
Loop optimization for aggregate array computations

Yanhong A. Liu� and Scott D. Stoller�

Abstract

An aggregate array computation is a loop that com-
putes accumulated quantities over array elements.
Such computations are common in programs that use
arrays, and the array elements involved in such com-
putations often overlap, especially across iterations of
loops, resulting in signi�cant redundancy in the over-
all computation. This paper presents a method and
algorithms that eliminate such overlapping aggregate
array redundancies and shows both analytical and ex-
perimental performance improvements. The method is
based on incrementalization, i.e., updating the values
of aggregate array computations from iteration to iter-
ation rather than computing them from scratch in each
iteration. This involves maintaining additional infor-
mation not maintained in the original program. We
reduce various analysis problems to solving inequal-
ity constraints on loop variables and array subscripts,
and we apply results from work on array data depen-
dence analysis. Incrementalizing aggregate array com-
putations produces drastic program speedup compared
to previous optimizations. Previous methods for loop
optimizations of arrays do not perform incremental-
ization, and previous techniques for loop incremental-
ization do not handle arrays.

1 Introduction

We start with an example|the local summation prob-
lem in image processing: given an n-by-n image, com-
pute for each pixel hi; ji the sum sum[i; j] of them-by-
m square with upper left corner hi; ji. The straight-
forward program (1) takes O(n2m2) time, while the
optimized program (2) takes O(n2) time.1

for i := 0 to n�m do

for j := 0 to n�m do

sum[i; j] := 0;
for k := 0 to m� 1 do
for l := 0 to m� 1 do
sum[i; j] := sum[i; j] + a[i+k; j+l]

(1)

for i := 1 to n�m do

for j := 1 to n�m do

b[i�1+m; j] := b[i�1+m; j�1]�a[i�1+m; j�1]
+a[i�1+m; j�1+m];

sum[i; j] := sum[i�1; j]�b[i�1; j]+b[i�1+m;j]

(2)

Ine�ciency in the straightforward program (1) is
caused by aggregate array computations (in the inner

�The authors gratefully acknowledge the support of the Na-
tional Science Foundation under Grant CCR-9711253. Au-
thors' address: Computer Science Department, Indiana Uni-
versity, Lindley Hall 215, Bloomington, IN 47405. Email:
fliu,stollerg@cs.indiana.edu.

1For simplicity, initializations of sum and b for the array
margins are omitted here. The full program is in Section 6.

two loops) that overlap as array subscripts are up-
dated (by the outer two loops). We call this overlap-
ping aggregate array redundancy. Figure 1 illustrates
this: the horizontally �lled square contributes to the
aggregate computation sum[i�1; j], and the vertically
�lled square contributes to the aggregate computation
sum[i; j]. The overlap of these two squares re
ects the
redundancy between the two computations. The opti-
mization for eliminating it requires explicitly captur-
ing aggregate array computations in a loop body and,
as the loop variable is updated, updating the results of
the aggregate computations incrementally rather than
computing them from scratch. In the optimized pro-
gram (2), sum[i; j] is computed e�ciently by updating
sum[i�1; j]. Finding such incrementality is the subject
of this paper, and it is beyond the scope of previous
compiler optimizations.

����
����
����
����

����
����
����
����
����
����
����

����
����
����

��������
��������
��������
��������

m

m

m

i�1

i

j

Figure 1: The overlap of the two squares shows the
redundancy in the straightforward program (1) for the
local summation problem.

There are many applications where programs can
be written easily and clearly using arrays but with a
great deal of overlapping aggregate array redundancy.
These include problems in image processing, computa-
tional geometry, computer graphics, multimedia, ma-
trix computation, list processing, graph algorithms,
distributed property detection [25], serializing parallel
programs [8, 17], etc. For example, in image process-
ing, computing information about local neighborhoods
is common [20, 32, 60, 62, 64, 65]. The local summa-
tion problem above is a simple but typical example
[62, 64].

Overlapping aggregate array redundancy can cause
severe performance degradation, especially with the
increasingly large data sets that many applications are
facing, yet methods for eliminating overlapping aggre-
gate array redundancy have been lacking. Optimiza-
tions similar to incrementalization have been studied
for various language features [7, 12, 28, 38, 39, 40,
43, 45, 44, 55, 63], but no systematic technique han-

dles aggregate computations on arrays. At the same
time, many optimizations have been studied for arrays
[1, 2, 3, 5, 24, 26, 31, 34, 42, 49, 54, 58], but none of
them achieves incrementalization.

This paper presents a method and algorithms for
incrementalizing aggregate array computations. The
method is composed of algorithms for four major prob-
lems: (1) recognizing an aggregate array computation
and how its parameters are updated, (2) transforming
an aggregate array computation into an incremental
computation with respect to an update, by exploiting
array data dependence analysis and algebraic proper-
ties of the primitive operators, (3) determining addi-
tional values not maintained in the original program
that need to be maintained for the incrementalization,
using a method called cache-and-prune, and (4) form-
ing a new loop using incrementalized array computa-
tions, with any additional information needed appro-
priately initialized. Both analytical and experimental
results show drastic speedups that are not achievable
by previous compiler optimizations.

Methods of explicit incrementalization [40], cache-
and-prune [39], and use of auxiliary information [38]
were �rst formulated for a functional language. They
have been adopted for loop incrementalization of im-
perative programs with no arrays, generalizing tra-
ditional strength reduction [37]. This paper extends
that work to handle imperative programs that use ar-
rays. It presents a broad generalization of strength
reduction from arithmetics to aggregates in common
high-level languages, such as FORTRAN, rather than
to aggregates in special very-high-level languages, such
as SETL [22, 23, 44, 45]. Changes in hardware design
have reduced the importance of strength reduction on
arithmetic operations, but the ability to incremental-
ize aggregate computations remains essential.

Compared to work on parallelizing compilers, our
method demonstrates a powerful alternative that is
both orthogonal and correlated. It is orthogonal, since
it speeds up computations running on a single pro-
cessor, whether that processor is running alone or
in parallel with others. It is correlated, since our
optimization either allows subsequent parallelization
to achieve greater speedup, or achieves the same or
greater speedup than parallelization would while us-
ing fewer processors. In the latter case, resource re-
quirements and communication costs are substantially
reduced. Additionally, for this powerful optimization,
we make use of techniques and tools for array depen-
dence analysis [18, 19, 41, 42, 50, 51, 52] and source-
to-source transformation [5, 34, 42, 49, 54] that were
developed for parallelizing compilers.

Comparing the straightforward program (1) with
the optimized program (24) on page 8, one can see that
performing the optimizations by hand is tedious and
error-prone. A central goal of programming language
and compiler research is to allow programmers to write
clear, straightforward programs and still have those
programs execute e�ciently. That is exactly the goal
of this work.

