
Automatic Accurate Live Memory Analysis for
Garbage-Collected Languages

Leena Unnikrishnan� Scott D. Stoller� Yanhong A. Liu�

ABSTRACT
This paper describes a general approach for automatic and
accurate live heap space and live heap space-bound analy-
ses for high-level languages. The approach is based on pro-
gram analysis and transformations and is fully automatic.
The space-bound analysis produces accurate (tight) upper
bounds in the presence of partially known input structures.
The analyses have been implemented and experimental re-
sults con�rm their accuracy.

1. INTRODUCTION
Time and space analysis of computer programs is important
for virtually all computer applications, especially in embed-
ded systems, real-time systems, and interactive systems. In
particular, space analysis is becoming important due to the
increasing uses of high-level languages with garbage collec-
tion, such as Java [22], the importance of cache memories
in performance [28], and the stringent space requirements
in the growing area of embedded applications [25]. For ex-
ample, space analysis can determine exact memory needs
of embedded applications; it can help determine patterns
of space usage and thus help analyze cache misses or page
faults; and it can determine memory allocation and garbage
collection behavior.

Space analysis is also important for accurate prediction of
running time [9]. For example, analysis of worst-case exe-
cution time in real-time systems often uses loop bounds or
recursion depths [21, 1] both of which are commonly deter-
mined by the size of the data being processed. Also, memory
allocation and garbage collection, as well as cache misses and

�The authors gratefully acknowledge the support of ONR
under grants N00014-99-1-0132, N00014-99-1-0358 and
N00014-01-1-0109 and of NSF under grants CCR-9711253
and CCR-9876058. Authors' address: Computer Science
Department, SUNY at Stony Brook, Stony Brook, NY
11794-4400 USA. Email: fleena,stoller,liug@cs.sunysb.edu.
Web: www.cs.sunysb.edu/~fleena,stoller,liug. Phone:
(631)632-1627. Fax: (631)632-8334.

page faults, contribute directly to the running time. This
is increasingly signi�cant as the processor speed increases,
leaving memory access as the performance bottleneck.

Much work on space analysis has been done in algorithm
complexity analysis and systems. The former is in terms
of asymptotic space complexity in closed forms [16]. The
latter is mostly in the form of tracing memory behavior or
analyzing cache e�ects at the machine level [20, 28]. What
has been lacking is analysis of space usage for high-level lan-
guages, in particular, automatic and accurate techniques for
live heap space analysis for languages with garbage collec-
tion, such as Java, ML or Scheme.

This paper describes a general approach for automatic ac-
curate analysis of live heap space based on program analysis
and transformations. The analysis determines the maximum
size of the live data on the heap during execution. This is the
minimum amount of heap space needed to run the program
even if garbage collection is performed whenever garbage is
created. The analysis can easily be modi�ed to determine
related metrics, such as space usage when garbage collection
is performed only at �xed points in the program. It can also
be used to help analyze the space usage of some continuosly
running processes that have cyclic behavior.

Our approach starts with a given program written in a high-
level functional language with garbage collection. We con-
struct (i) a space function that takes the same input as the
original program and returns the amount of space used and
(ii) a space-bound function that takes as input a characteri-
zation of a set of inputs of the original program and returns
an upper bound on the space used by the original program
on any input in that set. A key problem is how to char-
acterize the input data and exploit this information in the
analysis.

In traditional complexity analysis, inputs are characterized
by their size. Accommodating this requires manual or semi-
automatic transformation of the time or space function [18,
29]. The analysis is mainly asymptotic. A theoretically chal-
lenging problem that arises in this approach is optimizing
the time-bound or space-bound function to a closed form in
terms of the input size [18, 24, 6]. Although much progress
has been made in this area, closed forms are known only for
subclasses of functions. Thus, such optimization can not be
automatically done for analyzing general programs.

1

Rosendahl proposed characterizing inputs using partially known
input structures [24]. For example, instead of replacing an
input list l with its length n, we simply use as input a list of
n unknown elements. A special value uk (\unknown") is in-
troduced for this purpose. At control points where decisions
depend on unknown values, the maximum space usage of all
branches is computed. Rosendahl concentrated on proving
the correctness of this transformation for time-bound anal-
ysis. He relied on optimizations to obtain closed forms, but
closed forms can not be obtained for all bound functions.

One caveat of using partially known input structures is that
the space-bound function might not terminate even if the
original program does. This occurs only if the recursive/iterative
structure of the original program depends on unknown parts
of the given partially known input structures.

Our analysis uses reference counts [14]. We are analyzing
purely functional programs, so reference counting provides
an accurate basis for determining liveness. The analysis and
transformations are performed at source level. This allows
implementations to be independent of compilers and under-
lying systems and allows analysis results to be understood at
source level. Our space bound analysis is an abstract inter-
pretation, expressed conveniently as a program transforma-
tion. Pro�ling, like space functions, measures the program's
behavior on one input at a time; space-bound functions can
eÆciently analyze the program's behavior on a set of inputs
at once.

