
BSRNG: A High Throughput Parallel BitSliced Approach for
Random Number Generators

Saleh Khalaj Monfared
Institute for Research in Fundamental

Sciences (IPM)
Tehran, Iran

monfared@ipm.ir

Omid Hajihassani
University of Alberta
Edmonton, Canada
hajihass@ualberta.ca

Mohammad Sina Kiarostami
Institute for Research in Fundamental

Sciences (IPM)
Tehran, Iran

Soroush Meghdadi Zanjani
Institute for Research in Fundamental

Sciences (IPM)
Tehran, Iran

Dara Rahmati
Institute for Research in Fundamental

Sciences (IPM)
Tehran, Iran

Saeid Gorgin
Iranian Research Organization for
Science and Technology (IROST)

Tehran, Iran

ABSTRACT
In this work, a high throughput method for generating high-quality
Pseudo-Random Numbers using the bitslicing technique is pro-
posed. In such a technique, instead of the conventional row-major
data representation, column-major data representation is employed,
which allows the bitslicing implementation to take full advantage of
all the available datapath of the hardware platform. By employing
this data representation as building blocks of algorithms, we show-
case the capability and scalability of our proposedmethod in various
PRNG methods in the category of block and stream ciphers. The
LFSR-based (Linear Feedback Shift Register) nature of the PRNG
in our implementation perfectly suits the GPU’s many-core struc-
ture due to its register oriented architecture. In the proposed SIMD
vectorized GPU implementation, each GPU thread can generate
several 32 pseudo-random bits in each LFSR clock cycle. We then
compare our implementation with some of the most significant
PRNGs that display a satisfactory performance throughput and
randomness criteria. The proposed implementation successfully
passes the NIST test for statistical randomness and bit-wise correla-
tion criteria. For computer-based PRNG and the optical solutions in
terms of performance and performance per cost, this technique is
efficient while maintaining an acceptable randomness measure. Our
highest performance among all of the implemented CPRNGs with
the proposed method is achieved by the MICKEY 2.0 algorithm,
which shows 40% improvement over state of the art NVIDIA’s pro-
prietary high-performance PRNG, cuRAND library, achieving 2.72
Tb/s of throughput on the affordable NVIDIA GTX 2080 Ti.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8868-9/20/08. . . $15.00
https://doi.org/10.1145/3409390.3409402

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
• Computer systems organization→ Parallel architectures; • Se-
curity and privacy→ Pseudonymity, anonymity and untraceabil-
ity.

KEYWORDS
PRNG, Cryptography, High-performance, CUDA, cuRAND, Stream
cipher, Bitslicing

ACM Reference Format:
Saleh Khalaj Monfared, Omid Hajihassani, Mohammad Sina Kiarostami,
Soroush Meghdadi Zanjani, Dara Rahmati, and Saeid Gorgin. 2020. BSRNG:
A High Throughput Parallel BitSliced Approach for Random Number Gen-
erators. In 49th International Conference on Parallel Processing - ICPP : Work-
shops (ICPPWorkshops ’20), August 17–20, 2020, Edmonton, AB, Canada.ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3409390.3409402

1 INTRODUCTION
The emergence of cost-effective, high-performance parallel plat-
forms such as Graphical Processing Units (GPU) and their pro-
grammability have allowed researchers across various fields of
science and engineering to utilize GPUs’ specialized processing ca-
pability to accelerate their computationally demanding applications.
GPUs’ processing power has been fully leveraged to implement
machine learning algorithms [13, 34], medical image processing
[9], and many other applications.

Recently, the high-performance execution on GPU has attracted
many researchers’ attention to adapt cryptography problems for ex-
ecution on massively-parallel GPU platforms [2, 40]. One problem
which is the particular concern of this paper is the high-throughput
generation of sequences of pseudo-randomnumbers. High-performance
random number generation with an acceptable randomness cri-
terion is a vital necessity in many computer science disciplines,
including stochastic computing, stochastic simulation, i.e., Monte
Carlo simulation [7], and cryptography [1].

The acceptable criteria for quality of randomness vary across
different fields, demanding the random number sequence. Perhaps
one of the most rigorous fields holding very high standards for
the randomness is cryptography [38]. In order to showcase the
randomness quality of random number generator algorithms, it

https://doi.org/10.1145/3409390.3409402
https://doi.org/10.1145/3409390.3409402

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada Khalaj Monfared, et al.

is conventional to employ the criteria used for cryptographic pur-
poses. The underlying pseudo-random number generator process,
apart from statistical randomness, must accompany other security
assurances that vary based on the intended application. The Cryp-
tographically Secure Pseudo-random Number Generator (CSPRNG)
processes work based on increasing the output sequences’ entropy,
which makes the output sequence indistinguishable from uniformly
random bit sequences. Moreover, the unpredictability of the next-bit
must be further guaranteed. Here, we intend to apply the bitslicing
technique in the software implementation of CSPRNG processes.

In the bitslicing technique, by altering the representation of
the input data and computations, we strive first to increase the
computation units’ utilization, and second, reduce the required op-
erations from costly operations to hardware-friendly basic bit-level
operations, such as XOR, AND, and OR operations. With the incor-
poration of the bitslicing technique in our implementations, we can
achieve highly-parallel, vectorized execution in the SIMD manner.
Authors in [6] have proposed the successful utilization of the bitslic-
ing technique in implementing the Data Encryption Standard (DES)
on a 64-bit processor, where the processor is viewed as a SIMD pro-
cessing unit. In this implementation of the DES, the 64-bit CPU can
be perceived as 64 1-bit CPUs that process 64 chunks of data, simul-
taneously. In [2], the authors have proposed the high-throughput
implementation of the bitslicing DES exhaustive essential search
cryptanalysis technique on programmable GPU platforms.

Although the bitslicing technique has been utilized for crypt-
analysis and fast implementation of cryptosystems, it has not been
used for CPRNGs. A fast, secured, high performance and reliable
CPRNG usually fails to satisfy the criteria in some applications due
to its complexity compared to regular PRNGs. Here, we would like
to improve this drawback for the CPRNGs by incorporating bit-
slicing technique and altering the cryptographic algorithms where
performance is improved, and the security criteria are maintained.
A characteristic of the software implementation of LFSR-based
PRNGs is the intrinsic need for repetitive, costly bit-level shift and
mask operations. By proposing the bitslicing technique and chang-
ing the data and computation representation, we have successfully
transformed those described above costly bit-level shift and mask
operations to more efficient register swapping techniques.