This paper is organized as follows. Section 2 gives
the programming language. Sections 3 describes how
to identify and incrementalize aggregate array com-
putations and form incrementalized loops. Section 4
describes how to maintain additional information to

facilitate incrementalization. Section 5 presents the
overall algorithm and discusses relevant issues. Sec-
tion 6 gives examples with performance �gures. Sec-
tion 7 discusses related work.

2 Language

This paper considers an imperative language whose
data types include multi-dimensional arrays. The
language has variables that can be array references
(a[j1; :::; jm]). To reduce clutter, we use indentation
to indicate syntactic scopes and omit beginand end.
We use the following program as a running example.

Example 2.1 Given an n1-by-n2 array a, the follow-
ing code computes, for each i in the n1-dimension, the
sum of the m-by-n2 rectangle starting at position i. It
takes O(n1n2m) time.

for i := 0 to n1 �m do

s[i] := 0;
for k := 0 to m� 1 do
for l := 0 to n2 � 1 do

s[i] := s[i] + a[i+ k; l]

(3)

Our primary goal is to reduce the running time.
Of course, maintaining additional values takes extra
space. Our secondary goal is to reduce the space con-
sumption. We use a[:i:] to denote a reference of array
a that contains i in a subscript. We use t[x := e] to
denote t with each occurrence of x replaced with e.

3 Incrementalizing aggregate array
computations

We �rst show how to identify aggregate array com-
putations and determine how the parameters they de-
pend on are updated. We then show how to incre-
mentalize aggregate array computations with respect
to given updates, by exploiting properties of the func-
tions involved. Finally, we describe how to transform
a loop with aggregate array computations in the loop
body into a new loop with incrementalized aggregate
array computations in the loop body.

3.1 Identifying candidates

Candidates for optimizations are in nested loops,
where inner loops compute accumulated quantities
over array elements and outer loops update the sub-
scripts used by the array references.

De�nition 3.1 An aggregate array computation
(AAC) is a loop that computes an accumulated quan-
tity over array elements. The canonical form of an
AAC is

for i := e1 to e2 do v := f(v; g(a[:i:]; : : :)) (4)

where e1 and e2 are expressions, f is a function of two
arguments, g is a function of one or more arguments,
and throughout the loop, v is a variable (which may be
an array reference) that refers to a �xed memory loca-
tion and is updated only with the result of f , and the
values of variables (array reference or not) on which g
depends remain unchanged. An initial assignment to
v may be included in an AAC.

The existence of four items in the loop body identi�es
such a computation. First, an accumulating variable|
v|a variable that holds the accumulated quantity.
This variable may itself be an array reference whose
subscripts depend only on variables de�ned outside
the loop. Second, a contributing array reference|
a[:i:]|an array reference whose subscripts depend on
the loop variable. Third, a contributing function|
g|a function that computes using the contributing
array references but not the accumulating variable.
Fourth, an accumulating function|f|a function that
updates the accumulating variable using the result of
the contributing function.

More generally, an AAC may contain multiple for
clauses, multiple assignments, and multiple array ref-
erences. We use the above form only to avoid clut-
ter in the exposition of the algorithms. Extending
the algorithms to allow these additional possibilities
is straightforward, and these extensions are assumed
in the examples.

The essential feature of an AAC A is that a set
of computations are performed by the contributing
function, and their results are accumulated by the
accumulating function. We characterize this set by
the contributing set S(A), which describes the ranges
of the subscripts of the contributing array references.
For an AAC of the form (4), the contributing set is
S(A) = fha[:i:]i j e1 � i � e2g. More generally, for an
AAC A with contributing array references a1; : : : ; ak,

S(A) = fha1; : : : ; aki jRg; (5)

where R is the conjunction of the constraints de�ned
by the ranges of all the loop variables of A.

Example 3.1 For the program (3), the loop on k and
the loop on l each forms an AAC; we denote them as
Ak and Al, respectively. For both of them, s[i] is the
accumulating variable, a[i + k; l] is the contributing
array reference, g(u) = u, and f(v; u) = (v + u). The
contributing sets are

S(Ak) = fha[i + k; l]i j 0 � k < m ^ 0 � l < n2g
S(Al) = fha[i + k; l]i j 0 � l < n2g:

De�nition 3.2 A parameter of an AAC A is a vari-
able used in A but de�ned outside A. A subscript up-
date operation (SUO) for A is a rede�nition of a pa-
rameter that appears in A only in the subscripts of the
contributing array references. A SUO for a parameter
w is denoted �w; in contexts where it is irrelevant to
the discussion which parameter is being considered, we
simply write �.

The heart of our approach is incrementalization of
an AAC with respect to a SUO. We consider only up-
dates to parameters that are loop variables of loops
enclosing the AAC. Since we omitted speci�cation of
step size from for loops, it is implied that the update
operation for each parameter is the operation \incre-
ment by 1". It is straightforward to deal with updates
in a more general way.

Example 3.2 For Ak in program (3), variables i, m,
n2 are its parameters, and the update �i is a SUO.
For Al in program (3), i, k, n2 are its parameters, and
the updates �i and �k are SUOs.

An AAC A and a SUO �w together form a prob-
lem of incrementalization. We use A�w to denote A
with parameter w symbolically updated by �w. For
example, if A is of the form (4), w is the loop vari-
able of a loop enclosing A, and the update operation
is \increment by 1", then A�w is

for i := e�w

1
to e�w

2
do

v�w := f(v; g(a[:i:]; : : :))�w
(6)

where for any t, t�w abbreviates t[w := w + 1].

3.2 Incrementalization

Incrementalization aims to perform an AAC A incre-
mentally as its parameters are updated by a SUO �.
The basic idea is to replace with corresponding re-
trievals, wherever possible, subcomputations of A�

that are also performed in A and whose values can be
retrieved from the saved results of A. To consider the
e�ect of a SUO on an AAC, we consider (i) the ranges
of the subscripts of the array references on which the
contributing function is computed and (ii) the alge-
braic properties of the accumulating function. These
two aspects correspond to the following two steps.

The �rst step computes the di�erences between the
contributing sets of A and A�. These di�erences are
denoted

decS(A;�) = S(A)� S(A�)
incS(A;�) = S(A�)� S(A):

(7)

Example 3.3 For the program (3), consider incre-
mentalization of Ak with respect to �i. A

�i

k is

s[i+ 1] := 0;
for k := 0 to m� 1 do
for l := 0 to n2 � 1 do

s[i+ 1] := s[i+ 1] + a[i+ 1 + k; l]

(8)

and its contributing set is

S(A�i

k) = fha[i+ 1 + k; l]i j 0 � k < m ^ 0 � l < n2g:

To compute the di�erence of two sets represented
in the form (5), we formulate the di�erence as a single
set of constraints and then use the methods and tools
developed by Pugh et al. in the Omega project [50,
51, 52] to simplify the constraints.