2. LANGUAGE
We use a �rst-order, call-by-value functional language that
has literal values of primitive types (e.g., Boolean and in-
teger constants), structured data, operations on primitive
types (e.g., Boolean and arithmetic operations), testers, se-
lectors, conditionals, bindings, and function calls. These are
fundamental program constructs that have analogues in all
programming languages. A program is a set of mutually
recursive function de�nitions of the form f(v1; :::; vn) = e,
where an expression e is given by the grammar

e ::= v variable reference
j l literal
j c(e1; :::; en) constructor application
j p(e1; :::; en) operation on primitive types
j c?(e) tester application
j c�i(e) selector application
j if e1 then e2 else e3 conditional expression
j let v = e1 in e2 binding expression
j f(e1; :::; en) function application

We sometimes use in�x notation for binary primitive oper-
ations.

For brevity, we assume the language contains only two kinds
of primitive operations that take data constructions as argu-
ments. A tester application c?(v) returns true i� v has out-
ermost constructor c. A selector application c�i(v) returns
the i'th component of a data construction v with outermost
constructor c. Our analysis can easily be extended to handle
other similar operations such as equality predicates.

Input programs to our analysis are assumed to be purely
functional, but transformed programs use arrays and im-

perative update. A sequential composition e1; e2 returns
the value of e2. In examples, we use a constructor cons with
arity 2.

3. LIVE HEAP SPACE FUNCTION
To analyze the live heap space used by a program in the
presence of completely known input, we transform the pro-
gram into one that performs all the computations of the
original program and keeps track of the total amount of live
data. Liveness of data is ascertained using reference counts.
The reference count for a data construction v is the num-
ber of pointers to v. These may be pointers on the stack,
created by let bindings or bindings to formal parameters of
functions, or pointers on the heap, created by data construc-
tions.

A constructor count vector v has one element v[ic] corre-
sponding to each data constructor c used in a given pro-
gram. Let P [ic] be the size of an instance of c. Let � denote
dot product of vectors. The maximum max(v1; v2) of con-
structor count vectors v1 and v2 is v1 if v1 � P � v2 � P and
is v2 otherwise.

The transformation L in Figure 1 produces live heap space
functions. It introduces two global variables, live andmaxlive,
that satisfy: (1) for each constructor c, live[ic] is the number
of live instances of c; (2) maxlive is the maximum value of
live so far during execution. The maximum live space used
during evaluation of function f is at most ml �P where ml is
the value of maxlive after evaluation of the space or bound
function for f .

Our implementation of reference counting is based on an ab-
stract data type (ADT) that de�nes �ve functions. new(c(x1;
: : : ; xn)) returns a value v representing a new data con-
struction c(x1; : : : ; xn), whose reference count is initialized
to zero. data(v) returns the data construction c(x1; : : : ; xn).
rc(v) returns the reference count associated with v. incrc(v)
and decrc(v) increment and decrement, respectively, the ref-
erence count associated with v. incrc and decrc are no-ops
if the argument is a primitive value.

Updating Reference Counts. rc(v), for a data construc-
tion v, is incremented when v is bound to a variable or
function parameter, or a data construction containing v as
a child is created. rc(v) is decremented when the scope of
a let binding for v ends, a function call with an argument
bound to v returns, or a data construction containing v as
a child becomes garbage.

Updating live and maxlive. Whenever new data is con-
structed, live is incremented, and maxlive is recomputed.
An auxiliary function gc (\garbage collect") is called when-
ever data can become garbage. For a data construction v,
gc(v) decrements rc(v) and then, if rc(v) is not positive,
it decrements the appropriate element of live and calls gc

recursively on the children of v. A data construction may
become garbage (1) because of a decrement of its reference
count or (2) because it is created in the argument of a se-
lector or tester and is lost to the program after the result
of the selection or test is obtained. For example, cons(0; 1) is
garbage after the application of cons�2 in cons(cons�2 (cons(0;
1)); 2); note that its reference count is always 0.

2

gcExcept (u; v) is called when u should be garbage collected,
v should not be garbage collected and v might be a de-
scendant of u. At the end of function calls and let expres-
sions, values bound to parameters and variables should be
garbage collected without garbage collecting the result of
the function call or the let expression. After selector ap-
plications, data selected from should be garbage collected
without garbage collecting the selected part, even if the ref-
erence count of that part becomes 0. Figure 5 contains an
example of a live heap space function.

4. LIVE HEAP SPACE BOUND FUNCTION
The transformation Lb in Figures 2-3 produces live heap
space-bound functions. At every point during the execu-
tion of Lb [[f]] (x), the value of live is an upper bound on
the possible values of live at the corresponding point in ex-
ecutions of L [[f]] (x0), for all x0 in the set represented by x.
As before, maxlive contains the maximum value of live so
far during execution. The presence of partially known in-
puts in bounds analysis causes uncertainty. For conditional
expressions whose tests evaluate to uk , both branches are
evaluated to determine the maximum live heap space usage.

Correctness of live heap analysis depends on keeping track of
all references and reference counts meticulously. Summariz-
ing the results of two branches into a single partially known
structure that represents both results, as is done in timing
analysis [19] and stack space and heap allocation analysis
[27], does not work for live heap analysis because it would
be impossible to keep track of reference counts accurately.
So the result of a conditional whose test evaluates to uk is
a separate entity, a join-value, that points to both possible
results and has its own reference count. By keeping both
results live, we run the risk of obtaining loose bounds, since
live might include the sizes of both results when only one of
them is live. To keep live as tight as possible, we examine
join-values at appropriate points of execution and manipu-
late live so that it includes the size of only a single largest
data structure pointed to by each join-value.

