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1 Introduction

As computers are integrated into systems with
stringent fault-tolerance requirements, there is a
growing need for practical techniques to establish
that these requirements are satis�ed. Informal ar-
guments do not supply the desired level of assurance
for critical systems, while practitioners often lack
the background needed to construct formal proofs.
This paper describes an approach to automated
analysis of fault-tolerance of distributed systems.
The underlying principles are general, but special-
ized techniques are developed to deal e�ciently with
the types of systems and requirements that arise in
this setting.
The �rst step of the veri�cation process is to de-

termine the fault-tolerance requirements, i.e., the
conditions on the system's behavior that are re-
quired to hold for each failure scenario, i.e., each
combination of failures of its components. For ex-
ample, a typical fault-tolerance requirement for a
distributed database system is that transactions are
performed atomically (i.e., committed by all servers
or none of them), despite crash failures. To achieve
high assurance for safety-critical control systems, a
more general failure mode, Byzantine failure, is usu-
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ally considered. No assumptions are made about
the possible behavior of a Byzantine-faulty compo-
nent: it is considered arbitrarily non-deterministic.
A typical requirement is that a control system op-
erate normally despite, say, Byzantine failure of one
component, and operate in a \safe" but possibly de-
graded fashion despite, say, Byzantine failure of one
component and crash failure of another.

Second, these fault-tolerance requirements must
be rigorously veri�ed. One approach is to apply
general-purpose proof-based veri�cation techniques,
typically with the support of a theorem-proving sys-
tem [DB92, BVH94, ORSvH95]. This approach of-
fers an attractive conceptual economy. However,
people who design and validate fault-tolerant sys-
tems are generally not experts in mathematical logic
or formal veri�cation, so methods that require con-
struction of large proofs (even with support from
a theorem-proving system) have had a limited au-
dience. Proof techniques designed speci�cally for
veri�cation of fault-tolerance (e.g., [CdR93, PJ94])
facilitate these proofs but still require considerable
logical expertise of the user.

Automated veri�cation is receiving increasing
attention, largely due to advances in temporal-
logic model-checking [CGL94] and automata-
and process-based veri�cation techniques [Hol91,
Kur94, CS96]. These techniques are largely based
on exhaustive exploration of �nite state spaces.
They are particularly well-suited to hardware ver-
i�cation and have been applied predominantly
thereto. Relatively little work has been done on au-
tomated analysis of fault-tolerant systems, partly
because the protocols of interest are more typical
of software than hardware, and exhaustive search
of the state space of interesting software systems is
often infeasible.



This paper explores a specialized approach to
analysis of distributed systems, focusing on fault-
tolerance properties. Our approach is not based
on exhaustive state-space exploration. Instead, it
is a novel hybrid of ideas from stream-processing
(or data-
ow) semantics of networks of processes
[Kah74, Bro87, Bro90] and abstract interpretation
of programs [AH87].

In stream-processing models, each component is
represented by an I/O function describing its in-
put/output behavior. The behavior of a system can
be determined by a �xed-point calculation; this pro-
vides a clean algorithmic basis for the analysis. An
I/O function encapsulates the implementation of a
component, enabling a convenient separation of lo-
cal and global analyses. Local analysis veri�es in-
dependently for each component that the proposed
I/O function represents it. Global analysis deter-
mines the system's behavior as a �xed-point.

The heart of our analysis is �xed-point calcula-
tions of graphs representing the computations of the
system: each node corresponds to a component, and
each edge is labeled with a \history" (stream) of
messages sent from the source to the target. Ex-
act computation of these graphs is generally infea-
sible, especially for the non-deterministic and non-
terminating processes common in fault-tolerant dis-
tributed systems. To help make automated anal-
ysis feasible, our framework incorporates abstrac-
tion mechanisms that support 
exible and power-
ful forms of approximation.1 Traditionally, stream-
processing models are used as mathematical seman-
tics and incorporate no approximations.