Algorithm 3.1 (Di�erence of contributing sets)

Input: Two contributing sets S1= fha11; : : : ; a1kijR1g
and S2= fha21; : : : ; a2kijR2g

Output: The set di�erence S1 � S2.
1. Let �u be a tuple of all the constrained variables in

S2. Let �u0 be an equal-length tuple of fresh vari-
ables. Note that S2 = fha21[�u := �u0]; : : : ; a2k[�u :=
�u0]i jR2[�u := �u0]g.

2. Let S = fha11; : : : ; a1ki jR1 ^ :(9�u0 : (a11 =
a21[�u := �u0]^� � �^a1k = a2k[�u := �u0]^R2[�u := �u0])g.

3. Simplify the constraints in S using Omega [50, 51,
52].

Example 3.4 For incrementalization of Ak with re-
spect to �i in the running example, the set di�erences
are computed as follows:

decS(Ak;�i) = S(Ak)� S(A�i

k
)

= fha[i + k; l]i j (0 � k < m ^ 0 � l < n2) ^ :(9hk0; l0i :
i+ k = i+ 1 + k0 ^ l = l0 ^ 0 � k0 < m ^ 0 � l0 < n2)g

= fha[i + k; l]i jk = 0 ^ 0 � l < n2g
= fha[i; l]i j 0 � l < n2g

incS(Ak;�i) = S(A�i

k
)� S(Ak)

= fha[i + 1 + k; l]i j (0 � k < m ^ 0 � l < n2) ^ :(9hk0; l0i :
i+ 1 + k = i+ k0 ^ l = l0 ^ 0 � k0 < m ^ 0 � l0 < n2)g

= fha[i + 1 + k; l]i jk = m� 1 ^ 0 � l < n2g
= fha[i +m; l]i j 0 � l < n2g

The second step in incrementalization uses the
properties of the accumulating function to determine
how a new AAC can be performed e�ciently by up-
dating the result of the old AAC. The goal is to up-
date the result of A by removing the contributions
from decS(A;�) and inserting the contributions from
incS(A;�) in an appropriate order.

We order the elements of a constributing set
S(A) by the order they are used in the loops of
A. The elements of decS(A;�) and incS(A;�)
are ordered in the same way as those in S(A) and
S(A�), respectively. Let first(S) and last(S) de-
note the �rst and last element, respectively of S;
for example, last(decS(Ak;�i)) = ha[i; n2 � 1]i and
first(incS(Ak;�i)) = ha[i + m; 0]i. We say that a
subset S0 of S is at the end of S if the elements in S0 are
after the elements in S�S0; for example, incS(Ak;�i)
is at the end of A�i

k , but decS(Ak;�i) is not at the
end of Ak.

We remove contributions from decS(A;�) only if it
is not empty. To remove contributions, the accumulat-
ing function f must have an inverse f�1 with respect
to its second argument, satisfying f�1(f(v; c); c) = v.
If decS(A;�) is not at the end of A or incS(A;�) is
not at the end of A�, then we must also require that f
is associative and commutative. If these two require-
ments are satis�ed, A� of the form (6) can be trans-
formed into an incrementalized version of the form

v� := v;
for i := last(decS(A;�)) downto first(decS(A;�)) do
v� := f�1(v� ; g(a[:i:]; : : :));

for i := first(incS(A;�)) to last(incS(A;�)) do
v� := f(v�; g(a[:i:]; : : :))

(9)

where v contains the result of the previous execution
of the AAC, and i is a re-use of the loop variable of
the outermost loop in A. If f is not associative or
not commutative, in which case decS(A;�) must be
at the end of A, then the contributions from the ele-
ments of decS(A;�) must be removed from v in the
opposite order from which they were added; this is
why downto is used in (9).

The structure of the code in (9) is schematic; the
exact loop structure needed to iterate over decS(A;�)
and incS(A;�) depends on the form of the simpli�ed
constraints in them, which depends on the ranges of
the loops in A and on subscripts in the contributing ar-
ray references. If the loop bounds and array subscripts

are a�ne functions of the loop variables of A, then
the constraints can be simpli�ed into a set of inequali-
ties giving upper and lower bounds on these variables;
using Omega's code generation facility, these inequal-
ities are easily converted into loops that iterate over
decS(A;�) and incS(A;�). When the size of the set
decS(A;�) or incS(A;�) is zero, the corresponding
for loop can be omitted; when the size is a small con-
stant, the corresponding for loop can be unrolled.

Example 3.5 For the running example, incremental-
ize A�i

k in (8). Since + has an inverse�, and since + is
associative and commutative, we obtain the following
incrementalized AAC:

s[i+ 1] := s[i];
for l := n2 � 1 downto 0 do
s[i+ 1] := s[i+ 1]� a[i; l];

for l := 0 to n2 � 1 do
s[i+ 1] := s[i+ 1] + a[i+m; l]

(10)

The transformation from (6) to (9) is worthwhile
only if the total cost of (9) is not larger than the total
cost of (6). The costs of f and f�1 and the sizes of
the contributing sets together provide good estimates
of the total costs.

First, consider the asymptotic time complexity.
If f�1 is asymptotically at least as fast as f , and
jdecS(A;�)j+ jincS(A;�)j is asymptotically less than
jS(A�)j (these quantities are all functions of the size
of the input), then the transformed program is asymp-
totically faster than the original program. For the run-
ning example, this condition holds, since f and f�1 are
both constant-time, jdecS(Ak;�i)j+ jincS(Ak ;�i)j is
O(n2), and jS(A�i

k)j is O(n2m).
Asymptotic time complexity is an important but

coarse metric; statements about absolute running time
are also possible. If f�1 is at least as fast as f in an
absolute sense, and if jdecS(A;�)j + jincS(A;�)j is
less than jS(A�)j, then the transformed program (9)
is faster than the original program (6) in an absolute
sense. For the running example, this condition holds
when m > 2. This speedup is supported by our ex-
perimental results.

3.3 Forming incrementalized loops

To use incrementalized AACs, we transform the orig-
inal loop. The basic idea is to unroll the �rst itera-
tion of the original loop to form the initialization and,
for the remaining iterations, replace AACs with their
corresponding incremental versions. While incremen-
talized AACs are formulated to compute values of the
next iteration based on values of the current iteration,
we use them to compute values of the current itera-
tion based on values of the previous iteration. This is
straightforward for any for loop. For the particular
SUO �w that is \increment by 1", we just replace w
by w � 1.

Example 3.6 For the running example, using the in-
crementalized AAC in (10), we obtain the following
program, which takes O(n1n2) time and no additional

space.

init using
Ak in (3)
with i = 0

for clause

inc using
(10) with
i dec 1

"
s[0] := 0;
for k := 0 to m� 1 do
for l := 0 to n2 � 1 do

s[0] := s[0] + a[k; l]
for i := 1 to n1 �m do2

64
s[i] := s[i�1];
for l := n2 � 1 downto 0 do

s[i] := s[i]� a[i�1; l];
for l := 0 to n2 � 1 do

s[i] := s[i] + a[i�1 +m; l]

(11)

4 Maintaining additional information

Additional information often needs to be maintained
for e�cient incremental computation [38, 39]. Such in-
formation often comes from intermediate results com-
puted in the middle of the original computation [39].
It may also come from auxiliary information that is
not computed at all in the original computation [38].
The central issues are how to �nd, use, and maintain
appropriate information.