4.1 Abstract Data Types
Two abstract data types (ADTs), the join-value type and
the con-value (\constructed-value") type, are used. A join-
value represents a set of possible results. Join-values are
created by conditional expressions whose tests evaluate to
uk and by selectors applied to join-values. Each join-value
l has a list branches(l) containing references to con-values
and/or join-values. Primitive values, if any, in the set repre-
sented by l are not stored in l. Thus, if branches(l) has only
one element, l represents a choice between that element and
some primitive value. l has an associated constructor count
vector exs(l). Parts of the data constructions represented
by l may be live regardless of l. Of the other parts, only
those occurring in a single largest branch are live in a worst
case (i.e., maximal live heap space) execution of the original
program. The sum of the other parts that are not in the
largest branch is an excess and is stored in exs(l), as dis-
cussed in Section 4.3. live does not include exs(l). When l
becomes garbage, exs(l) is added to live just before garbage
collecting the branches of l.

The con-value type is an extension of the ADT described in
Section 3. con-values and join-values have a reference count

and a list of join-parents. A join-value l is a join-parent of
v if branches(l) references v. Functions rc, incrc, decrc,
joinParents , addJoinParent , and delJoinParent apply to
both ADTs; the names indicate their meanings. newjoin(b)
creates a join-value l with a list b of branches, and with rc(l)
initialized to 0, joinParents(l) initialized to nil, and exs(l)
initialized to the zero vector, denoted V0.

4.2 Conditionals, Selectors and Testers
Consider a conditional expression (if e1 then e2 else e3)

y

whose condition evaluates to uk . Suppose l1, l2 and l3 are
the values of live after evaluating e1, e1; e2 and e1; e3, respec-
tively. The value of live at y is set to max(l2; l3). The result
r of the conditional expression is computed by join(r2; r3),
where r2 and r3 are the results of e2 and e3, respectively.
If r2 and r3 are primitive, then r is r2 if r2 = r3 and uk
otherwise. If r2 and r3 are not primitive and are the same,
then r is r2. Otherwise, r is a join-value, and exs(r) is set
to min(l2 � l1; l3 � l1). l2 � l1 and l3 � l1 are the amounts
of new data in r2 and r3, i.e., the amounts of data created
by e2 and e3. r2 and r3 may contain old data too, i.e., data
created before evaluating e2 and e3. Old data are live re-
gardless of r. Between the sets of new data in r2 and r3,
only one set is live. We keep the larger set live; the size of
the other set is exs(r).

Selectors and testers return uk if given uk arguments. For
join-values, the selector or tester is �rst applied to the branches
and the join of the results is returned. The exs �eld of a
join-value l that is the result of applying a selector to an-
other join-value l0 is set to V0, because when l is created, l0

is live, and exs(l0) already takes care of any excess.

4.3 Achieving Tightness of live in the Presence
of Join-values

The following example illustrates why live may not be as
tight as desired.

let u = cons(1; nil) in
let v = cons(2; nil) in
(if uk then cons(3; v) else cons(4; cons(5; u)))

(1)

Let r be the result of the conditional. Let ci denote the data
construction with cons�1 (ci) = i. Just after the conditional
is evaluated, live includes the sizes of both c1 and c2. live
excludes the size of c3 because the result of the alternative
branch containing c4 and c5 is larger; so live includes the
latter instead of the former. Once v goes out of scope, c2
is live only through the reference from r. At this point in
any execution of the original program, either c2 and c3 are
live or c4 and c5 are live; c1 is de�nitely live because of the
binding for u. But in the analysis, because of the reference
from r, c2 is kept live and its size is included in live. Thus,
join-value r causes live to be loose by one cons.

In general, at any point at which all references to a data
construction v are lost except for references from a join-
value l, there is a possibility that live is loose because it
includes the size of v when it should not. Note that this
occurs only if l stays live even after the afore-mentioned

3

fL(v1; : : : ; vn) = L [[e]] where e is the body of function f , i.e., f(v1; : : : ; vn) = e

L [[v]] = v

L [[l]] = l

L [[c(e1; : : : ; en)]] = live[ic]++;maxlive = max(live;maxlive);
let r1 = L [[e1]] ; : : : ; rn = L [[en]] in
incrc(r1); : : : ; incrc(rn); new(c(r1; : : : ; rn))

L [[p(e1; : : : ; en)]] = p(L [[e1]] ; : : : ;L [[en]])

L [[c?(e)]] = let x = L [[e]] in
let r = c?(data(x)) in
(if not(isPrim(x)) and rc(x) = 0 then gc(x)); r

L
��
c�i(e)

��
= let x = L [[e]] in

let r = c�i(data(x)) in
(if not(isPrim(x)) and rc(x) = 0 then gcExcept(x; r)); r

L [[if e1 then e2 else e3]] = if L [[e1]] then L [[e2]] else L [[e3]]

L [[let v = e1 in e2]] = let v = L [[e1]] in
incrc(v);
let r = L [[e2]] in
gcExcept(v; r); r

