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ABSTRACT
As security policies get larger and more complex, analysis
tools that help users understand and validate security poli-
cies are becoming more important. This paper explores the
use of deductive spreadsheets for security policy analysis. De-
ductive spreadsheets combine the power of deductive rules
(for specifying policies and analyses) with the usability of
spreadsheets. This approach is introduced with a simple
example of analyzing information flow allowed by RBAC
policies and then applied in two case studies: analysis of
computer system configurations and analysis of Security-
Enhanced Linux access control policies.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, validation; D.2.6 [Software Engi-

neering]: Programming Environments—graphical environ-
ments; D.4.6 [Operating Systems]: Security and Protec-
tion—information flow controls

General Terms
Languages, Security, Verification

Keywords
Security policy analysis, Vulnerability analysis, SELinux pol-
icy
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1. INTRODUCTION
As information systems get larger, more complex, and

more distributed, so do their security policies. The security
configuration information in a single Windows XP system
or Security-Enhanced Linux (SELinux) system [11] typically
includes tens of thousands of items of information, much of
it low-level. The problem is multiplied in a distributed sys-
tem with many interacting systems and services. Security
policy languages are also getting more complex, in order
to express complex organization-level security policies; this
is exemplified by rule-based trust management languages,
such as Cassandra [1]. It is often difficult to understand the
interactions and overall effect of security policies, and to de-
termine whether they ensure the desired high-level security
goals. As a result, analysis tools that help users understand
and validate security policies are of increasing importance.

Desiderata for a Security Policy Analyzer.
A useful tool for developing and exploring security poli-

cies should allow analyses to be specified easily, in a high-
level language. Expressing analyses as deductive rules in a
Datalog-like language [12] is a natural approach, adopted
in several systems for policy analysis [15, 20, 14, 10] and
program analysis [24]. Analysis results should be accessible
through an easy-to-use interface. The system should be able
to provide explanations of why a particular analysis result
is a consequence of the policy. To enable the exploration of
“what if” scenarios, the user should be able to make changes
to the policy, and the analysis results should be updated and
re-displayed interactively. In addition, the system should be
able to highlight the analysis results that change as a result
of the policy changes.

Electronic Spreadsheets for Security Policy Analysis.
Our vision for a flexible and highly usable policy analy-

sis tool is driven by the electronic spreadsheet. Electronic
spreadsheets are enormously popular, for several reasons.
Their interactive 2-D tabular interface makes it easy for
users to organize, view, and manipulate the data (inputs
and outputs of computations). The results of all computa-
tions are automatically updated after every change to the
data or formulas. Moreover, computations can be specified
intuitively, by example. After specifying one instance of a
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computation (e.g., sum of the cells in a row), a user can
specify, by copying and filling, that a range of other cells
(the destination of the filling gesture) should be computed
in a “similar” manner. This allows users to specify calcula-
tions without thinking about parameterized operations and
loops, concentrating instead on concrete instances of a calcu-
lation. The easy-to-use interface and the direct interaction
with data largely eliminate the distinction between develop-
ers and users.

This paper explores the use of deductive spreadsheets (DSS)
[17] for development and analysis of security policies. De-
ductive spreadsheets combine the power of deductive rules
(for specifying policies and analyses) with the usability of
spreadsheets, and generally satisfy the above desiderata for
policy analyzers. In addition, DSS-based security policy
tools can be developed and customized more rapidly than
specialized tools written in languages like C++ or Java.

A DSS, like a traditional spreadsheet, is a two-dimensional
array of cells. However, columns and rows in a DSS are
labeled by symbolic values. For instance, an access control
matrix is naturally represented in DSS by labeling rows with
subjects, labeling columns with resources, and storing a set
of permissions in each cell. This highlights another feature
of DSS: unlike a traditional spreadsheet (and indeed in other
logical spreadsheets, e.g. [2, 9]), each DSS cell may contain a
set of values. Values may be tuples, so the sets can represent
relations. Accordingly, the formula language is extended
with operations on sets and tuples. Thus, DSS formulas,
like deductive rules, can define relations in terms of other
relations. The semantics of a DSS is given by translation
to Datalog [12]. We have implemented a DSS system called
XcelLog, which is implemented as an add-in to Microsoft
ExcelTMand uses the XSB tabled logic programming system
as the underlying deductive engine. The results presented
in this paper were obtained on the XcelLog system.