General methods have been proposed and formu-
lated for a functional language [38, 39]. Here we ap-
ply them to AACs, using a variant of the cache-and-
prune method [39]. We proceed in three stages: (I)
transform the code for AACs to store all intermediate
results and related auxiliary information not stored
already, (II) incrementalize the resulting AACs from
one iteration to the next based on the stored results,
and (III) prune out stored values that were not useful
in the incrementalization.

4.1 Stage I: Caching results of all AACs

We consider saving and using results of all AACs. This
allows greater speedup than saving and using results
of primitive operations.

After every AAC, we save in fresh variables the
intermediate results that are not saved already, e.g.,
the result of Al in (3). Since we consider AACs that
are themselves performed inside loops, we must dis-
tinguish intermediate results obtained after di�erent
iterations. To this end, for each AAC A, we introduce
a fresh array variable subscripted with loop variables
of all the loops enclosing A, and we add an assignment
immediately after A to copy the value of the accumu-
lating variable into the corresponding element of the
fresh array. For the example Al, we introduce a fresh
array s1 and add s1[i; k] = s[i] after Al.

A related class of auxiliary information can be ob-
tained to facilitate incrementalization if the accumu-
lating function f is associative and has a zero element
0 (i.e., f(v; 0) = f(0; v) = v). In this case, we save
in a fresh array values of the AAC starting from 0,
rather than copying intermediate results, i.e., we add
an assignment before the AAC to initialize the fresh
array variable to 0, accumulate values computed in
AAC into the fresh variable instead of the original ac-
cumulating variable, and add an assignment after the
AAC to accumulate the value of the fresh variable into
the original accumulating variable.

Example 4.1 For the program (3), storing such aux-
iliary information yields a program that, for each value
of k, accumulates separately in s1[i; k] the sum com-
puted by Al starting from 0, and then accumulates

that sum into the accumulating variable s[i]:

s[i] := 0;
for k := 0 to m� 1 do
s1[i; k] := 0;
for l := 0 to n2 � 1 do

s1[i; k] := s1[i; k] + a[i+ k; l];
s[i] := s[i] + s1[i; k]

(12)

Essentially, this class of auxiliary information is ob-
tained by chopping intermediate results into indepen-
dent pieces based on the associativity of g. These
values are not computed at all in the original program
and thus are called auxiliary information. It helps re-
duce the analysis e�ort in later stages, since the value
of an aggregate computation is directly maintained
rather than being computed as the di�erence of two
subsequent intermediate results of the larger compu-
tation.

An optimization at this stage that helps simplify
analyses in later stages and reduce the space consumed
by the additional information is to avoid generation of
redundant subscripts for the fresh arrays. Redundan-
cies arise when the same value is computed in mul-
tiple iterations and therefore stored in multiple en-
tries in that array. We detect such redundancies as
follows. Let �w be the subscript vector of the fresh
array for an AAC A, i.e., �w is the tuple of the loop
variables of all loops enclosing A. We de�ne two tu-
ples �w1 and �w2 to be equivalent for A (denoted �A)
if they lead to the same contributing set, hence to
the same auxiliary information, i.e., �w1 �A �w2 i�
S(A)[�w := w1] = S(A)[�w := �w2].

Example 4.2 For Al in (12), we have

hi1; k1i �Al
hi2; k2i i� (fha[i1+k1; l]i j 0� l<n2g =

fha[i2+k2; l]i j 0� l<n2g)
i� (i1 + k1 = i2 + k2):

(13)

We exploit this equivalence by observing that the sim-
pli�ed expression for �A is always of the form

�w1 �A �w2 i� (e1[�w := �w1] = e1[�w := �w2]) ^ � � � ^
(eh[�w := �w1] = eh[�w := �w2])

(14)
for some expressions e1; : : : ; eh. This implies that the
values of e1; : : : ; eh together distinguish the equiva-
lence classes of �A, so we can take the fresh array to
be h-dimensional and use e1; : : : ; eh as its subscripts.

Example 4.3 For Al in (12), the equivalence �Al
in

(13) is of the form (14) with h = 1 and e1 = i+ k, so
we take s1 to be a 1-dimensional array with subscript
i+ k, obtaining the extended AAC

s[i] := 0;
for k := 0 to m� 1 do

s1[i+ k] := 0;
for l := 0 to n2 � 1 do

s1[i+ k] := s1[i+ k] + a[i+ k; l];
s[i] := s[i] + s1[i+ k]

(15)

The auxiliary information now occupies O(n1 + m)
space, compared to O(n1m) space in (12).

4.2 Stage II: Incrementalization

In general, we want to perform all AACs in an iter-
ation e�ciently using stored results of the previous
iteration. As a basic case, we avoid performing AACs
whose values have been computed completely in the
previous iteration. This can be done by keeping track
of all the AACs and the variables that store their val-
ues. We incrementalize other AACs using the algo-
rithms in Section 3.2.

Example 4.4 Incrementalize the AACs Ak and Al

in (15) with respect to �i. First, we avoid perform-
ing AACs that have been performed in the previous
iteration. Thus, we only need to compute Al for el-
ements in the set di�erence fs1[i+1+ k] j 0 � k �
m�1g � fs1[i+k] j 0 � k � m�1g = fs1[i+1+k] j k =
m�1] = fs1[i+m]g. Then, we incrementalize Ak with
respect to �i. We have decS(Ak;�i) = fs1[i+k] j k =
0g = fs1[i]g and incS(Ak;�i) = fs1[i+1+k] j k =
m�1g = fs1[i+m]g. These sets both have size 1, so
we unroll the loops over them and obtain the incre-
mentalized AAC

s1[i+m] := 0;
for l := 0 to n2 � 1 do

s1[i+m] := s1[i+m] + a[i+m; l];
s[i+ 1] := s[i]� s1[i] + s1[i+m]

(16)

4.3 Stage III: Pruning

Some of the additional information saved in Stage I
might not be useful for the incrementalization in Stage
II. Stage III analyzes dependencies in the incremental-
ized computation and prunes out useless information
and the associated computations.

The analysis starts with the uses of such informa-
tion in computing the original accumulating variables
and follows dependencies back to the de�nitions of
such information. The dependencies are transitive [39]
and can be used to compute all the information that is
useful. Pruning then eliminates useless data and code,
saving both space and time.

4.4 Forming incrementalized loops

The incrementalized loop is formed as in Section 3.3,
but using the AACs that have been extended with
useful additional information.

