
n

0

R

m

REPORT NO. UIUCDCS-R-88-1425

April 1988

GEOMETRIC PROBING

by
Steven Sol Skiena

UILU-ENG-88-1730

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN • URBANA, ILLINOIS



REPORT NO. UIUCDCS-R-88-1425

GEOMETRIC PROBING

by

STEVEN SOL SKIENA

B. S., University of Virginia, 1983
M.S., University of Illinois, 1985

DEPARTMENT OF COMPUTER SCIENCE

1304 W. SPRINGFIELD AVENUE

UNFVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA, II 61801

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, April 1988



® Copyright by
Steven Sol Skiena

1988
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Herbert Edelsbrunner, Advisor

We consider problems in geometric probing, the algorithmic study of determining a

geometric structure or some aspect of that structure from the results of a mathematical or

physical measuring device. A variety of problems from robotics, medical instrumentation,

mathematical optimization, integral and computational geometry, graph theory, and other

areas fit into this paradigm.

Finger probes return the first point of intersection between a directed line I and an

object P. Chapter 2 presents results on finger probing convex polygons. We consider related

problems in higher dimensions and with different classes of objects.

Hyperplane probes return the first hyperplane moving perpendicular to itself which is

tangent to P. Chapter 3 discusses the duality relationship between finger and hyperplane

probes. We establish the connection between hyperplane probes and certain algorithmic

problems and consider the related silhouette and supporting line probe models.

X-ray probes return the length of intersection between P and I. Chapter 4 surveys the

field of tomography and presents results for x-ray probes, which was inspired by it. We give

linear bounds on determination and verification with x-ray probes in two and higher dimen

sions.
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Half-space probes return the volume of intersection between a half-space h and P.

Chapter 5 presents our linear determination and verification results for two dimensions and

discused the difficulties of determination in higher dimensions.

Chapter 6 considers the power of infinite collections of these probes. We discuss

Hammer's x—ray problem, presenting new proofs for convex polygons. Also, we discuss the

combinatorial geometry problem of A:-projections, which arises from aggregate probing.

Finally, we consider other aggregate problems such as probing in rounds.

Chapter 7 extends probing to an object which is not usually considered geometric.

Cut-set probes return the size of a cut-set of a graph. We present surprising results using

these to reconstruct and thiis represent graphs.

Each chapter concludes with relevant open problems.
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CHAPTER 1.

INTRODUCTION

In this thesis we consider a variety of problems, differing in appearence but all of which

are tied by a common theme. This theme is geometric probing, and the problems we consider

involve determining a geometric structure or some aspect of that structure from the results

of a mathematical or physical measuring device, a probe. We have considered a variety of

problems from robotics, medical instrumentation, mathematical optimization, integral and

computational geometry, graph theory and other areas which fit into this paradigm. These

problems are interesting in themselves, but our results also have application to these and

other fields.

Many problems in engineering and applied science can be fit into this format of recon

struction based upon measurement. A great deal of work in robotics [22,29,35-38,71,72,80]

and computer vision [47,81] has concerned itself with providing machines with the means of

sensing and understanding their environment. This work attempts to reproduce our senses of

vision and touch by machines. Other sensing systems go beyond human capabilities, such as

radar and sonar, which use reflected radio or sound waves to determine the size and structure

of distant objects. Tomography [43,45,68,83,88] and similar technologies such as nuclear

magnetic resonance [46] and ultrasound [33] are used for medical instrumentation, and recon

struct the geometry of the body from the amount of energy absorbed by tissues of different

densities. In such fields as biology and geology, it is often necessary to determine the shape

and size distributions of particles [4] from the cross-sections of samples. This has given rise

to a field known as stereology [21,42,94].



Similar types of problems have long been studied within the mathematical community.

Tomography was made possible by the study of Fourier and Radon transforms. Minkowski

[60] proved that three-dimensional convex polytopes are defined by the areas of and normal

vectors to each of its facets. These Gaussian images are now applied to problems in robot

vision [16,47,57]. Alexandrov [2] considered a similar class of reconstruction problems. The

study of integral geometry [79] provides tools for reconstructing convex sets. More recently,

research in computational geometry has considered problems of probing [6,12,14,19,56,85]

convex polygons with a variety of different devices.

Probing can be viewed as a discrete case of sampling problems encountered in signal

processing. The Nyquist rate [65] specifies the amount of sampling needed to reconstruct a

continuous waveform. Since our objects of interest have much more structure than continu

ous waveforms it is clear that tighter bounds can be obtained.

The goal of this thesis is to create a new area of study based on the problems, literature,

and results of these disparate sources. Also, we aim to contribute a substantial collection of

new problems and results to this field, geometric probing.

1.1. Taxonomy of Problems in Probing

There are a vast number of problems associated with probing, partially because we can

take a "Chinese menu" approach to generating them. Choosing from column A, there are a

wide variety of interesting models of sensors, with inspiration either from physical sensing

devices or geometrical operations. Intuitive definitions of our main probing models are given

below:



(1) Finger Probes - which measure the first point of intersection between a directed line

and an object.

(2) Hyperplane Probes - which measure the first time when a hyperplane moving parallel

to itself intersects an object.

(3) X-ray Probes - which measure the length ofintersection between a line and an object.

(4) Half-space Probes - which return the area or volume of intersection between a half-

space and an object.

(5) Cut-setProbes —which for a specified graph and partition of the vertices returns the

size of the cut-set represented by the partition.

We can construct more sophisticated sensing devices by considering aggregates of probes

sharing certain properties. For example, the set of all probes which are parallel to a given

line or which pass through a given point. For x-ray probes, these models are analogous to

x-ray photographs and point sources and have been the subject [23,24,26,27,77,92] of intense

study. We can also consider the power gained by having access to more than one type of

probe. How well do sensors work together to determine objects?

In column B of our menu, we have constraints on the type of object being probed. Most

of our results hold only for convex polygons. For certain probing models, extensions to more

general objects are impossible. Other objects of interest include collections of convex

polygons, star-shaped and simple polygons, point sets, straight line graphs, polytopes in three

or more dimensions, and continuous surfaces of specified degree. In all cases, we can also con

sider restricting the objects to come from a known finite class to create model-based prob

lems. Interesting problems also arise when the disparity in dimension between object and



probe increase beyond one.

Finally, in column C is the property which we are interested in optimizing or bounding:

(1) Lower Bounds - how many probes are needed to determine a particular object?

(2) Upper Bounds - what is the best strategy for using the particular probe on a particu

lar type of object?

(3) Verification - given a reputed description of the object how many probes are neces

sary to test if the description is valid?

(4) Computational Complexity - assuming that a probe is a constant time operation, what

is the computational cost of planning the probes to determine an object?

(5) Simulation - given a probe model and a representation of the object, how much time

and space is necessary to simulate an actual probe?

(6) Feature Determination - how many probes are needed to determine some feature of

the object, such as volume, orientation, or convexity?

In addition to those discussed above, other types of problems can be expressed in the

paradigm of probing. For example, finding convex hulls of a point set can be considered as

determining the object resulting from hyperplane probing the point set. Similarly, the addi

tional constraints added to integer programs to make them linear [67] can also be considered

as hyperplane probes. Insight into other subjects can result from considering them as prob

ing problems. For example, the properties of cut-sets of graphs [86] can be studied under the

guise of measuring the sizes of cut-sets as a probe.



Another example which fits into this class is the problem of reconstructing Gaussian

images [16,47,57,58] of polytopes. Gaussian images have a connection to half-plane probing

in since area probes along each face determine a Gaussian image.

1.2. The Literature of Probing

It is only recently that probing problems have been considered in a geometric sense,

rather than as a problem in image processing [65] and hence the relevant literature is rela

tively small and spread across a variety of disciplines. Image processing is an applied field,

concerned largely with working with images of variable fidelity. We will be more concerned

with the geometrical issues of probing, and thus abstract away many of the important issues

of image processing systems. In this section, we will survey only the papers to date which

explicitly deal with problems in geometric probing as we have defined it. A glance at the

references at the end of this thesis reveals the extent to which similar problems have been

studied in other disciplines. These will be integrated within the appropriate sections of the

thesis.

The problem of geometric probing was inspired by robotics [29,81] and first studied by

Cole and Yap [12] who considered finger probing convex polygons in the plane and proved a

tight bound of 3n finger probes as necessary and sufficient. Dobkin, Edelsbrunner, and Yap

[14] extended the finger probe to three and higher dimensions, and introduced other models

such as hyperplane and line probes. Greschak [34] and Li [56] both independently developed

the notion of hyperplane probes, with Li extending the model to silhouette probes. Bernstein

[6] considered the model-based problem of finger probing, where an object is identified from a

given set. Natarajan [62] considered problems of determining the orientation of polytopes by



simple sensors. Finally, we have considered the problems of x—ray [19]j half—plane [85], and

cut-set [86] probes.

1.3. An Overview of this Thesis

Since problems in probing are naturally ordered by probing model, this thesis has been

structured accordingly. As this thesis represents a work of synthesis as well as a collection of

new results, care has been taken to cite the original sources of all results. Thus, all otherwise

unreferenced results can be attributed to the author.