L [[f(e1; : : : ; en)]] = let r1 = L [[e1]] ; : : : ; rn = L [[en]] in
incrc(r1); : : : ; incrc(rn);
let r = fL(r1; : : : ; rn) in
gcExcept (r1; r); : : : ; gcExcept (rn; r); r

gc(v) = if not(isPrim(v))
then decrc(v);

if rc(v) � 0
then live[conType(v)]��;

for i = 1::arity(v) gc(c�i(data(v)))
gcExcept (u; v) = incrc(v); gc(u); decrc(v)

Figure 1: Transformation that produces live heap space functions fL. isPrim(v) returns true i� v is primitive.
conType(v) returns an integer ic that uniquely identi�es the outermost constructor c in data(v). arity(v) returns
the arity of the outermost constructor in data(v).

loss of references to v. These points arise immediately after
decrements to rc(v) caused by (1) a variable or parameter
going out of scope or (2) parts of data becoming garbage
after the application of a selector. v may then be an excess
in live caused by a join-value l which in case (1), is in the
result of the function call or the let expression and in case
(2), is in the result of the selector. Observe that v cannot
be part of join-values that are not in the results of these
expressions since we are dealing with functional languages
with no destructive update. recomputeExs , de�ned in Figure
3, is called on the results of function calls, let expressions
and selectors to compute the exs attributes of join-values in
the results and adjust the value of live appropriately.

We now formally de�ne the exs attribute of join-values.
Consider the stack and live heap as a graph: con-values
and join-values in the heap and formal parameters of func-
tions and let-bound variables on the stack are vertices; ref-
erences from variables, con-values and join-values to con-
values and join-values, including references in branches at-
tributes but excluding references in joinParents attributes,
are edges. We say that u is contained-in v if v is an an-
cestor of u in every path from a node for a parameter or
variable to u. For a join-value l, let Cl denote the set of all

con-values and join-values contained-in l, and let Gl denote
the graph comprising vertices and edges reachable from l.
A join-path of l is a connected subgraph of Gl containing
l and constructed from Gl by selecting at every join-value
l0 reachable from l, exactly one branch of l0 and then, after
all selections have been made, eliminating unreachable ver-
tices and edges. Figure 4 contains examples of join-paths.
Join-paths of l correspond to data structures represented by

c1 c2

l2

l1

c3 l2

l1

c2c1

G1

l2

l1

c2

G2

l1

G3

c3

Figure 4: Examples of join-paths. G1, G2 and G3 are
join-paths of join-value l1. Circles denote join-values
and rectangles denote con-values.

l. conCountVec(u) for a con-value u is a constructor count
vector in which the count of the constructor type of u is
1 and all other counts are 0. maxJoinPath(l) is the maxi-

4

fLb(v1; : : : ; vn) = Lb [[e]] where e is the body of function f , i.e., f(v1; : : : ; vn) = e

Lb [[v]] = v

Lb [[l]] = l

Lb [[c(e1; : : : ; en)]] = same as L [[c(e1; : : : ; en)]], except replace L with Lb

Lb [[p(e1; : : : ; en)]] = pu(Lb [[e1]] ; : : : ;Lb [[en]])

pu(v1; : : : ; vn) = if v1 = uk or � � � or vn = uk then uk else p(v1; : : : ; vn)

Lb [[c?(e)]] = same as L [[c?(e)]], except replace L with Lb, and replace c?(data(x)) with c?u(x)

c?u(v) = if v = uk then uk
else if isJoin(v) then if length(branches(v)) = 1

then join(false; c?u(�rst(branches(v))))
else join(c?u(�rst (branches(v))); c?u(second(branches(v))))

else c?(data(v))

Lb

��
c�i(e)

��
= same as L

��
c�i(e)

��
, except replace L with Lb and c�i(data(x)) with c�i

u (x) and call recomputeExs(r) after
gcExcept (x; r) in the conditional

c�i
u (v) = if v = uk then uk

else if isJoin(v)
then if length(branches (v)) = 1 then c�i(false)

else join(c�i

u (�rst(branches(v))); c�i

u (second (branches(v))))
else c�i(data(v))

Lb [[if e1 then e2 else e3]] =
let b = Lb [[e1]] in
if b = uk then let l1 = copy(live) in

let r2 = Lb [[e2]] in
let l2 = copy(live) in
live = l1; let r3 = Lb [[e3]] in

let l3 = copy(live) in
live = max(l2; l3); let r = join(r2; r3) in

setexs(r;min(l2 � l1; l3 � l1)); r
else if b then Lb [[e2]] else Lb [[e3]]

Lb [[let v = e1 in e2]] = let v = Lb [[e1]] in
incrc(v); let r = Lb [[e2]] in (gcExcept (v; r); recomputeExs(r); r)

Lb [[f(e1; : : : ; en)]] = let r1 = Lb [[e1]] ; : : : ; rn = Lb [[en]] in
incrc(r1); : : : ; incrc(rn);
let r = fLb(r1; : : : ; rn) in
gcExcept (r1; r); : : : ; gcExcept (rn; r); recomputeExs (r); r

Figure 2: Transformation that produces live heap space-bound functions fLb. copy copies a vector. + and �,
when applied to vectors, denote component-wise sum and di�erence.

mum of the sizes of all join-paths of l, where size(P) for a
join-path P of l is de�ned as

size(P) =
X

u is a con-value in P \ Cl

conCountVec(u)

exs(l) is then de�ned as follows if both branches of l are
non-primitive and contained-in l (otherwise, exs(l) is V0).