Example 4.5 From the code in (15) and its incre-
mental version in (16) that together compute and
maintain useful additional information, we obtain the
optimized program below that takesO(n1n2) time and
O(n1) additional space. Compared with the program
in (11), this program eliminates a constant factor of 2
in the execution time and thus is twice as fast. Our
experimental results also support this speedup.

init
using
(15)
with
i = 0

for clause

inc using
(16) with
i dec 1

2
664

s[0] := 0;
for k := 0 to m� 1 do
s1[k] := 0;
for l := 0 to n2 � 1 do

s1[k] := s1[k] + a[k; l];
s[0] := s[0] + s1[k];

for i := 1 to n1 �m do"
s1[i�1+m] := 0;
for l := 0 to n2 � 1 do

s1[i�1+m] := s1[i�1+m]+a[i�1+m; l];
s[i] := s[i�1]� s1[i�1] + s1[i�1+m]

(17)

5 The optimization algorithm

The overall optimization algorithm aims to incremen-
talize aggregate array computations in every loop of a
program.

Algorithm 5.1 (
Eliminating overlapping ag-
gregate array redundancies)

Consider nested loops from inner to outer and, for
each loop L encountered, perform Steps 1-5.
1. Let w denote the loop variable of L. Identify all

loops in the loop body of L that are AACs and for
which �w is a SUO, as de�ned in Section 3.1.

2. Extend these AACs to save all appropriate addi-
tional information in variables, if not saved already,
as described in Section 4.1.

3. Incrementalize these AACs with respect to �w, as
described in Section 4.2. If any of these AACs are
nested, consider them from inner to outer.

4. Prune additional information that is not useful for
the incrementalization.

5. If incrementalization is performed, then form in-
crementalized loops using incrementalized AACs,
as described in Section 4.4.

This algorithm is expensive but automatic. A num-
ber of optimizations are possible. For example, Step 1
needs to consider only AACs whose contributing array
references depend on the current loop variable. For
another example, since we consider nested loops from
inner to outer, Step 2 only needs to consider saving
results of AACs outside of loops considered already.

Our optimization can achieve drastic program
speedup. The additional space consumption may look
worrisome, since it may a�ect cache performance for
large data sets. While our optimization eliminates
redundant computation, it also eliminates redundant
data access, so it generally preserves or increases cache
locality. In general, however, more rigorous study is
needed for analysis of space consumption as well as
various trade-o�s.

Our optimization uses an exact inverse f�1 when
decS(A;�) 6= ;. If the computations are
oating-
point, this might be computed only approximately,
and thus the optimized program might produce less
accurate results than the original program. Such in-
accuracies also arise in other optimizations that re-
organize loops. We do not expect this problem to be
worse for our optimization than others, though exper-
iments are needed to verify this.

6 Examples and performance results

The following examples and performance results show
the speedups obtained by our method. The �gures are
obtained from running the original and optimized pro-
grams, coded in FORTRAN, on a dedicated SPARC-
station 4. The programs were compiled using Sun Mi-
crosystems' f77 compiler, with optimization
ags -O4
and -fast.

6.1 Partial sum

Partial sum is a simple but interesting and illustrative
example. Given an array a[1::n] of numbers, for each
index i (line [1]), compute the sum of elements 1 to
i (lines [2] to [4]). The straightforward program (18)

takes O(n2) time.

[1] for i := 1 to n do

[2] s[i] := 0;
[3] for j := 1 to i do
[4] s[i] := s[i] + a[j]

(18)

It can be optimized using our algorithm. First, con-
sider the inner loop. Its loop body does not contain
any AACs. Now, consider the outer loop. Step 1. Its
loop body contains an AAC Aj , where s[i] is the accu-
mulating variable, and its loop increment is a SUO �i.
Step 2. No additional values need to be saved. Step
3. decS(A;�i) = ; and incS(A;�i) = fha[i + 1]ig.
Thus, the computation of s[i + 1] is incrementalized
by accumulating to the value of s[i] the only contri-
bution a[i + 1]. We obtain s[i + 1] := s[i] + a[i + 1].
Step 4. Pruning leaves the code unchanged. Step 5.
Initializing s[1] to a[1] and forming the rest of the loop
for i = 2::n, we obtain the program (19).

s[1] := a[1];
for i := 2 to n do

s[i] := s[i�1] + a[i]
(19)

This program takes only O(n) time. Running times
for programs (18) and (19) are plotted in Figure 2; the
rate of increase of the running time of the optimized
program is extremely small.

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20
n (in thousands)

unoptimized b

b b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

boptimized ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Figure 2: Running time (in seconds) for partial sum
problem.

6.2 Local neighborhood problems

This problem was introduced in Section 1. We
show that applying our optimization algorithm to the
straightforward program (1) yields the e�cient pro-
gram (2) with appropriate initializations of the array
margins.

First, consider the innermost loop Ll on l. There is
no AAC in its body.

Next, consider the loop Lk on k. Its loop body
Ll is an AAC Al, and its loop increment is a SUO
�k. Array analysis yields decS(Al;�k) = S(Al) and
incS(Al;�k) = S(A�k

l), so incrementalization is not
worthwhile. The algorithm leaves the code unchanged.

Next, consider the loop Lj on j. Step 1. Its loop
body contains two AACs, Al and Ak, and its loop in-
crement is a SUO �j . Step 2. Since the accumulating
function + is associative, saving the values of Al in an
array b yields a new loop body

sum[i; j] := 0;
for k := 0 to m�1 do

b[i+k; j] := 0;
for l := 0 to m�1 do
b[i+k; j] := b[i+k; j] + a[i+k; j+l];

sum[i; j] := sum[i; j] + b[i+k; j]

(20)

Step 3. Incrementalizing Al in the body of the loop on
k with respect to �j , we have decS(Al;�j) = fha[i+
k; j+ l]i j l = 0g = fha[i+k; j]ig and incS(Al;�j) =
fha[i+k; j+1+ l]i j l = m � 1g = fha[i+k; j+m]ig.
Incrementalizing Ak with respect to �j , we have

decS(Ak;�j) = S(Ak) and incS(Ak;�j) = S(A
�j

k),
so incrementalization is not worthwhile. We obtain

sum[i; j+1] := 0;
for k := 0 to m�1 do

b[i+k; j+1] := b[i+k; j]� a[i+k; j] + a[i+k; j+m];
sum[i; j+1] := sum[i; j+1] + b[i+k; j+1]

(21)