Chapter 2 presents Cole and Yap's fundamental results on finger probing convex

polygons. We consider a host of related problems —attempts to generalize the type of object

being probed, extensions to higher dimensions, and probing when the number of vertices of

the polygon is known. Finally, we consider model-based problems in tactile sensing. We

present a brief overview of the literature in tactile sensing and consider the related problem

of determining the orientation of polyhedra. Using our improved bounds for these problems,

we solve the model-based determination problem for a general class of polygons.

Chapter 3 discusses the duality relationship between finger and hyperplane probes,

which has interesting implications for both sensing models. We establish the connection

between hyperplane probes and certain optimization and algorithmic problems. We also con

sider the related silhouette, line, and supporting line probing models and present results for

them.

Chapter 4 begins with a survey of the practical and interesting field of tomography and

discusses our model of the x-ray probe, which is inspired by it. We present our results on



determination and verification with x—ray probes and extend them to higher dimensions.

Most of these results are taken from our paper [19].

Half—space probes are covered in Chapter 5. We present our determination and

verification results for two dimensions, which are based on our results for x-ray probes. We

discuss the difficulties of determination in higher dimensions, and conclude with a discussion

of the extended Gaussian images problem, which can be discussed in terms of verifying with

half-space probes. Most of these results first appeared in Skiena [85].

Chapter 6 considers the power of infinite collections of probes. We discuss Hammer's

x-ray problem, which has established a substantial literature, and present new proofs for con

vex polygons. Also, we discuss the combinatorial geometry problem of fc-projections, which

arises from aggregate probing. Finally, we consider aggregate problems for other probing

models such as probing in rounds. A;-projections were introduced in Skiena[87].

Chapter 7 extends probing to an object which is not usually considered geometric. We

introduce the notion of a cut-set probe, which measures the size of a cut-set of a graph, and

present surprising results on using these to reconstruct and thus represent graphs. Our cut

set probing results first appeared in [86].

We suggest the implications and future directions of this work in our conclusions,

Chapter 8. We have concluded each chapter with a collection of relevant open problems. It

is hoped that these will shape and inspire further work in geometric probing.



CHAPTER 2.

FINGER PROBING



Tactile sensing is an important paradigm in robotics. Cole and Yap [12] developed the

notion of a finger probe to model tactile sensors used in robotics. A finger probe is defined to

be the first point of intersection p between a directed line I and an object P. The term

"probe" will sometimes be used to refer to p and sometimes to /, and we rely on context to

distinguish between these meanings.

The notion of finger probing has inspired work on a variety of problems and a growing

body of literature [6,14,34], which includes this thesis. We present the main results of this

literature, including new proofs for several theorems, and consider a collection of problems

posed or inspired by it. Together, these problems show both the power and limitations of

finger probing and thus of tactile sensing in robotics.

We assume that we are given O, a point within the interior of P. Without this infor

mation, we have no idea where P is located, and an unbounded number of probes can be

required to find it. From each probe, in addition to the contact point we obtain a half—line

defined by p and / which does not intersect P. This and the convexity restrictions on P can

be used to identify points known to be within P or known to be outside of P. Together,

these two sets represent the state of our knowledge about P. Let inside [P) be the closed set

of points which can be proved to be within P, specifically, they are on or within the convex

hull of the set of contact points X. Let outside [P) be the set of points which can be proven

do not lie on or within P. Specifically, z € outside[P) if there exists a point x such

that X Gin<(conv({z}UX)), where conv[S) is the convex hull of a set S. Figure 2.1 shows

inside [P) and outside [P) for a specific collection of probes. We say that P is determined

when inside{P)\Joutside (P) = E'̂ , where d is number of dimensions ofP.
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Figure 2,1: Information from Finger Probing.

We emphasize that we are interested in absolute determination, not an approximation to

P. When a convex polygon is determined we have identified the exact coordinates of each of

the n vertices. This notion of determination will be used throughout this thesis, even for

probing models such as x-rays which do not return absolute information.

One final subtlety concerns tangent probes. We consider a finger probe along an edge of

P as returning the first vertex it encounters, which seems reasonable and natural. However,

it is less clear what should be returned when the probe line intersects only a vertex of P.

Cole and Yap [12] make the assumption that such probes miss P entirely. The point is moot

as far as this thesis is concerned, as we avoid the use of such probes.

This chapter is organized as follows. Section 2.1 discusses determination and

verification problems in E^. Section 2.2 shows that finger probing cannot be meaningfully
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extended beyond single convex polytopes. We consider higher dimensional problems in sec

tion 2.3. Better probing strategies result if additional information is known about P. Sec

tion 2.4 considers when the number of vertices n is known and section 2.5 when P is selected

from a known, finite set. Finally, in section 2.6, we pose some problems in finger probing.

2.1. Lower and Upper Bounds for Two Dimensions

The fundamental problems in geometric probing are determination and verification.

Determination counts the number of probes necessary to reconstruct an object P. We note

that the sequence of probing outcomes for a determination provides a complete representa

tion for P, because the probing algorithm can be used to generate the probe specifications.

Thus determination strategies suggest alternate representations for geometric objects.

Verification counts the number of probes necessary to prove that P is indeed the object

in question. This problem can be thought of as "non-deterministic" probing, since it is

assumed that the algorithm always makes the right probe for any P. To do this, it is

assumed that the algorithm has a description of P as its input. Verification problems are

important because they provide a lower bound for determination, since P is an input for

verification. For our first result, we present Cole and Yap's optimal strategy for verifying

convex n-gons:

Theorem 2.1: 2n finger probes are necessary and sufficient to verify a convex n-gon.

Proof: To show necessity, note that each vertex and edge must be probed at least once, since

an unprobed vertex can be truncated and an unprobed edge extended with another vertex.

For sufficiency, we note that three collinear points must all lie on the same edge of P, by
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convexity. Thus probing each vertex and edge interior once determines the extent and posi

tion of each edge of P. •

The deterministic version of this problem is more difficult. The following strategy is a

variation on the algorithm in [12].

Theorem 2.2: 3n finger probes are sufficient to determine a convex n-gon.

Proof: Our strategy will consist of two phases. The first phase ends when there are three

probes that are incident upon the same edge e^, the second when P is determined.

All probes in the first phase will be directed through the origin O, and thus the ith

probe can be specified by either its angle or contact point i,-. Send three probes through

P, where ;r < ^3 < ^2 ^ 2;r. E x^, X2, and X3 are collinear, we have completed the first

phase. E not, note that x^ and X3 cannot be incident upon the same edge because of convex

ity constraints. We will insure that the next edge e„ in a counter-clockwise direction from

has at most one probe incident upon it at the end of the first phase.

Let 9^ be the slope of the line defined by X2 and X3. E m is not between $1 and $2, as

in Figure 2.2a, we will aim probe «-f-l with angle $2 9^ < ^1. The three collinear

points defining will be either x,_i, x,-, x^ or x,_2, x,-. Ei the first case, convexity

prevents (x2,X3) from being e„, and in the second, we have shown that x^ cannot be on the

same edge as X3. E 9^ is between 9^ and 02> ^ Figure 2.2b, we will aim probe i-l-l with

angle ^2 ^i+i ^ Edge will again be defined by x,_i, x,-, x^ or x, _2, and

the same arguments apply.
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(a) (b)

Figure 2.2: Determining the first edge with 2n Probes.

For the second phase of this strategy, we note that to determine our first vertex

between and e„, we can probe along the directed line from x,- to x,-_j. After determining

Uj, we proceed in a clockwise direction around P. If e,- is the most recent verified edge, and

x^ and x^ are the next two probe contact points around P, we aim the next probe along the

line defined by p and O, where p is the intersection of e,- and the line through x^ and Xj, as in

Figure 2.3. If the contact point is p, then p is vertex of P and a new edge is determined

Figure 2.8: Determining the next edge of P.
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by and Xj,. If not, the contact point lies on another edge. This process is repeated until v^^

is Vj and and Xj, are collinear, so P is completely determined. Since at most one probe

was incident upon this last edge from the first phase, and it is probed in the second phase

only if necessary, it will be probed exactly once in its interior.

In summary, the interiors of n—2 edges are incident upon at most two probes each, the

interior of is incident upon three probes, by one probe, and all n vertices are verified

once. Thus the number of probes used is at most 2(n —2) + 3+ H-n=3n. •

The probe directed along would be very unreliable for a real world application, since

only a slight perturbation could cause the probe to miss P entirely. A more robust strategy

would aim through the origin each time. In section 3.3, we prove that 3nH-l finger probes

are necessary and sufficient if all probes are directed towards the origin. Our strategy is

more robust than the original one of Cole and Yap, since only one such probe is necessary.

Cole and Yap prove a lower bound of 3n —1 for determination, which raises to 3n under

the mild assumption that a probe which passes through one vertex of P and not its interior

has a contact point at infinity. This proof is surprisingly complicated, involving substantial

case analysis. See [12] for details. We give an alternate and simpler proof of a slightly

weaker result.

Theorem 2.3: At least 3n—1 finger probes are necessary to determine a convex n-gon.

Proof: We shall construct an adversary which will force at least 3n—1 probes from any

probing strategy. Our adversary will use the following strategy: for as long as possible, all

contact points will be on a circle around O. Also, no probe will contact a vertex until it is

unavoidable. To delay these exceptions, we may relabel the contact points until it leads to a
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contradiction.