Our analysis determines three kinds of informa-
tion that together characterize the possible com-
munication histories on an edge: values (the data
transmitted in messages), multiplicities (the num-
ber of times each value is sent), and message or-
derings (the order in which values are sent). Values
and multiplicities are approximated using a form
of abstract interpretation and, to more accurately
track relationships between values, a form of sym-
bolic computation. The latter is essential for an-
alyzing systems that use replication and majority-
voting to tolerate Byzantine failures, since the out-
put of a voter depends on equalities between its
inputs. Message orderings are approximated using
partial (instead of total) orders. These approxima-
tion mechanisms together allow both compact rep-
resentation of the highly non-deterministic behavior
characteristic of severe failures and abstraction from

1\Abstraction" is used here in the sense of \abstract in-
terpretation", not in the sense of \abstract data types".

irrelevant aspects of a system's failure-free behav-
ior. The latter re
ects a separation of concerns that
is crucial for fault-tolerance analysis to be tractable.

Failures are often modeled as ordinary events that
occur non-deterministically during a computation,
but this makes it di�cult to separate the e�ects of
failures from other aspects of the system's behavior
and hence to model the former more �nely than the
latter. One often wants to avoid case analysis corre-
sponding to non-determinism in a system's failure-
free behavior, while case analysis corresponding to
di�erent failure scenarios appears unavoidable in
an automated approach. So, we parameterize sys-
tems by possible occurrences of failures, and analyze
the system's behavior separately for di�erent failure
scenarios.

We propose a second model that further promotes
this separation of concerns. In it, the e�ects of fail-
ures are represented as perturbations to the original
outputs of a component. The �xed-point analysis
propagates these perturbations to determine their
e�ect on the subsequent execution of the system.
The result of the analysis for a particular failure sce-
nario is a graph describing both the system's origi-
nal behavior and the global e�ects of those failures.
This allows fault-tolerance requirements to be ex-
pressed as bounds on the acceptable perturbations
to the system's behavior. For example, a typical
fault-tolerance requirement is that the inputs to cer-
tain components are unchanged in certain failure
scenarios. This condition is orthogonal to require-
ments on the system's failure-free behavior. Thus,
these other requirements can be veri�ed separately,
using whatever methods are appropriate, while our
method is used to analyze the fault-tolerance re-
quirement, using coarse approximations of aspects
of the system that are not directly relevant to its
fault-tolerance. Explicit perturbations also allow
direct expression of the sensitivity of a component
to perturbations in its inputs; in some cases, rep-
resenting this information in the abstract model is
otherwise impossible.

2 Analyzing Failure-Free Sys-

tems

To build the reader's intuition, we brie
y review a
concrete stream-processing model before describing
our framework. By concrete, we mean that no ap-
proximations are involved. Each component (\pro-
cess") is represented by an I/O function that takes
as argument the (history of) messages received by



the component, and returns the (history of) mes-
sages sent by that component as a result of receiving
those messages.
More formally, a system comprises a set of named

components, with names from the set Name . Let
CVal (\concrete values") be the set of values that
can be transmitted in messages. A concrete history
is an element of

CHist
�

= Name ! Seq(CVal); (1)

where Seq(S) is the set of �nite and in�nite se-
quences of elements of a set S. When a history
ch is regarded as the input to a component x, ch(y)
is the sequence of messages sent by y to x; when ch
is regarded as the output of a component x, ch(y)
is the sequence of messages sent by x to y. The be-
havior of a system is represented by a concrete run,
which is an element of

CRun
�

= Name ! CHist : (2)

For cr 2 CRun, cr(x) is the input history of com-
ponent x in the run, i.e., cr(x)(y) is the sequence
of messages sent to x by y.
Following Kahn [Kah74], we consider �rst only

determinate processes, i.e., processes that are (1)
internally deterministic and (2) strict (i.e., at each
instant, the process is willing to receive a message
from at most one sender). Determinacy ensures
that the input history of a process uniquely de-
termines its output history. Thus, a determinate
process corresponds to a monotonic and continuous
(these are just sanity conditions) function in

DProcess
�

= CHist ! CHist : (3)