There have been other proposals to combine logic with
the spreadsheet paradigm. Our approach differs from the
others in a fundamental way by supporting set-valued cells
and meaningful recursive definitions. We discuss them in
greater detail in Section 5.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the DSS paradigm. Sections 3 and 4 are
case studies of using DSS to analyze computer system con-
figurations and Security-Enhanced Linux access control poli-
cies, respectively. Finally, related work and discussion ap-
pear in Section 5.

2. AN ILLUSTRATIVE EXAMPLE: ANAL-
YSIS OF RBAC POLICIES

Role Based Access Control (RBAC) [19] is a well known
model for expressing access control policies, and is the basis
for access control in many commercial systems, especially
DBMSs. Roles are useful intermediaries for relating users
with permissions. Users are assigned roles via the user-role
relation, and roles are associated with permissions via the
role-permission relation. For example, a user may have per-
mission to enroll in a course in an university if he/she is
a student. The permission to enroll is associated with the
student role, and a user gains the ability to enroll by being
assigned the student role. The permissions of users can be
computed by a join of the user-role and role-permission re-

lations. In this introductory example, we do not consider
other features of RBAC, such as role hierarchy and sessions.

We introduce the concepts and notations used in DSS
by considering information flow analysis of RBAC policies.
When a user can read from object o1 and write to object o2,
we say that there is a (possible) direct flow of information
from o1 to o2. Information flow analysis computes direct as
well as transitive flows between objects.

As in traditional (numeric) spreadsheets, a workbook con-
sists of one or more sheets. Each sheet is a two-dimensional
grid of cells. Each cell has a value which may be specified
directly, or indirectly via a formula. A formula may refer to
values in other cells in the workbook.

Part (a)–(d) in Figure 1 show screen shots of spreadsheets
in XcelLog that express information flow analysis of RBAC
policies. The formulas in selected cells of the spreadsheet
are shown in part (e) of the figure. Comma separated lists
of items enclosed in ‘[’ and ‘]’ denote sets. Singleton sets
are shown without the enclosing square brackets. The users
sheet (Fig. 1(a)) represents the properties of users for a given
RBAC policy. The row names u1, u2, . . . represent different
users. Column role lists the roles assigned to each user. For
instance, the cell at row u1 and column role in the figure
has values r1, r2, meaning that user u1 has roles r1 and r2.

Cell Values and Formulas.
The elements of a set in a cell may be atomic values (e.g.

r1 or r2), tuples, or other structured values. Tuples are
constructed with parentheses. For instance, consider the
roles sheet in Fig. 1(b), which represents properties of roles.
The value in cell at row r1 and column perms is the set
[(o1,read), (o2,read)], which means that role r1 has read
permission on objects o1 and o2.

Since DSS sheets have explicitly named rows and columns,
we use a special notation for referring to cells. A formula
of the form s!(c r) is a reference to a cell at column c and
row r in sheet s. The value of such a formula is the set
of all values at the given cell. As usual, the sheet prefix s!
can be dropped if the reference occurs in the same sheet.
Unlike traditional spreadsheets, however, the cell reference
formula is naturally lifted to sets. For instance, if R is a
set of row names, then s!(c R) is a valid formula whose
value is the union of the sets s!(c r) for r ∈ R. The set
of row names R may be specified by another formula. This
construct enables simple specification of joins over binary
relations. For instance, consider the cell at column perms

and row u1 in users sheet which lists the set of all per-
missions associated with user u1. The formula at that cell is
roles!(perms (role u1)), and the value at the cell is the
union of values of roles!(perms r) for all r in column role
and row u1 of the current sheet. The formulas in other rows
of column perms are obtained by copying and filling, which
appropriately renames row and column references in the for-
mula. Note the use of traditional spreadsheet metaphors to
specify rules: first, the computation (a set-valued formula) is
defined for a specific instance, and then the values for other
instances are defined by replacing row/column names.

Tuple operations.
Two operations, namely projection and selection, sup-

port the manipulation of tuple values in DSS. For instance,
consider the formula to compute the set of all objects
that are readable by user u1. Observe that (perms u1)

43



1. roles!(perms (role u1))
2. (perms u1){#2=read}[1]
3. (perms u1){#2=write}[1]
4. users!(∼readableObjects o1)
5. users!(∼writableObjects o1)
6. users!(writableObjects (objects!(readers o1)))
7. (direct o1) | (trans (direct o1))

(e) Selected formulas used to construct the sheets in (a,b,c,d) above

Figure 1: Deductive Spreadsheets for the RBAC example

is the set of all object/permission pairs to which u1 has
some access. Readable objects are selected using the for-
mula (perms u1){#2=read}, where the selection criterion
is enclosed between ‘{’ and ‘}’. The ‘[1]’ at the end of
(perms u1){#2=read}[1] (Formula 2 in Fig. 1) projects
this set of pairs on the first component, thereby computing
the set of objects readable by u1. The values in column
writableObjects, which lists the set of objects to which an
user has write access, is computed similarly.