First note that for any 2n—2 points on a convex curve we can construct two convex n-

gons such that each point is on the interior of an edge of each polygon, as is illustrated in

Figure 2.4. Thus the 2n—1th probe can be forced not to contact a vertex by suitable choice

of the two possibilities.

To verify an n-gon, each of the n vertices must be probed. Thus at least

2n —l+n = 3n —1 probes are necessary. •

It is tempting to try and push this lower bound argument further by constructing two

distinct polygons on 2n interior points. While this can probably be done, such arguments

become very subtle and great care is necessary to make to make the proof rigorous, as illus

trated by the extensive case analysis in Cole and Yap's proof. The diflBculties revolve around

making sure that O is within the convex hull of the 2n points.

Figure 2.^: Two distinct n-gons defined by 2n—2 points.
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Nothing has previously been published on the question of the time complexity of probing

strategies, perhaps because implementation of these strategies appear to have little practical

value. By time complexity, we mean the time it takes to plan the probes necessary for deter

mination. However, it is easy to demonstrate that the strategy of Theorem 2.2 is asymptot-

icly optimal, and an application will be developed in section 3.4. When we discuss time com

plexity, we ignore the actual time it takes to make the probe.

Theorem 2.4: The time complexity of a 3n finger probing strategy for determining convex

polygons is O (n).

Proof: The strategy of Theorem 2.2 strategy walks around the polygon, conjecturing an edge

and then probing it. Either the probe indeed intersects the edge or else discloses the presence

of another edge.

Let us maintain the points returned by probes in a circular list, with a pointer to main

tain the conjectured vertex location. If the edge is verified, the point is added to the list and

the pointer advanced one node. If not, the point is added and a new vertex is conjectured

from the two nodes to the left and right of the pointer. Each calculation takes constant time,

and only 3n are required, so the complexity follows. •

2.2. Wider Classes of Objects

Unfortunately, the powers of finger probing prove sharply limited when we attempt to

generalize the objects beyond a single convex polygon. We prove that there does not exist a

finite strategy for determining a star-shaped polygon or multiple convex polygons using

finger probes. For multiple objects we make our standard assumption that we know the
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coordinates of a point O within each polygons, which provides the general location of each

object.

Theorem 2.5: There does not exist a finite strategy to verify a star-shaped polygon with

finger probes, even if the vertices are in general position.

Proof: Consider the following star-shaped 5-gon P. Let Vo=(0,0), t;i=(a,0), and v^={0,b),

a,6>0. The remaining vertices V2 and V3 are below the line —bxja +b and are defined in

polar coordinates as where 0 < ^2 ^3 Clearly P is star-shaped, since Vg

must be in the kernal.

The difficulty is in verifying the edge e={v2>^3)* number of probes intersecting e is

sufficient, since a polygon P' can be constructed for any such set of probes where the points of

intersection are collinear despite each being incident upon different edges. Such a polygon is

shown in Figure 2.5. Since and v^ prevent probing directly along e, P is not distinguished

Figure 2.5: A star-shaped polygon which is unverifiable by finger probing.
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from P'. •

As shown in Theorem 2.1, a single convex polygon can be verified and determined.

However, this also breaks down when more than two convex polygons are considered.

Theorem 2.6: Two convex polygons Pj and P2 can be verified with 2n finger probes, where n

is the total number of vertices of the polygons. A collection of m convex polygons

Pj, • • • ,P^ cannot be verified for m >2.

Proof: For any two non-intersecting convex polygons, at least one edge of either P^ or P2

defines a separating line between them. Let a and b be the vertices incident upon this edge.

The probes to verify a and 6 can be designed so that the probe paths partition the plane into

two open regions, one containing Pj and the other P2. Using this partition and the origins of

Pj and P2, any probe can now be identified as to which polygon it is incident upon. Each of

the n vertices and points on the interior of each edge can be probed with the same

verification strategy as for one polygon. With two convex polygons, there always exists a ray

from any point p on the boundary of P^ or P2 to infinity without otherwise intersecting

either polygon.

To show that three convex polygons cannot necessarily be verified, consider the

configuration in Figure 2.6. No finger probe originating from infinity can intersect e

whose existence therefore cannot be verified. •

The situation is even worse for the determination of multiple polygons. A trivial argu

ment on the impossibility of determining two convex polygons involves cutting a convex

polygon into two convex pieces by removing an infinitesimally thin strip. A separating line

between the two pieces cannot be found with a finite strategy. However, even knowledge of a
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Figure 2.6: An unverifiable configuration of three convex polygons.

separating line is not sufficient for determination.

Theorem 2.7: There does not exist a finite strategy for determining two convex polygons

with finger probes, even given points within each polygon and a separating line between

them.

Proof: Consider the configuration of two polygons in Figure 2.7. Assume that the edge 62 of

polygon P2 is very large relative to the separation between and P2 and the edge of Pj.

Further, assume that we have determined all information about the two polygons except for

eI and the extent of the edges incident upon it.

Because of the size of 62, any probe originating from infinity which intersects is shar

ply restricted as to its slope. An adversary argument can be used to show that any probe

though the undetermined section of Pj can either extend the known portion of the incident

edges or miss Pj entirely. In either case, it can take an unbounded number of probes until we

finally intersect the interior of e^. •
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®1

Figure 2.7: An indeterminable configuration of two convex polygons.

We note a wider class of objects may be determinable with a finite strategy if n, the

number of sides of P, is known. Another generalization is to convex "splinegons" [15], where

the edges are curves of a degree d > 2.

2.3. Higher Dimensions

Dobkin, Edelsbrunner, and Yap [14] consider probing convex polytopes in higher dimen

sions. Beyond two dimensions, the number of vertices is no longer identical to the number of

facets, so upper and lower bounds must be expressed in terms of /,(P), which represents the

number of t-dimensional faces of P, for 0 < « < d. So f o{P) is the number of vertices,

/ i(P) number of edges, and fd-i{P) the number of facets, the (d—l)-dimensional faces,

of P. In this section, we prove bounds for finger probing in E^.
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Theorem 2.8: f 2(P) ^^6®^ probes are sufladent to determine a convex polytope in

E^.

s • ^ .

Proof: We sketch the proof in Dobkin, Edelsbriinner, and Yap. For details, please refer to

[14]. .

The basic strategy is similar to what we have seen in the plane; conjecture and verify

vertices and facets of P. If we can insure that only a constant number of probes are incident

upon each face, this yields a linear probe strategy. However, the generalization is not

straightforward. In E^, three collinear contact points verify an edge. Unfortunately, no

number of co—planar contact points are sufficient to verify a facet in E^, unless one point lies

within the convex hull of the others, since these points can simply represent a cross—section of

P.

Let H represent the convex hull of the contact points and the cell complex gen-

erated by extending the facets of H to planes. We will insure that at most five probes are

incident upon the relative interior of each facet of P. First send four probes to form a

tetrahedra around O. In general, we attempt, to confirm the facet with the most co—planar

probes incident upon it, aiming through an unverified vertex (defined by the intersection of

previouslyverified facets, if one exists) and.avoiding any edges or vertices of Aff. This second

restriction insures that each probe contacts only one unverified facet of P.

In [14], it is shown that the invariant that at most one unverified facet of P has four

probes incident upon it is maintained through this strategy, and thus at most five probes are

incident upon the relative interior of eagj^ f^cet. •
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In [14], a lower bound of f q(P)f 2{P) is given for verification, noting that each vertex

and facet must be probed to ensure all vertices have been confirmed. We present a better

lower boxmd for determination in based on the lower bound results for the plane.

Theorem 2.9: At least f q(P)+2 f 2(P) finger probes in are necessary for determination.

Proof: Let P be a pyramid with / o(P)—1 sides, plus a base. The adversary will ensure that

the first two probes will be incident upon the base. Due to the lower bound of Theorem 2.3,

at least 3(f q(P)—1) probes will be necessary to determine the sides of P, since if they did not

a more efficient probing strategy in E^ results from simulating a pyramid and probing it.

Including a verifying probe to the apex of P, at least /o(P)H-2(/ 2(P)—1)+2 probes are made,

yielding the result. •

We note that by an adversary argument it may be possible to raise the coefficient from

two to three, noting each face might have three probes incident upon it.

These results are generalized in [14] to d dimensions, for a lower bound of

/o(^) + fd-i(^) and an upper bound of /o(P)+(d+2)/^_i(P).

2.4. Finger Probing when n is Known

A natural question is how much knowing the number of vertices of P helps in probing

it. Cole and Yap considered this problem, showing that 8 probes are sufficient to determine a

triangle and giving a lower bound of 2n+l probes. In this section, we provide strategies for

determination and verification which exploit the additional information.

Theorem 2.10: 3n—1 probes are sufficient to determine a convex n-gon if n is known.
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Proof: We will modify the stopping criteria of Theorem 2.2 to save one probe. The first

phase of the strategy is the same as before, which determines an edge Ci and insures that at

most one probe is incident upon the adjacent edge e„. By directing a probe along in the

appropriate direction we determine the vertex between and e„.

Throughout the second phase of the strategy, we maintain the situation that a chain of

m consecutive vertices and edges are verified. There are some number of probes, no three of

which are collinear, incident upon the unverified section of P. We observe that P is deter

mined when there are 2(n—m) —1 such probes. This follows since, including Vj, there is only

one way to connect 2(n —m) points into a convex chain of n —m edges.