As our main contribution, in this paper, we provide a study on
the implementation of PRNGs on GPUs by utilizing the bitslicing
technique. In order to showcase the scalability of our proposed
method and demonstration of suitability cryptosystem for our pur-
pose, we employ multiple streams and block ciphers, some of which
have not been studied before with the bitslicing technique. We
demonstrate that under the proper choice of the suitable algorithm
and by conveniently applying the required necessary steps with
transformations of functional building blocks and data structures,
our proposed method exhibits significant performance in terms of
raw computational throughput, normalized throughput per com-
putational power and also reliability and quality of the generated
random numbers by putting it under the NIST test. On top of it
all, we present a PRNG implementation based on Mickey 2 stream
cipher that, to the best of our knowledge, outperforms PRNG’s
available implementations in terms of performance. In our GPU
implementation, our version of Mickey 2 outperforms the Nvidia’s

proprietary cuRAND, random number generator, by 1.9 X on a GTX
980 Ti, despite its complexity in the algorithm itself.

The rest of this paper is organized as follows: In section II, we
will introduce a detailed background on the PRNGs, Linear Feed-
back Shift Registers (LFSR), and some crypto-systems are employed
in our proposed method such as Mickey 2.0. Section III discusses
the related efforts to PRNG and RNG implementations. Section IV
gives our proposed methodology and elaborates on incorporating
the bitslicing technique in our implementation, along with exam-
ples in different applications. Section V gives the evaluation results
achieved from our proposed methodology’s performance and cor-
rectness on multiple GPUs. Section VI concludes the paper and
discusses future works.

2 BACKGROUND
This section will give a background on the random number gen-
eration literature, the bitslicing technique, and related concepts
such as linear-feedback shift register (LFSR) and the underlying
mechanisms of employed algorithms for pseudo-random number
generation. Moreover, a brief study will be presented on the stream
and block ciphers employed in this work.

2.1 Random Number Generation
Truly randomnumber generator processes are set to be non-deterministic,
a condition under which the generated random sequence can not
be determined in advance. Random number sequences can be gen-
erated from sampling of truly random sequences such as physical
random phenomenon, including Thermal Noise [16], Electrical Noise
[8], and Laser or Optical mechanisms [17]. However, such random
number generators that use physical phenomena are costly. Also,
the unavailability of the required apparatus limits the scope of the
usage for general applications. Although, such random sequences
can be stored for later use, which also limits the availability and
security in certain applications.

The issues mentioned above of cost and availability lead to the
use of digital computers in the generation of random numbers.
Pseudo-random number generators are not genuinely random pro-
cesses that root from the deterministic essence of digital computers
but are specifically designed to meet specific randomness criteria
in their generated sequences. One of the first PRNG methods that
use a random seed and relies on the seed’s randomness for the
generation of reproducible random sequences in the Middle Square
Method (MSM) [44]. PRNGs can generate random sequences with
truly random seeds until the seed is repeated, and the sequence
repeats in the output. The initial seed size indicates the size of
the generated random sequence before the repeat in the generated
sequence.

One feature of PRNG processes is that with the same seed, the
generated random sequence can be reproduced, which can be ex-
ploited in some scenarios such as end-to-end communications. On
the other hand, it would also be computationally infeasible to find
the random input seed that the PRNG process uses to generate
the pseudo-random sequence by exhaustively searching the seed
space with a part to find and predict the next-bit of the sequence.
To ensure this, the size of the seed must be set to a large number.

BSRNG: A High Throughput Parallel BitSliced Approach for Random Number Generators ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

2.2 Linear Feedback Shift Registers
Based on the mathematical foundation of cyclic codes over the
finite field of GF (2), the Linear Feedback shift registers have been
employed both in software and hardware for awide range of applica-
tions, including transmission error checks [19], high-performance
counters, and pseudo-random number generators[26]. In LFSR, the
feedback tabs that determine the next state of the system, if com-
bined linearly, could directly impact the system’s input when the
register is shifted at each clock cycle. Figure 1 demonstrates a basic
representation of a single n-bit LFSR. The arrangements of the tabs
could be represented by a polynomial referred to as the feedback
polynomial.

Figure 1: A basic n-bit Linear Feedback Shift Register

For a simple n-bit LFSR, the coefficients, operations are defined
over GF (2), and the reciprocal characteristic polynomial could be
represented as is in Equation 1:

p(x) =
n−1∑
i=0

aix
i ;ai ,x ∈ GF (2)

a0,an−1 = 1

(1)

Also, it is worth noting that in many applications, in order to
maximize the LFSR period length (i .e . 2n−1), a primitive polynomial
is chosen as the tapping coefficients for the LFSR.

2.3 Stream Ciphers and Block Ciphers
As already mentioned, block and stream ciphers’ cryptographic
properties are known to be suitable to generate high-quality pseudo-
random numbers. Among all of various and different proposed
stream and block cipher algorithms, we investigate the two-stream
and a block cipher, which are to be exploited by the bitsliced repre-
sentation. Some of these ciphers are specifically designed for effi-
cient hardware implementation while guaranteeing an acceptable
level of security. The ECRYPT Stream Cipher Project (eSTREAM)
Profile 2 stream ciphers are particularly suitable for hardware appli-
cations with restricted resources such as limited storage, gate count,
or power consumption [4]. We recommend using stream ciphers
instead of block ciphers for fast and high-performance implemen-
tations due to their light-weights’ architecture. As shown in the
evaluation section, the Mickey 2.0 algorithm shows more promis-
ing results than block ciphers such as AES (Advanced Encryption
Standard).

2.3.1 MICKEY 2.0 Stream Cipher. MICKEY 2.0 or Mutual Irregular
Clocking KEYstream generator is the second generation stream
cipher of the MICKEY family, introduced by Babbage and Dodd

[5]. Armed with the fact that the MICKEY 2.0 algorithm is inher-
ently light-weight in hardware implementation, the feedback shift
register-based architecture can be easily embodied with the pro-
posed bitslicing technique.

The state machine of the algorithm consists of two 100-bit shift
registers, one linear and one non-linear, both clocked irregularly
under each other’s control. It is stated that each key can be usedwith
up to 240 different IVs of the same length, and that 240 keystreams
can be generated from each key/IV pair. Figure 2 shows the Galois-
based structure of the MICKEY 2.0 algorithm.