Reverse Lookup.
The formula users!(readableObjects u1) returns the

set of all objects to which user u1 has read access. Con-
versely, the set of all users who have read access to a spe-
cific object o1, which is represented by the cell (read-

ers o1) in objects sheet (Fig. 1(c)) is computed using
the reverse-lookup operation users!(∼readableObjects
o1) (Formula 4 in the figure). In general, (v ∼r) is the set of
all columns c such that value v is in (c r); similarly, (∼c v)
is the set of all rows r such that v is in (c r). Moreover,
structured values may be used in a reverse-lookup operation.
For instance, the formula users!(∼perms (o1,read)) also
computes the set of all readers of object o1. The set of writ-
ers of an object, which is the set of users who have write
privileges, is also computed similarly.

Recursive Definitions.
When the formula in a cell x1 contains a reference to an-

other cell x2 we say that cell x1 directly depends on cell x2.
A cell x1 is said to depend (directly or indirectly) on cell x2

if (a) x1 directly depends on x2 or (b) there is an interme-
diate cell x3 such that x1 depends on x3 and x3 depends on
x2. DSS permits recursive definitions, so a cell may depend
on itself. We illustrate this by encoding information flow
analysis (see flow sheet in Figure 1(d)).

We say that information directly flows from object o1 to
object o2 if there is some user u who can read from o1

and write to o2. Consider the computation of the set of
objects to which there is a direct flow from o1. The set
of all readers of o1 is given by objects!(readers o1).
The set of objects that an user u may write to is given
by users!(writableObjects u). Thus the set of ob-
jects that some reader of o1 may write to is given
by users!(writableObjects (objects!(readers o1)))

(Formula 6 in Fig. 1).
Column trans in sheet flow represents the transitive clo-

sure of the direct flow relation, and hence expresses tran-
sitive information flow. It is computed as follows. In the
base case, we say that there is a transitive flow from o1 to
o2 if there is a direct flow from o1 to o2. Let O be the set
of all objects to which there is a direct flow from o1. The
set O is the value of (direct o1). Let O′ be the set of all
objects to which there are (direct or transitive) flows from
some object in O. Thus O′ is the value of (trans O), that
is, (trans (direct o1)). Note that O′ contains the des-
tinations of all flows that have more than one direct step;
and O contains destinations of flows with exactly one direct
step. Thus O ∪ O′ is the set of all objects that are destina-
tions of flows from o1 using one or more direct flow steps.
In DSS, the infix operator ‘|’ is used to denote the union of
two sets. Thus the formula in the cell at row o1 and column
trans (Formula 7 in Figure 1(e)) is the union of the formulas
corresponding to O and O′.

Relationship to Datalog.
The meaning of recursive formulas is given as follows. Let

x be a cell, and let fx be the formula at x. Then the value at
x is the smallest set that contains the value of fx. This def-
inition corresponds to the least model semantics of Datalog
programs.

44



A set of spreadsheets defines a 4-ary rela-
tion: sheet(Name,Row,Column,Contents), where
sheet(S,R, C,E) is true if and only if E is in the cell
at row R and column C in sheet S. For example, the cell
at row u1 and column perms in the DSS sheet named users

in Figure 1(a) is defined by the Datalog rule:

sheet(users,u1,perms,X) :-

sheet(users,u1,role,Y),
sheet(roles,Y,perms,X).

XcelLog is implemented as a plug-in to Microsoft
ExcelTM. It evaluates DSS formulas in the back-end by
invoking the logic programming system XSB. DSS formu-
las are passed as parameters to a function called DSS that
is implemented by the plug-in. When the value of a cell is
needed during the evaluation of a DSS formula (e.g. when
the formula contains a reference to the cell), the XSB side
of the interface fetches the value from Excel. This architec-
ture enables some cells to contain pure Excel formulas (e.g.,
statistical and numeric functions) while other cells contain
DSS formulas.