Suppose the condition that there are 2(n —m) —1 unverified probes has not occurred

prior to the verification of vertex u„_i. By definition, m = n—1. Edge has either 0 or 1

probe incident upon it. If there is one, this contact point and defines the remaining edge.

If not, probing along returns which with defines the remaining edge. In either

case, we have saved at least one probe over the 3n strategy, so 3n —1 probes suffice. •

We have been unable to obtain a 3n —c lower bound for determination. The difficulty

lies in quantifying when a polygon is determined when n is known. The necessary subtlety of

a tight lower bound argument is illustrated by the dramatic consequences for verification of

knowing n:

Theorem 2.11: 3fn /2] probes are sufficient to verify a convex n-gon if n is known.

Proof: Label the edges as even or odd. For each even edge e, make three probes: along e in

both directions and one incident to the center of e. These probes verify each even edge and

prove that the endpoints are vertices. Clearly, knowledge of all n vertices determines P. •
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2.5. Model Based Results

Since constructing high-level computer vision systems has proven to be a difficult prob

lem, tactile sensing has been studied as an alternative for robotic assembly systems. The

abstraction of such systems are very similar to finger probing. In a mechanical assembly

problem, the geometry of the parts is known to the robot, which must use sensing to deter

mine their type and orientation. Such problems are called model-based and differ from the

determination problems we have discussed in that the objects come from a finite set.

In this section, we review the work that has been done in tactile sensing and robotics.

This work is closely tied to real world applications. We then consider the problem of deter

mining the orientation of a model convex polyhedron, and present improved results. Using

these ideas, we solve the problem of model-based probing for both convex and more general

polygons.

2.5.1. Tactile Sensing and Robotics

The problem of determining an object via tactile sensing can be studied from several

different perspectives. Researchers at MIT [29,37] have considered using heuristics to recon

struct polyhedra from random or oblivious probes, instead of defining a strategy to plan the

probes. Their probing model is somewhat more powerful than the finger probe, returning

both a contact point and the surface normal at that point. From a small number of such tac

tile probes, they construct an interpretation tree consisting of the possible mappings between

contact points and the faces of model polyhedra. By using local geometric constraints such as

whether the distance between two probes is consistent with the edge labelings, they prune

this interpretation tree for m edges and s probes from m' nodes to, what is in practice, a
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small number of interpretations. This system works well even with non—convex polyhedra

and for modeling sensing errors. It has been extended, with somewhat less success, to the bin

searching problem of overlapping parts [38] by adding a "null face" to the interpretation

tree, which accounts for probes which do not contact the intended object.

A brave attempt to explain the excellent average case performance of these oblivious

tactile sensing strategies has been made by Grimson [35]. If p is the probability that two

random probes represent a consistent set of interpretations, then it can be shown that the

expected number of consistent interpretations after s probes is

•f«p="» p

where m is the number of model faces. From this can be calculated the expected number of

probes where is largest, and when there remains only one consistent interpretation. One

consistent interpretation can be expected when

21ogTn
s = 1

logp

Of course, it is difficult if not impossible to determine p for a particular model. Regular

convex polygons will never converge upon a single interpretation. Grimson computes p by

assuming a uniform distribution of points in his relative configuration space. His results com

pare well with the results of simulations and are generalized to account for uncertainties in

measurement.

Several researchers have proposed strategies for using these tactile sensors. Grimson

[36] proposes the following scheme to select a probe which distinguishes between two or more

possible orientations. Select a probing direction, ie. the slope but not the intercept. Project

the visible vertices of the orientations onto the line normal to this direction. This divides the
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line into segments. The midpoint of the segment which distinguishes the largest number of

orientations, subject to measurement uncertainty, defines the probe. An extensive analysis of

the error terms are provided. The nicest feature of considering the uncertainty associated

with probing is that curved objects can be represented as polyhedra.

Ellis, Riseman, and Hanson [22] describe a similar system which represents probes

incident upon an edge as a trapezoid in a projective space and selects a probe which is

represented in the intersection of a number of trapezoids. They consider the problem of sta

bility, where a probe at too oblique an angle deflects off the polygon. Finally, Schnieter [80]

considers problems of selecting probes when maneuverability of the sensor is a consideration.

2.5.2. Detecting the Orientation of Polyhedra

For industrial robot applications in manufacturing and assembly, either the parts must

carefully positioned for the robot to manipulate or the robot must be able to detect the orien

tation of parts and adjust to them. Since the technical problems with computer vision sys

tems remain very difficult, systems for the sensorless orientation of objects [61] or using

simpler, more robust sensors to determine orientation have been studied. Natarajan [62]

poses the problem of determining the orientation of a known polytope moving past simple

ray sensors on a guide plane. We discuss this problem and present improved upper and lower

bounds on the number of sensors required to determine orientation for both two and three

dimensional objects.

Given a known convex polygon or polyhedron advancing, with one polygonal face on a

guide plane and an edge resting against a lip, how many sensors are needed to determine its

orientation? A sensor is a half-line in or which can detect whether it intersects the
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polyhedron or not. Natarajan proves that n sensors are sufficient and n /2 are necessary and

extends the problem to three dimensions, with 6n sufficient and n /4 necessary.

We modify the problem to insist that all sensors are read at the same instant, rather

than continuously, except for one sensor which determines when the others are read. This is

to clear up an inconsistency in [62], since the polygon given in the lower bound construction

has n edges, each of a unique size. Thus the orientation can be distinguished by one probe

measuring the length of the edge on the guide plane. Also, we note that for polygons we only

consider the number of possible orientations in a plane without "flipping" it over, which

would require an additional degree of freedom. Thus there are only n possible orientations of

P.

The requirement for convexity may be weakened, since this is a model based problem.

We deflne two models as distinguishable if there exists a verification strategy which can dis

tinguish between them. Figure 2.8 shows two distinct polygons which are not distinguish

able. We now consider the problem where all models are pairwise distinguishable. Thus

Figure 2.8: Two indistinguishable polygons.
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more general objects, including star-shaped polygons may be considered.

First, we consider the two—dimensional case, tightening the results within an additive

constant of optimality.

Theorem 2.12: n sensors are sufficient and n—3 sensors necessary to determine the orienta

tion of a convex polygon.

Proof: We present an algorithm to prove the upper bound. We note that if two orientations

of distinguishable polygons are distinct, then when the two orientations are aligned along the

guide plane there exists at least one verifiable vertex of one orientation which is not over

lapped with the other orientation. Thus one sensor is sufficient to distinguish between the

two orientations.

To distinguish between n orientations, we note that one sensor placed as described

above will partition the set of orientations into two subsets, depending upon the reading of

the sensor. This partitioning process can be repeated with additional sensors for each subset

containing two or more orientations, until each subset contains just one orientation. This

can be modeled as a binary tree with n leaves, with each internal node representing a sensor.

An n leaf binary tree contains n —1 internal nodes, and including a sensor to trip on the lead

ing edge of the polygons gives the result.

To prove that n—3 sensors are necessary, consider a regular (n—l)-gon with sides of

unit distance. Let 0= 7r(n —3)/(n —1) be the angle associated with each vertex. For one par

ticular vertex, cut off the corner with a line parallel to the line defined by its two neighbors,

where the area removed is less than a:\/l/4—x^, x=l/(2cos(0)).
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We shall restrict our consideration to the n —2 orientations where the forward vertex

incident to the guide plane is the center of an uncut angle. No sensor can distinguish more

than one orientation within the set. Thus n—3 sensors are needed to distinguish between

these orientations. •

We note that this lower bound construction can be used to prove an (n —1)/2 lower

bound when continuous reading of the sensors is considered. A more effective counting argu

ment might eliminate the remaining gap between the upper and lower bounds. Also, an

alternative criteria for when the model is in a position to be sensed, such as when the

polygon's forward motion is stopped by a wall, would reduce both the upper and lower bound

by one.

For polyhedra, we improve the lower bound from n/4 to n—4 sensors and the upper

bound from 6n to 6n —12, with a slightly tighter lower bound for small n.

Theorem 2.1S: 6n —12 sensors are sufficient and n —4 necessary to determine the orientation

of a determinable polyhedron.

Proof: From Euler's formula for planar graphs, there are at most 6n—12 distinct orienta

tions of a polyhedron with n vertices. Each two distinct polyhedra must differ in at least one

vertex, so extending the argument in the proof of Theorem 2.12 gives the result.

For the lower bound, consider a pyramid made by adding a vertex above the center-

point of the modified regular (n—2)-gon of Theorem 2.12. If the pyramid was regular, there

would be n —2 indistinguishable orientations of each of four types, depending upon which face

and edge were incident to the guide plane and lip. If the wedge removed by adding a vertex

is small enough, no two of these orientations can be distinguished by a single probe. Thus at
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least n—4 probes are necessary to determine the orientation for each of the four types of

orientations. •

An argument based on considering the four distinct types of orientations of the pyramid

could push this bound to 4n—9. Unfortunately, it is difficult to account for the degree of

overlap between between the different types of orientation. Also, a better lower bound might

be based on almost regular polyhedra such as used in geodesic domes. It is unfortunate that

there do not exist regular polyhedra beyond the five platonic solids. For example, at least 56

sensors are necessary to determine the orientation of a convex polyhedron with 13 vertices.