exs(l) = total (l)� sub(l)�maxJoinPath(l) (2)

total(l) =
X

u is a con-value in Cl

conCountVec(u) (3)

sub(l) =
X

u is a join-value in Cl

exs(u) (4)

The sums and di�erences of constructor count vectors are
computed component-wise. (2) does not result in vectors

with negative counts, since sub(l) and maxJoinPath(l) count
data in disjoint subsets of Cl. This is justi�ed as follows
: if the join-path P which contributes to maxJoinPath(l)
contains a join-value l0, then P contains a largest join-path
of l0 and exs(l0) counts data in the other join-paths of l0.
Hence, exs(l0), for any descendant join-value l0 of l, counts
data in join-paths that are not part of P . Informally, (2) says
\subtract from live everything except a largest join-path and
nodes that have already been subtracted from live". In our
implementation, exs(l) is computed using (2) if the elements
in branches(l) have reference counts equal to 1; exs(l) is
conservatively set to V0 otherwise.

A recomputed value of exs(l) can be less than the exist-
ing value of exs(l). This happens only if after the com-
putation of the latter, selectors are applied to l creating a
new join-value l0 that references parts of l and a subsequent

5

join(v1; v2) = if eq?(v1; v2) then v1
else if isPrim(v1)

then if isPrim(v2) then uk
else let result = newjoin([v2]) in

incrc(v2); addJoinParent (v2; result); result
else if isPrim(v2)

then let result = newjoin([v1]) in
incrc(v1); addJoinParent (v1; result); result

else let result = newjoin([v1; v2]) in
incrc(v1); addJoinParent(v1; result);
incrc(v2); addJoinParent(v2; result);
result

gc(v) = if not(isPrim(v))
then decrc(v);

if rc(v) � 0
then if isJoin(v)

then live = live + exs(v);
for u in branches(v)
delJoinParent (u; v); gc(u)

else live[conType(v)]��;
for i = 1::arity(v) gc(c�i(data(v)))

recomputeExs(v) = if not(isPrim(v)) then
if isJoin(v)
then if length(branches(v)) = 2 and containedIn0(branches(v))

then let newexs = computeExs(v) in
if newexs > exs(v)
then live = live + exs(v)� newexs; setexs(v; newexs)

else for u in branches(v) recomputeExs(u)
else for i = 1::arity(v) recomputeExs(c�i(data(v)))

containedIn0(ls) = if null(ls) then true

else if rc(cons�1(ls)) = length(joinParents(cons�1(ls))) = 1
then containedIn0(cons

�2(ls))
else false

Figure 3: Auxiliary functions join, gc, recomputeExs and containedIn0. For brevity, we leave out the de�nition
of computeExs which is based on (2) in Section 4.3.

garbage collection leads to the afore-mentioned recomputa-
tion of exs(l). The references from l0 to parts of l cause
these parts to not be contained-in l and so (2) produces a
smaller value than the existing exs(l). But selection from l
does not alter the fact that only one of the data construc-
tions represented by l is live, so the new smaller value of
exs(l) is arti�cial and is ignored. [27] supplies a more de-
tailed justi�cation of how the contribution of a con-value v
to exs(l) does not change after v �rst becomes contained-in
l despite any further references created to v. On a related
note, garbage collections after testers do not lead to data
becoming newly contained-in join-values, so recomputeExs
is not called at those points. Figure 5 contains an example
of a live heap space-bound function.

4.4 Optimizations
We use two optimizations that reduce the asymptotic com-
plexity of live heap analysis for many programs. They are
only brie
y described here due to space constraints. The
�rst optimization avoids calls to recomputeExs on data with-
out join-value descendants. This is done by adding to con-
values and join-values a boolean attribute that indicates the

presence of join-value descendants.

The second optimization reduces some join-values to con-
values, thus avoiding expensive manipulations of the former.
At point p, a join-value l with branches b1 and b2 and with-
out any join-value descendants may be reduced to b1 if b1
leads to at least as much live heap usage as compared to b2.
Our optimization is conservative and reduces l to b1 if b1
and b2 have the same shape, contain equal primitive values
at corresponding locations, and for every descendant d1 of
b1 that is not contained-in l, the corresponding descendant
d2 of b2 is the same as d1. These conditions ensure that at
point p, b1 contributes at least as much to live as compared
to b2 and further, that live is maximized at all future points.

5. EXPERIMENTS
We implemented the analyses and measured the results for
several standard list and tree processing programs. Com-
parisons of results of space functions and bound functions
show that bound functions produce accurate results (i.e.,
tight bounds) for all these examples. The results are con-
sistent with the expected asymptotic space complexities of

6

reverse(ls; revls) = if null(ls) then revls
else reverse(cons�2 (ls); cons(cons�1 (ls); revls))

reverseL(ls; revls) = if (let l = ls in
let lnull? = null(data(l)) in
if not(isPrim(l)) and rc(l) = 0 then gc(l);
lnull?)

then revls
else let arg1 = (let l = ls in

let lcdr = cons�2 (data(l)) in
if not(isPrim(l)) and rc(l) = 0
then gcExcept (l; lcdr);
lcdr)

