ \ {no} supports{(sq,io—1)}U
R in h; thus,S; supports{ng} in h. Lemma 1 implies that
S1 can be transformed into a histoky of IT by adding pen-

ries with zero nodes, ang}, is well-founded, so there exists
a <p-minimal nodeny such that

1. nodesToHist} (preds;, (ng)) satisfiesp.

2. nodesToHist} (predsy, (ng)) U {ng} violatese.

etrator nodes. Adding penetrator nodes does not affect theLet sq = strand(ng).

strand count, sb; has strand count at mastII). We show
by contradiction that, also causes a violation of BSR in

By hypothesis, all histories df with strand counf3(IT)
satisfy BSR and long-term secrecy, so Theorem 2 implies

hi. Suppose, does not cause such a violation. Then there thatIl satisfies BSR. Fos € dom(h), letsupport, (s) de-

exists a suppor’ for {ng} in h; with strand count at most

f1. Lemma 3 implies thas’ N RN/} is a support forng }

in h with strand count at mogt;, a contradiction.
Supposeig = 0. The proof is similar to the case

note a support fog with strand count at mosf; .
Supposep is a nonce secrecy requirement. has the

form “r.x is secret unless.y € S”. ng is a posi-

tive regular node, and there is a regular stragdsuch

io > 0, exceptng does not depend on the non-existent node that args(role(s,), tr(sy))(y) & S and preds;,(ng) 4

(50,10 — 1), SO we omitsupport,, (so) from the definition
of S1, and Lemma 2 implies tha; \ {ng} supportsR in h.

g and preds,(ng) U {no} HI' g, where g
args(role(s), tr(s))(z). By the same reasoning as in case



2 of the proof of Theorem 1, this implies théto} ! g.
Let.S; = support,, (so) Usupport, (sy). Lemma 2 implies
thatS; is a support fomodesy, (s¢) U nodesy (s4). Lemma
1 implies thatS; can be transformed into a histoiy by
adding penetrator nodes. Note th#gtandh, have strand
count at mosts. It is easy to see that, causes a violation
of nonce secrecy ih;.

Supposey is an agreement requiremerthas the form:
“(rq, lensy) satisfyingzo ¢ Ss is preceded byry, len;) sat-
isfyingt; = t3". ng causes a violation af, sosy is a strand
for ro and args(ra, tr(s2))(x2) ¢ Se andindex(ng) =
lens. Lemma 1 implies thagupport, (so) can be trans-

formed into a historyh, of II with strand count at most

f1. Note thatny € N},. Removing nodes iV}, \ Ay,

and adding penetrator nodes preserve the lack of a node

(s1, leny) such thatrole(s;) = r; and such that; instan-
tiated with the arguments af, equalsts instantiated with

the arguments ofy. Thus,hq violatese. I
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