Consider an icosahedron, which is a regular polyhedron with 20 equilateral triangles for faces

and contains twelve vertices. One of these faces can be raised into a tetrahedra by adding a

new vertex v a distance e above the face. Position t; nearest to one vertex of the face and

equidistant from the other two vertices.

If e is small enough, it will require one sensor scanning each of the 19 faces not resting

on the guide plane to determine which face has been raised. Further, in general two more

sensors are needed for each face to determine which vertex t; is nearest to. Even if we assume

that we can detect when one of the raised faces rests on the guide plane, 19X3—1 probes are

necessary.

Studying such "almost—regular polyhedra" is an interesting and important open prob

lem.
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Figure 2.9: The point defining the
mtntmnm angle is on the boundary ofP.

Figure 2.10: Determining the next edge ofmodel polygon P.
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Recycling the up to two extra probes means at most 2n+l probes are necessary. The

2n lower bound follows from verification, since the model set can be selected to contain as

many perturbations of P as desired. •

Things get much more difficult when the models move beyond convex polygons. For

example, is no longer necessarily > 0, since a point within P can lie on a line defining

one of its edges. Unfortunately, as we move beyond convex polygons, we lose the indepen

dence on m.

Theorem 2.15: 0{mn) probes are both necessary and sufficient to determine an n-gon P

selected from a set p of m star-shaped models if O is within the kernal of P.

Proof: Sufficiency can be shown using the following strategy. From the model set, the

minimum angle range spanned by a pair of edges as visible from any point in the kernal

can be calculated as above. The point generating this angle will lie on the kernal boundary

for some P in p. If we send probes towards O in an angle range of ^^.n contact at

most four different edges. Thus at most four point images can be collinear without being

incident upon the same edge. By the pigeonhole principle, five collinear point images deter

mining an edge will occur after at most 17 probes.

Probing along this edge provides the first point of contact in this direction. By consid

ering the determined line as a guide plane and the contact point as a reference, we can now

consider the problem as distinguishing the possible mn orientations. Clearly mn —1 addi

tional probes are sufficient to determine the correct orientation out of the mn possibilities,

for a total of O (mn) probes.
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Necessity is shown by constructing m models of regular (n —3)-gons each with a small

triangle cut from one of the faces. The base of the triangle 6 < / /2m, where I is the length

of the repeated side of the (n—3)-gon. These triangles are all mutually disjoint over all

orientations, as shown in Figure 2.11. To distinguish a particular orientation requires a

probe incident upon the triangular cut. Since no two orientations share a cut, and there are

(n —3)m total orientations, at least mn —3m —1 probes are required. •

We note that this strategy improves upon Bernstein's result when m=l, which is essen

tially Natarajan's original problem. In this case, n+5 finger probes are sufficient and n—1

necessary to determine the orientation of a known convex n-gon. It is an open problem to

eliminate the gap in lower order terms between the upper and lower bounds and generalize

the strategy to distinguishable polygons.

This dependence on m proves it is difficult in the worst case to distinguish between mul

tiple non-convex models. Thus, it is understandable that heuristics have been used for this

problem, particularly in light of Crimson's [36] average case results.

Figure 2.11: A worst case for model-based determination.
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It would be desirable to find a strategy for model-based probing where all probes pass

through the origin. In addition to greater robustness, such probes have an important pro

perty to be discussed in the next chapter, namely duality with hyperplane probes.

2.6. Conclusions and Open Problems

We have presented a variety of results for finger probing in two and three dimensions.

The intuitive nature of finger probes makes it easy to define interesting problems.

Dobkin, Edelsbrunner, and Yap [14] consider the problem of probing with uncertainty.

This is clearly of practical importance, since any real world sensing device would have some

degree of measurement error, and the strategies discussed in this chapter are not robust. For

example, we aim probes directly at vertices, which is not a stable operation. One way to for

malize uncertainty is to assume a lower bound / on the size of any edge of P and that the

returned contact point on all probes is within a distance e of the actual contact point. If e is

a function of I, meaningful results can be expressed in terms of e and n. Particularly

interesting will be the relationships between the uncertainty of the probing device e, the

desired accuracy of reconstruction 6, and the number of probes needed to achieve it. Obvi

ously, there are many alternative ways to formulate probing with uncertainty.

Other problems arise from a more traditional algorithmic approach. For example, for a

given collection of contact points and probe paths, does there exist a simple polygon with the

contact points as vertices which does not intersect any probe path? Alevizos, Boissonnat, and

Yvinec [1] give an optimal O(nlogn) algorithm for constructing the simple polygon, if one

exists. A collection of probes on a non-convex object may well not yield such a polygon, since

the vertices are limited to the contact points.
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We have demonstrated some of the limitations of Cole and Yap's finger probing model.

Some of these limitations will disappear if we permit the probes to originate from arbitrary

points rather than exclusively from infinity. A similar issue arises with supporting line

probes, to be discussed in section 3.1.

Specific open problems associated with finger probes include:

(2.1) Tighten the gap between the lower and upper bounds for determination in higher dimen

sions.

(2.2) Consider a convex polytope P of n vertices or k faces, each uniquely labeled. What is

the largest number of orientations of such a P which are identical if the labeling is ignored?

In other words, what is the maximum size of the automorphism group for a convex polytope?

(2.3) Consider a convex polygon P containing origin O and enclosed within a circle of radius

r. A billiard ball probe is directed along a line and returns the point of intersection between

the circle and the path of the ball as it is refiected off the unknown object. To make the

problem well defined, let the angle of incidence equal the angle of refiection off edges of P and

let the ball be absorbed if it hits a vertex of P. This seems to be analogous to problems in

particle physics. Billiard ball paths [8] can be related to problems of illuminating every point

within a mirrored polygon with a single light source [18].
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At an early age, we are taught that it is not polite to point. The finger probes of

Chapter 2 are defined in terms of a moving point, like a finger. In this chapter we introduce

the uotion of the hyperplane probe, which is defined as a moving hyperplane which stops

when it is tangent to the polytope. The palm of a hand which hits an object is an example of

such a probe. As we shall see, this anthropomorphic description is not the only connection

between finger and hyperplane probes.

The terminology of this chapter has the potential to become confusing, as the same con

cept has been referred to in the literature as line probes [56], support planes [34], and hyper

plane probes [14]. We will use the following terminology. A hyperplane probe will be a

(d—1)—dimensional hyperplane, typically aimed at a d-dimensional object. A one-

dimensional hyperplane probe will be called a line probe. A two—dimensional hyperplane

probe will be a plane probe. Like finger probes, hyperplane probes originate from infinity.

Section 3.1 discusses the duality relationship between finger, hyperplane, and supporting

hyperplane probes. Applications of duality are provided in the next several sections. In sec

tion 3.2 we discuss the dual problems of determining convex regions which contain P and are

contained within P. In section 3.3 we consider silhouette probes, which return the shadow

cast by P and is the dual of a probe which returns a cross-sectional slice of P. Hyperplane

probes have a close connection to optimization problems, which is explored in section 3.4.

Interesting problems occur when we consider probing objects whose dimensionalities differs by

more than one from the probe. In section 3.5, we give a strategy for determining convex

polytopes using line probes. Finally, we conclude in section 3.6 with some open problems.
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3.1. Duality between Finger and Hyperplane Probes

Duality [11] is one of the fundamental ideas of computational geometry and occurs fre

quently in many areas of mathematics. Two problems and P2 are duals if there is a

transform which relates each instance of Pi to a unique instance of P2 and each instance of

P2 to a unique instance of Pj. Thus any algorithm which solves one of the problems can also

be used to solve the other, since any instance of Pj can be transformed to one of P2 and

solved with the known algorithm. Duality is important because it provides alternative

representations for problems which lead to solutions which otherwise might not become

apparent.

We will demonstrate the power of duality by proving that finger and hyperplane prob

ing are really identical problems. This duality relationship was independently discovered by

Dobkin, Edelsbrunner, and Yap [14] and Greschak [34].

Let P be a convex polytope and O be a point within P. Each point p defines a vec

tor in . Let the dual of p, d{p), be the closed half-space containing O, defined by the

hyperplane normal to the vector p containing the point p /\p |^. The dual of the polytope P

is defined

D{P)= n<i(p)
P eP

Figure 3.1 shows the effect of the duality transform on a polygon. Each vertex v of P is

replaced by an edge e of D{P) which is normal to (0,v). Likewise, the normal to each edge

of P defines a vertex of D{P). The dual of any hyperplane probe which contacts v of P

corresponds to a finger probe which intersects e. If we consider a finger probe moving

towards the origin, it dualizes to a hyperplane probe moving normal to it away from the ori-
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Figure S.l: The dual of a polygon.

gin. The finger probe contacts P at the last point in time when the hyperplane probe inter

sects D{P). We can thus view the hyperplane as moving towards D(P) and stopping when it

touches D(P) - this gives the same result and is more intuitive than the hyperplane that

moves away from the origin.

Thus, any strategy for finger probing where all probes are aimed through O defines a

strategy for hyperplane probes. Dualizable results include the 2n bound for verification of

Theorem 2.1 and the determination lower bound of Theorem 2.3. Unfortunately, the optimal

3n determination strategy of Theorem 2.2 and the model-based strategy of Theorem 2.14

rely on at least one non-origin probe and do not dualize to line probes. Li [56] proves the fol

lowing tight bound on determination with line probes.