�

arg2 = (live[icons]++;maxlive := max(live;maxlive);
let lscar = sub-expression � with cons�2 replaced by cons�1

revl = revls in
incrc(lscar); incrc(revl);new (cons(lscar; revl))) in

incrc(arg1); incrc(arg2);
let r = reverseL(arg1; arg2) in
gcExcept (arg1; r); gcExcept(arg2; r); r

reverseLb
(ls; revls) = let lsnull? = (let l = ls in

let lnull? = nullu(l) in
if not(isPrim(l)) and rc(l) = 0 then gc(l);
lnull?) in

if lsnull? = uk

then let l1 = copy(live) in
let branch1 = revls in
let l2 = copy(live) in
live := l1;
let branch2 =

(let arg1 = (let l = ls in
let lcdr = cons�2

u(l) in
if not(isPrim(l)) and rc(l) = 0
then incrc(lcdr); gc(l); decrc(lcdr);
lcdr)

�

arg2 = (live[icons]++;maxlive := max(live;maxlive);
let lscar = sub-expression � with

cons�2
u replaced by cons�1

u

revl = revls in
incrc(lscar); incrc(revl);new (cons(lscar; revl))) in

incrc(arg1); incrc(arg2);
let r = reverseLb

(arg1; arg2) in
gcExcept (arg1; r); gcExcept(arg2; r); recomputeExs(r); r)y in

let l3 = copy(live) in
live := max(l2; l3);
let r = join(branch1; branch2) in
setexs(r;min(l2 � l1; l3 � l1)); r

else if lsnull?
then revls
else sub-expression y

Figure 5: Examples of space and space-bound functions. reverseL and reverseLb
are the space and space-bound

functions, respectively, of reverse.

7

the programs. We measured the running times of space and
bound functions of all examples. For most of the exam-
ples, the bound functions have the same asymptotic time
complexities as the corresponding space functions. For all
examples, a comparison of the running times of bound func-
tions and the running times of space functions multiplied
by the number of represented inputs showed that the bound
functions are asymptotically faster than applying the corre-
sponding space functions to all represented inputs. The non-
termination caveat mentioned in Section 1 is not a problem
for any of these examples.

Figure 6 contains the results of live heap space analysis on
some examples. We do not show the results of space func-
tions on worst-case inputs and bound functions on partially
known inputs separately, because the two sets of results
are the same in all examples. List reversal is the standard
linear-time version; reversal using append is the standard
quadratic-time version. The version of merge sort tested
is the one that splits the input list into sublists containing
the elements at odd and even positions. Dynamic program-
ming algorithms [3] are used for binomial coeÆcient, longest
common subsequence and string edit. Binary-tree insertion
involves insertion of an item into a complete binary tree in
which each node is a list containing an element and left and
right subtrees.

The partially known inputs for the bound functions of re-
versal and sorting are lists of known lengths n where all
elements are uk; those for longest common subsequence and
string edit are two such lists of equal length n. The bound
function for binary-tree insertion inserts uk into a complete
binary tree of known height h with unknown elements. For
binomial coeÆcient we use integer arguments, n and n� 2,
since it was found that for a given n, a value of n�2 for the
second argument leads to maximum live heap usage.

The results in Figure 6 include the space used by top-level
arguments since these arguments are indeed live throughout
the execution of the program. Figure 7 contains running
times of optimized live heap space analysis on a sampling
of input sizes. For all examples, the live heap space func-
tion has the same asymptotic time complexity as the origi-
nal function. The time complexities of the live heap space-
bound functions of reverse, reverse using append, binomial
coeÆcient, string edit and longest common subsequence are
the same as the complexities of the corresponding original
functions. The time complexities of the bound functions of
insertion sort and selection sort are a linear factor more than
those of the original functions. The linear factor is due to the
computation involved in the reduction of join-values. The
running time of the bound function of merge sort is more
than polynomial in the size of the input. This is because
the analysis examines all (n+m)!=(n!�m!) ways in which
two sorted lists of sizes n and m may be merged in sorted
order. The running time of the bound function of binary
tree insert is polynomial in the size of the input.

6. DISCUSSION
Scalability. For large programs or programs with sophisti-
cated control structures, the analysis is eÆcient if the input
parameters are small, but for larger parameters, eÆciency
is a challenge. However, from the results of bound anal-

ysis on smaller inputs, we may semi-automatically derive
closed forms and/or recurrence relations that describe the
program's space usage, by �tting a given functional form to
the analysis results. Also, when closed forms or recurrence
relations are known, we may use the results of the analysis
to determine exact coeÆcients. The closed forms or recur-
rence relations may then be used to determine space bounds
for large inputs.

Termination. The space function terminates i� the orig-
inal program terminates. The bound function might not
terminate, even when the original program does if the re-
cursive structure of the original program directly or indi-
rectly depends on unknown parts of a partially known input
structure. For example, if the given partially known in-
put structure is uk , then the bound function for any recur-
sive program does not terminate; if such a bound function
counts new space, then the original program might indeed
take an unbounded amount of space. Indirect dependency
on unknown data can be caused by an imprecise join opera-
tion. Making the join operation more precise eliminates this
source of non-termination.

Although there are methods to deal with non-termination,
incorporating such methods in our analysis could result in
loose bounds on space usage, even for programs for which
non-termination is not a problem. Further, among the sev-
eral examples that we analyzed, in only one example, namely
quicksort, is non-termination a problem.