Register R

R 98 R 99R 0
IV

K
Mixing

Input
Generator

Input-bit-R

Input-bit-S

R 1 R 2

a0 a1 a98

Register S S 98 S 99S 0 S 1 S 2

b0 b1 b98

Output
bit

Controller bit R

Controller bit S

R 67

S 34

S 67 R 33

Figure 2: Illustration of Mickey 2.0 Stream Cipher Algo-
rithm

The MICKEY 2.0 designers have also specified a scaled-up ver-
sion of the cipher called MICKEY-128 2.0, which employs a 128-bit
key and an initialization vector of up to 128 bits. It is stated in
the specification that the irregular clocking mechanism makes the
parallel implementation somehow not so straightforward. However,
as will be investigated later, our proposed bitsliced algorithm uti-
lizes a fully parallel implementation of MICKEY. Furthermore, it
has been noted by Gierlichs et al. [11], those straightforward im-
plementations of the MICKEY ciphers are likely to be susceptible
to timing or power analysis attacks. However, the system could
be immunized by software techniques like masking, making these
attacks significantly ineffective. Furthermore, there have been no
known cryptanalytic advances against MICKEY 2.0 or MICKEY-128
2.0 after its publication in eSTREAM.[36]

2.3.2 Advance Encryption Standard. Advanced Encryption Stan-
dard, also is known as AES, is the most famous and used block
cipher in communication today. After five years of competition and
standardization, the National Institute of Standards and Technology
(NIST) selected Rijndael block cipher to supersedes Data Encryption
Standard (DES) in 2001 as AES [35]. NIST’s AES specification intro-
duces three versions of Rijndael cipher with 10, 12, and 14 rounds
of ciphering with 128, 192, and 256 bits of keys. The AES algorithm
is consists of three major building blocks and is processed in byte
granularity in extended Galois Field ofGF (28). The state matrix of
16 bytes in a 4×4matrix is constructed; each step is iterated in AES.
S-box or the substitute byte is the only non-linear part of the AES, a

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada Khalaj Monfared, et al.

simple substitutions table, and responsible for a non-linearity in the
cipher. A look-up table usually implements the S-box in memory
in software and hardware implementations. However, the S-box
could be efficiently implemented by bit-level gates as well. The Mix-
Column and Shift-rows boxes are responsible for the diffusion of
the data in cipher. The Mix-Column is a Galois-based Matrix Multi-
plication step, and the Shift-Row is a simple linear byte swapping in
the rows of the state matrix. For PRNG purposes, AES is utilized on
the CTR (Counter Mode), and a data batch of 128-bits is generated
as random blocks while the counter is incremented. The AES-CTR
usage for PRNG is shown in Figure 3. A secure and private random

Input

Key AES
Encryption

128-bit PRN output
0x5afc451990fa..

Nonce
0x5c3aff..

Counter
0x000000

Input

Key AES
Encryption

128-bit PRN output
0x38cc29a1e4ab..

Nonce
0x5c3aff..

Counter
0x000001

Input

Key AES
Encryption

Nonce
0x5c3aff..

Counter
0x000002

128-bit PRN output
0xed7e9fbcc801a..

Figure 3: AES-CTR implantation as secure random number
generator

number as nonce is generated and concatenated with a counter
as the input. By encrypting the input with an arbitrary key each
encryption blocks provide a 128-bit random data-chunk. Note that
this procedure could be fully employed in parallel since each AES
block encryption is independently implemented.

2.3.3 Grain Stream Cipher. The Grain is also a winner of the eS-
TREAM portfolio for Profile 2, designed explicitly for restricted
hardware environments. The Grain developed by Hell et al. [15], is
constructed by two 80 bits Linear and Non-Linear Feedback Shift
Registers (NFSR) which are shifted together at each clock cycle.
The NFSR is controlled by a feedback function of itself and LFSR
output. Similarly, the LFSR is also controlled by feedback func-
tion. The cipher is normally initialized with an 80-bit key and a
64-bit Initial Vector(IV), which is directly fed into the NFSR and
LFSR, respectively at the beginning. The specification recommends
160 clocks of initialization before the keystream generation. The
light-weighted architecture of the Grain structure couple with the
shift-registers used in this algorithm makes it a great nominee for
the bit-sliced implementation. A high-level demonstration of Grain
stream Cipher is given in Figure 4.

LFSRNFSR

h(x)

f(x)g(x)

Output bit

Figure 4: Illustration of Grain Stream Cipher Algorithm

3 RELATED EFFORTS
Random number generation has been a topic of interest for re-
searchers and developers for decades. Numerous theoretical and
practical studies have investigated the complexity of generating
high-quality random numbers and evaluating them [22, 28]. Using
parallel platforms for the acceleration of RNGs has also been a
matter of consideration in the literature [27]. Staring around the
2000s, the emergence of general-purpose computing on graphics
processing units has opened new horizons for the high-performance
generation of random numbers. In 2006, M Sussman et al. published
one of the first works utilizing the power of GPGPU on the subject
of RNG [39]. In the years to follow,many researchers and developers
reported successful implementations of PRNGs with an increase in
performance on parallel platforms, achieving remarkable speedups
over the CPU platforms of their time and outperforming similar
efforts [12]. In the subject of high-performance parallel PRNG, the
performance of Nvidia’s proprietary PRNG cuRAND library [42]
has always been a forceful competition, still, in some cases, re-
searchers have reported their work excelling the performance of
the cuRAND of their time [31]. Compared to the most significant re-
cent efforts on pseudo-random number generation on GPU [3, 41],
the cuRAND library seems to remain the major dominating player
in the field with performances brighter than competitors in terms
of both throughput and throughput per processing power of the
device underutilization.

Regardless of all the performance advancements in the HPC
community, there have always been skepticism and critical opin-
ions regarding arithmetic methods for generating random numbers.
Highly favored from physics academic community [24] quote by
Von Neumann stating, "Anyone who considers arithmetical meth-
ods of producing random digits is, of course, in a state of sin" [44]
is famously cited for designating the difference between natures of
generated randomnumbers by physical and computationalmethods.
Although not truly random numbers by definition, computationally
generated random numbers have gained serious attention in recent
years due to their accessibility, affordability, and employment ability
in high-performance platforms thanks to the development in paral-
lel hardware devices. Theoretical and practical methods regarding
generation and evaluation of computationally generated random
numbers have advanced so far that these arithmetically generated
random numbers are securely utilized in sensitive applications like
cryptography.

It is worth noting that the quality of random numbers is de-
pendent on its target user and application domain [22]. Trivial
computer games and sensitive cryptographic applications have dif-
ferent requirements and criteria for measuring how good a random
number is. Therefore to ensure that the randomness properties of
a sequence are satisfactory for a certain application, the measure-
ment of the quality of the generated sequence is of high significance.
Consequently, efforts have been made to develop procedures and
tools capable of evaluating the desirable statistical properties of a
given random sequence [23]. NIST SP 800-22 [36] is a statistical test
suite from the national institute of standards and technology (NIST)
designed to probe RNGs for both statistical and cryptographical
properties, ensuring the qualification of the passing RNG for its
target users in cryptographic applications.