Theorem S.l: 3n-l-l line probes are sufiScient to determine a convex n-gon.

Proof: This strategy is a simplified dual of the finger probing strategy of Theorem 2.2. We
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will use three line probes to define a triangular envelope around P. We continue to send line

probes until three are incident upon the same vertex. From this vertified vertex u,-, we

proceed counter-clockwise around P, directing the probe at the line defined by a verified ver

tex and the second unverified vertex envelope. Either this probe verifies unverified

vertex creates a new unverified vertex, or verifies the edge between v,- and

Since the third and verifying probe for each vertex except also verifies an edge, the

procedure stops when n probes have verified edges. Uj is incident upon three other probes

and the remaining n—1 vertices are incident on two other probes each, for a total of

Ti—l)-t-3 =3)1-1-1. n

Theorem S.2: 3n-M line probes are necessary to determine a convex n-gon.

Proof: We will create an adversary which will ensure that after 2n+l line probes only one

vertex will be verified. If the probing strategy defines a closed envelope, the adversary will

make it grow to 2n vertices without verifying a vertex. There are at least two distinct

inscribed n-gons which can define it, which alternate vertices of the envelope. The 2n+lst

probe will verify the first vertex. From this it follows that 3n -1-1 is a lower bound since each

of the n edges must be verified.

If the envelope is kept open, the adversary will wait until the 2nth probe to yield its

first vertex. However, the adversary will ensure that the first probe to close the gap does not

verify an edge. Thus 3n -j-l probes are necessary in this case as well.

We note that less care is needed to prove a lower bound for line probes than for finger

probes since line probes have only one degree of freedom, their slope. •
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If we dualize a finger probe / which is not directed through O, it sweeps out a region

between two hyperplanes. The first hyperplane is defined by its normal / and O and the

second hyperplane intersects D{P) in the appropriate point. Thus any finger probing stra

tegy is equivalent to a strategy of hyperplane probes and probes which rotate hyperplanes

around a (d—2)-dimensional flat, which we call supporting hyperplane probes. The (d—2)-

dimensional axis of rotation is a dual of the line defining the finger probe. The direction of

rotation is specified by the direction traveled along / .

Supporting hyperplane probes occur naturally in various robotics problems. In we

can consider supporting line probes. Specified by a starting point p, angle, and direction of

rotation, they return the angle of the line through p which first intersects P. By considering

two such probes with opposing directions of rotation, we obtain an angle range over which P

lies. This is exactly the information obtained by gripping the object between two fingers of

an endless hand. An alternate and more realistic problem involves a finite sized claw, such as

the section of an object one can grab with a hand. Okada and Tsuchiya [64] discuss a system

which distinguishes between a ball, cylinder, and various prisms using the contact points of

finger positions while grasping the object.

This probing model also relates to certain questions of robot navigation. Consider [84] a

room with hot pink walls and more conservatively clad obstacles. A robot with a simple sen

sor can determine the angle ranges over which obstacles lie and plot a course avoiding the

obstacles and mapping the room. Only incomplete information is obtainable with multiple

objects. Other problems [49] arise when the robot must also determine its orientation in the

room.
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3.2. Bounded Regions and Bounding Regions

A simple strategy suffices for using dH-1 hyperplane probes to define a simplex in

which contains P. Similarly, it is obvious that d+1 finger probes suffice to determine a d-

dimensional simplex which is contained within P, since the region within the convex hull of

the contact points must be within P. What isn't clear is how many hyperplane probes are

sufficient to identify a region within P or how many finger probes are necessary to determine

a finite region which encloses P.

These problems of determining bounded regions and bounding regions for P are duals

for finger and hyperplane probes. More specifically, the problem of determining a bounding

simplex with finger probes is dual to determining a bounded region within P containing O

using line probes, since the duality transform assumes that O is within P and thus P'.

Greschak [34] shows that at least 5 points in two dimensions and at least 8 in three dimen

sions are necessary to specify a finite convex region. This serves as a lower bound for our

problem, but unfortunately it cannot be achieved.

In this section, we will see that this nice duality relationship does not actually help us,

since a constant probe strategy for determining bounding polygons with finger probes cannot

exist. However, we salvage the result for line probes, showing that seven line probes are

sufficient to determine a bounded region which may not contain O.

To see the difficulty in constructing a bounding region, it is useful to construct a map of

three finger probing outcomes. Aiming three probes aimed through O with angles 2;r/3 radi

ans apart from each other gives three points which define a triangle within P. These points

define three lines, and these slopes and the third point define three more lines. These lines

divide the plane into 16 regions as shown in Figure 3.2.
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gap c

Figure 8,2: Mapping a bounding polygon.

The shaded regions of Figure 3.2 represent points which cannot be within F because of

convexity constraints. They are the shadows behind each contact point. To determine a

bounding polygon for P, we must close off the open gaps A, B, and C between the contact

points by such shadows and take the convex hull of the boundary. The regions on the map

have been labeled to show which gaps will be closed off if a contact point occurs within the

region. Note that every point in the plane closes at least one gap except for the shadows and

points on the lines defining triangle {x,y,z). However, note that three of the four regions in

each gap close off only neighboring gaps and they surround the region which closes the local

gap.

Suppose we direct probes through O and x, y, and z. Each of these three probes {O,i)

will intersect P in one of four places, an outside region which closes two gaps, the point i, an
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inside region, or on a line defined by two of the first three probes. Further, assume that

probes y and z close off gaps A. and C respectively and that probe x contacts in region AC.

Thus gap B has been split into two gaps. An adversary can construct a polygon which

repeatedly prevents access to this region to close the remaining gap, until a linear number of

probes have been expended. Thus no constant probe strategy for our dual problem exists.

However, the situation is better for line probes.

Theorem S.8: Seven line probes are sufficient to determine a bounded region within P, and

six are suflScient if an interior point O is given.

Proof: Send five line probes with directions defined by a regular pentagon. These will define

a convex envelope containing P. We perform a case analysis on the number of vertices of

this envelope.

Suppose there are five vertices. Then the inscribed pentagon as shown in Figure 3.3

must be within P, since the P must be tangent upon each line probe. If we label the vertices

Figure 8.3: The inscribed pentagon must be within P.
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of this inscribed pentagon • • • ,^5 around O, the intersection of the half-planes defined by

(^iJ^t+2) ^ must be within P. If not, no point of P can exist to contact one of the line

probes without violating convexity.

Suppose the envelope contains three vertices. Two vertices of the envelope are tangent

upon three line probes and are thus vertices of P. The edge between them is an edge e of P.

Sending a sixth probe parallel to e will either determine the third vertex of P or create a tra

pezoidal envelope, and the intersection of the appropriate half-planes defined by e and the

two diagonals of the envelope determine a bounded region within P. This sixth probe is

unnecessary if O is known, since the convex hull of O and the two vertices is within P.

Finally, suppose that the envelope contains four vertices, one of which must be incident

upon three tangent lines and belong to P. Aiming a sixth probe in the direction defined by

this and a neighboring vertex will yield an envelope of three or five vertices, which has

already been discussed and require at most one additional probe. •

We note that if O is not within the bounded region, the convex hull of the union of this

region and O is within P. However, O is not within this new region - which would be neces

sary to dualize to a finger probe bounding strategy. It is surprising that such a slight distinc

tion means the difference between a constant and linear probe strategy.

Similar techniques can be used to extend these results to higher dimensions. However, it

is difficult to visualize the analogous cell complex in and extend the case analysis.
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3.3. Silhouette Probes

One problem researchers in computer vision must contend with is that photographic

images often provide too much information. It is difficult for a program to associate regions

of different shadings as portions of the same object. Thus they often deal with silhouettes,

thresholded binary images when the object is dark and the rest of the image is light, like a

shadow where the illumination originates from infinity. Projecting a silhouette defines an

infinite cylinder in which the object must lie. Intersecting several silhouettes refines our

knowledge of the object's shape and has formed the basis of many vision and solid modeling

systems. For example, Wang, Magee, and Aggarwal [93] describe a system which performs

model based recognition of different types of cars from their silhouettes. See Martin and

Aggarwal [59] for more extensive references on the applications of silhouettes.

There is a duality relationship between silhouette probes and the equally natural notion

of cross—sectional slices. The cylinder defined by a silhouette with direction v represents the

intersection of half-spaces containing O and defined by all hyperplane probes perpendicular

to V. The duals of these hyperplanes are the complete set of finger probes along a slice

through O perpendicular to v.

In two dimensions, a silhouette probe represents two line probes with identical slope ori

ginating from ±oo. Each such probe dualizes to the pair of finger probes defined by a line

through O, the cross—sectional interpretation. Li [56] terms two-dimensional silhouette

probes projection probes and proves the following tight bounds for determining convex

polygons with them.

Theorem 3.4: 3n—2 projection probes are sufficient to determine a convex n-gon, n > 3.
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Proof: We will specify probing directions using essentially the same algorithm as presented

in Theorem 3.1. To achieve this bound, we must save three probes over the previous

analysis. After the first two probes, we have determined a rectangular envelope around P.

The third projection will either result in an envelope of six vertices, an envelope of one

verified vertex and four unverified vertices, or verify two vertices of the previous rectangular

envelope.