Inputs to Bound Functions. To analyze space usage with
respect to some property of the input, we need to formulate
sets of partially known inputs that represent all actual in-
puts with that characteristic, e.g., all lists with length n, all
binary trees of height h or all binary trees with n nodes. As
an example, f(uk ; (uk ; nil; nil); nil); (uk ; nil; (uk ; nil; nil));
(uk ; (uk ; nil; nil); (uk ; nil; nil))g represents all binary trees
of height 1, each node being a list of the element and left
and right subtrees. Often formulating partially known in-
puts that represent classes of actual inputs is straightforward
and can easily be done by a simple program.

7. RELATED WORK
There has been a large amount of work on analyzing pro-
gram cost or resource complexities, but the majority of it
is on time analysis, e.g., [18, 24, 26, 19]. Stack space and
heap allocation analysis [27] is similar to time analysis [19].
Analysis of live heap space is di�erent because it involves
explicit analysis of the graph structure of the data.

Most of the work related to analysis of space is on analy-
sis of cache behavior, e.g., [28, 8], much of which is at a
lower language level, for compiler generated code, while our
analyses are at source level and can serve many purposes,
as discussed in Section 1. Live heap space analysis is also a
�rst step towards analyzing cache behavior in the presence
of garbage collection.

Persson's work on live memory analysis [22] for an object-
oriented language requires programmers to give annotations,
including speci�c numbers as bounds for the size of recursive
data structures. His work is preliminary: the presentation is
informal, with a few formulas summarizing sizes of data in

8

list
reversal

reversal
u/append

insertion
sort

selection
sort

merge
sort

binomial
coeÆcient

longest
common
subseq.

string edit
binary tree

insert

n result n result n result n result n result n result n result n result h n result
50 100 50 149 50 1325 50 1325 2 5 50 48 50 202 50 500 1 3 18
100 200 100 299 100 5150 100 5150 5 16 100 98 100 402 100 1000 2 7 33
250 500 250 749 250 31625 250 31625 10 31 250 248 250 1002 250 2500 4 31 111
500 1000 500 1499 500 125750 500 125750 12 36 500 498 500 2002 500 5000 7 255 792
1000 2000 1000 2999 1000 501500 1000 501500 15 45 1000 998 1000 4002 1000 10000 9 1023 3102

Figure 6: Results of live heap space-bound functions on partially known inputs. These are also the results of
live heap space functions; the two are equal for all of these examples. n is the input size except in the case of
binomial coeÆcient, in which n is the �rst argument. For binary tree insert, h is the height of the complete
binary tree and n is the number of nodes in the tree.

list reversal reversal u/append insertion sort selection sort merge sort
n space bound n space bound n space bound n space bound n space bound
10 0 0 10 1.0 1.0 10 1.0 9.0 10 0 10.0 10 2.0 692.0
100 4.0 4.0 100 110.0 120.0 100 125.0 5.11 s 100 205.0 5.02 s 100 40.0 > 7 days
1000 35.0 35.0 1000 10.65 s 11.85 s 1000 12.77 s 1.52 H 1000 27.34 s 1.47 H 1000 645.0 > 7 days

binomial coeÆcient longest common subseq. string edit binary tree insert
n space bound n space bound n space bound h n space bound
10 5.0 5.0 10 10.0 44.0 10 15.0 20.0 2 7 0 3.0
100 105.0 105.0 100 6.57 s 24.03 s 100 7.13 s 7.41 s 6 127 4.0 115.0
1000 11.64 s 11.64 s 1000 2.01 H 7.12 H 1000 2.16 H 2.32 H 9 1023 34.0 1.22 s

Figure 7: Running times of live heap space and live heap space-bound functions. n and h are as in Figure 6.
s is seconds and H is hours. Times without units associated with them are in milliseconds.

bytes based on the annotations, and only one example, sum-
ming a list, is given. Our analysis is able to compute bounds
based on input size only, without program annotations.

Unlike static reference counting used in analysis for compile-
time garbage collection [15, 13], our analysis uses a reference
counting method similar to that in run-time garbage collec-
tion. While the former keeps track of pointers to memory
cells that will be used later in the execution, the latter main-
tains pointers reachable from the stack at the current point
in execution. Inoue and others [12] analyze functional pro-
grams to detect run-time garbage conservatively at compile-
time. Their result is an approximation without any infor-
mation about the input. Also, they do not compute the size
of live space.

Several type systems [11, 10, 4] have been proposed for rea-
soning about space and time bounds, and some of them in-
clude implementations of type checkers [11, 4]. They require
programmers to annotate their programs with cost functions
as types. Furthermore, some programs must be rewritten to
have feasible types [11, 10].

Chin and Khoo [2] propose a method for calculating sized
types by inferring constraints on size and then simplifying
the constraints using Omega [23]. Their analysis results
do not correspond to live heap space in general. Further,
Omega can only reason about constraints expressed as lin-
ear functions.

To summarize, this work is a �rst attempt to analyze live
heap space automatically and accurately using source-level
program analysis and transformations. Imperative languages

with destructive update allow data with cycles. Reference
counting is not suitable for garbage collecting such data.
The ideas in this paper may be combined with a suitable
garbage collection algorithm such as mark and sweep, to
obtain a live heap space analysis for imperative languages.