Explaining Analysis Results.
To help the user understand how the value (e.g., an anal-

ysis result) in a cell was obtained, XcelLog can highlight all
of the cells whose value is used, directly or indirectly (transi-
tively), in computing that cell’s value; those cells are called
its precedents. For example, consider the direct information
flow from o1 in Fig. 1(d). To compute this cell, we need
the values of the cell at row o1 and column readers in the
objects sheet, and also the values of every cell in the col-
umn writers of the same sheet. Transitively, we need all
values in column readableObjects of users (and more). A
cell’s contents are completely explained by its precedents;
in particular, if the cell contains a set, the cell’s precedents
completely determine which values are in the set, and which
are not.

A more narrowly focused notion of precedent is sometimes
useful as well. The answer precedents of a value v (in the set
in a specific cell) are values (in specific cells) that explain
the presence of v in that set. For example, to understand
how there is an information flow from o1 to o3, we can look
at the answer precedents for the value o3 in the cell in row
o1 and column direct in the flow sheet. The answer prece-
dents for that value are the value u3 in column readers of
row o1 in the objects sheet and the value o3 in column
writableObjects of row u3 in the users sheet. XcelLog
does not currently highlight answer precedents, but this fea-
ture is easy to add, since the underlying logic-programming
system (XSB) can provide the necessary information. Sim-
ilarly, XcelLog can highlight the dependents of a cell and
could be extended to highlight the answer dependents of a
value in a cell.

Incremental Re-computation.
Spreadsheets provide an interactive environment in which

data can easily be changed, and computed values are
promptly and automatically updated. In the context of pol-
icy analysis, a user can modify the policy by editing the
values in some cells, and immediately see updated analysis
results.

When the value of a cell is changed, incremental recom-
putation proceeds as follows. First, the values of cells

that are directly dependent on the changed cell are re-
evaluated. Then any cell whose value changes due to re-
evaluation triggers re-evaluation of its dependent cells. The
re-evaluation process, which is based on the incremental
evaluation algorithm of [18], continues until there is no fur-
ther change in values. For instance, when user u3 is re-
moved from role r1 and added to role r2, the cell in col-
umn perms in row u3 of users sheet is first re-evaluated.
Since the cell value changes to [(o1,write), (o2,read),
(o3,read), (o3,write)], the other cells in the same row are
re-evaluated. Note that the cell at column writableObjects
becomes [o1,o3]while the cell at column readableObjects

becomes [o2,o3]. This triggers the recomputation of all
cells in readers and writers columns of the objects sheet.
However, since the value at column readers of row o2 in
objects sheet does not change, the value at column direct

of row o2 in flow sheet is not recomputed. In large examples,
incremental evaluation enables a user to efficiently explore
“what if” scenarios by observing the effect of changing the
values or formulas at specific cells.

Usability.
We have described how DSS can be used to effectively en-

code a non-trivial analysis, using straightforward extensions
to the popular spreadsheet metaphor. Policy analysis prob-
lems encoded this way inherit the usability benefits of the
spreadsheet paradigm “for free”. Firstly, the tabular layout
can organize a considerable amount of information on the
screen at once. Secondly, users can understand the results
of calculations by navigating the precedents and dependents
of cells. Thirdly, users can explore the effects of changes,
since values in the spreadsheets are recomputed immediately
whenever necessary when some cell values are changed.

3. CASE STUDY: VULNERABILITY
ANALYSIS OF COMPUTER SYSTEMS

Vulnerabilities in an individual computer system may lead
to exploitable vulnerabilities on an entire network of sys-
tems. MulVAL is a rule-based network vulnerability an-
alyzer that assesses the impact of software vulnerabilities
throughout a network [15]. This section illustrates how a
DSS can be used to specify a part of MulVAL’s analysis
that deals with remote-access vulnerabilities.

Configuration Data.
Figure 2 shows deductive spreadsheets that contain data

about the configurations of different machines in a network.
In the example, we consider a network consisting of a web
server, a file server, and a workstation; machines outside
of our network are abstracted into a single machine called
“internet”. The network configuration (firewall rules) is
specified by hacl sheet (top sheet in the figure) which spec-
ifies the services (protocol/port pairs) on a machine that
can be accessed from another machine in the network. For
instance, in the sample configuration, the contents of cell
at row webserver and column fileserver indicates that
webserver can contact services on fileserver using rpc
on ports 100003 and 100005. The services offered by ma-
chines in the network are represented by two sheets (middle
sheets in the figure): netsvc_portwhich represents, for each
machine and server program, the port and protocol used by
that service; and netsvc_privwhich represents the privilege
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Figure 2: Vulnerability Analysis: machine and network configuration