BSRNG: A High Throughput Parallel BitSliced Approach for Random Number Generators ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

Taking advantage of the GPU platform in the generation of
random numbers compared to the physical and the optical methods
[17, 25, 45], other hardware platforms [43] such as FPGA [37] and
CPU [29] enables the users to strike a balance between the quality
of randomness, flexibility, obtainability, affordability, performance,
and outstanding performance per cost metrics.

Table 1: Priviously proposedPRNG Implementaions onGPU

Ref Year GPU GPU’s GFLOPS Method Method’s Gbps (Gbps/GFLOPS)
[20] 2008 8800 GTX 345.6 RapidMind 26 0.0752
[33] 2008 7800 GTX 20.6 CA-PRNG 0.41 0.0199
[21] 2009 T10P 622.1 ParkMiller 35 0.0562
[12] 2010 S1070 2488.3 N/A 4.98 0.0020
[31] 2011 GTX 480 1344.96 xorgensGP 527.5 0.3922
[10] 2013 GTX 480 1344.96 GASPRNG 37.4 0.0278

Unfortunately, current random number generation methods on
GPU do not take full advantage of this hardware platform. The latest
efforts on CSPRNG on high-end GPUs perform poorly in utilizing
GPU’s massive parallelization capabilities to reach high-generation
performances [3]. Table I represents the claimed performance of
some of the related efforts and the processing power of the GPU on
which they could reach their peak performance. Also, to establish
a fair platform for comparison, each method’s peak performance
was normalized to the processing power of their employed device
and reported as well. The performance achieved by the state of the
art RNGs such as Nvidia’s proprietary cuRAND library still does
not fully exhibit the full potential of modern GPUs. We show this
performance can be further enhanced while maintaining reasonable
cryptographically properties via applying the bitslicing approach
to the implementation of GPU-based CSPRNGs.

4 PROPOSED METHOD
In this section, we propose implementing the bitslicing software
technique for high-throughput cryptographically safe pseudo-random
generation based on cryptographic algorithms. The column-major
bitsliced data representation scheme’s approach is first introduced
and discussed, and their advantages compared to the na "ive imple-
mentation are explained. Afterward, by incorporating the bitslicing
technique into the implementation of our work, a high-throughput
algorithm for LFSR architecture is presented, and then, as another
application, a cyclic redundancy check (CRC) using the proposed
architecture is described. The implementation of parallel MICKEY
algorithm as an example for bitsliced stream ciphers is presented
for Random Bit Generation (RBG). Finally, further GPU optimiza-
tion techniques used in our implementations are discussed. It is
also worthy of mentioning that we have implemented the bitsliced
version of three cryptosystems, namely AES, MICKEY 2, and Grain
algorithms as CPRNGs to show the extensiveness of the proposed
method. However, here only the alteration MICKEY 2 algorithm is
described as an example.

4.1 Bitsliced SIMD Vectorization and Data
Representation

Bitslicing techniquewas employed by Biham [6] for the implementa-
tion of cryptographic algorithms. At the time, the technique acceler-
ated the previous implementations of the Data Encryption Standard

(DES) to accelerate the exhaustive search procedure. As mentioned,
by the emergence of high-performance, affordable general-purpose
GPUs, the bitslicing technique has been successfully employed by
many works such as [32], [14], and [2] as a software solution for
high-throughput demanding cryptographic applications on GPUs.
This bitslicing-based implementation, leveraged by the column-
major data representation, reaches an unprecedented throughput
of Terabits per second (Tbps) both in encryption and decryption.

Before getting into the details of the proposed PRNG via MICKEY
2.0, we discuss the data representation scheme employed in our
work. The proposed representation scheme fits the GPU’s parallel
architecture and utilizes the available datapath of the computational
units in the deployment hardware.

This proposed data representation scheme, uses column-major
data representation, instead of the conventional row-major repre-
sentation. By the row-major representation, we refer to the repre-
sentation used to store the data in standard programming practices.
In our implementation, we store state bits and other supplementary
and temporary registers in the column-major representation. We
strive to achieve full SIMD execution of several 32 (in the case of
single-precision calculations) bits from different data chunks at each
execution clock cycle. In our LFSR implementation, a batch of 32
bits data stored in a single register, represents state bits from 32 un-
correlated different parallel LFSRs having the same bit significance.
Hence,

The first step is to alter the representation of the column-major
data representation. For a simple LFSR implementation operating in
the conventional row-major representation, one or more registers
are used to store the LFSR algorithm’s state bits. Hence, in order to
store the n-bit LFSR states with a primitive polynomial (feedback
polynomial) of p(x) =

∑n−1
i=0 aix

i , a number of
⌈ n
m
⌉
registers are

needed to store LFSR state bits. For instance, for a simple 20-bit LFSR,
assuming single precision operations, a single register of 32-bit
width is employed to handle the LFSR state machine’s computation.

As investigated in the previous section, the shift operation is nec-
essary for the LFSR architecture, and in the conventional naïve im-
plementation, costly bit-level shift and mask operations are manda-
tory at every single rotation of the LFSR state machine. This would
considerably limit the RNG circuit’s overall performance since these
bit-access operations should be executed at each rotation. Moreover,
in some scenarios, the register utilization in terms of the platform’s
datapath width cannot be maximized due to the available num-
ber of bits in the conventional row-major data representation. The
column-major bitsliced data representation compensates for the
shortcomings as mentioned above inherent to the common practice
na [ıve implementation, but also maximizes the utilization of the
processing units in the GPU.

4.2 Bitslicing Approach Application: CRC
Example

As indicated, bitslicing technique could be employed in register-
based processors in many applications. In this context, as an ex-
ample, we examine the usage of column data representation in a
simple 8-bit Cyclic Redundancy Check (CRC-8) to show the exten-
sibility of the discussed method. CRC is used to check the error
in communication channels with a wide range of applications in

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada Khalaj Monfared, et al.

Wireless Mobile Networks, Wired Ethernet, and countless other ap-
plications. As shown in Figure 5, a simple 8-bit CRC is constructed
by shift-registers, and the state value of the CRC is changed by
input stream at each cycle. Typically, a CRC is implemented on a
single register, and the computation is handled by a simple shift and
mask operation within the register. The CRC output of a specific
input data is the final state bits stored in the register, which is used
to check the original data’s correctness.

Input bit
bit 0 bit 3 bit 4 bit 5 bit 6 bit 7

Register

Figure 5: A simple CRC-8 example.(Naïve implementation)

Taking advantage of the bitslice data order, one can implement
the CRC-8 as shown in Figure 6. Considering a processor with
a 32-bit register, this representation constructs a fully paralleled
CRC calculation for 32 different data streams simultaneously with-
out any computational overhead. The shift and mask operation is
completely removed and replaced with trivial register reference
swapping.