Step 4. Pruning (21) leaves the code unchanged. Step
5. Initialize using (20) with j = 0 and form loop for
j = 1::n�m using (21) as loop body. We obtain

init
using
(20)
with
j = 0

for clause

inc using
(21) with
j dec 1

2
664

sum[i; 0] := 0;
for k := 0 to m�1 do

b[i+k;0] := 0;
for l := 0 to m�1 do

b[i+k;0] := b[i+k;0] + a[i+k; l];
sum[i; 0] := sum[i; 0] + b[i+k;0];

for j := 1 to n�m do2
64

sum[i; j] := 0;
for k := 0 to m�1 do

b[i+k; j] := b[i+k; j�1]�a[i+k; j�1]
+a[i+k; j�1+m];

sum[i; j] := sum[i; j] + b[i+k; j]

(22)

Finally, consider the outermost loop Li. Step 1. Its
loop body is now (22); the �rst half contains AACs
Ak and Al, and the second half contains, in the body
of the loop on j, incrementalized AAC of b[i + k; j]
and AAC Ak0 of sum[i; j] by the loop over k. Its
loop increment is a SUO �i. Step 2. No additional
values need to be saved. Step 3. Incrementalize AACs
in (22) with respect to �i. In the �rst half, only Al

in fb[i+1+k; 0] j k = m�1g = fb[i+m; 0]g needs to
be computed; also, decS(Ak;�i) = fhb[i+k; 0]i j k =
0g = fhb[i; 0]ig and incS(Ak;�i) = fhb[i+1+k; 0]i j k =
m�1g = fhb[i+m; 0]ig. In the second half, in the
body of the loop on j, only Ak0 in fb[i+1+k; j] j k =
m� 1g = fb[i+m; j]g needs to be computed; also,
decS(Aj ;�i) = fhb[i+k; j]i j k = 0g = fhb[i; j]ig and
incS(Aj ;�i) = fhb[i+1+k; j]i j k = m�1g = fhb[i+

m; j]ig. We obtain

b[i+m; 0] := 0;
for l := 0 to m�1 do

b[i+m; 0] := b[i+m; 0] + a[i+m; l];
sum[i+1; 0] := sum[i; 0]� b[i; 0] + b[i+m; 0];
for j := 1 to n�m do

b[i+m; j] := b[i+m; j�1]�a[i+m; j�1]
+a[i+m; j�1+m];

sum[i+1; j] := sum[i; j]� b[i; j] + b[i+m; j]

(23)

Step 4. Pruning (23) leaves the code unchanged. Step
5. Initialize using (22) with i = 0 and form loop for
i = 1::n�m using (23) as loop body. We obtain the
optimized code in (24). Starred lines correspond to
the code in (2); other lines perform array margin ini-
tialization.

init
using
(22)
with
i = 0

for clause

inc
using
(23)
with

i dec 1

2
6666666664

sum[0; 0] := 0;
for k := 0 to m�1 do
b[k; 0] := 0;
for l := 0 to m�1 do
b[k; 0] := b[k;0] + a[k; l];

sum[0; 0] := sum[0; 0] + b[k; 0];
for j := 1 to n�m do

sum[0; j] := 0;
for k := 0 to m�1 do
b[k; j] := b[k; j�1]�a[k; j�1] + a[k; j�1+m];
sum[0; j] := sum[0; j] + b[k; j];

for i := 1 to n�m do ?2
666664

b[i�1+m; 0] := 0;
for l := 0 to m�1 do
b[i�1+m; 0] := b[i�1+m; 0] + a[i�1+m; l];

sum[i; 0] := sum[i�1; 0]�b[i�1; 0]+b[i�1+m; 0];
for j := 1 to n�m do ?
b[i�1+m; j] := b[i�1+m; j�1]�a[i�1+m; j�1]

+a[i�1+m; j�1+m]; ?
sum[i; j] := sum[i�1; j]�b[i�1; j]+b[i�1+m; j] ?

(24)
The cost analysis in both incrementalization steps (21)
and (23) ensures that the transformations are worth-
while when m > 2. In the resulting code (24), only
four � operations are performed for each pixel, inde-
pendent of m. Thus, the optimized code takes O(n2)
time. Running times for programs (1) and (24) are
shown in Figure 3. As expected, the running time for
the optimized program is approximately independent
of m.

7 Related work and conclusion

The basic idea of incrementalization is at least as old
as Babbage's di�erence machine [27]. Strength reduc-
tion is the �rst realization of this idea in optimizing
compilers [12, 28, 56]. The idea is to compute cer-
tain multiplications in loops incrementally using ad-
ditions. Our work extends traditional strength re-
duction from arithmetic operations to aggregate array
computations.

Finite di�erencing generalizes strength reduction to
handle set operations in very-high-level languages like
SETL [15, 22, 23, 43, 45]. The idea is to replace aggre-
gate operations on sets with incremental operations.
Similar ideas are also used in the language INC [63],
which allows programs to be written using operations
on bags, rather than sets. Our work exploits the se-
mantics underlying �nite di�erencing to handle aggre-
gate computations on arrays, which are more common
in high-level languages and are more convenient for ex-
pressing many application problems.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10
n (in hundreds)

unoptimized b

b
b

b

b

b

b

b

b

b

b

optimized ?

? ? ? ?
?
?
?
?
?
?

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30
m

unoptimized b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

optimized ?

???????????????

Figure 3: Running time (in seconds) for the local sum-
mation problem. For the graph on the left, m = 10.
For the graph on the right, n = 1000.

APL compilers optimize aggregate array opera-
tions by performing computations in a piece-wise and
on-demand fashion, avoiding unnecessary storage of
large intermediate results in sequences of operations
[24, 31, 61]. The same basic idea underlies techniques
such as fusion [2, 3, 11, 26, 58], deforestation [57],
and transformation of series expressions [59]. These
optimizations do not aim to compute each piece of
the aggregate operations incrementally using previous
pieces and thus cannot produce as much speedup as
our method can.

Specialization techniques, such as data specializa-
tion [35], run-time specialization and code generation
[13, 36], and dynamic compilation and code generation
[4, 16], have been used in program optimizations and
achieved certain large speedups. These optimizations
allow subcomputations repeated on �xed dynamic val-
ues to be computed once and reused in loops or re-
cursions. Our optimization exploits subcomputations
whose values can be e�ciently updated, in addition to
directly reused, from one iteration to the next. Thus,
it allows far more speedup.

General program transformations [10, 33] can be
used for optimization, as demonstrated in projects
like CIP [6, 9, 46]. In contrast to such manual or
semi-automatic approaches, our optimization of ag-
gregate array computations can be automated and
requires no user intervention or annotations. Our
method for maintaining additional information is an
automatic method for strengthening loop invariants
[14, 29, 30, 53].

Directionals are unary operations, such as LEFT
and UP, invented by Fisher and Highnam [20, 21, 32],
to describe computations involving small numbers of
neighboring nodes on grid structures. Such computa-
tions are optimized by directional rule-based trans-
formations and common subexpression elimination,
which essentially eliminate overlapping subcomputa-
tions. Their experiments show that the Cray Fortran
compiler cannot perform these optimizations. Since
local computations are written using directionals but

no loops, their optimizations can potentially exploit
more associativities than ours. Their work has also
some limitations. They optimize only computations
involving a small number of neighbors, not other over-
lapping computations, such as those in the partial sum
example. Also, programs must be written using direc-
tionals to take advantage of their optimizations; this
is inconvenient when more than a few neighbors are
involved. Finally, they do not give general methods
for handling grid margins.