A system is represented by a function np 2
Name ! DProcess (np is mnemonic for \name !
process"). The unique concrete run representing
the behavior of a system np of determinate pro-
cesses is the least �xed-point of step(np) 2 CRun !
CRun, where

step(np)(cr )
�

= (�y :Name : (�x :Name :
np(x)(cr (x))(y))):

(4)

and the domain ordering on CRun is the point-
wise extension of the pre�x ordering on sequences
(of CVal 's). Informally, step(np)(cr ) represents the
outcome of each component processing its inputs
in the possibly-incomplete run cr and producing
possibly-extended outputs. By a standard theo-
rem [Gun92, chapter 4], this �xed-point exists and
can be computed by starting with the empty run

?CRun
�

= (�x :Name : (�y :Name : ")), where " is the
empty sequence, and repeatedly applying step(np)
until a �xed-point is reached.
The restriction to determinate processes can be

eliminated. A relatively straightforward approach,
proposed by Broy [Bro87, Bro90], is (roughly) to
represent a (possibly non-determinate) process as
a set of determinate processes, each corresponding
to one of the process's possible behaviors. The be-
havior of a non-determinate system is represented
by the set of its possible concrete runs; roughly, for
each possible choice of determinate processes from
the sets representing the components, a concrete
run is computed as a �xed-point, in the manner
just described.

2.1 Abstract Model

At the abstract level, a (possibly non-determinate)
system's behavior is approximated by a single \ab-
stract" run. By analogy to de�nition (2) of CRun,
a run is an element of

Run
�

= Name ! Hist : (5)

As before, for a run r and component x, the his-
tory r(x) represents the inputs to x. The sequences
of messages in concrete histories are approximated
by partial orders of labels, in which each label ap-
proximates a set of messages. Thus, by analogy to
de�nition (1) of CHist , we de�ne

Hist
�

= Name ! POSet(L); (6)

where POSet(S) is the set of strict partial orders
over a set S, i.e., the set of pairs hT;�i where T � S

and � is a strict partial order on T .
A run r can be interpreted as a labeled directed

graph with nodes in Name and with edge hx; yi la-
beled with the poset r(y)(x), representing the mes-
sages sent from x to y. Each label in the poset
approximates a set of messages. Labels are in

L
�

= Mul �Val � Tag : (7)

For a label hmul ; val ; tagi, the multiplicity mul in-
dicates how many messages may be represented by
the label, and the value val describes the data sent
in those messages. The tag is needed to allow mul-
tiple labels with the same value and multiplicity to
appear on an edge. Multiplicities, values, and mes-
sage orderings are discussed in more detail below.
The behavior of a process is approximated by an

I/O function, which by analogy with (3) is in

IOF
�

= ff 2 Hist ! Hist j tagUniform(f)g; (8)



where tagUniform(f) asserts that renaming of tags
in the input labels causes no change in the output
labels except possibly renaming of tags. This re-
quirement is sensible because tags do not appear in
actual messages.

A system is represented by a function nf 2
Name ! IOF (\nf" is mnemonic for \name to I/O
function"). A system's behavior is represented by
the run lfp(step(nf )), if it exists. In contrast to
the concrete level, this �xed-point might not exist;2

however, one can always search for a �xed-point
by repeated application of step(nf ) starting from

?Run
�

= (�x :Name : (�y :Name : h;; ;i)).

Values. What is the structure of Val? As in ab-
stract interpretation, we introduce a set AVal of
abstract values, each representing a set of concrete
values. For example, consider messages that con-
tain numerous header �elds. If only the \From"
�eld was relevant to the analysis, one could rep-
resent messages with abstract values of the form
MF (x) (mnemonic for \Message From x"), which
represents all messages whose \From" �eld contains
x.

Abstract values alone capture too little informa-
tion about relationships between concrete values.
For example, consider a system containing a major-
ity voter. The voter's outputs depend on equality
relationships among its inputs. If two inputs both
have abstract value N, denoting the natural num-
bers, there is no way to tell from this whether they
are equal. To more accurately track relationships
between values, we introduce a set SVal of symbolic
values, which are expressions composed of constants
and variables. A constant represents the same value
in every concrete run of the system; for example, a
constant maj might represent a majority function.