32 bits
Input Reg

Reg 0 Reg 3 Reg 4 Reg 5 Reg 6 Reg 732 bits

Figure 6: A simple CRC-8 example(bit-sliced implementa-
tion)

4.3 Bitsliced LFSR Implementation
Along with the fact that the costly shift and rotation operations can
be further reduced to simple register swapping operations in the
bitsliced data representation, here, we investigate the underlying ar-
chitecture of our proposed bitsliced LFSR implementation on GPU
which will be employed for the CPRNGs such as MICKEY 2.0 algo-
rithm. Moreover, we indicate our proposed bitslicing technique’s
properties and advantages accompanied by the column-major data
representation. As shown in Figure 6 and explained earlier, the
LFSR conventional implementations suffer from a massive bit-level
shift and mask operations. For fair comparison and the sake of
simplicity, consider the naïve implementation of 32 parallel LFSRs
governed by the primitive polynomial д(x) shown in Equation 2.
Note that there are at least a k number of feedback paths in the
LFSR algorithm.

д(x) =
n−1⊕
i=0

aix
i ;ai ,x ∈ GF (2)

|A| = k (2)
A = {ai |ai , 0}

As illustrated in Figure 7, each of these parallel LFSRs are managed
by a single thread which results in the execution of 32 parallel
threads. Hence, to generate a total number of M pseudo-random
bits, each LFSR module should be shifted for M/32 times where
many 32 × k bit-level XOR operations are needed.
It is worth noting to know that to use parallel LFSRs in this manner;
the shift-registers should be carefully initialized to eliminate any
statistical correlation between the LFSR state machines when the
output is not mixed (it is highly recommended to use non-linear
mixing before generating the bitstream). Moreover, from the crypt-
analysis point of view, the secure threshold for the repeat period
(not 2n − 1 in this case) of the employed parallel system should be
estimated.

Figure 7: Number of 32 parallel LFSR modules executed in
32 threads

Considering the same scenario for pseudo-random bit genera-
tion by using LFSR, in Figure 8, the bitsliced LFSR implementation
with column-major representation is demonstrated. Compared to
the previous conventional model, to generate M bits in this pro-
posed methodology, the same number of M/32 LFSR shift cycles
are required. However, this procedure could be executed by a single
thread. Also, the 32 × k number of costly bit-wise XOR operations
(needed at each cycle) is reduced to k number of full-width XOR
operations. These operations maximize the datapath utilization.
Moreover, as shown in Figure 8, the costly bit-level shift opera-
tions are replaced by cheaper and more trivial register swapping
operations, which can be easily done by changing the references of
the registers in the software code. Although changing references
in code might be a burdensome task, it dramatically reduces the
number of needed instructions in the code. Similarly, in this case,
the registers should be safely initialized from the perspective of
cryptanalysis, and the period of the usage should be considered.
Note that to maximize the repeat period of the LFSR algorithm for
PRNG, it is recommended to choose an LFSR with a higher n value.

4.4 MICKEY 2.0 Bitsliced Implementation
As explained, MICKEY 2.0 stream cipher is comprised of two 100-bit
registers, namely S and R registers. By incorporating the bitslicing
technique into the implementation of the MICKEY 2.0 algorithm,
instead of two 100-bit registers, the data representation is altered
into column-major order, and 200 registers, each containing 32
bits are employed. Note that our implementation utilizes single-
precision computation, which occupies 32-bit registers. By doing

BSRNG: A High Throughput Parallel BitSliced Approach for Random Number Generators ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

regn-1regn-2reg4reg3reg2reg132-bits
reg0

Circular Shift

a 0 a 1 a 2 a 3 a4 a n
-2

a n
-1

Output
Reg

32 bits

Figure 8: The execution of a 32-bit bitsliced LFSR by a single
thread

so, 32 parallel Mickey stream ciphers are executed simultaneously.
Figure 9 demonstrates the parallel bitsliced Mickey architecture.
Rreдi and Sreдi represent the ith bits of the R and S registers in
the bitslicing manner, respectively. Each of these registers stores 32
different bits of the same significance for 32 parallel LFSRs modules.
Hence, in our implementation, each GPU thread can execute 32
parallel Mickey 2.0 ciphers, and each thread at each clock cycle
generates 32 random bits. Also, the XOR operation is executed on
two 32-bits registers, and the register-based operations are utilized
compared to the naïve implementation.

To securely and properly initialize our bitsliced Mickey algo-
rithm, we employ a non-linear function to expand a carefully se-
lected pre-stored random number set, which generates an 80-bit
Initialization Vector (IV) for each MICKEYmodule (32×80 bits of IV
for each thread). It is worth noting that the controller bit functions
are designed in the bitsliced representation to calculate all the 32
bits of the controller bits for the feedback procedure. This bitsliced
controller is optimized to compute the underlying parameters re-
sponsible for the feedback procedure in the algorithm. Moreover,
the input handler is also executed in 32-bit width mode with no
additional overhead and is optimized in terms of datapath width.

Sreg99Sreg1Sreg0

Rreg99Rreg1Rreg0 IV

K
Mixing

Input
Generator

Input-R

Input-S

a0 a1 a98

b0 b1 b98

32- Output
bit

Controller bit R

Controller bit S

R 67

S 34

S 67 R 33

32bit

32bit

32bit

32bit

32bit

32bit

32
bit

32
bit

Figure 9: 32-bit Bitsliced implementation of Mickey 2.0
stream cipher algorithm

The real challenge in this technique’s employment is the devel-
opment of bit-level functions in the building blocks of the MICKEY
algorithm. Specifically, the S controller and R controller’s irregular
clocking procedures are not simply described in bit-level granular-
ity. Extending these descriptions in binary requires heavy coding
deployment efforts. Some researchers have developed a high-level

API to generate similar codes in this context.[30] For this reason, we
have utilized an automation technique to generate such a bit-level
description. The bitsliced MICKEY implementation code (CUDA/C)
is generated by a higher-level transcript (i.e., written in Python
language).

To manually develop any bit-level functions, one should describe
thousands of lines of codes that increase the error rate in the algo-
rithm’s overall functionality. Hence, the description of all functions
and blocks in the bitsliced MICKEY algorithm, including the main
loop of the circuit and feedback functions, is generated by a com-
puter program.

