
Domain Partitioning for

Open Reactive Systems

Scott D. Stoller

Computer Science Department

State University of New York at Stony Brook

http://www.cs.sunysb.edu/˜stoller/

1

The Problem

Consider open reactive system with typed method-call interface.

Program for environment is often unavailable or unsuitable for

model-checking (state-space exploration) or thorough testing.

Goal: Generate a suitable program that models the environment.

Many inputs are equivalent, that is, lead to same output

(system state and return value).

Examples: secure distributed voting system + insecure network,

getLen.

For efficient explicit-state model-checking:

•Use static analysis to partition inputs into equivalence classes.
•Generate model of environment that uses one representative
of each equivalence class.

2

Running Example: getLen

class SD { byte[] data; byte[] sig; } // Signed Data

Integer getLen(SD sd, PublicKey k) {
if (sd.sig is a valid signature of sd.data

with respect to k)

return new Integer(sd.data.length);

else return null;

}

Analysis result for getLen: {ECerr, EC0, EC1, . . .}

ECerr = {〈sd, k〉 | sd = null ∨ k = null

∨ sd is not correctly signed WRT k}

ECi = {〈sd, k〉 | sd 6= null ∧ k 6= null
∧ sd is correctly signed WRT k

∧ sd.data.length = i}

3

Analysis Method: Three Steps

1. Use points-to escape (PTE) analysis [Whaley & Rinard

1999] to analyze flow of references (storage locations).

2. Use data-flow analysis to analyze flow of values.

The abstract domains and transfer functions typically embody

symbolic evaluation.

3. Construct equivalence classes based on what information

about inputs is revealed by the return value and updates to global

storage

Exceptions and static fields (global storage):

handled in the paper; usually ignored in this talk.

4

Step 1: Points-to Escape (PTE) Analysis

Program representation: like Java bytecode, with variables
instead of operand stack.

Analysis result: a PTE graph 〈Nodes,Edges, esc〉
at each program point.

node: represents set of objects

edge: represents possible references

esc(n): set of ways by which objects represented by node n

may escape from method m:
return value,
global storage,
parameters of m,
arguments of methods called by m

5

Step 1 (PTE Analysis): Some Kinds of Nodes

There is one kind of node for each way a program can obtain

references.

The allocation node nst for a new statement st

represents objects allocated at st.

The parameter node np for a reference parameter p

represents the object bound to p.

The load node nst for a load statement st : l1 = l2.f

represents objects that l2.f might point to.

The return node nst for a method invocation statement st

represents objects returned by invocations at st.

6

Step 1 (PTE Analysis): Example

class SD { byte[] data; byte[] sig; }

Integer getLen(SD sd,

PublicKey k) {
0 Sig v = Sig.getInstance();

1 v.initVerify(k);

2 byte[] d = sd.data;

3 v.update(d);

4 byte[] s = sd.sig;

5 boolean b = v.verify(s);

6 if (b) {
7 i = new Integer(d.length);

8 •return i; }
9 else return null;

}

k

load

load
st4

data

sig s

param

k

return

st2

st0 v

i
allocation

param

sd sd
d

st7

esc(nst7): return value
esc(nst4): param sd, call st5

7

Step 2 (Data-Flow Analysis): Domains

There is an abstract domain for each class and primitive type.

Default domain for class cl is the union of:

• expressions representing values of type cl retrieved from read-
only inputs by field accesses (e.g., sd.data for cl = byte[]) and
functional methods (e.g., k.getAlgorithm() for cl = String).

• the cross-product of the domains for the fields of cl.

Custom domainsmay be supplied for selected classes and types.

They typically embody symbolic evaluation.

Example: Custom abstractions related to Signature.

sign(key , data) represents return val of sign,

verify(key , data, sig) represents return val of verify, etc.

8

Step 2 (Data-Flow Analysis): Algorithm

Valuation: a function from (1) nodes in the PTE graph and

(2) variables with primitive types to abstract values.

Analysis result: a valuation ρ at each program point.

Each statement st determines a transfer function [[st]].

valuation at st• = [[st]](PTE graph at •st, valuation at •st)

User may supply custom method abstractions [[m]].

[[m]] is used by transfer functions for statements that invoke m.

[[m]] distinguishes behavior for different outcomes (exceptions).

Other methods are inlined.

Analysis is expressed as a set of constraints on valuations.

Constraint for st uses [[st]] to relate valuations at •st and st•.
Contraints are solved by a worklist algorithm.