with which the service operates on each machine. We con-
sider three users: sysadmin who has root access to the ma-
chines in our network; normaluser who has regular access,
denoted by userAccount, on the workstation; and attacker

who has root access to some machine outside our network.
These access rights are listed in the uaccounts sheet (bot-
tom right in the figure). Finally, the sheet vuln (bottom left
in the figure) lists, for each machine in the network, the set
of vulnerable programs and whether the vulnerability can
be exploited remotely or locally. The data for this sheet is
obtained by scanning the machines for the presence of vul-
nerabilities listed in the CVE database.

The Analysis.
Figure 3(a) shows deductive spreadsheets that determine

whether any user can acquire more privileges than those ex-
plicitly allowed on a machine. The result of the analysis
is the sheet uexec (bottom left in the figure) that lists the
privileges that a user can ultimately acquire. The uaccounts
sheet, listing explicitly allowed privileges, is repeated right
next to it for contrast. The uexec sheet is constructed as
follows. We begin with another sheet uaccess (middle sheet
in the figure) to represent the privileges and access informa-
tion in a form more convenient for subsequent computations.
Column hosts_privs lists pairs of values (host,privilege)
that represent the privilege a user (row label) may gain on
a host. Column hosts simply lists the set of hosts to which
a user has access. When we begin the construction, all cells
in this sheet are empty. In order to fill the values, we con-
struct a template sheet exec(normaluser) (top sheet in the
figure) that collects the various attributes and privileges of
normaluser on the different machines.

Note that the template sheet is parameterized by
normaluser and is used to derive attributes related to
normaluser. The template sheet as well as the val-
ues in it can be instantiated to other parameters (e.g.
exec(sysadmin)) when used in formulas. The formulas at
cells in the first row of exec(normaluser) are shown in Fig-
ure 3(b). Column local_exec in this sheet lists the priv-
ileges that are explicitly granted to normaluser. Column
accessible_ports lists the protocol/port pairs that are ac-
cessible to normaluser. For a given row h, this is com-

puted by looking up all machines that normaluser has ac-
cess to (from uaccess sheet) and finding the port/protocol
pairs that are open from those hosts to h. The con-
tents of the remaining columns are as follows. Column
accessible_pgms lists the services that listen on the ac-
cessible ports; vuln_pgms column lists the accessible pro-
grams that run on the different machines of the network
and have remotely exploitable vulnerabilities; remote_exec
lists the privileges used by the vulnerable programs; and, fi-
nally, column exec_all lists the union of all privileges that
normaluser can acquire.

The cell at row normaluser and column hosts in uaccess

is defined to contain those hosts for which normaluser can
gain some access, i.e., the rows for which exec_all col-
umn of exec(normaluser) sheet is nonempty. Note that
the definition is recursive since accessible_ports column
depends on the hosts cells of the uaccess sheet. We se-
lect row names whose contents are nonempty by forming
tuples (column exec_hosts_priv), copying the column to
(hosts_privs normaluser) cell of uaccess and selecting
the first element of the pairs.

The attributes and access privileges of other principals is
generated in the uaccess sheet by copying the first row and
filling the remaining sheet with it. Finally, the first row
in uexec sheet corresponds to the values in the exec_all
column of exec(normaluser) sheet: it gives the privileges
that normaluser can gain on the different machines. The
privileges of other principals can be found simply by copying
the first row of uexec and filling the remaining rows.

Discussion.
This case study introduced the notion of template sheets

which can be used to define the attributes of a specific in-
stance. Values from template sheets can be copied into reg-
ular sheets and instantiated appropriately using the tradi-
tional copy and fill operations. The two dimensional grid of
a spreadsheet is ideal for dealing with binary and ternary
relations; template sheets provide a mechanism to deal nat-
urally with higher-arity relations.