4.5 Shared Memory and Coalesced Access
Like any parallel implementation algorithm in GPU platforms, effi-
cient memory access is crucial to minimize execution delay. The
bitsliced implementation gives the advantage of full utilization of
local registers available in the threads. The fact that proposed im-
plementations, do not require any additional memory rather than
registers makes the overall expectation very efficient in terms of
access delay. However, a single memory access should be performed
by each thread to write their output at each cycle. By exploiting
the hierarchical architecture of toady’s modern GPUs, the Shared
Memory is employed to accelerate this procedure. In all of our im-
plementations, a method is carried out to store the data temporarily
in the device to minimize host-device communication. For instance,
in MICKEY 2.0 Bitsliced, each thread, stores the output of each loop
(32-bits) in the Shared Memory. After filling the shared memory
capacity, the entire data is moved toGlobal Memory at a single mem-
ory access instruction where can be retrieved by the host. As could
be expected, this intermediate access to Shared Memory decreases
the run-time considerably compared to direct write access to Global
Memory. Note that the suitable size to occupy shared memory is
determined experimentally and is highly correlated to the device’s
specification in hand. In our CUDA implantation, simple try and
error reveal the suitable shared memory occupancy, which yields a
fair performance gain.

Furthermore, coalesced memory access is another crucial tweak
for performance gain in GPUs. We have also implemented the pro-
posed algorithm to have coalesced write accesses. The substantial
parallel write executions in such implementations often cause a
significant delay due to several problems regarding non-optimal
addressing configuration. A performance gain could be achieved
in both shared memory and global memory access by organizing a
suitable addressing scheme via thread identifications and memory
labeling.

5 EVALUATION
This section will present the evaluation results of the performance
and the performance per cost metrics achieved from the execu-
tion of our proposed CPRNG implementations on several different
CUDA-enabled GPUs. In this study, six Nvidia GPUs are carefully
selected for evaluation purposes. The employed GPUs each have
different structural characteristics such as different single and dou-
ble precision throughputs and memory bandwidths. These features
are carefully selected to represent a wide range of execution plat-
forms. We selected these GPU platforms because firstly, the range

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada Khalaj Monfared, et al.

of the selected GPUs ultimately represents the platforms available
to a wide range of users spanning home and enterprise users. Sec-
ondly, these GPUs give us a fair comparison with the previously
proposed methods. Moreover, we demonstrate the randomness ro-
bustness and reliability of the generated bits by discussing the NIST
statistical test results for our sample implementation.

5.1 Setup
This section elaborates on the specification of the hardware plat-
forms used for the evaluation of our proposed method. GPU plat-
forms GTX 480, GTX 980 Ti, and GTX 1050 Ti on systems with two
Intel XEON E5 2697 V3 CPUs clocked at 2.6 GHz, and 128 GB of
DDR3 RAM were used for the evaluation process [18]. Moreover,
to prove the scalability of the proposed method Tesla V 100 and
GTX 2080 Ti GPUs are also utilized for evaluation and employed
in a Virtual Machine environment with the same virtually dedi-
cated specifications. Table II shows the GPU platforms’ specification
details in terms of the processing power and memory bandwidth.

GPU Single Precision
(GFlops)

Double Precision
(GFlops)

Mem. BW
(GB/s)

GTX 480 1344 168 177
GTX 980 Ti 5632 176 337
GTX 1050 Ti 1981 62 112
GTX 1080 Ti 10609 332 484
Tesla V100 14028 7014 900
GTX 2080 Ti 11750 367 616

Table 2: Specification of the GPU platforms used for evalua-
tion

5.2 Performance
Figure 10 illustrates the achieved performance for our proposed
method based on three cryptosystems (AES, Mickey, Grain). In
this Figure, we have compared our results with NVIDIA’s cuRAND
library (on the same platform) since all other previously proposed
methods have failed to reach the cuRAND performance in PRNGs.
The best result obtained on GPU V100 is acquired in the following
manner of executing the implemented CUDA kernel code with
fixed parameters of thread blocks and thread per block set to 64 and
256, respectively. The code’s loop size is varying between 4,400 to
13,000, yielding to a different performance throughput. The cuRand
results here are evaluated using the Mersenne Twister algorithm
as the default cuRand method for RNG. Note that the peak AES
performance is limited compared to the stream ciphers here. The
complex bitsliced S-box mainly causes this in the AES. Also, the
LFSR based structure of the stream ciphers is more compatible with
the proposed bitslice technique.

5.3 Normalized Performance Evaluation
Due to the lack of access to some of the GPU platforms used in
previous works that are currently outdated platforms and to de-
liver a fair comparison, we follow the method of normalizing the
results of our proposed method and related works on parameters
of performance per processing power which is shown in Figure

Figure 10: Comparing the performance of the proposed
method on different GPU platforms

11. However, as already indicated, the most important available
library to compare, is the cuRAND which has been considered in
our evaluation.

Figure 11: Comparison of normalized performance of the
proposed method with previous works

5.4 Multi-GPU implementation
By taking advantage of more than one GPU in a single machine, the
throughput of proposed CPRNGs can further be scaled up on a more
significant number of GPUs within a single standalone machine.
This approach could certainly be considered a suitable replacement
for expensive Tbps optical solutions in output performance. For
this goal, firstly, the input parameters (e.g., the seed, nonce, and
counter) are shared and partitioned amongst all of the available
GPUs. In this phase, if the GPUs are alike in the processing power
metric, the input data is equally broken down into the same sized
partitions. Then, each GPU executes the algorithm separately and
in parallel. For example, different counter values used as the input
vector with a unique key in the AES-CTR algorithm are passed to
GPUs. Then each GPU generates a portion of data in parallel, which
could be reconstructed sequentially. In a multi-GPU approach, a
single CPU thread is required to invoke the kernel code on each
of the available GPUs. OpenMP threads can manage the GPUs in
parallel. The rest of the process is handled, as discussed in the single-
GPU implementation. Our evaluation setup includes two GTX 1080

BSRNG: A High Throughput Parallel BitSliced Approach for Random Number Generators ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada

Ti GPUs running the Mickey 2 Bitsliced algorithm. In this setup in
which two similar GPUs are used, the performance achieves a near-
linear throughput (1.92 x). However, it is known that by increasing
the number of GPUs to 4 or 8, the overall performance descends
due to the cost of data scheduling latency, data concatenation.

Another exciting aspect of a multi-GPU implementation by the
use of this approach is that the same output sequence of random
bits could be generated identically in a single GPU sequentially.
This feature could be handy in two-way communication where the
sequence should be reconstructed at the receiver.