9

Step 2 (Data-Flow Analysis): Example

Integer getLen(SD sd,

PublicKey k) {
0 Sig v = Sig.getInstance();

1 v.initVerify(k);

2 byte[] d = sd.data;

3 v.update(d);

4 byte[] s = sd.sig;

5 boolean b = v.verify(s);

6 if (b) {
7 i = new Integer(d.length);

8 •return i; }
9 else return null;

}

k

load

load
st4

data

sig s

param

k

return

st2

st0 v

i
allocation

param

sd sd
d

st7

ρ(nst0) = Signature(verifying, [], . . .)
ρ(nst7) = Integer(sd.data.length)
ρ(b) = verify(k, sd.data, sd.sig, . . .)

10

Step 3: Construct Input Partition

Information about inputs may escape by being
• part of the return value (e.g., sd.data.length), or
• inferrable from return value (e.g., validity of sd.sig)

StmtEsc: statements that can cause values to escape:
return, throw, method invoc., store into escaping object.

esc(st): abstract value that escapes at statement st

type(st): type of value that escapes at statement st

escStruct(st): concrete structures that could escape at st, i.e.,
set of values of type type(st), quotiented by structural equality
(graph isomorphism) for selected objects (e.g., new objects).

Example: esc(return i) = Integer(sd.data.length)
escStruct(return i) =

⋃

i∈int{ [Integer(i)] }

11

Step 3: Construct Input Partition

Path: edge-simple paths p from enterm to exitm

guard(p): conjunction of guards on edges in p

esc(p): abstract val that escapes along p, i.e.,
⊗

st∈p∩StmtEsc esc(st)

escStruct(p): structures that could escape along p, i.e.,
⊗

st∈p∩StmtEsc escStruct(st)

PATH = Path quotiented by: p ≡ p′ iff esc(p) = esc(p′)
Extend guard and escStruct to PATH :
guard(P) =

∨

p∈P guard(p), escStruct(P) =
⋃

p∈P escStruct(p)

param: tuple of parameters of m

partn(m) =
⋃

P ∈ PATH

s ∈ escStruct(P)

{{param | esc(P) ∈ s ∧ guard(P)}}

12

Step 3: Construct Input Partition: Example

partn(getLen) =

{{〈sd,k〉 | ¬normalGetLen}}

∪
⋃

i∈int{{〈sd,k〉 | sd.data.length = i ∧ normalGetLen}}

normalGetLen =

availableSigAlg(”SHA1withDSA”)

∧ sd 6= null ∧ k 6= null

∧ compatible(k.getAlgorithm(),”SHA1withDSA”)

∧ ¬verify(”SHA1withDSA”, k, sd.data, sd.sig)

13

Case Study: Distributed Voting System

Described in paper about Phalanx [Malkhi and Reiter, 1998].

Voting system is fault-tolerant and intrusion-tolerant.

Any voter can vote at any polling station.

Design is based on Byzantine quorums.

PollingStation

back
end

voter,
admin back

other

ends
front
end

RMI

Partitions (for all methods) represented by approx 25 expressions.

Number of equiv classes with 6 quorums, 2 voters, 2 candidates,

5 polling stations: approx 425

14

Code for Environment (Adversary)

Code for adversary is similar to [Roscoe and Goldsmith, 1996],

but deals with equivalence classes (and RMI).

known := {E ∈ Partn | E ∩ InitialKnowledge 6= ∅}
while (true) {
non-deterministically choose an equiv. class E in known;
send a message in E to system
intercept response res;
known = closure(known ∪ equivalenceClass(res))

}

Code for adversary is written manually, but could be generated

semi-automatically from partition, by transforming predicates to

unions to loops.

15

Checking the Distributed Voting System

Model checker: state-less search with sleep sets, as in

Verisoft [Godefroid 1996]. It controls non-deterministic

choices by adversary and scheduler.

Found a violation of the safety property: if any polling station

believes voter V voted at polling station S, then V voted at S.

This is due to the accidental omission in [Malkhi and Reiter,

1998] of part of an integrity check for requests from other polling

stations.

16

Related Work

Partition Analysis [Richardson and Clarke, 1985]

Auto. Closing Open Reactive Systems [Colby et al., 1998]

Summary

The analysis extracts a declarative description of the information

about inputs that escapes from a method invocation.

The analysis result provides a basis for manual or semi-automatic

generation of code that models the environment of an open

reactive system.

17