8. REFERENCES
[1] P. Altenbernd. On the false path problem in hard

real-time programs. In Proceedings of the 8th
EuroMicro Workshop on Real-Time Systems, pages
102{107, L'Aquila, June 1996.

[2] W.-N. Chin and S.-C. Khoo. Calculating sized types.
In Proceedings of the ACM SIGPLAN 2000 Workshop
on Partial Evaluation and Semantics-Based Program
Manipulation, pages 62{72. ACM, New York, Jan.
2000.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. The MIT
Press/McGraw-Hill, 1990.

[4] K. Crary and S. Weirich. Resource bound
certi�cation. In Conference Record of the 27th Annual
ACM Symposium on Principles of Programming
Languages. ACM, New York, Jan. 2000.

[5] Proceedings of the 3rd European Symposium on
Programming, volume 432 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, May 1990.

[6] P. Flajolet, B. Salvy, and P. Zimmermann. Automatic
average-case analysis of algorithms. Theoretical
Computer Science, Series A, 79(1):37{109, Feb. 1991.

[7] Proceedings of the 4th International Conference on
Functional Programming Languages and Computer
Architecture. ACM, New York, Sept. 1989.

[8] S. Ghosh, M. Martonosi, and S. Malik. Cache miss
equations: A compiler framework for analyzing and

9

tuning memory behavior. ACM Trans. Program. Lang.
Syst., 21(4):703{746, July 1999.

[9] R. Henriksson. Scheduling Garbage Collection in
Embedded Systems. PhD thesis, Department of
Computer Science, Lund University, Sept. 1998.

[10] J. Hughes and L. Pareto. Recursion and dynamic
data-structures in bounded space: Towards embedded
ML programming. In Proceedings of the 1999 ACM
SIGPLAN International Conference on Functional
Programming, pages 70{81. ACM, New York, Sept.
1999.

[11] J. Hughes, L. Pareto, and A. Sabry. Proving the
correctness of reactive systems using sized types. In
Conference Record of the 23rd Annual ACM
Symposium on Principles of Programming Languages,
pages 410{423. ACM, New York, Jan. 1996.

[12] K. Inoue, H. Seki, and H. Yagi. Analysis of functional
programs to detect run-time garbage cells. ACM
Trans. Program. Lang. Syst., 10(4):555{578, Oct.
1988.

[13] T. P. Jensen and T. Mogensen. A backwards analysis
for compile-time garbage collection. In ESOP 1990 [5],
pages 227{239.

[14] R. Jones and R. Lins. Garbage Collection : Algorithms
for Automatic Dynamic Memory Management. John
Wiley & Sons, New York, 1996.

[15] S. B. Jones and D. Le M�etayer. Compile-time garbage
collection by sharing analysis. In FPCA 1989 [7],
pages 54{74.

[16] D. E. Knuth. The Art of Computer Programming,
volume 1. Addison-Wesley, Reading, Mass., 1968.

[17] Proceedings of the ACM SIGPLAN 1999 Workshop on
Languages, Compilers, and Tools for Embedded
Systems. ACM, New York, May 1999.

[18] D. Le M�etayer. Ace: An automatic complexity
evaluator. ACM Trans. Program. Lang. Syst.,
10(2):248{266, Apr. 1988.

[19] Y. A. Liu and G. G�omez. Automatic accurate
time-bound analysis for high-level languages. In
Proceedings of the ACM SIGPLAN 1998 Workshop on
Languages, Compilers, and Tools for Embedded
Systems, volume 1474 of Lecture Notes in Computer
Science, pages 31{40. Springer-Verlag, June 1998.

[20] M. Martonosi, A. Gupta, and T. Anderson.
E�ectiveness of trace sampling for performance
debugging tools. In Proceedings of the 1993 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 248{259. ACM,
New York, 1992.

[21] C. Y. Park. Predicting program execution times by
analyzing static and dynamic program paths.
Real-Time Systems, 5:31{62, 1993.

[22] P. Persson. Live memory analysis for garbage
collection in embedded systems. In LCTES 1999 [17],
pages 45{54.

[23] W. Pugh. The Omega Test: A fast and practical
integer programming algorithm for dependence
analysis. Commun. ACM, 31(8), Aug. 1992.

[24] M. Rosendahl. Automatic complexity analysis. In
FPCA 1989 [7], pages 144{156.

[25] I. Ryu. Issues and challenges in developing embedded
software for information appliances and
telecommunication terminals. In LCTES 1999 [17],
pages 104{120. Invited talk.

[26] D. Sands. Complexity analysis for a lazy higher-order
language. In ESOP 1990 [5], pages 361{376.

[27] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu.
Automatic accurate stack space and heap space
analysis for high-level languages. Technical Report
538, Computer Science Dept., Indiana University, Apr.
2000.

[28] R. Wilhelm and C. Ferdinand. On predicting data
cache behaviour for real-time systems. In Proceedings
of the ACM SIGPLAN 1998 Workshop on Languages,
Compilers, and Tools for Embedded Systems, volume
1474 of Lecture Notes in Computer Science, pages
16{30. Springer-Verlag, June 1998.

[29] P. Zimmermann and W. Zimmermann. The automatic
complexity analysis of divide-and-conquer algorithms.
In Computer and Information Sciences VI. Elsevier,
1991.

10