5.5 Statistical Tests
We use the NIST SP 800-22 version sts-2.1.2 for testing the statistical
and cryptographical properties of our generated random sequences
in the Mickey algorithm. Bitstreams generated by our implementa-
tion successfully pass all statistical tests. As recommended by the
NIST tests, the items are executed using 1,000 instances of 1Mb of
random bits generated by our solution. Note that the significant
value here is considered to be α = 0.01, and the results of P −Value
verify the randomness of the input bitstream.

Test P-value Proportion Result
Frequency 0.251741 0.9982 Success

BlockFrequency 0.350485 0.9947 Success
CumulativeSums 0.4766135 0.9751 Success

Runs 0.534146 0.9781 Success
LongestRun 0.350485 0.9562 Success

Rank 0.213309 0.9950 Success
FFT 0.534146 0.9971 Success

NonOverlappingTemplate 0.4821360 0.9885 Success
OverlappingTemplate 0.739918 0.9912 Success
ApproximateEntropy 0.350485 0.9721 Success

Serial 0.7227795 0.99982 Success
LinearComplexity 0.739918 0.9840 Success

Table 3: Evaluation results of NIST statistical suite. The
results are the average of 1,000 samples of 1,000,000 bit
streams of random numbers generated by the proposed
MICKEY algorithm.

6 DISCUSSION & CONCLUSION
High-performance, secure, and efficient random generators are
required in many industrial and research applications in differ-
ent fields. We propose a high-throughput, fully parallel crypto-
graphically secure pseudo-random number generator using the
bitslicing technique in this work. In this technique, the data from
the conventional row-major representation is altered into column-
major representation to fully utilize the computation datapath of
the employed device. Using the bitslicing technique on the LFSR-
based cryptographically secureMICKEY 2.0 stream cipher and other
crypto-systems is implemented. This allows for high-performance
random number generation by the elimination of the shift and
masks operations. Various supplementary techniques, such as the
utilization of shared memory and coalesced memory access are
also employed to further increase performance. One of the main

concerns of employing GPUs for the generation of random numbers
is the delay, which, compared to the similar computational meth-
ods including ASIC, FPGA, and physical methods such as optical
circuits, may be considered the major drawback of these relatively
general-purpose computational platforms. The proposed method
can prove advantageous when employed on applications where a
slight delay is not a matter of great concern, and the performance
and the cost-efficiency of the solution are considered. Our proposed
methodology achieves the throughput of 2.90 Tb/s on Nvidia V
100, outperforming the Nvidia’s proprietary cuRAND library while
striking a notable balance in performance criteria per cost.

REFERENCES
[1] Rudolf Ahlswede and Imre Csiszár. 1993. Common randomness in information

theory and cryptography. part i: secret sharing. IEEE Transactions on Information
Theory 39, 4 (1993).

[2] Armin Ahmadzadeh, Omid Hajihassani, and Saeid Gorgin. 2018. A high-
performance and energy-efficient exhaustive key search approach via GPU on
DES-like cryptosystems. The Journal of Supercomputing 74, 1 (2018), 160–182.

[3] Mohammed Abdul Samad AL-khatib and Auqib Hamid Lone. 2018. Acoustic
lightweight pseudo random number generator based on cryptographically secure
LFSR. International Journal of Computer Network and Information Security 11, 2
(2018), 38.

[4] Steve Babbage, C Canniere, Anne Canteaut, Carlos Cid, Henri Gilbert, Thomas
Johansson, Matthew Parker, Bart Preneel, Vincent Rijmen, andMatthew Robshaw.
2008. The eSTREAM portfolio. eSTREAM, ECRYPT Stream Cipher Project (2008),
1–6.

[5] Steve Babbage and Matthew Dodd. 2006. The stream cipher MICKEY 2.0. ECRYPT
Stream Cipher (2006).

[6] Eli Biham. 1997. A fast new DES implementation in software. In International
Workshop on Fast Software Encryption. Springer, 260–272.

[7] Kurt Binder, Dieter Heermann, Lyle Roelofs, A John Mallinckrodt, and Susan
McKay. 1993. Monte Carlo simulation in statistical physics. Computers in Physics
7, 2 (1993), 156–157.

[8] Ihsan Cicek, Ali Emre Pusane, and Gunhan Dundar. 2014. A novel design method
for discrete time chaos based true random number generators. INTEGRATION,
the VLSI journal 47, 1 (2014), 38–47.

[9] Anders Eklund, Paul Dufort, Daniel Forsberg, and Stephen M LaConte. 2013.
Medical image processing on the GPU–Past, present and future. Medical image
analysis 17, 8 (2013), 1073–1094.

[10] Shuang Gao and Gregory D Peterson. 2013. GASPRNG: GPU accelerated scalable
parallel random number generator library. Computer Physics Communications
184, 4 (2013), 1241–1249.

[11] Benedikt Gierlichs, Lejla Batina, Christophe Clavier, Thomas Eisenbarth, Aline
Gouget, Helena Handschuh, Timo Kasper, Kerstin Lemke-Rust, Stefan Mangard,
Amir Moradi, et al. 2008. Susceptibility of eSTREAM candidates towards side
channel analysis. (2008).

[12] Chunye Gong, Jie Liu, Lihua Chi, Qingfeng Hu, Li Deng, and Zhenghu Gong.
2010. Accelerating Pseudo-Random Number Generator for MCNP on GPU. In
AIP Conference Proceedings, Vol. 1281. AIP, 1335–1337.

[13] Antonio Gulli and Sujit Pal. 2017. Deep Learning with Keras. Packt Publishing
Ltd.

[14] O. Hajihassani, S. Khalaj Monfared, S. H. Khasteh, and S. Gorgin. 2019. Fast AES
Implementation: A High-throughput Bitsliced Approach. IEEE Transactions on
Parallel and Distributed Systems (2019), 1–1.

[15] Martin Hell, Thomas Johansson, and Willi Meier. 2007. Grain: a stream cipher
for constrained environments. IJWMC 2, 1 (2007), 86–93.

[16] Benjamin Jun and Paul Kocher. 1999. The Intel random number generator.
Cryptography Research Inc. white paper 27 (1999), 1–8.

[17] Ido Kanter, Yaara Aviad, Igor Reidler, Elad Cohen, and Michael Rosenbluh. 2010.
An optical ultrafast random bit generator. Nature Photonics 4, 1 (2010), 58.

[18] Mohammad Sina Kiarostami, Mohammad Reza Daneshvaramoli, Saleh Khalaj
Monfared, Dara Rahmati, and Saeid Gorgin. 2019. Multi-Agent non-Overlapping
Pathfinding with Monte-Carlo Tree Search. In 2019 IEEE Conference on Games
(CoG). IEEE, 1–4.