The first two possibilities represent configurations which are achievable in six line

probes by the strategy of Theorem 3.1. Since we reached it in three, we have saved three

probes and can continue to run the line probing algorithm, eventually stopping after 3n —2

probes.

However, the two non-consecutive verified vertices of the third case cannot occur with

our line probing algorithm. If we pick one of the verified vertices and continue with our algo

rithm, the fourth direction will be defined by the two verified vertices. This probe can either

verify the remaining two vertices, verify one and introduce an extra unverified one, or intro

duce two more unverified vertices. In the first case, the quadrilateral was determined in four

probes, and 4<3(4)—2. In the second case, we have three consecutive confirmed vertices and

two unconfirmed ones, which might take eight line probes, so four probes have been saved.

Finally, in the third case, we have two confirmed vertices and four unconfirmed ones. Since

one confirmed and five unconfirmed vertices can take seven line probes, we have saved three,

giving the result. The special case of n =3 falls out of the same strategy. •

Theorem S.5: 3n—2 projection probes are necessary to determine a convex n-gon.

Proof: Let P be a convex polygon such that both the interior angles incident upon an edge e
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are acute. Thus at least one half of any projection probe contacts e.

For such a P, an adversary can ensure that after at least four probes e and both its ver

tices can be determined, along with two unverified vertices on the envelope. The first two

probes define a box around P, and for the third probe, the adversary will verify two opposing

vertices of this box. Any fourth probe which is not defined by the two determined vertices

can be made to contact these vertices again, wasting a probe. Thus the fourth probe must

determine e and the envelope as described above.

From here, the adversary can ensure that 2n—5 line probes are made leading to an

envelope with 2n—3 unvertified vertices on it. For such an envelope, there exists a convex

n-gon such that only e is common with the envelope. Since n—1 edges must still be verified,

at least 4-t-(2n —5)-|-(n —1) = 3n —2 probes are necessary for determination. •

It is interesting that doubling the number of probes only buys us an improvement of

three in the time it takes to determine polygons. We shall see in section 6.4 that more

dramatic improvements are possible when the two probes per iteration are not restricted to

the same line.

Li observes that just knowing the projection image, ie. the distance between the two

lines for 9 independent of position, is not sufficient for reconstruction. The constant-width or

Rouleaux triangle of Figure 3.4, returns identical images for each projection as a circle,

although the images are not identically located.

Silhouette probes also provide surprisingly little power in higher dimensions. Dobkin,

Edelsbrunner, and Yap [14] proved the following bounds which are optimal within a multipli

cative constant, since 3/o(i')—6 < f 2[P) Euler's formula. Recall that silhouette probes
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Figure S.4: A Rouleaux or constant-width triangle.

are dual to cross-sectional slices.

Theorem 8.6: /o(P)/2 cross-section probes (/2(P)/2 silhouette probes) are necessary and

f f 2{^) f o{P)~^f 2iP) silhouettes) are sufficient to determine a convex polyhedron in

E^.

Proof: A simple verification argument suffices to show the lower bound. Let P have no three

vertices be co-planar with O. Since every vertex must be the vertex of a cross-section to be

verified, at least /o(P)/2 probes are necessary.

For sufficiency, we note that a finger probe can be wastefully simulated by a cross-

section probe perpendicular to the desired probing direction. The result follows from the

complexity of the higher dimensional finger probing strategy of Theorem 2.8. For

silhouettes, we simulate a hyperplane probe. •
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We leave it as an open problem to tighten these results, noting that Chazelle,

Edelsbrunner, and Guibas [10] prove there exist polytopes such that each silhouette has at

most O(log n / log logn) edges.

3.4. Optimization Problems and Algorithmic Paradigms

Hyperplane probes have a close connection to optimization problems, since the con

straints for mathematical programs are typically represented by hyperplanes. In this section,

we shall look more closely at this connection, as well as at hyperplane probes as a paradigm

for solving algorithmic problems.

The results of a hyperplane probe can be simulated by a linear program, assuming each

facet is described by the equation of the hyperplane which contains it. Let d be the number

of dimensions of P. Each facet t is represented by one constraint:

^li^l "I" * ' '

The objective function F{x) describes the moving hyperplane, which is specified by the

vector (a^Og, ***,a^), is

P(x): 0^X1 + 02X2+ • • • +a^ .

The result of the probe is determined by maximizing or minimizing F{x), depending

upon whether the probe originates from +00 or —00. This value is the intercept which with

P(x) completely specifies the hyperplane.

These simulated probes are actually more powerful than the previously defined hyper

plane probes, since the contact vertex is specified by the optimal vector x. Rajan [75] has

considered probing strategies for these, which we whimsically call "linear probegrams".
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Theorem S.7: f q{P) + f i-i{P) linear probegrams are necessary and sufficient to determine

P.

Proof: Necessity is shown by a verification argument - each probe can only verify one vertex

or facet and each must eventually be verified.

For determination, we shall use the following strategy. With the first d+l probes, we

aim to determine a d-simplex of vertices. To determine the »th probe, construct a hyper-

plane which contains the first i —1 vertices. Probing in the opposite direction will result in a

new vertex.

Once the simplex is identified, each facet must be probed. Each probe will either return

a new vertex or verify the facet. In either case, each vertex and facet is probed exactly once,

giving the result. •

A problem of interest in combinatorial optimization can be solved using these linear

probegrams. Given a convex polytope P containing the origin O, what vertex of P, is

furthest from O? This can be easily formulated as a quadratic program, with the previous

set of constraints and maximizing the objective function

Xj +X2 + • • • •

Unfortunately, the problem of solving quadratic programs is NP-hard [28] and Rajan

has considered using linear probegrams to determine If all vertices of P are equidistant

from O, P will need be determined as in Theorem 3.7. Since the number of vertices can be

exponential in the number of constraints this is not efficient, but it is reasonable to consider

heuristics to select the probes.
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A closely related problem is how close an approximation to can be obtained using

k probes. In higher dimensions the problem gets difficult, although there is an elementary

result in E^.

Lemma S.8: K r is the maximum distance from O to any vertex in a convex polygon P, a

distance x can be identified in k line probes such that

.X > rsin(-^^—r^) *
- ^ 2k '

Proof: If the k probes are spaced at regular angular intervals, we define a (possibly degen

erate) convex fc-gon which contains P. The largest distance from O to the envelope

defined by these probes must be to a vertex v of this A:-gon. Clearly, rj^ ^r. If the envelope

is degenerate, we have determined the actual distance to any degenerate vertex, so we need

only consider the case of a real convex k-gon.

As in Figure 3.5, let a and b be the perpendicular bisectors through O of the lines

which define v. Clearly, a and 6 represent the minimum distances the contact point of the

Figure 8.5: Approximating the maximum distance from O
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two probes can be from O. Without loss of generality, let a > 6. We are interested in the

ratio between a and .

Since the probes are regular angular intervals apart from each other, the angle Q

between the two probes defining v is {k—2)'K/k, Let 6^ and ^5 be the sectors of the angle

partitioned by the line (O,v). Since a > 6, ^ ^ —2);r/2A;. By definition

sin(^3) = a which can be rewritten to give the result. •

Determining an approximation to the volume of an object has been considered for a

slightly different computational model. Barany and Fiiredi [3] consider an oracle which for a

point X tests whether xE-P, where P is a convex'body and seek to determine upper and lower

bounds to the volume of P. They prove that no polynomial time algorithm exists such that

the ratio of these quantities will be less than [d/\o%dY in . Elekes [20] proves the com

binatorial result that the volume of the convex hull of n points on a unit sphere in is at

most n /2'̂ , which leads directly to results for finger and hyperplane probes.

If the coefficients and variables in a linear program are restricted to integer values, the

result is an integer program. Although the problem of solving an integer program is NP-

complete, its great practical importance has lead to the development of a variety of tech

niques for solving integer programs. One class of techniques, the cutting-plane algorithms

[67], relaxes the problem by considering the equivalent linear program and repeatedly adds

constraints or cutting planes which prunes the feasible region without removing any integer

lattice points. The algorithm terminates when the optimal point of the revised linear pro

gram has integer coordinates. These cutting-planes are in fact hyperplane probes, and an

integer programming algorithm results from using simulated hyperplane probes to determine

the convex hull of lattice points beneath the feasible region. It is left as an open problem
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In order to origin probe the edge pair between the section defined by two vertical

probes, we must have an upper bound U on the distance the edges within this section are

from the x-axis. Without this knowledge, we cannot design origin probes which we can be

certain will intersect the boundary of P within the section, and thus whether the origin

probes all hit the same pair of edges. For the situation where exactly one of the two initial

vertical probes 12 intersect P, we know that the x-axis intersects P throughout the result

ing section. In this case we can bound U because it is clear that the distance of a point from

the X—axis is no larger than the height of the associated histogram at the vertical line

through the point.

This argument fails in the case ofFigure 4.6, since we cannot be certain on which side P

contains the x-axis. We will use a convexity argument to put a bound on U. Let us arbi

trarily select the section to the right of O. If this section contains the x—axis, we know a

bound on U. If not, we know that the other section contains the x-axis within P for a dis

tance X/2. The slope of the upper edge of P that intersects the y-axis is greatest if it is the

only upper edge of the left section, /j =/((—X/2,0),;r/2) intersects P entirely below the axis,

and Iq =l(0,7r/2) intersects P entirely above the axis. By convexity, no edge in the other

section can increase faster than this line, which passes through the points {0,X{P,Iq)) and

(—X/2,0). Reflecting this situation along the x-axis hounds the lower edges, and together

provides the information we need to origin prohe.