A variable represents values that may be di�erent
in di�erent concrete runs of the system. Variables
are useful for modeling outputs that are not com-
pletely determined by a component's inputs. Such
outputs commonly arise with components that in-
teract with an environment that is not modeled
explicitly; they also arise when a component's be-
havior is approximated. Each variable is associated
with (\local to") a single component, whose behav-
ior in a given concrete run determines the value of
that variable. This allows independent proofs that
each I/O function represents the behavior of the
corresponding process.

2Roughly, the reason is that runs do not have canonical
forms [Sto97].

For convenience, we include in SVal a special
wildcard symbol \ ", which can always represent
any value. Finally, we allow a value to contain a
set of possibilities; thus, we de�ne

Val
�

= Set(SVal �AVal) n f;g; (9)

where Set(S) is the powerset of a set S. Note that
I/O functions incorporate a form of symbolic com-
putation, since their inputs and outputs contain
symbolic values.

Notation. Since abstract values are analogous to
types, we sometimes write hs; ai 2 SVal � AVal as
s :a. We often omit braces around singleton sets; for
example, fhX;Nig 2 Val may be written X :N. We
sometimes elide the wildcard; thus, fh ;Nig 2 Val
may be written N.

Example. Consider a two-stage replicated
pipeline. The system contains a source S, which
sends a value to three components F1; F2; F3, which
each apply a function represented by the constant
F to their input and send the result to the next
stage in the pipeline. The components G1; G2; G3

in the next stage each apply a function represented
by the constant G to their input and send the
result to a voter. The 3-way voter V waits for
an input from each Gi, applies a 3-way majority
function, represented by the constant maj , to those
inputs, and sends the result to an actuator A.
More precisely, maj represents any function of 3
arguments that, when any two of its arguments are
equal, returns that repeated value.
A run representing the behavior of this system ap-

pears in Figure 1. Here, X is a local variable of the
source. The run is obtained as a �xed-point from
I/O functions for the components. Due to space
limitations, we only discuss the I/O function for the
voter. Brie
y, if the voter receives 3 inputs contain-
ing symbolic values s1; s2; s3, then in the general
case, the voter's output contains the symbolic value
maj (s1; s2; s3). If, in addition, two inputs contain
the same symbolic value s (other than the wild-
card), then a step of symbolic simpli�cation can be
done, yielding the symbolic value s. For example,
maj (X;X; Y ) simpli�es to X .

Multiplicities. Multiplicities (i.e., numbers of
messages) also need to be approximated. Uncer-
tainty in the number of messages sent during a com-
putation may stem from various sources, including
non-determinism of components (especially faulty
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Figure 1: Run for majority-voter example, without failures.

components), non-determinism of message arrival
order, approximation of values, and approximation
of \loops" (i.e., cycles of messages). For example, a
component subject to omission failures might emit
outputs with a multiplicity of zero or one, while a
component subject to Byzantine failures might emit
outputs with an arbitrary multiplicity. Thinking
of multiplicities as natural numbers suggests repre-
senting them in the same way as data values. Thus,
we de�ne

Mul
�

= Set(SVal �AMul) n f;g; (10)

where the set AMul � AVal of abstract multiplic-
ities contains abstract values whose meanings are
subsets of the natural numbers, excluding the sub-
sets ; and f0g.
Abstract multiplicities are analogous to the su-

perscripts in regular expressions. To promote the
resemblance, we assume AVal contains: 1, denoting
f1g; ?, denoting f0; 1g; and �, denoting all natural
numbers. The notational conventions for values ap-
ply to multiplicities as well. Furthermore, we some-
times write the label hmul ; val; 0i as valmul , and, if
the multiplicity mul is 1, we elide it, as in Figure 1.

Message Ordering. Message ordering plays lit-
tle role in the examples in this paper, so we discuss
it very brie
y. The partial ordering on the labels in
a history approximates the orderings between the
messages represented by those labels: if label `1 is
ordered before `2, then all messages represented by
`1 were sent before (and, since message delivery is
assumed for convenience to be FIFO, are received
before) all messages represented by `2. Our use of
partial orders to represent message ordering sup-
ports similar bene�ts to partial-order methods in
model-checking [WG93]. We are exploring exten-
sions to the framework to re
ect orderings between
messages sent by di�erent components.

3 Analyzing Systems with

Failures

Since each component's behavior depends on what
failures it su�ers, we parameterize each compo-
nent (i.e., each I/O function) by its possible fail-
ures. Thus, I/O functions are now elements of

IOFF
�

= Fail * IOF , where Fail is the set of all
possible failures and the one-hooked arrow indicates
partial functions. For f 2 IOFF , dom(f) is the set
of failures that the component might su�er, and for
each fail 2 dom(f), f(fail ) describes the compo-
nent's behavior when failure fail occurs. A failure

scenario is a function in FS
�

= Name ! Fail that
maps each component to one of its possible fail-
ures. By convention, OK 2 Fail represents absence
of failure.

A fault-tolerance requirement is formalized as a
set fhS1; b1i; hS2; b2i; : : :g, where Si is a set of fail-
ure scenarios, and bi is a predicate on FS � Run.
For each i and each fs 2 Si, bi(fs ; r) should hold
for the run r representing the system's behavior in
failure scenario fs . For the above majority-voter
example, consider a \value failure", represented by
valFail 2 Fail , that causes a component to output
incorrect values. Informally, the fault-tolerance re-
quirement is that the inputs to the actuator are
unchanged (compared to the failure-free run) in
failure scenarios in which at most 1 of the com-
ponents Fi or Gi fail. Expressing \unchanged"
(compared to a given run) in the current frame-
work is a bit subtle. Let r0 denote the failure-
free run, i.e., the run computed for failure scenario
(�x :Name : OK ). A �rst attempt is simply to re-
quire that the inputs to the actuator be the same:
b(fs ; r) is r(A) = r0(A). However, this is too weak:
it does not ensure that the variable X represents
the same concrete value in the two runs. Since X



is local to the source, this follows if the source's
outputs are unchanged, which follows if the source
itself does not fail and (recursively) the source's in-
puts are unchanged. In general, we can formulate
a recursive predicate on runs that ensures that a
given component's inputs are unchanged. In this
example, the source has no inputs, so b(fs ; r) is:
r(A) = r0(A) ^ fs(S) = OK ^ r(S) = r0(S).

Example. Consider, for example, failure of F1.
F1's arbitrary output could be represented by the
value Y1 : N, where Y1 is a local variable of F1,
or by :N. When the voter receives one changed
input, its output to the actuator is unchanged, so
the above fault-tolerance requirement is satis�ed for
this failure scenario. A similar analysis for each
of the 6 possible failure scenarios shows that the
system satis�es its fault-tolerance requirement.3

3.1 Perturbations

The above style of expressing that part of a system's
behavior is unchanged is awkward and unnecessar-
ily restrictive. For example, consider a failure mode
of F1 in which it sends arbitrary values to the source
as well asG1. Assuming the source is designed to ig-
nore these unexpected inputs, the system tolerates
this failure. However, there is no way to express in
the above framework that these unexpected inputs
to the source do not a�ect its outputs, i.e., that they
do not change the output value represented by X .
The above framework also has limited power to

express non-trivial relationships between (concrete)
values in the original and perturbed computations.
For example, consider a system in which failures
may perturb the readings of replicated sensors by
at most ", causing the inputs and therefore also
the outputs of a controller to change by at most
"0. The relationship \changed by at most "" can't
be expressed in the above framework.
The root of these limitations is the inability to

express correlations between a component's origi-
nal and perturbed behaviors. This problem arises
also in concrete models; it is not an artifact of the
abstraction mechanisms. We overcome these limita-
tions by making such correlations explicit. Instead
of describing the faulty behavior separately, we de-
scribe it in terms of perturbations to the original
behavior. At the abstract level, we augment labels
to have the form

Lchng = Mul �Val ��Mul ��Val � Tag (11)

3It su�ces to analyze 2 failure scenarios, if a symmetry
argument is used.

whereMul and Val re
ect the failure-free (or \origi-
nal") behavior, and �Mul and �Val are the pertur-
bations to the multiplicity and value, respectively.
In order to track relationships between perturba-
tions, we take �Mul and �Val to have the same
structure as values, i.e., to contain symbolic val-
ues from SVal paired with new kinds of abstract
values �AMul and �AVal , respectively. Semanti-
cally, changes are binary relations: thus, elements
of �AMul and �AVal denote binary relations over
N and CVal , respectively.
The perturbed behavior may also involve mes-

sages with no analogue in the original behavior|for
example, messages sent between components that
didn't communicate in the original computation.
These are represented by a second kind of label:

Lnew =Mul �Val � Tag : (12)

Now, labels are elements of LFC = Lchng [ Lnew .

Notation. We use the same notational con-
ventions for �Val and �Mul as for Val and
Mul . We sometimes write a label hmul ; val ; 0i 2
Lnew as valmul . Similarly, we sometimes
write a label hval ;mul ; �mul ; �val ; 0i 2 Lchng as

valmul [�val�mul ]. We sometimes elide a change of
id , where id is the identity relation; for example,
the label hval ;mul ; id ; id ; 0i 2 Lchng may be written

valmul []. The empty brackets are retained to distin-
guish this from the shorthand for labels in Lnew .
I/O functions have the same type as before, but

over the new set of labels. I/O functions now de-
scribe how each component propagates its original
inputs and how it propagates changes in its inputs.
For an I/O function f , if one ignores the pertur-
bations and \new" labels (i.e., labels in Lnew ) in
the input and output, f(fail ) describes the original
behavior of the component; the perturbations and
new labels in the output re
ect the e�ects of the
failure fail and the e�ects of perturbations and new
labels in the inputs. We have given semantics for
the abstract models with and without explicit per-
turbations by relating them to variants of Broy's
concrete model [Bro87, Bro90].

Example. Consider again the system of Figure 1.
The fault-tolerance requirement is that the change
to the actuator's original inputs is the identity, and
that the actuator has no new inputs. Figure 2 shows
the result of the �xed-point analysis for the failure
scenario in which F1 su�ers a value failure. The
failure introduces perturbations in F1's output. G1



propagates the perturbation from its input to its
output. Thus, the analysis shows that the system
satis�es its fault-tolerance requirement in this fail-
ure scenario.
Now consider instead Byzantine failures, in which

a faulty component sends arbitrarily many arbitrary
values to every process with which it can communi-
cate. This behavior can be compactly represented
using the label >V�, where >V 2 AVal represents
all concrete values. Assume F1 can communicate
directly with S and G1 and that the source ignores
\unexpected" inputs. The run for this failure sce-
nario is shown in Figure 3. Thus, the analysis shows
that the system satis�es its fault-tolerance require-
ment in this failure scenario.

4 Examples

4.1 Byzantine Agreement

A seminal paper by Lamport, Shostak, and Pease
de�nes the problem of Byzantine Agreement and
presents two solutions [LSP82]. Both can be ana-
lyzed in our framework. The Oral Messages algo-
rithm is essentially a recursive application of ma-
jority voting, so the analysis is similar in style to
the simple example in Section 3. The Signed Mes-
sages algorithm is more e�cient but requires digi-
tal signatures, which can be modeled in our frame-
work [Sto97]. Both algorithms assume synchronous
communication. Although our framework embodies
asynchronous communication, synchronous commu-
nication can be encoded by sending special values
to represent passage of time [Bro90, BD92].

4.2 Reliable Broadcast

The power of symbolic multiplicities to track rela-
tionships between multiplicities is useful in analy-
sis of atomicity properties, which are typically of
the form: \All non-faulty components do action, or
none of them do." Thus, atomicity properties cor-
relate the multiplicities of actions at di�erent sites.
We use a reliable broadcast protocol to illustrate
our treatment of crashes and atomicity.
The system comprises clients C1; : : : ;Cn with

corresponding servers S1; : : : ;Sn. For brevity, we
brie
y describe the protocol but omit the I/O func-
tions. A client Ci broadcasts a message by sending
it to its server Si. When a server receives a mes-
sage, it checks whether it has received that mes-
sage before. If so, it ignores the message; if not, it
sends the message to all its neighbors (including its

client). We use the abstract valueMF (C) to denote
messages broadcast by client C.

For example, consider the system with n = 3 and
with each server having the other two servers as
neighbors. Suppose C1 broadcasts a message X :
MF (C1). The run in Figure 4 represents the failure-
free behavior of this system.

Now consider the e�ects of failures. For brevity,
we consider here only the requirement of agreement:
if a client of a non-faulty server delivers a message
m, then all clients of non-faulty servers eventually
deliver m [HT94, section 3].

One way to analyze systems subject to crash fail-
ures is to analyze separately the behavior resulting
from crashes that occur at di�erent times during the
execution; in our framework, this could be done by
representing crashes at di�erent logical times with
di�erent elements of Fail . A more e�cient approach
is to introduce crash 2 Fail , which indicates only
that a component crashes at some unspeci�ed time
during execution, in which case each of the compo-
nent's outputs has a possibility of not occurring.4

For example, consider a failure scenario in which
S1 crashes. Each of its outputs gets multiplicity
? instead of 1, and this uncertainty is propagated
through the rest of the computation, resulting in a
run like the one in Figure 4 but with every multi-
plicity replaced with ?. We cannot conclude from
this run that agreement holds; too much informa-
tion about correlations between multiplicities has
been lost.

To express those correlations using symbolic mul-
tiplicities, we modify the I/O function for a server
to use variables with the following interpretation:
the value (zero or one) of variable c:i:x:y indicates
whether server x crashes before it relays to com-
ponent y the i'th message5 broadcast by client c.
Note that c:i:x:y is local to server x. If a server
receives the same message twice, with multiplicities
X :? and Y :?, then it relays that message with
multiplicity max(X;Y ) :?, where the constant max
has the obvious meaning. The run obtained using
these modi�ed I/O functions appears in Figure 5.
Since the symbolic multiplicities of the inputs to C2

and C3 are the same, agreement is satis�ed.

4More precisely, a su�x of its outputs might not occur;
re
ecting this requires more care but is necessary to verify
FIFO delivery.

5We use 0-based indexing, so the �rst message corre-
sponds to i = 0.
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Figure 3: Run for majority-voter example, in the failure scenario in which F1 su�ers a Byzantine failure,
analyzed using explicit perturbations. The notation is the same as in Figure 2.

5 Discussion and Related

Work

Abstractions. Abstractions (i.e., approxima-
tions) play an important role in our work. Clarke
and Long studied the use of the abstractions
in conjunction with temporal-logic model-checking
[CGL94]. Their notion of abstraction corresponds
roughly to abstract interpretation and to our ab-
stract values, though in their state-based approach,
multiplicities are not explicit, so abstractions are
used only for (data) values. They also propose so-
called symbolic abstractions, which are just abbrevi-
ations for �nite families of (non-symbolic) abstrac-
tions. Our symbolic values are closer to the tech-
nique they sketch in the last paragraph of their pa-
per for dealing with in�nite-state systems.

In Kurshan's automata-based veri�cation
methodology, approximations are embodied in
reductions between veri�cations [Kur89, Kur94].
Relationships between concrete values can be

captured using parameterized families of reduc-
tions, reminiscent of Clarke and Long's \symbolic
abstractions". For example, a bounded-length
queue can be proven not to drop items using a
family of reductions that collapse a set of (con-
crete) data values to 2 \abstract" data values: the
one being focused on, speci�ed as a parameter,
and \everything else" [Kur94, Appendix D] (the
parameterization is not explicit in Kurshan's
presentation). For problems involving related
values (e.g., X and F (X)), the reductions must
introduce an \abstract" data value representing
each such value. In e�ect, one must determine in
advance all relevant symbolic values and introduce
an \abstract" data value for each.