This analysis of multi-host remote-access vulnerabilities
was expressed in DSS using the operations described in Sec-
tion 2 plus template sheets. All classes of vulnerabilities de-
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(a) Deductive spreadsheets to compute acquired access privileges

1. uaccounts!(webserver normaluser)
2. hacl!(webserver (uaccess!(hosts normaluser)))
3. netsvc_port!((accessible_ports webserver) ~webserver)
4. (accessible_pgms webserver) & (vuln!(remote_priv webserver))
5. netsvc_priv!((vuln_pgms webserver) webserver)
6. (local_exec webserver) | (remote_exec webserver)
7. (webserver, (exec_all webserver))

(b) Formulas used to construct the sheets in (a) above

Figure 3: Vulnerability Analysis: computing acquired access privileges

tected by MulVAL [15] can be detected with a few additional
sheets using these operations. The spreadsheet environment
makes it easy to track the sources of vulnerabilities by nav-
igating through precedents and dependents of cells. “What
if” analyses can be performed by interactively changing the
configuration data (e.g. the firewall rules in hacl) and ob-
serving the changes to the results, which are immediately
recomputed.

4. CASE STUDY: SECURITY-ENHANCED
LINUX

SELinux [11] extends the Linux kernel with a fine-grained
mandatory access control (MAC) mechanism. The SELinux
module is included in major Linux distributions, although it
is turned off in the default configuration. The SELinux mod-
ule enforces a security policy expressed in a language based
on domain and type enforcement, extended with elements
of RBAC and multi-level security. Much of the SELinux
example policy [11] and reference policy [23] are devoted to
fine-grained enforcement of the principle of least privilege
for operating system processes and server processes, in or-
der to strictly contain the damage that can be caused by a
compromised process. These policies are large (tens of thou-
sands of lines), low-level, and difficult to write, understand,
and validate. This has motivated the development of sev-
eral tools for development and analysis of SELinux policies
[6, 5, 20, 4, 22, 14]. This section describes our prototype
deductive spreadsheet for SELinux policies and compares it
with other tools.

Overview of SELinux Policies.
SELinux associates a security context with each resource

(file, process, socket, etc.). A security context is a tuple
(user, role, type). A type is an abstraction analogous to a
role: resources are organized into types, and subjects are
granted permissions to perform operations on types (i.e., on
the resources in the type).

An access vector rule indicates that resources (usually pro-
cesses) in a specified type, called the source type, have spec-
ified permissions for the resources in a specified type, called
the target type. A permission is identified by a class (i.e.,
a kind of resource, such as file or process) and an opera-
tion (such as read or signal). Types may have aliases and
attributes (e.g., the domain attribute is given to types that
can be assigned to processes). An attribute, when used in
an access vector rule, represents all types having that at-
tribute. The policy may also define a never-allow relation
that describes accesses that should never be allowed; check-
ing disjointness of the allow and never-allow relations can
catch errors in the policy.

A policy also specifies the allowed roles for each user, and
the allowed types for each role (more precisely, the allowed
types for processes running in security contexts with that
role). A security context (user, role, type) is consistent if
the role is allowed for the user, and the type is allowed for
the role. The SELinux module blocks actions that would
lead to the creation of an inconsistent security context.

SELinux Policies in DSS.
SELinux policies in policy.conf format are loaded into

our system by using a Perl script to transform the policy
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Figure 4: Write-Execute Vulnerability in SELinux Reference Policy

into comma-separated-value (.csv) format and then opening
the .csv files in Excel (currently, some manual steps are also
needed, but they could be automated). In our experiments,
we analyzed parts of the SELinux example policy (version
1.1, for consistency with the experiments in [20]) and the
SELinux reference policy (version 20061212) [23].

Sheets containing intermediate results and analysis results
are computed from base data loaded in this way. The work-
book provides many of the analyses in Gokyo [5], SLAT [3,
4], PAL [20], and NETRA [14], including the following.

Privilege Escalation Vulnerability.
A privilege escalation vulnerability, also called a

write-execute (W-E) vulnerability, exists when a non-
administrative (i.e., less trusted) type has write permission
for a resource, and an administrative type has execute per-
mission for that resource [14]. As in the NETRA anal-
ysis [14], we introduce a root type with execute permis-
sion for selected types containing security-critical binaries,
e.g., the type su_exec_t, which contains the su binary. We
classify root as administrative, and all other types as non-
administrative.

Our analysis found several W-E vulnerabilities in the
SELinux reference policy, similar to vulnerabilities that NE-
TRA found in the Fedora Core 5 targeted policy. For ex-
ample, like NETRA, our analysis found a W-E vulnerabil-
ity involving apmd_t (advanced power management daemon
type). The vulnerability arises because apmd has the at-
tribute files_unconfined_type, su_exec_t has attribute
file_type (which corresponds to attrib_001 in [14]), and
an access rule gives files_unconfined_type write permis-
sion to file_type. Figure 4 shows some relevant parts of
the workbook. The attributes of apmd_t and su_exec_t are
visible in the types sheet on the left. The cell (file_type
files_unconfined_type) in the acv sheet on the top right
contains write access permission (not visible in the figure)
besides other permissions on file objects representing the
aforementioned access rule. The (root, su_exec_t) entry
in cell (writeExecuteAttack apmd_t) in the analysis sheet
on the bottom right indicates the vulnerability; specifically,
it means that the non-administrative type apmd_t has write

permission for su_exec_t, and the administrative type root

has execute permission for su_exec_t.

Integrity Vulnerability.
An integrity vulnerability exists when a non-

administrative type s has write permission for a resource,
and an administrative type t has read permission for that
resource [14]. For this analysis, we gave the administrative
type root read permission for selected types containing
security-critical files, e.g., the type shadow_t, which con-
tains the password file /etc/shadow. For example, we
found an integrity vulnerability due to apmd_t having write
permission to shadow_t, for similar reasons as above.

Integrity of Trusted Computing Base.
This analysis checks for privilege escalation and integrity

vulnerabilities, as above, with the administrative types
taken to be the types in the trusted computing base (TCB)
for SELinux proposed in [6]. As described in [6], the sys-
tem designer may examine these potential vulnerabilities
and eliminate the unacceptable ones.

Information-Flow Analysis.
Information-flow analysis determines possible information

flows between security contexts or types. Direct information
flow is possible from a security context c1 to a security con-
text c2 if a process with context c1 has a write permission
for resources with context c2, or a process with context c2

has a read permission for resources with context c1 [3, 4].
The information-flow relation is the transitive closure of the
direct flow relation. In the row for source context c, the cell
in the infoFlow column contains the set of contexts to which
information can flow from c. The sheet could be extended
to provide specific paths along which information can flow.

We also developed similar but simpler sheets that, like
NETRA [14] and Apol [22], calculate information flow be-
tween types, rather than security contexts, by ignoring con-
straints that involve the user and role components of the
security context.

Information-flow analysis can be used in several ways. The
user might want to simply examine the types from which
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or to which information flows for selected types of interest.
The user might want to restrict attention to flows that do
not pass through a specified type f that acts as an “infor-
mation firewall”; this is easily supported by parameterizing
the information-flow sheet by f and modifying the formu-
las appropriately. Information-flow analysis can be used to
enhance other analyses. For example, a transitive privilege
escalation vulnerability exists when there is information flow
from a non-administrative source type s to another type s′

and there is a privilege escalation vulnerability between s′

and t. A transitive integrity vulnerability is defined similarly.

Policy Completeness.
Jaeger et al. point out that unspecified permissions—

i.e., permissions that are not in the allow or never-allow
relations—reflect a kind of incompleteness in the policy
specification [5]. Policy completeness analysis lists all the
unspecified permissions, so policy developers can check
whether the incompleteness is intentional and acceptable.

Usability.
As mentioned earlier, precedents and descendants of cells,

which can be highlighted in XcelLog, can be navigated to un-
derstand analysis results. However, finding highlighted cells
in a large workbook could be tedious. XcelLog currently
helps the user with this by marking sheets containing high-
lighted cells, but could be extended to automatically elide
rows and columns that do not contain highlighted cells.

While spreadsheets are incrementally updated, it is some-
times useful to highlight all cells whose values changed as a
result of the most recent edit operation. This is similar to
showing answer dependents, but is more sensitive to the spe-
cific values involved: changing a value does not necessarily
change the value of all its answer dependents.

After exploring changes to a policy in a spreadsheet, the
user might want to make those changes permanent. It is
easy to generate a policy.conf file that incorporates them,
by saving the sheet as a .csv file and using a Perl script to
convert the data to policy.conf format. A similar idea is
mentioned in [10].

Performance.
Our current prototype is usable but leaves room for per-

formance improvement. For a workbook that implements all
the analyses in PAL [20], including information-flow analy-
sis (which involves a relatively expensive transitive closure)
but excluding policy completeness, calculation of all analy-
sis results for a subset of the SELinux example policy with
all 271 types and 8700 access vector rules (43% of the total)
takes about 5 minutes on a 1.7 GHz Pentium PC. Incremen-
tal re-calculation of all analysis results takes, for example,
1 second after deleting the attribute domain from the type
crond_t; re-calculation takes about 1 minute after deleting
all the attributes of crond_t.