A further complication occurs when the edge pair is parallel, meaning 6^ and 63

undefined. If another potential edge pair exists in this section, that is, it required more than

five parallel probes within the section to locate the parallel edge pair, this non-parallel edge

pair can be uncovered by a total of 2n parallel probes, since now two edge pairs can have
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three probes each.

If the first edge pair is parallel and another edge pair is not known, we must now repeat

the sectioning process parallel to the original pair. Clearly, a line 1^ through O parallel to

the first edge pair intersects P between the edge pair. By a process of binary search, we can

enlarge this strip of P known to lie between the edge pair as much as desired. If 6^ is the dis

tance between the two edges, a probe parallel to Ip 6il2 below Ip widens this strip by 5i/2. If

this probe intersects P, the strip is between Ip and the last probe. Otherwise, the strip is on

the other side of Ip. Similarly, we can widen this known strip to 3^i/4 with a probe parallel

to Ip 6i/4 on either side of the known strip. We can continue to widen this strip by this

method, although for our purposes two of these probes will suffice. This strip will serve to

define a section for the next set of probes. Note that there is no reason to actually probe Ip

and that at this point we do not know how long the edges of the first parallel pair are.

Since these probes are parallel with our previously encountered edge pair, they will

intersect at least two edges difierent from the parallel edge pair. We will make five of these,

one at each side of the boundary of our region, two more within this region ^i/2+e

apart for 0< e< ^i/4, and one between these final two probes. Note that it may be possible

to reuse the binary search probes, but only if they intersected P. If the center three of these

probes are not all of the same magnitude, they do not all intersect a parallel pair of edges.

Thus with up to 2n —3 more parallel probes we can locate a non-parallel edge pair, which can

be origin probed to determine the edge pair. Unfortunately, as in Figure 4.7, the center three

probes can instead intersect a parallel edge pair. This parallel edge pair must be greater than

6i/2 in length.
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Figure >/.7: Handling parallel edge pairs.

If ^2 is the distance between the second pair of parallel edges, we can define a strip ^82/^

wide within P through the binary search strategy using probes parallel to the second edge

pair. Two parallel probes within this strip ^2/2+^ apart for 0<C€<C52/4 can confirm that the

first edge pair is greater than 82/2 in length. If this is not the case, we can find a non-parallel

edge pair between the offending probe and the appropriate end of the 3^2/4 region. Other

wise, the intersection of the two strips defines a rhombus Q which must lie within the inte

rior of P. We note that the remainder of P must lie in strips less than 8-^^/2 and less than

82/2 wide around Q. Extending these boundaries for each of the two edge pairs surrounds Q

by a skewed grid of eight regions, which together contain all of the edges of P. None of these

regions can contain parallel edges, since P is convex. Further, no three neighboring regions

around Q including only one corner region contain any parallel edges.
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Referring to Figure 4.7, it is clear that a probe X from the upper left corner of the

top—central region to the bottom right corner of the right-central region cannot intersect a

parallel pair of edges. Because of the size and position of the central region, this probe must

intersect Q, meaning it intersects a non-parallel edge pair. Along with a probe parallel to X

that intersects the upper right-hand corner of Q this defines a section which can only contain

non-parallel edge pairs, and thus can be parallel probed until three are collinear on the histo

gram. Using the earlier counting argument with n—2 edges, since the other two parallel

edges cannot be within the section, shows finding an edge pair can require up to 2n—5 addi

tional probes.

Finally, one confirmation probe of the non-parallel edge pair will distinguish the edges

on P from the pair on —P. Note that there is no ambiguity between P and —P for the

parallel edge pairs.

Lemma -^.7; With restriction to origin and parallel probes, 2n-{-23 x-ray probes are sufficient

to identify the lines that contain the first pair of edges and a point on one of the two edges.

Proof: The above strategy will identify the lines that contain a pair of edges and a point on

one of the two edges. The final accounting of probes is as follows. Four probes were used ini

tially to define a section to probe, at least two of which can serve as parallel probes. Three

more parallel probes can identify an edge pair, with the center three probes incident on a

parallel pair of edges. Three origin probes found the slopes of these lines. Two parallel

probes will widen the strip to ZSi/4. Up to five probes between the two edges will identify

that this edge pair is also parallel, and three more are necessary to origin probe it. Two

more probes widen the new strip, two more enlarge Q, and two diagonal probes select a

non-parallel section. 2n—5 parallel probes in this section will locate a non-parallel edge pair,
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the first two of which were the diagonal probes. Three more origin probes find the equations

of these lines. Finally, there is the confirmation probe. Thus two edges can be determined in

a total of 4+3+3+2+5+34-2+2+2+(2n-5-2)+3 + l = 2n +23 probes. Any point on

these two edges within the appropriate section is on the boimdary of P. •

A complete probing strategy for P could perhaps be constructed along these lines by

repeating the process for each pair of edges. However, since 0(n) edge pairs can be parallel

this would lead to a quadratic number of probes. A simpler strategy can be developed once

we know a point on the boundary of P.

4.3.4. Boundary Probes

The power of the finger probe is that it returns a point on the boundary of the polygon.

To get a similar effect, we define the boundary probe, which relies on the observation that

sending an x-ray line probe through a known point on the boundary of a convex polygon

identifies another point on the boundary of the polygon. This means that once we have

identified the coordinates of any point p on the boundary of the polygon, any x-ray probe

through p determines another boundary point. If we also are given a boundary point we can

formulate our first probing algorithm.

Theorem 4-8: With restriction to origin, boundary, and parallel probes, 5n+19 probes suffice

to determine a convex n-gon P.

Proof: By Lemma 4.7, 2n +23 probes suffice to find a boundary point and semi-verify two

edges. The dual of Theorem 3.1 gives a strategy using 3n+l finger probes to determine con

vex polygons which can be modified to use boundary probes in place of finger probes.
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Starting from one of the semi-verified edges, we will walk along the polygon, conjectur

ing vertices based on the intersection of the semi-verified edge and the line defined by the

next two known points. Each of the n vertices will eventually be probed, and each of the

n —2 other edges will have at most two interior points probed, for a total of 5n +19. •

Being clever about re-interpreting the parallel probes may reduce the total by 0(n)

more probes since once the edge one of them passed through is determined, a probe on an

unverified edge can be recorded. No doubt, the additive constant of Lemma 4.7 can be

lowered by more careful arguments. The total time-overhead of planning these probes is

clearly 0(n) as well.

Note that the optimal 3n strategy of Theorem 2.2 cannot be adapted to x-ray probes

since they probe along a semi-verified edge to obtain a vertex, which will not work with x-

ray probes unless the location of the other vertex is known.

4.3.5. Close Probes

If the measurements we have been using were performed on real sensing devices, there

will be some uncertainty with respect to accuracy. Thus for us to completely determine an

n-gon we must know that no edge has length less than this uncertainty, or else we could

never find the edge. Knowing a lower bound on the length of all the edges e gives us extra

information about the polygon. We can exploit this with a collection of close probes, where

each probe depends on intersecting a point on the boundary within some fraction of e of

another close probe. By close probes, we mean a collection of probes made with e in mind

and cannot give a formal definition as with origin and parallel probes.
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Close probes present a problem because they suggest strategies that are somehow

"unfair" as they require additional information. However, this information is available in

model based problems. Certainly in any physical implementation they would be extremely

non-robust. The virtue of close probes is that they enable us to find a boundary point in a

constant number of x-ray probes, as opposed to the linear probing strategy described above:

Lemma 4-9: Two lines that contain a pair of edges of a convex polygon P and a point on one

of the two edges can be determined in 37 x-ray probes including close probes.

Proof: Our strategy is similar to that used in Lemma 4.7, but modified to take advantage of

close probes. It should be noted that there is no fraction a such that parallel probes within

ae of each other are guaranteed to intersect the same edge pair. The reason is that the angle

between an edge and the probing direction can be arbitrarily close to tt, so even a long edge

can slip between two seemingly close probes. A sequence of such edges can slip between two

close probes if the angles they define are suflBciently close to tt. Thus the largest angle

between edges will have to be bounded to take advantage of close probes.

We will replace the linear strategy of searching a bounded section of P for an edge pair

by the following constant one. Within the bounded section of P, send two more parallel

probes, giving four probes intersecting P labeled from left to right a, b, c, and d. By the

argument in the proof of Lemma 4.7, a and b determine the steepest increasing slope possible

between b and c, and probes c and d determine the steepest decreasing slope. We define

By <.1^12 as the greater of the two angles formed by these steepest increasing and decreasing

slopes with the horizontal, so By represents the angle nearest to vertical which can occur

within the section without violating convexity. An edge pair will be found within seven close

probes spaced ecos(0y)/8 apart between b and c. Seven are required because up to two
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vertic6s, one each from the upper and lower vertex chains of P, may slip between the close

probes. We have thus guaranteed that at least three probes hit a common edge pair.

Thus we can use the strategy of Lemma 4.7, substituting the two parallel and seven

close probes for the linear edge pair search. