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Abstract. Dynamic programming is an important algorithm design tech-
nique. It is used for solving problems whose solutions involve recursively
solving subproblems that share subsubproblems. While a straightforward
recursive program solves common subsubproblems repeatedly and often
takes exponential time, a dynamic programming algorithm solves ev-
ery subsubproblem just once, saves the result, reuses it when the sub-
subproblem is encountered again, and takes polynomial time. This pa-
per describes a systematic method for transforming programs written
as straightforward recursions into programs that use dynamic program-
ming. The method extends the original program to cache all possibly
computed values, incrementalizes the extended program with respect to
an input increment to use and maintain all cached results, prunes out
cached results that are not used in the incremental computation, and uses
the resulting incremental program to form an optimized new program. In-
crementalization statically exploits semantics of both control structures
and data structures and maintains as invariants equalities characterizing
cached results. The principle underlying incrementalization is general for
achieving drastic program speedups. Compared with previous methods
that perform memoization or tabulation, the method based on incremen-
talization is more powerful and systematic. It has been implemented and
applied to numerous problems and succeeded on all of them.

1 Introduction

Dynamic programming is an important technique for designing e�cient algo-
rithms [2, 46, 14]. It is used for problems whose solutions involve recursively solv-
ing subproblems that overlap. While a straightforward recursive program solves
common subproblems repeatedly, a dynamic programming algorithm solves ev-
ery subproblem just once, saves the result in a table, and reuses the result when
the subproblem is encountered again. This can reduce the time complexity from
exponential to polynomial. The technique is generally applicable to all problems
whose e�cient solutions involve memoizing results of subproblems [4, 5].

Given a straightforward recursion, there are two traditional ways to achieve
the e�ect of dynamic programming [14]: memoization [34] and tabulation [5].

Memoization uses a mechanism that is separate from the original program to
save the result of each function call or reduction [34, 19, 22, 35, 24, 43, 45, 39, 25,
18, 1]. The idea is to keep a separate table of solutions to subproblems, modify
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recursive calls to �rst look up in the table, and then, if the subproblem has been
computed, use the saved result, otherwise, compute it and save the result in the
table. This method has two advantages. First, the original recursive program
needs virtually no change. The underlying interpretation mechanism takes care
of the table �lling and lookup. Second, only values needed by the original pro-
gram are actually computed, which is optimal in a sense. Memoization has two
disadvantages. First, the mechanism for table �lling and lookup has an interpre-
tive overhead. Second, no general strategy for table management is e�cient for
all problems.

Tabulation determines what shape of table is needed to store the values of all
possibly needed subcomputations, introduces appropriate data structures for the
table, and computes the table entries in a bottom-up fashion so that the solution
to a superproblem is computed using available solutions to subproblems [5, 13,
40, 39, 10, 12, 41, 42, 21, 11]. This overcomes both disadvantages of memoization.
First, table �lling and lookup are compiled into the resulting program so no sep-
arate mechanism is needed for the execution. Second, strategies for table �lling
and lookup can be specialized to be e�cient for particular problems. However,
tabulation has two drawbacks. First, it usually requires a thorough understand-
ing of the problem and a complete manual rewrite of the program [14]. Second,
to statically ensure that all values possibly needed are computed and stored, a
table that is larger than necessary is often used; it may also include solutions to
subproblems not actually needed in the original computation.

This paper presents a powerful method that statically analyzes and trans-
forms straightforward recursive programs to e�ciently cache and use the results
of needed subproblems at appropriate program points in appropriate data struc-
tures. The method has three steps: (1) extend the original program to cache
all possibly computed values, (2) incrementalize the extended program, with re-
spect to an input increment, to use and maintain all cached results, (3) prune
out cached results that are not used in the incremental computation, and �-
nally use the resulting incremental program to form an optimized program. The
method overcomes both drawbacks of tabulation. First, it consists of static pro-
gram analyses and transformations that are general and automatable. Second, it
stores only values that are necessary for the optimization; it also shows exactly
when and where subproblems not in the original computation are necessarily
included.

Our method is based on static analyses and transformations studied pre-
viously by others [52, 9, 48, 6, 36, 20, 49, 41] and ourselves [33, 32, 31, 27, 32] and
improves them. Yet, all three steps are simple, automatable, and e�cient and
have been implemented in a prototype system, CACHET. The system has been
used to optimize many programs written as straightforward recursions, including
all dynamic programming problems found in [2, 46, 14]. Performance measure-
ments con�rm drastic asymptotic speedups.

2 Formulating the problem

Straightforward solutions to many combinatorics and optimization problems
can be written as simple recursions [46, 14]. For example, the matrix-chain-
multiplication problem [14, pages 302-314] computes the minimum number of
scalar multiplications needed by any parenthesization in multiplying a chain of



n matrices, where matrix i has dimensions pi�1 � pi. This can be computed as
m(1; n), where m(i; j) computes the minimum number of scalar multiplications
for multiplying matrices i through j and can be de�ned as: for i � j,

m(i; j) =

�
0 if i = j
mini�k�j�1fm(i; k) +m(k+ 1; j) + pi�1 � pk � pjg otherwise

The longest-common-subsequence problem [14, pages 314{320] computes the
length c(n;m) of the longest common subsequence of two sequences hx1; x2; :::; xni
and hy1; y2; :::; ymi, where c(i; j) can be de�ned as: for i; j � 0,

c(i; j) =

8<
:
0 if i = 0 or j = 0
c(i� 1; j � 1) + 1 if i 6= 0 and j 6= 0 and xi = yj
max(c(i; j � 1); c(i� 1; j)) otherwise

Both of these examples are literally copied from the textbook by Cormen, Leis-
erson, and Rivest [14].

These recursive functions can be written straightforwardly in the following
�rst-order, call-by-value functional programming language. A program is a func-
tion f0 de�ned by a set of mutually recursive functions of the form

f(v1; :::; vn) , e

where an expression e is given by the grammar

e ::= v variable
j c(e1; :::; en) constructor application
j p(e1; :::; en) primitive function application
j f(e1; :::; en) function application
j if e1 then e2 else e3 conditional expression
j let v = e1 in e2 binding expression

We include arrays as variables and use them for indexed access such as xi and
pj above. For convenience, we allow global variables to be implicit parameters
to functions; such variables can be identi�ed easily for our language even if they
are given as explicit parameters. Fig. 1 gives programs for the examples above.
Invariants about an input are not part of a program but are written explicitly to
be used by the transformations. These examples do not use data constructors,
but our previous papers contain a number of examples that use them [33, 32, 31]
and our method handles them.

These straightforward programs repeatedly solve common subproblems and
take exponential time. We transform them into dynamic programming algo-
rithms that perform e�cient caching and take polynomial time.

We use an asymptotic cost model for measuring time complexity. Assuming
that all primitive functions take constant time, we need to consider only values
of function applications as candidates for caching. Caching takes extra space,
which re
ects the well-known trade-o� between time and space. Our primary
goal is to improve the asymptotic running time of the program. Our secondary
goal is to save space by caching only values useful for achieving the primary goal.

Caching requires appropriate data structures. In Step 1, we cache all possibly
computed results in a recursive tree following the structure of recursive calls.
Each node of the tree is a tuple that bundles recursive subtrees with the return



c(i; j) where i; j � 0

, if i = 0 _ j = 0 then 0
else if x[i] = y[j] then c(i�1; j�1) + 1
else max(c(i; j � 1); c(i� 1; j))

m(i; j) where i � j

, if i = j then 0
else msub(i; j; i)

msub(i; j; k) where i � k � j � 1

, let s = m(i; k) +m(k+1; j) + p[i�1] � p[k] � p[j] in
if k +1 = j then s
else min(s;msub(i; j; k + 1))

Fig. 1. Example programs.

value of the current call. We use <> to denote a tuple, and we use selectors 1st,
2nd, 3rd, etc. to select the �rst, second, third, etc. elements of a tuple.

In Step 2, cached values are used and maintained in e�ciently computing
function calls on slightly incremented inputs. We use an in�x operation � to
denote an input increment operation, also called an input change (or update)
operation. It combines a previous input x = hx1; :::; xni and an increment pa-
rameter y = hy1; :::; ymi to form an incremented input x0 = hx01; :::; x

0

ni = x� y,
where each x0i is some function of xj 's and yk's. An input increment operation
we use for program optimization always has a corresponding decrement oper-
ation prev such that for all x, y, and x0, if x0 = x � y then x = prev(x0).
Note that y need not be used. For example, an input increment operation to
function m in Fig. 1 could be hx01; x

0

2i = hx1; x2 + 1i or hx01; x
0

2i = hx1 � 1; x2i,
and the corresponding decrement operations are hx1; x2i = hx01; x

0

2 � 1i and
hx1; x2i = hx01+1; x02i, respectively. An input increment to a function that takes
a list could be x0 = cons(y; x), and the corresponding decrement operation is
x = cdr(x0).

In Step 3, cached values that are not used for an incremental computation are
pruned away, yielding functions that cache, use, and maintain only useful values.
Finally, the resulting incremental program is used to form an optimized program.
Our optimization preserves the semantics in the sense that if the original program
terminates with a values, the optimized program terminates with the same value.

For a function f in an original program, �f denotes the function that caches

all possibly computed values of f , and f̂ denotes the pruned function that caches
only useful values. We use x to denote an un-incremented input and use r, �r,

and r̂ to denote the return values of f(x), �f(x), and f̂(x), respectively. For any
function g, we use g0 to denote the incremental function that computes g(x0),
where x0 = x � y, using cached results about x such as g(x). So, g0 may take
parameter x0, as well as extra parameters each corresponding to a cached result.
Fig. 2 summarizes the notation.

3 Step 1: Caching all possibly computed values

Consider a function f0 de�ned by a set of recursive functions. Program f0 may
use global variables, such as x and y in function c(i; j). A possibly computed value
is the value of a function call that is computed for some but not necessarily all
values of the global variables. For example, function c(i; j) computes the value



Function Return Value Denoted as Incremental Function

f original value r f 0

�f all possibly computed values �r �f 0

f̂ useful values r̂ f̂ 0

Fig. 2. Notation.

of c(i�1; j �1) only when x[i] = y[j]. Such values occur exactly in branches of
conditional expressions whose conditions depend on any global variable.

We construct a program �f0 that caches all possibly computed values in f0. For
example, we extend c(i; j) to always compute the value of c(i�1; j�1) regardless
of whether x[i] = y[j]. We �rst apply a simple hoisting transformation to lift
function calls out of conditional expressions whose conditions depend on global
variables. We then apply an extension transformation to cache all intermediate
results, i.e., values of all function calls, in the return value.

Hoisting transformation. Hoisting transformation Hst identi�es conditional ex-
pressions whose condition depends on any global variable and then applies the
transformation

Hst[[if e1 then e2 else e3]] = let v2 = e2 in
let v3 = e3 in
if e1 then v2 else v3

For example, the hoisting transformation leaves m and msub unchanged and
transforms c into

c(i; j) , if i = 0 _ j = 0 then 0
else let u1 = c(i� 1; j � 1) + 1 in

let u2 = max(c(i; j � 1); c(i� 1; j)) in
if x[i] = y[j] then u1 else u2

Hst simply lifts up the entire subexpressions in the two branches, not just the
function calls in them. Administrative simpli�cation performed at the end of the
extension transformation will unwind bindings for computations that are used at
most once in subsequent computations; thus computations other than function
calls will be put down into the appropriate branches then. Hst is simple and
e�cient. The resulting program has essentially the same size as the original pro-
gram, so Hst does not increase the running time of the extension transformation
or the running times of the later incrementalization and pruning.

If we apply the hoisting transformation on arbitrary conditional expressions,
the resulting program may run slower, become non-terminating, or have errors
introduced. For conditional expressions whose conditions depend on global vari-
ables, we assume that both branches may be executed to terminate correctly
regardless of the condition, which holds for the large class of combinatorics and
optimization problems we handle. By limiting the hoisting transformation on
these conditional expressions, we eliminated the last two problems. The �rst
problem is discussed in Section 6.



Extension transformation. For each hoisted function de�nition f(v1; :::; vn) , e,
we construct a function de�nition

�f(v1; :::; vn) , Ext[[e]] (1)

where Ext[[e]], de�ned in [32], extends an expression e to return a nested tuple
that contains the values of all function calls made in computing e, i.e., it ex-
amines subexpressions of e in applicative order, introduces bindings that name
the results of function calls, builds up tuples of these values together with the
values of the original subexpressions, and passes these values from subcompu-
tations to enclosing computations. The �rst component of a tuple corresponds
to an original return value. Next, administrative simpli�cations clean up the
resulting program. This yields a program �f0 that embeds values of all possibly
computed function calls in its return value. For the hoisted programs m and c,
the extension transformation produces the following functions:

m(i; j) , if i = j then < 0 >
else msub(i; j; i)

msub(i; j; k) , let v1 = m(i; k) in
let v2 = m(k + 1; j) in
let s = 1st(v1) + 1st(v2) + p[i�1] � p[k] � p[j] in
if k + 1 = j then < s; v1; v2 >

else let v = msub(i; j; k + 1) in
< min(s; 1st(v)); v1; v2; v >

�c(i; j) , if i = 0 _ j = 0 then < 0 >
else let v1 = �c(i� 1; j � 1) in

let v2 = �c(i; j � 1) in
let v3 = �c(i� 1; j) in
if x[i] = y[j] then < 1st(v1) + 1; v1; v2; v3 >
else < max(1st(v2); 1st(v3)); v1; v2; v3 >

4 Step 2: Static incrementalization

The essence of our method is to use and maintain cached values e�ciently as
a computation proceeds, i.e., we incrementalize �f0 with respect to an input
increment operation �. Precisely, we transform �f0(x�y) to use the cached value
of �f0(x) rather than compute from scratch.

An input increment operation � corresponds to a minimal update to the
input parameters. We �rst describe a general method for identifying �. We
then give a powerful method, called static incrementalization, that constructs an
incremental version �f 0 for each function �f in the extended program and allows an
incremental function to have multiple parameters that represent cached values.

Input increment operation. An input increment should re
ect how a compu-
tation proceeds. In general, a function may have multiple ways of proceeding
depending on the particular computations involved. There is no general method
for identifying all of them or the most appropriate ones. Here we propose a
method that can systematically identify a general class of them. The idea is to
use a minimal input change that is in the opposite direction of change compared



to arguments of recursive calls. Using the opposite direction of change yields
an increment; using a minimal change allows maximum reuse, i.e., maximum
incrementality.

Consider a recursively de�ned function f0. Formulas for the possible argu-
ments of recursive calls to f0 in computing f0(x) can be determined statically. For
example, for function c(i; j), recursive calls to c have the set of possible arguments
Sc = fhi� 1; j � 1i; hi; j � 1i; hi� 1; jig, and for function m(i; j), recursive calls
to m have the set of possible arguments Sm = fhi; ki; hk + 1; ji j i � k � j � 1g.
The latter is simpli�ed from Sm = fha; ci; hc+ 1; bi j a � c � b� 1; a = i; b = jg
where a; b; c are fresh variables that correspond to i; j; k in msub; the equalities
are based on arguments of the recursive calls involved (in this case msub); and
the inequalities are obtained from the inequalities on these arguments. The sim-
pli�cation here, as well as the manipulations below, can be done automatically
using Omega [44].

Represent the arguments of recursive calls so that the di�erences between
them and x are explicit. For function c, Sc is already in this form, and for func-
tion m, Sm is rewritten as fhi; j � li; hi + l; ji j 1 � l � j � ig. Then, extract
minimal di�erences that cover all of these recursive calls. The partial ordering
on di�erences is: a di�erence involving fewer parameters is smaller; a di�erence
in one parameter with smaller magnitude is smaller; other di�erences are incom-
parable. A set of di�erences covers a recursive call if the argument to the call can
be obtained by repeated application of the given di�erences. So, we �rst compute
the set of minimal di�erences and then remove from it each element that is cov-
ered by the remaining elements. For function c, we obtain fhi; j � 1i; hi� 1; jig,
and for function m, we obtain fhi; j�1i; hi+1; jig. Elements of this set represent
decrement operations. Finally, take the opposite of each decrement operation to
obtain an increment operation �, introducing a parameter y if needed (e.g., for
increments that use data constructions). For function c, we obtain hi; j+1i and
hi + 1; ji, and for function m, we obtain hi; j + 1i and hi � 1; ji. Even though
�nding input increment operations is theoretically hard in general (and a decre-
ment operation might not have an inverse, in which case our algorithm does not
apply), it is usually straightforward.

Typically, a function involves repeatedly solving common subproblems when
it contains multiple recursive calls to itself. If there are multiple input increment
operations, then any one may be used to incrementalize the program and �nally
form an optimized program; the rest may be used to further incrementalize
the resulting optimized program, if it still involves repeatedly solving common
subproblems. For example, for program c, either hi; j + 1i or hi+ 1; ji will lead
to a �nal optimized program, and for program m, both hi � 1; ji and hi; j + 1i
need to be used, and they may be used in either order.

Static incrementalization. Given a program �f0 and an input increment operation
�, incrementalization symbolically transforms �f0(x

0) for x0 = x � y to replace
subcomputations with retrievals of their values from the value �r of �f0(x). This
exploits equality reasoning, based on control and data structures of the program
and properties of primitive operations. The resulting program �f0

0 uses �r or parts



of �r as additional arguments, called cache arguments, and satis�es: if �f0(x) = �r
and �f0(x

0) = �r0, then �f0
0(x0; �r) = �r0.1

The idea is to establish the strongest invariants, especially those about cache
arguments, at all calls and maximize their usage. At the end, unused candidate
cache arguments are eliminated. Reducing running time corresponds to max-
imizing uses of invariants; reducing space corresponds to maintaining weakest
invariants for all uses. It is important that the methods for establishing and using
invariants are specialized so that they are automatable. The precise algorithm
is described below. Its use is illustrated afterwards using the running examples.

The algorithm starts with transforming �f0(x
0) for x0 = x� y and �f0(x) = �r

and �rst uses the decrement operation to establish an invariant about func-
tion arguments. More precisely, it starts with transforming �f0(x

0) with invariant
�f0(prev(x

0)) = �r, where �r is a candidate cache argument. It may use other invari-
ants about x0 if given. Invariants given or formed from the enclosing conditions
and bindings are called context. The algorithm transforms function applications
recursively. There are four cases at a function application f(e01; :::; e

0

n).

(1) If f(e01; :::; e
0

n) specializes, by de�nition of f , under its context to a base case,
i.e., an expression with no recursive calls, then replace it with the specialized
expression.

(2) Otherwise, if f(e01; :::; e
0

n) equals a retrieval from a cache argument based on
an invariant about the cache argument in its context, then replace it with
the retrieval.

(3) Otherwise, if an incremental version f 0 of f has been introduced, then re-
place f(e01; :::; e

0

n) with a call to f 0 if the corresponding invariants can be
maintained; if some invariants can not be maintained, then eliminate them
and retransform from where f 0 was introduced.

(4) Otherwise, introduce an incremental version f 0 of f and replace f(e01; :::; e
0

n)
with a call to f 0, as described below.

In general, the replacement in case (1) is also done, repeatedly, if the specialized
expression contains only recursive calls whose arguments are closer to, and will
equal after a bounded number of such replacements, arguments for base cases or
arguments on which retrievals can be done. Since a bounded number of invariants
are used at a function application, as described below, the retransformation in
case (3) can only be done a bounded number of times. So, the algorithm always
terminates.

To introduce an incremental version f 0 of f at f(e01; :::; e
0

n), let Inv be the
set of invariants about cache arguments or context information at f(e01; :::; e

0

n).
Those about cache arguments are of the form gi(ei1; :::; eini

) = eir, where eir
is either a candidate cache argument in the enclosing environment or a selector
applied to such an argument. Those about context information are of the form
e = true, e = false, or v = e, obtained from conditions or bindings. For simplic-
ity, we assume that all bound variables are renamed so that they are distinct.
Introduce f 0 to compute f(x001 ; :::; x

00

n) for x
00

1 = e01; :::; x
00

n = e0n, where x001 ; :::; x
00

n

are fresh variables, and deduce invariants about x001 ; :::; x
00

n based on Inv. The de-
duction uses equations e01 = x001 ; :::; e

0

n = x00n to eliminate variables in Inv and can

1 In previous papers, we de�ned �f0
0 slightly di�erently: if �f0(x) = �r and �f0(x�y) = �r0,

then �f0
0(x; y; �r) = �r0.



be done automatically using Omega [44]. Resulting equations relating x001 ; :::; x
00

n

are used also to duplicate other invariants deduced. If a resulting invariant still
uses a variable other than x001 ; :::; x

00

n, discard it. Finally, for each invariant about
a cache argument, replace its right hand side with a fresh variable, which be-
comes a candidate cache argument of f 0. This yields the set of invariants now
associated with f 0. Note that invariants about cache arguments have the form
gi(e

00

i1; :::; e
00

ini
) = ri, where e00i1; :::; e

00

ini
use only variables x001 ; :::; x

00

n, and ri is a
fresh variable. Among the left hand sides of these invariants, identify an appli-
cation of f whose arguments have a minimum di�erence from x001 ; :::; x

00

n; if such
an application exists, denote it f(e001 ; :::; e

00

n).
To obtain a de�nition of f 0, unfold f(x001 ; :::; x

00

n) and then exploit conditionals
in f(x001 ; :::; x

00

n) and f(e001 ; :::; e
00

n) (if it exists) and components in the candidate
cache arguments of f 0. To exploit conditionals in f(x001 ; :::; x

00

n), move function ap-
plications inside branches of the conditionals in f(x001 ; :::; x

00

n) whenever possible,
preserving control dependencies incurred by the order of conditional tests and
data dependencies incurred by the bindings. This is done by repeatedly applying
the following transformation in applicative order to the unfolded expression. For
any t(e1; :::; ek) being c(e1; :::; ek), p(e1; :::; ek), f(e1; :::; ek), if e1 then e2 else e3,
or let v = e1 in e2, if ei is if ei1 then ei2 else ei3, where i 6= 2; 3 if t is a condi-
tional, and i 6= 2 or ei1 does not depend on v if t is a binding expression, then
transform t(e1; :::; ek) to if ei1 then t(e1; :::; ei�1; ei2; ei+1; :::; ek) else t(e1; :::; ei�1;
ei3; ei+1; :::; ek). This transformation preserves the semantics. It may increase the
code size, but it does not increase the running time of the resulting program. To
exploit the conditionals in f(e001 ; :::; e

00

n), introduce conditions from f(e001 ; :::; e
00

n)
in the transformed expression just obtained and put function applications inside
both branches that follow such a condition. This is done by applying the following
transformation in outermost-�rst order to the conditionals in the transformed
expression just obtained. For each branch ei of the conditional that contains a
function application, let e be the outermost condition in f(e001 ; :::; e

00

n) that is not
implied by the context of ei; if e uses only variables de�ned in the context of ei
and takes constant time to compute, and the two branches in f(e001 ; :::; e

00

n) that
depend on e contain di�erent function applications in some component, then
transform ei to if e then ei else ei. To exploit each component in a candi-
date cache argument ri where there is an invariant gi(e

00

i1; :::; e
00

ini
) = ri, for each

branch in the transformed expression, specialize gi(e
00

i1; :::; e
00

ini
) under the con-

text of that branch. This may yield additional function applications that equal
various components of ri. After these control structures and data structures are
exploited, we simplify primitive operations on x01; :::; x

0

n and transform function
applications recursively based on the four cases described. Finally, after we ob-
tain a de�nition of f 0, replace the function application f(e01; :::; e

0

n) with a call to
f 0 with arguments e01; :::; e

0

n and cache arguments eir's for the invariants used.
The simpli�cations and equality reasoning needed for all the problems we

have encountered involve only recursive data structures and Presburger arith-
metic and can be fully automated.

Longest common subsequence. Incrementalize c under hi0; j0i = hi + 1; ji. We
start with �c(i0; j0), with cache argument �r and invariant �c(prev(i0; j0)) = �c(i0 �
1; j0) = �r; the invariants i0; j0 > 0 may also be included but do not a�ect any
transformation below, so they are omitted for convenience. This is case (4), so



we introduce incremental version �c0 to compute �c(i0; j0). Unfolding the de�nition
of �c and listing conditions to be exploited, we obtain the code below. The false
branch of �c(i0; j0) is duplicated with the additional condition i0� 1 = 0 _ j0 = 0,
which is copied from the condition in de�nition of �c(i0 � 1; j0); for convenience,
three function applications bounded to v1 to v3 are not put inside branches that
follow condition x[i0] = y[j0], since their transformations are not a�ected, and
simpli�cation at the end can take them back out.

�c(i0; j0) = if i0 = 0 _ j0 = 0 then < 0 >
else if i0 � 1 = 0 _ j0 = 0 then

let v1 = �c(i0 � 1; j0 � 1) in
let v2 = �c(i0; j0 � 1) in
let v3 = �c(i0 � 1; j0) in
if x[i0] = y[j0] then < 1st(v1) + 1; v1; v2; v3 >
else < max(1st(v2); 1st(v3)); v1; v2; v3 >

else let v1 = �c(i0 � 1; j0 � 1) in
let v2 = �c(i0; j0 � 1) in
let v3 = �c(i0 � 1; j0) in
if x[i0] = y[j0] then < 1st(v1) + 1; v1; v2; v3 >
else < max(1st(v2); 1st(v3)); v1; v2; v3 >

In the second branch, i0 �1 = 0 is true, since j0 = 0 would imply that the
�rst branch is taken. The �rst and third calls fall in case (1) and specialize to
< 0 >. The second call falls in case (3) and equals a recursive call to �c0 with
arguments i0; j0 �1 and cache argument < 0 > since we have a corresponding
invariant �c(i0 �1; j0�1) = <0>. Additional simpli�cation unwinds bindings for
v1 and v3, simpli�es 1st(< 0 >)+1 to 1, and simpli�es max(1st(v2); 1st(< 0 >))
to 1st(v2).

In the third branch, condition i0 �1 = 0 _ j0 = 0 is false; �c(i0 �1; j0) by
de�nition of �c equals its second branch where �c(i0�1; j0�1) is bound to v2, and
thus �c(i0 �1; j0) = �r implies �c(i0 �1; j0 �1) = 3rd(�r). The �rst call falls in case
(2) and equals 3rd(�r). The second call falls in case (3) and equals a recursive
call to �c0 with arguments i0; j0 �1 and cache argument 3rd(�r)) since we have a
corresponding invariant �c(i0 �1; j0 �1) = 3rd(�r). The third call falls in case (2)
and equals �r. We obtain

�c0(i0; j0; �r) , if i0 = 0 _ j0 = 0 then < 0 >
else if i0 � 1 = 0 then

let v2 = �c0(i0; j0 � 1; < 0 >) in
if x[i0] = y[j0] then < 1; < 0 >; v2; < 0 >>
else < 1st(v2); < 0 >; v2; < 0 >>

else let v1 = 3rd(�r) in
let v2 = �c0(i0; j0 � 1; 3rd(�r)) in
let v3 = �r in
if x[i0] = y[j0] then < 1st(v1) + 1; v1; v2; v3 >
else < max(1st(v2); 1st(v3)); v1; v2; v3 >

If �r = �c(i0 � 1; j0), then �c0(i0; j0; �r) = �c(i0; j0), and �c0 takes time and space
linear in j0, for caching and maintaining a linear list.

Matrix-chain multiplication. Incrementalizem under hi0; j0i = hi; j+1i. We start
with m(i0; j0), with cache argument �r and invariants m(i0; j0�1) = �r and i0 � j0.



This is case (4), so we introduce incremental version m0 to compute m(i0; j0).
Unfolding m, listing conditions, and specializing the second branch, we obtain
the code below.

m(i0; j0) = if i0 = j0 then < 0 >
else if i0 = j0 � 1 then < p[i0 �1] � p[i0] � p[j0]; < 0 >;< 0 >>

else msub(i0; j0; i0)

In the third branch, condition i0 = j0 �1 is false; m(i0; j0 �1) by de�nition

of m equals msub(i0; j0 �1; i0), and thus m(i0; j0 �1) = �r implies msub(i0; j0 �

1; i0) = �r. The callmsub(i0; j0; i0) falls in case (4). We introducemsub
0

to compute
msub(i00; j00; k00) for i00 = i0; j00 = j0; k00 = i0, with invariantsmsub(i0; j0�1; i0) = �r,
m(i0; j0�1) = �r, i0 � j0, i0 6= j0, i0 6= j0�1. Express these invariants as invariants
on i00; j00; k00 using Omega, and introduce fresh variables �ri for candidate cache
arguments. We obtain

msub(i00; j00�1; k00) = �r1; m(i00; j00�1) = �r2; i00 � j00; i00 6= j00; i00 6= j00�1; k00 = i00;

msub(i00; j00�1; i00) = �r3; k00 � j00; k00 6= j00; k00 6= j00�1;
msub(k00; j00�1; k00) = �r4; m(k00; j00�1) = �r5;
msub(k00; j00�1; i00) = �r6;

(2)
where equation k00 = i00 is an additional invariant deduced, and invariants not
on the �rst line are duplications of those in the �rst line based on k00 = i00.
Arguments of msub(i00; j00 � 1; k00) have a minimum di�erence from arguments
of msub(i00; j00; k00).

Unfolding msub(i00; j00; k00) and listing conditions to be exploited, we obtain
the following code. The code for v1 and v2 is duplicated for both branches that
follow the condition k00+1 = j00. The code for v is duplicated for both branches
that follow the additional condition k00 + 1 = j00 � 1, which is copied from the
condition in the de�nition of msub(i00; j00 � 1; k00).

msub(i00; j00; k00) = if k00 + 1 = j00 then
let v1 = m(i00; k00) in
let v2 = m(k00 + 1; j00) in
let s = 1st(v1) + 1st(v2) + p[i00 �1] � p[k00] � p[j00] in
< s; v1; v2 >

else let v1 = m(i00; k00) in
let v2 = m(k00 + 1; j00) in
let s = 1st(v1) + 1st(v2) + p[i00 �1] � p[k00] � p[j00] in
if k00 + 1 = j00 � 1 then

let v = msub(i00; j00; k00 + 1) in
< min(s; 1st(v)); v1; v2; v >

else let v = msub(i00; j00; k00 + 1) in
< min(s; 1st(v)); v1; v2; v >

The �rst branch is simpli�ed away since we have invariant k00 6= j00 � 1.
In the other branch, msub(i00; j00� 1; k00) by de�nition of msub has m(i00; k00)

bound to v1 andm(k00+1; j00�1) bound to v2, and thus msub(i00; j00�1; k00) = �r1
implies m(i00; k00) = 2nd( �r1) and m(k00+1; j00�1) = 3rd( �r1). The �rst call falls in
case (1), since we have invariant k00 = i00, and equals < 0 >. The second call falls
in case (3) and equals a recursive call to m0 with arguments k00+1; j00 and cache



argument 3rd( �r1) since we have a corresponding invariant m(k00 + 1; j00 � 1) =
3rd( �r1).

In the branch where k00+1 = j00� 1 is true, the call to msub falls in case (1)
and equals

let v1 = m(i00; j00 � 1) in let v2 = m(j00; j00) in
let s = 1st(v1) + 1st(v2) + p[i00 �1] � p[k00 + 1] � p[j00] in < s; v1; v2 >

which then equals <1st( �r2) + p[i00 �1] � p[k00 + 1] � p[j00]; �r2; <0>> because the
�rst call equals �r2 and the second call equals < 0 >.

In the last branch, the call to msub falls in case (3). However, the arguments
of this call do not satisfy the invariant corresponding to k00 = i00 and those on the
third and fourth lines in (2). So we delete these invariants and retransformmsub.
Everything remains the same except that m(i00; k00) does not fall in case (1) any
more; it falls in case (2) and equals 2nd( �r1). We replace this call to msub by a

recursive call tomsub
0

with arguments i00; j00; k00+1 and cache arguments 4th( �r1),
�r2, �r3 since we have corresponding invariants msub(i00; j00 �1; k00 +1) = 4th( �r1),
m(i00; j00 �1) = �r2, m(i00; j00 �1; i00) = �r3.

We eliminate unused candidate cache argument �r3, and we replace the orig-
inal call msub(i0; j0; i0) by msub(i0; j0; i0; �r; �r). We obtain

m0(i0; j0; �r) , if i0 = j0 then < 0 >
else if i0 = j0 � 1 then < p[i0 �1] � p[i0] � p[j0]; < 0 >;< 0 >>

else msub
0
(i0; j0; i0; �r; �r)

msub
0
(i00; j00; k00; �r1; �r2) ,

let v1 = 2nd( �r1) in
let v2 = m0(k00 + 1; j00; 3rd( �r1)) in
let s = 1st(v1) + 1st(v2) + p[i00 �1] � p[k00] � p[j00] in
if k00 + 1 = j00 �1 then

let v = <1st( �r2) + p[i00 �1] � p[k00 + 1] � p[j00]; �r2; < 0 >> in
< min(s; 1st(v)); v1; v2; v >

else let v = msub
0
(i00; j00; k00 + 1; 4th( �r1); �r2) in

< min(s; 1st(v)); v1; v2; v >

If �r = m(i0; j0 �1), then m0(i0; j0; �r) = m(i0; j0), and m0 is an exponential-
factor faster. However, m still takes exponential time due to repeated calls to
m0; incrementalizing again under hi0; j0i = hi �1; ji, we obtain a linear-time
incremental program.

5 Step 3: Pruning unnecessary values

Among the components maintained by �f0
0(x0; �r), the �rst one is the return value

of f0(x
0). Components in �r that are not useful for computing this value need

not be cached and maintained. We prune the programs �f0 and �f0
0 and obtain

a program f̂0 that caches only the useful values and a program f̂0
0 that uses

and maintains only the useful values. Finally, we form an optimized program

that computes f0 by using the base cases in f̂0 and by repeatedly using the

incremental version f̂0
0.



Pruning. Pruning requires a dependence analysis that can precisely describe
substructures of recursive trees [32]. We use an analysis method based on regular
tree grammars [28]. We have implemented a simpli�ed version that uses set
constraints to e�ciently produce precise analysis results. Pruning can save space,
as well as time, and reduce code size.

For example, in program �c0, only the third component of �r is useful. Pruning
the second and fourth components of �c and �c0, which moves the third up to the
second, and doing a few simpli�cations, which transforms 1st(�c) back to c and
unwinds bindings for v1 and v3, we obtain ĉ and ĉ0 below:

ĉ(i; j) , if i = 0 _ j = 0 then < 0 >
else let v2 = ĉ(i; j � 1) in

if x[i] = y[j] then < c(i� 1; j � 1)) + 1; v2 >
else < max(1st(v2); c(i� 1; j))); v2 >

ĉ0(i0; j0; r̂) , if i0 = 0 _ j0 = 0 then < 0 >
else if i0 � 1 = 0 then

let v2 = ĉ0(i0; j0 � 1; < 0 >) in
if x[i0] = y[j0] then < 1; v2 >
else < 1st(v2); v2 >

else let v2 = ĉ0(i0; j0 � 1; 2nd(r̂)) in
if x[i0] = y[j0] then < 1st(2nd(r̂)) + 1; v2 >
else < max(1st(v2); 1st(r̂)); v2 >

Pruning leaves programs m and m0 unchanged. We obtain the same programs
bm and bm0, respectively.

Forming optimized programs. We rede�ne functions f0 and f̂0 and use function

f̂0
0:

f0(x) , 1st(f̂0(x))

f̂0(x) , if base cond(x) then base val(x) else let r̂ = f̂0(prev(x)) in f̂0
0(x; r̂)

where base cond is the base-case condition, and base val is the corresponding

value, both copied from the de�nition of f̂0. In general, there may be multiple
base cases, and we just list them all.

For examples c and m, we obtain directly

c(i; j) , 1st(ĉ(i; j))

ĉ(i; j) , if i = 0 _ j = 0 then < 0 > else let r̂ = ĉ(i� 1; j) in ĉ0(i; j; �r)

m(i; j) , 1st(bm(i; j))bm(i; j) , if i = j then < 0 > else let r̂ = bm(i; j � 1) in bm0(i; j; �r)

where ĉ0 and bm0 are as obtained above. For c(n;m), while the original program
takes O(2n+m) time, the optimized program takes O(n �m) time. For m(1; n),
while the original program takes O(n � 3n) time, the optimized program takes
O(n2 � 2n) time. Incrementalizing the optimized program again under the incre-
ment to the other parameter, we obtain an optimized program that takes O(n3)
time.



6 Summary and discussion

Our method for dynamic programming is completely static, fully automatable,
and e�cient. In particular, it is based on a general approach for program optimi-
zation|incrementalization. Although our static incrementalization allows only
one incremental version for each original function, it is still powerful enough to
incrementalize all examples in [33, 32, 31], including various list manipulations,
matrix computations, attribute evaluation, and graph problems. We believe that
our method can perform dynamic programming for all problems whose solutions
involve recursively solving subproblems that overlap, but a formal justi�cation
awaits more rigorous study.

In our method, only values that are necessary for the incrementalization
are stored, in appropriate data structures. For the longest-common-subsequence
example, only a linear list is needed, whereas in standard textbooks, a quadratic
two-dimensional array is used, and an additional optimization is needed to reduce
it to a one-dimensional array [14]. For the matrix-chain-multiplication example,
our optimized program uses a list of lists that forms a triangle shape, rather
than a two-dimensional array of square shape. It's nontrivial to see that recursive
data structures gives the same asymptotic speedup as arrays for these examples.
There are dynamic programming problems, e.g., 0-1 knapsack, for which the use
of array, with constant-time access of elements, helps achieve desired asymptotic
speedups. Such situations become evident when doing incrementalization and
can be taken care of easily. This will be described in a future paper. Although
we present the optimizations for a functional language, the underlying principle
is general and has been applied to programs that use loops and arrays [27, 30].

Some values computed in a hoisted program might not be computed by
the original program and are therefore called auxiliary information [31]. Both
incrementalization and pruning produce programs that are as least as fast as
the given program, but caching auxiliary information may result in a slower
program on certain inputs. We can determine statically whether such information
is cached in the �nal program. If so, we can use time and space analysis [29] to
determine whether it is worthwhile to use and maintain such information.

Many dynamic programming algorithms can be further improved by exploit-
ing additional properties of the given problems [7], e.g., greedy properties. Our
method is not specially aimed at discovering such properties. Nevertheless, it can
maintain such properties once they are added. For example, for the paragraph-
formatting problem [14, 17], we can derive a quadratic-time algorithm that uses
dynamic programming; if the original program has a simple extra conditional
that follows from a greedy property, our derived dynamic programming pro-
gram uses it as well and takes linear time with a factor of line width. How to
systematically discover and use these additional properties is a subject for future
study.

7 Implementation and experimentation results

All three steps have been implemented in a prototype system, CACHET. The
incrementalization step as currently implemented is semi-automatic [26] and is
being automated. The implementation uses the Synthesizer Generator [47].



Fig. 3 summarizes some of the examples derived (most of them semi-automa-
tically and some automatically) and compares their asymptotic running times.2

The second column shows whether more than one cache argument is needed in an
incremental program. The third column shows whether the incremental program
computes values not necessarily computed by the original program. Paragraph
formatting 2 [17] includes a conditional that re
ects a greedy property. The \a"
in the third column for the last two examples shows that cached values are stored
in arrays. Performance measurements con�rmed drastic speedups.

Examples
multiple
cache arg

aux
info

original program's
running time

optimizedprog's
running time

Fibonacci function [39] O(2n) O(n)
binomial coe�cients [39] O(2n) O(n � k)
longest common subsequence [14]

p
O(2n+m) O(n �m)

matrix-chain multiplication [14]
p

O(n � 3n) O(n3)
string editing distance [46] O(3n+m) O(n �m)
dag path sequence [6]

p
O(2n) O(n2)

optimal polygon triangulation [14]
p

O(n � 3n) O(n3)
optimal binary search trees [2]

p
O(n � 3n) O(n3)

paragraph formatting [14]
p

O(n � 2n) O(n2)
paragraph formatting 2

p
O(n � 2n) O(n � width)

0-1 knapsack [14]
p
a O(2n) O(n � weight)

context-free-grammar parsing [2]
p p

a O(n�(2�size+1)n) O(n3 � size)

Fig. 3. Summary of Examples.

8 Related work and conclusion

Dynamic programming was �rst formulated by Bellman [4] and has been stud-
ied extensively since [51]. Bird [5], de Moor [16], and others have studied it in
the context of program transformation. While some works address the deriva-
tion of recursive equations, notably the work by Smith [50], our work addresses
the derivation of e�cient programs that use tabulation. Previous methods for
this problem either apply to speci�c subclasses of problems [13, 40, 10, 12, 42, 21]
or give general frameworks and strategies rather than precise algorithms [52,
9, 5, 48, 6, 3, 39, 49, 8, 16, 41, 15]. Our work is based on the general principle of
incrementalization [38, 31] and consists of precise program analyses and trans-
formations.

In particular, tupling [40, 41] aims to compute multiple values together in an
e�cient way. It is improved to be automatic on subclasses of problems [10] and
to work on more general forms [12]. It is also extended to store lists of values [42],
but such lists are generated in a �xed way, which is not the most appropriate
way for many programs. A special form of tupling can eliminate multiple data
traversals for many functions [21]. A method specialized for introducing arrays
was proposed for tabulation [11], but as our method has shown, array is not

2 Matrix-chain multiplication, optimal binary search trees, optimal polygon triangu-
lation, and other problems not in Fig. 3 have similar control structures for recursive
calls. Yet, it is nontrivial for an automated system to handle all of them uniformly.



essential for the speedup of many programs; their arrays are complicated to
derive and often consume more space than necessary.

Compared with our previous work for incrementalizing functional programs
[33, 32, 31], this work contains drastic improvements. First, our previous work ad-
dress the systematic derivation of an incremental program f 0 given both program
f and operation �. This paper describes a systematic method for identifying an
appropriate operation � given a function f and using the derived incremen-
tal program f 0 to form an optimized version of f . Second, since it is di�cult
to introduce appropriate cache arguments, our previous method allows at most
one cache argument for each incremental function. This paper allows multiple
cache arguments, without which many programs could not be incrementalized,
e.g., the matrix-chain-multiplication program. Third, our previous method in-
troduces incremental functions using an on-line strategy, i.e., on-the-
y during
the transformation, so it may attempt to introduce an unbounded number of
new functions and thus not terminate. The algorithm in this paper statically
determines one incremental function for each one in the original program, i.e., it
is monovariant; even though it is theoretically more limited, it is simpler, always
terminates, and is able to incrementalize all previous examples. Finally, based
on the idea of cache-and-prune that was proposed earlier [32], the method in
this paper uses hoisting to extend the set of intermediate results [32] to include
a kind of auxiliary information [31] that is su�cient for dynamic programming.
This method is simpler than our previous general method for discovering aux-
iliary information [31]. Additionally, we now use a more precise and e�cient
dependence analysis for pruning [28].

Finite di�erencing [38, 37] is based on the same underlying principle as incre-
mental computation. Paige has explicitly asked whether �nite di�erencing can
be generalized to handle dynamic programming [36]; it is clear that he perceived
an important connection. However, �nite di�erencing has been formulated for
set-based languages, while straightforward solutions to dynamic programming
problems are usually formulated as recursive functions, so it was di�cult to
actually establish the connection.

Overall, being able to incrementalize complicated recursion in a systematic
way is a more drastic improvement complementing previous methods for incre-
mentalizing loops [38, 27]. Our new method based on static incrementalization is
general and fully automatable. Based on our existing implementation, we believe
that a complete system will perform incrementalization e�ciently.
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