Comparison With Other SELinux Policy Analysis
Tools.

Expressing policy analyses and requirements as DSS for-
mulas is similar to expressing them as set formulas, like
in Gokyo [5, 6], as regular-expression-like formulas, like in
SLAT [3, 4], or as deductive rules, like in PAL [20], NETRA
[14], and Lopol [10]. However, none of these other tools

provide the usability benefits of DSS. In particular, none of
them provides an interactive environment in which analysis
results are incrementally updated as the policy is modified.

SLAT, PAL, and Lopol are command-line tools whose in-
put and output are simply text streams. Apol [22] has a
GUI for specifying the analyses to perform and displaying
the analysis results, but it does not support editing the pol-
icy. NETRA does not support modifying the policy during
analysis but provides a useful graphical output format: it
generates derivations, in the form of directed acyclic graphs
(DAGs), to justify and explain analysis results. A derivation
provides the same basic information as a set of answer prece-
dents, namely, indicating which policy rules contributed to
the result, but presents it in a more structured manner.

None of these analysis tools, including our current spread-
sheets but with the exception of PAL [20], work with poli-
cies in source-level format. A disadvantage of working with
lower-level formats is that macros (with parameters), the
primary abstraction mechanism in the SELinux policy lan-
guage, have been expanded; this can make the analysis re-
sults harder to understand. A useful direction for future
work is to import source-level policies into spreadsheets, by
translating macros into formulas in parameterized sheets.

5. RELATED WORK AND DISCUSSION
There are several proposals for combining the spreadsheet

metaphor with logic; some are surveyed in [13]. Knowl-
edgesheet [2] and PrediCalc [9] are two recent ones that
are related to DSS in their vision. Both of these approaches
maintain the functional aspect of traditional spreadsheets,
in that each cell still contains a single value. They extend
traditional spreadsheets by allowing the user to specify con-
straints that partially or completely determine the value in a
cell. Our approach differs from these in a fundamental way,
in that we allow cells to contain sets of values and allow for-
mulas with cell references to specify subset constraints. As
as result, recursively defined cells do not make sense in their
functional framework but are perfectly meaningful in our re-
lational one. This is what really allows our spreadsheets to
support full deduction.

Another interesting combination of rules and spreadsheets
is ARulesXL (http://www.arulesxl.com/). ARulesXL al-
lows users to define WHEN rules that specify cell contents
using defined variables. The use of logic is interesting, but
it retains the functional aspects of traditional spreadsheets
and does not support recursive definitions.

There has also been recent work on extensions to the Ex-
cel spreadsheet that integrate user-defined (non-recursive)
functions into the spreadsheet grid, rather than treating
them as a “bolt-on” [8]. This work develops a way to specify
user defined functions visually with a spreadsheet. But each
cell still possesses a unique value.

Quantrix [16] has developed spreadsheet technology for
compact representation of single-element cell data and ma-
nipulation of various dimensions to ease viewing of data un-
der different representations. It will be useful to explore and
generalize Quantrix’s technology from single-element cell to
sets for reducing the sparseness of data and facilitate multi-
ple views of data in DSS.

Deductive spreadsheets might be viewed as a visual inter-
face to a set-based language. While there have been several
proposals for more expressive programming languages that
support set specifications [7, 21], our focus is less on the
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power of the underlying language and more on its presenta-
tion and usability in the tabular spreadsheet form.

Deductive spreadsheets can be regarded as a different way
of presenting the relational tables of a DBMS. A table view
treats all components of a relation symmetrically, while the
spreadsheet view introduces asymmetry, by choosing com-
ponents to use as row names and column names, and tu-
pling the remaining components. The DSS view is some-
times more compact, because a cell in a DSS may contain a
set, while each entry in a DBMS table is an atomic value.

We conclude with some possible extensions to XcelLog,
the current DSS prototype, that will further improve its
usability. Currently, cell-level dependencies are considered
when constructing explanations. By refining this cell-level
granularity to the granularity of individual values in the set
in a cell, more detailed explanations can be constructed.
Another useful extension would be to allow the user to ex-
plicitly define sets of row or column names and then auto-
matically extend a sheet (including generation of formulas
for the new cells) when its row or column set is changed.
For some policy analysis problems a Datalog encoding may
already be known. In such cases, the initial development of
DSS encoding can be simplified by generating it automati-
cally from the Datalog program with annotations about the
desired layout of the relations.
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