[19] Philip Koopman. 2002. 32-bit cyclic redundancy codes for internet applications.
In Proceedings International Conference on Dependable Systems and Networks.
IEEE, 459–468.

[20] William B Langdon. 2008. A fast high quality pseudo random number generator
for graphics processing units. In 2008 IEEE Congress on Evolutionary Computation
(IEEE World Congress on Computational Intelligence). IEEE, 459–465.

[21] William B Langdon. 2009. A fast high quality pseudo random number generator
for nVidia CUDA. In Proceedings of the 11th Annual Conference Companion on

ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada Khalaj Monfared, et al.

Genetic and Evolutionary Computation Conference: Late Breaking Papers. ACM,
2511–2514.

[22] Pierre L’Ecuyer. 1990. Random numbers for simulation. Commun. ACM 33, 10
(1990), 85–97.

[23] Pierre L’Ecuyer and Richard Simard. 2007. TestU01: AC library for empirical test-
ing of random number generators. ACM Transactions on Mathematical Software
(TOMS) 33, 4 (2007), 22.

[24] Pu Li, Ya Guo, Yanqiang Guo, Yuanlong Fan, Xiaomin Guo, Xianglian Liu, Kunying
Li, K Alan Shore, Yuncai Wang, and Anbang Wang. 2018. Ultrafast fully photonic
random bit generator. Journal of Lightwave Technology 36, 12 (2018), 2531–2540.

[25] Yang Liu, Qi Zhao, Ming-Han Li, Jian-Yu Guan, Yanbao Zhang, Bing Bai, Weijun
Zhang, Wen-Zhao Liu, Cheng Wu, Xiao Yuan, et al. 2018. Device-independent
quantum random-number generation. Nature 562, 7728 (2018), 548.

[26] George Marsaglia et al. 2003. Xorshift rngs. Journal of Statistical Software 8, 14
(2003), 1–6.

[27] Michael Mascagni. 1999. SPRNG: A scalable library for pseudorandom number
generation. In Recent Advances in Numerical Methods and Applications II. World
Scientific, 284–295.

[28] Michael Mascagni and Ashok Srinivasan. 2000. Algorithm 806: SPRNG: A scalable
library for pseudorandom number generation. ACMTransactions onMathematical
Software (TOMS) 26, 3 (2000), 436–461.

[29] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 8, 1 (1998), 3–30.

[30] Darius Mercadier, Pierre-Évariste Dagand, Lionel Lacassagne, and Gilles Muller.
2018. Usuba: optimizing & trustworthy bitslicing compiler. In Proceedings of the
2018 4th Workshop on Programming Models for SIMD/Vector Processing. 1–8.

[31] Nimalan Nandapalan, Richard P Brent, Lawrence M Murray, and Alistair P Ren-
dell. 2011. High-performance pseudo-random number generation on graphics
processing units. In International Conference on Parallel Processing and Applied
Mathematics. Springer, 609–618.

[32] Naoki Nishikawa, Hideharu Amano, and Keisuke Iwai. 2017. Implementation
of Bitsliced AES Encryption on CUDA-Enabled GPU. In Network and System
Security, Zheng Yan, Refik Molva, Wojciech Mazurczyk, and Raimo Kantola
(Eds.). Springer International Publishing, Cham, 273–287.

[33] Wai-Man Pang, Tien-TsinWong, and Pheng-Ann Heng. 2008. Generating massive
high-quality random numbers using GPU. In 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence). IEEE, 841–847.

[34] Saeid Rahmani, Armin Ahmadzadeh, Omid Hajihassani, S Mirhosseini, and Saeid
Gorgin. 2016. An efficient multi-core and many-core implementation of k-means
clustering. In ACM-IEEE International Conference on Formal Methods and Models
for System Design (MEMOCODE). 128–131.

[35] Vincent Rijmen and Joan Daemen. 2001. Advanced encryption standard. Proceed-
ings of Federal Information Processing Standards Publications, National Institute of
Standards and Technology (2001), 19–22.

[36] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker.
2001. A statistical test suite for random and pseudorandom number generators
for cryptographic applications. Technical Report. Booz-Allen and Hamilton Inc
Mclean Va.

[37] Guido Di Patrizio Stanchieri, Andrea De Marcellis, Elia Palange, and Marco
Faccio. 2019. A True Random Number Generator Architecture Based on a Re-
duced Number of FPGA Primitives. AEU-International Journal of Electronics and
Communications (2019).

[38] Berk Sunar. 2009. True random number generators for cryptography. In Crypto-
graphic Engineering. Springer, 55–73.

[39] Myles Sussman, William Crutchfield, and Matthew Papakipos. 2006. Pseudo-
random number generation on the GPU. In Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware. ACM, 87–94.

[40] Robert Szerwinski and Tim Güneysu. 2008. Exploiting the power of GPUs for
asymmetric cryptography. In International Workshop on Cryptographic hardware
and embedded systems. Springer, 79–99.

[41] Je Sen Teh, Azman Samsudin, Mishal Al-Mazrooie, and Amir Akhavan. 2015.
GPUs and chaos: a new true random number generator. Nonlinear Dynamics 82,
4 (2015), 1913–1922.

[42] NVIDIA Corporation. [n.d.]. The NVIDIA CUDA Random Number Generation
library (cuRAND). https://developer.nvidia.com/curand

[43] David Barrie Thomas, Lee Howes, and Wayne Luk. 2009. A comparison of
CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number
generation. In Proceedings of the ACM/SIGDA international symposium on Field
programmable gate arrays. ACM, 63–72.

[44] John von Neumann. 1963. Various techniques used in connection with random
digits. John von Neumann, Collected Works 5 (1963), 768–770.

[45] Hesong Xu, NicolaMassari, Leonardo Gasparini, AlessioMeneghetti, and Alessan-
dro Tomasi. 2019. A SPAD-based random number generator pixel based on the
arrival time of photons. Integration 64 (2019), 22–28.

https://developer.nvidia.com/curand

	Abstract
	1 Introduction
	2 Background
	2.1 Random Number Generation
	2.2 Linear Feedback Shift Registers
	2.3 Stream Ciphers and Block Ciphers

	3 Related Efforts
	4 Proposed Method
	4.1 Bitsliced SIMD Vectorization and Data Representation
	4.2 Bitslicing Approach Application: CRC Example
	4.3 Bitsliced LFSR Implementation
	4.4 MICKEY 2.0 Bitsliced Implementation
	4.5 Shared Memory and Coalesced Access

	5 Evaluation
	5.1 Setup
	5.2 Performance
	5.3 Normalized Performance Evaluation
	5.4 Multi-GPU implementation
	5.5 Statistical Tests

	6 Discussion & Conclusion
	References