Loop reordering [5, 34, 42, 49, 54], pipelining [1], and
array data dependence analysis [18, 19, 41, 42, 50, 51,
52] have been studied extensively for optimizing|in
particular, parallelizing|array computations. While
they aim to determine dependencies among uses of
array elements, we further seek to determine exactly
how subcomputations di�er from one another. We re-
duce our analysis problem to symbolic simpli�cation
of constraints on loop variables and array subscripts,
so methods and techniques developed for such simpli-
�cations for parallelizing compilers can be exploited.
In particular, we have used tools developed by Pugh's
group [50, 51, 52]. Interestingly, ideas of incremental-
ization are used for optimizations in serializing parallel
programs [8, 17].

In conclusion, this work describes a method and
algorithms that allow more drastic optimizations of
aggregate array computations than previous methods.
Besides achieving optimizations not previously possi-
ble, our techniques fall out of one general approach,
rather than simply being yet another new but ad hoc
method. Future work includes implementation, faster
optimization algorithms, and more general classes of
aggregate computations.

Applying incrementalization to loop optimization
on arrays will enable us to study important issues
of cost, performance, and trade-o�s of time, space,
and locality more explicitly, precisely, and empirically
than before. This is due to the large body of pre-
viously studied and implemented techniques and the
availability of benchmarks for optimizing and paral-
lelizing compilers.

References
[1] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan.

Software pipelining. ACM Comput. Surv., 27(3):366{432,
Sept. 1995.

[2] F. E. Allen and J. Cocke. A catalogue of optimizing trans-
formations. In R. Rustin, editor, Design and Optimization
of Compilers, pages 1{30. Prentice-Hall, Englewood Cli�s,
N.J., 1971.

[3] J. R. Allen. Dependence Analysis for Subscripted Variables
and Its Application to Program Transformations. PhD
thesis, Rice University, 1983.

[4] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers,
and B. N. Bershad. Fast, e�ective dynamic compilation.
In PLDI 1996 [47], pages 149{159.

[5] U. Banerjee. Unimodular transformations of double loops.
In Proceedings of the Workshop on Advances in Languages
and Compilers for Parallel Processing, pages 192{219,
Aug. 1990.

[6] F. L. Bauer, B. M�oller, H. Partsch, and P. Pepper. For-
mal program construction by transformations|Computer-
aided, intuition-guided programming. IEEE Trans. Softw.
Eng., 15(2):165{180, Feb. 1989.

[7] R. S. Bird. The promotion and accumulation strategies
in transformational programming. ACM Trans. Program.
Lang. and Syst., 6(4):487{504, Oct. 1984.

[8] M. Bromley, S. Heller, T. McNerney, and G. L. Steele Jr.
Fortran at ten giga
ops: The Connection Machine convo-
lution compiler. In Proceedings of the ACM SIGPLAN '91
Conference on Programming Language Design and Imple-
mentation, pages 145{156. ACM, New York, June 1991.

[9] M. Broy. Algebraic methods for program construction: The
project CIP. In P. Pepper, editor, Program Transformation
and Programming Environments, pages 199{222. Springer-
Verlag, Berlin, 1984.

[10] R. M. Burstall and J. Darlington. A transformation system
for developing recursive programs. J. ACM, 24(1):44{67,
Jan. 1977.

[11] W.-N. Chin. Safe fusion of functional expressions. In Pro-
ceedings of the 1992 ACM Conference on LISP and Func-
tional Programming, pages 11{20. ACM, New York, June
1992.

[12] J. Cocke and K. Kennedy. An algorithm for reduction of
operator strength. Commun. ACM, 20(11):850{856, Nov.
1977.

[13] C. Consel and F. No�el. A general approach for run-time
specialization and its application to C. In POPL 1996 [48].

[14] E. W. Dijkstra. A Discipline of Programming. Prentice-
Hall Series in Automatic Computation. Prentice-Hall, En-
glewood Cli�s, N.J., 1976.

[15] J. Earley. High level iterators and a method for automati-
cally designing data structure representation. J. Comput.
Lang., 1:321{342, 1976.

[16] D. R. Engler. VCODE: A retragetable, extensible, very
fast dynamic code generation system. In PLDI 1996 [47],
pages 160{170.

[17] M. D. Ernst. Serializing parallel programs by removing re-
dundant computation. Master's thesis, MIT, August 1992,
Revised August 1994.

[18] P. Feautrier. Parametric integer programming. Opera-
tionnelle/Operations Research, 22(3):243{268, Sept. 1988.

[19] P. Feautrier. Data
ow analysis of array and scalar ref-
erences. International Journal of Parallel Programming,
20(1), Feb. 1991.

[20] A. L. Fisher and P. T. Highnam. Communication and code
optimization in SIMD programs. In International Confer-
ence on Parallel Processing, Aug. 1988.

[21] A. L. Fisher, J. Leon, and P. T. Highnam. Design and
performance of an optimizing SIMD compiler. In Frontiers
of Massively Parallel Computation, 1990.

[22] A. C. Fong. Inductively computable constructs in very
high level languages. In Conference Record of the 6th An-
nual ACM Symposium on Principles of Programming Lan-
guages, pages 21{28. ACM, New York, Jan. 1979.

[23] A. C. Fong and J. D. Ullman. Inductive variables in very
high level languages. In Conference Record of the 3rd An-
nual ACM Symposium on Principles of Programming Lan-
guages, pages 104{112. ACM, New York, Jan. 1976.

[24] O. I. Franksen. Mr. Babbage's Secret : The Tale of a
Cypher and APL. Prentice-Hall, Englewood Cli�s, N.J.,
1985.

[25] V. K. Garg and J. R. Mitchell. An e�cient algorithm for
detecting conjunctions of general global predicates. Tech-
nical Report TR-PDS-1996-005, University of Texas at
Austin, 1996.

[26] A. Goldberg and R. Paige. Stream processing. In Confer-
ence Record of the 1984 ACM Symposium on LISP and
Functional Programming, pages 53{62. ACM, New York,
Aug. 1984.

[27] H. H. Goldstine. Charles Babbage and his analytical en-
gine. In The Computer from Pascal to von Neumann,
chapter 2, pages 10{26. Princeton University Press, Prince-
ton, New Jersey, 1972.

[28] A. A. Grau, U. Hill, and H. Langmaac. Translation of
ALGOL 60, volume 1 of Handbook for automatic compu-
tation. Springer, Berlin, 1967.

[29] D. Gries. The Science of Programming. Springer-Verlag,
New York, 1981.