An attractive feature of Clarke and Long's work
and Kurshan's work is that abstractions (or reduc-
tions) are speci�ed as homomorphisms and applied
to programs (or automata) automatically. We plan
to look at mechanized support for applying abstrac-
tions in our framework.
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Figure 4: Failure-free behavior of the reliable broadcast protocol.

Explicit Perturbations. McDermid et al.'s
work on validation of fault-tolerance shares with
our work the idea of characterizing each compo-
nent by how it generates and propagates failures
[FM93, FMNP94, MNPF95]. Their work empha-
sizes simplicity over generality by incorporating a
somewhat restricted representation of changes.

Our explicit perturbations are related to error
analysis for numerical computations and to incre-
mental computation [RR93, Liu96], which studies
how changes to the input of a computation are prop-
agated to its output, so that new outputs can be
computed e�ciently by updating the old output.
In all three areas, the goal is a separation of con-
cerns, though these other techniques do not address
the abstractions needed for fault-tolerance analysis.

Completeness. Asynchronous distributed sys-
tems with communication channels of unbounded
capacity are in�nite-state and therefore cannot be
handled with �nite-state methods. Such systems
can be modeled in our framework, though their ver-
i�cation is, in general, undecidable. More generally,
since we do not restrict attention to �nite-state sys-
tems, we are forced to use conservative approxima-
tions in the analysis, introducing the possibility of

false negatives.

Termination. Since our analysis constructs his-
tories, approximations of values and multiplicities
are generally needed for termination. Currently,
the framework supports but does not enforce the ap-
proximations needed for termination; for maximum

exibility, the choice of when and how to approx-
imate is left to the I/O functions. This is feasible
because the entire input history is available to the
I/O function. For example, an I/O function might
produce several outputs, each with multiplicity 1,
up to some threshold (possibly dependent on the
particular inputs), then, if it receives more inputs,
approximate by using a multiplicity � in its output.
In practice, determining whether speci�c abstrac-
tions will provide termination in speci�c examples
seems to be reasonably straightforward. Observ-
ing the initial progress of a �xed-point calculation
(using the tool mentioned below) can help a user
predict whether the calculation will terminate.

Many fault-tolerant distributed systems are reac-
tive systems that process unbounded streams of re-
quests. Termination of the analysis depends on fac-
toring the system's behavior into sub-computations
that can be analyzed separately. For example, the
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Figure 5: Behavior of the reliable broadcast protocol when S1 crashes. In the �gure, x:y abbreviates C1:0:x:y.

reliable broadcast protocol described Section 4.2
can perform an arbitrary number of broadcasts,
while the above analysis considers an execution in-
volving only one broadcast. The protocol can be
veri�ed more rigorously using a standard approach
(see, for example, the analysis of the arithmetic
pipeline in [CGL94], or the analysis of the queue
in [Kur94, Appendix D]).

The problem of dealing with in�nite runs also
arises in veri�cation of control systems. An ap-
proach to veri�cation of aircraft control systems is
described in [DBC91, Rus93]. Although the work
described there uses a theorem-prover, the same
ideas can be used in our framework to automati-
cally check whether a given control system tolerates
a speci�ed rate of failures.

Future Work. Success of this approach for ana-
lyzing particular classes of systems depends on the
ability to �nd abstractions that are precise enough
to avoid false negatives and coarse enough to be
tractable, and on mechanized support for applying
those abstractions to programs. We have imple-
mented the analysis in a prototype tool, CRAFT.
We plan to test the approach and tool by applying
them to more problems, e.g., e�cient Byzantine-

agreement algorithms, algorithms for the certi�ed
write-all problem [KMS95, BKRS96], secure pro-
tocols for group membership and reliable broad-
cast [Rei96, MR96], and cryptographic protocols for
fault-tolerant moving agents [MvRSS96].
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