[30] D. Gries. A note on a standard strategy for developing loop
invariants and loops. Sci. Comput. Program., 2:207{214,
1984.

[31] L. Guibas and K. Wyatt. Compilation and delayed eval-
uation in APL. In Conference Record of the 5th Annual
ACM Symposium on POPL, pages 1{8. ACM, New York,
Jan. 1978.

[32] P. T. Highnam. Systems and Programming Issues in
the Design and Use of a SIMD Linear Array for Image
Processing. PhD thesis, Department of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, Apr. 1991.

[33] S. Katz. Program optimization using invariants. IEEE
Trans. Softw. Eng., SE-4(5):378{389, Nov. 1978.

[34] W. Kelly and W. Pugh. Finding legal reordering transfor-
mations using mappings. In Proceedings of the 7th Annual
Workshop on Programming Languages and Compilers for
Parallel Computing, volume 892 of Lecture Notes in Com-
puter Science, Ithaca, New York, Aug. 1994.

[35] T. B. Knoblock and E. Ruf. Data specialization. In PLDI
1996 [47].

[36] M. Leone and P. Lee. Optimizing ML with run-time code
generation. In PLDI 1996 [47], pages 137{148.

[37] Y. A. Liu. Principled strength reduction. In Proceedings of
the IFIP TC2 Working Conference on Algorithmic Lan-
guages and Calculi. Chapman & Hall, London, U.K., Feb.
1997.

[38] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Discover-
ing auxiliary information for incremental computation. In
POPL 1996 [48], pages 157{170.

[39] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching
for incremental computation. ACM Trans. Program. Lang.
and Syst., 20(2), March 1998.

[40] Y. A. Liu and T. Teitelbaum. Systematic derivation of
incremental programs. Sci. Comput. Program., 24(1):1{
39, Feb. 1995.

[41] V. Maslov. Lazy array data-
ow dependence analysis. In
Conference Record of the 21st Annual ACM Symposium on
Principles of Programming Languages. ACM, New York,
Jan. 1994.

[42] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Ar-
ray data-
ow analysis and its use in array privatization.
In Conference Record of the 20th Annual ACM Sym-
posium on Principles of Programming Languages. ACM,
New York, Jan. 1993.

[43] R. Paige. Transformational programming|Applications to
algorithms and systems. In Conference Record of the 10th
Annual ACM Symposium on Principles of Programming
Languages, pages 73{87. ACM, New York, Jan. 1983.

[44] R. Paige. Symbolic �nite di�erencing|Part I. In Pro-
ceedings of the 3rd European Symposium on Programming,
volume 432 of Lecture Notes in Computer Science, pages
36{56. Springer-Verlag, Berlin, May 1990.

[45] R. Paige and S. Koenig. Finite di�erencing of com-
putable expressions. ACM Trans. Program. Lang. and
Syst., 4(3):402{454, July 1982.

[46] H. A. Partsch. Speci�cation and Transformation of
Programs|A Formal Approach to Software Development.
Springer-Verlag, Berlin, 1990.

[47] Proceedings of the ACM SIGPLAN '96 Conference
on Programming Language Design and Implementation.
ACM, New York, May 1996.

[48] Conference Record of the 23rd Annual ACM Symposium
on Principles of Programming Languages. ACM, New
York, Jan. 1996.

[49] W. Pugh. Uniform techniques for loop optimization. In
International Conference on Supercomputing, pages 341{
352, Cologne, Germany, June 1991.

[50] W. Pugh. The Omega Test: A fast and practical integer
programming algorithm for dependence analysis. Com-
mun. ACM, 31(8), Aug. 1992.

[51] W. Pugh and D. Wonnacott. Going beyond integer pro-
ramming with the omega test to eliminate false data de-
pendences. Technical Report CS-TR-3191, Department of
Computer Science, University of Maryland, College Park,
Maryland, Dec. 1992. An earlier version of this paper ap-
peared at the ACM SIGPLAN '92 Conference on PLDI.

[52] W. Pugh and D. Wonnacott. An exact method for analysis
of value-based array data dependences. In Proceedings of
the 6th Annual Workshop on Programming Languages and
Compilers for Parallel Computing, volume 768 of Lecture
Notes in Computer Science, Portland, Oregon, Aug. 1993.

[53] J. C. Reynolds. The Craft of Programming. Prentice-Hall,
Englewood Cli�s, N.J., 1981.

[54] V. Sarkar and R. Thekkath. A general framework for
iteration-reordering loop transformations. In Proceedings
of the ACM SIGPLAN '92 Conference on Programming
Language Design and Implementation, pages 175{187.
ACM, New York, June 1992.

[55] D. R. Smith. KIDS: A semiautomatic program develop-
ment system. IEEE Trans. Softw. Eng., 16(9):1024{1043,
Sept. 1990.

[56] B. Ste�en, J. Knoop, and O. R�uthing. E�cient code mo-
tion and an adaption to strength reduction. In Proceedings
of the 4th International Joint Conference on TAPSOFT,
volume 494 of Lecture Notes in Computer Science, pages
394{415. Springer-Verlag, Berlin, 1991.

[57] P. Wadler. Deforestation: Transforming programs to elim-
inate trees. In Proceedings of the 2nd European Sympo-
sium on Programming, volume 300 of Lecture Notes in
Computer Science, pages 344{358. Springer-Verlag, Berlin,
Mar. 1988.

[58] J. Warren. A hierarchical basis for reordering transfor-
mations. In Conference Record of the 11th Annual ACM
Symposium on POPL, pages 272{282. ACM, New York,
Jan. 1984.

[59] R. C. Waters. Automatic transformation of series expres-
sions into loops. ACM Trans. Program. Lang. and Syst.,
13(1):52{98, Jan. 1991.

[60] J. A. Webb. Steps towards architecture-independent image
processing. IEEE Computer, 25(2):21{31, Feb. 1992.

[61] B. Wegbreit. Goal-directed program transformation. IEEE
Trans. Softw. Eng., SE-2(2):69{80, June 1976.

[62] W. M. Wells, III. E�cient synthesis of Gaussian �lters by
cascaded uniform �lters. IEEE Trans. Patt. Anal. Mach.
Intell., 8(2):234{239, Mar. 1986.

[63] D. M. Yellin and R. E. Strom. INC: A language for incre-
mental computations. ACM Trans. Program. Lang. and
Syst., 13(2):211{236, Apr. 1991.

[64] R. Zabih. Individuating Unknown Objects by Combining
Motion and Stereo. PhD thesis, Department of Computer
Science, Stanford University, Stanford, California, 1994.

[65] R. Zabih and J. Wood�ll. Non-parametric local transforms
for computing visual correspondence. In J.-O. Eklundh, ed-
itor, Proceedings of the 3rd European Conference on Com-
puter Vision, volume 801 of Lecture Notes in Computer
Science, pages 151{158. Springer-Verlag, 1994.

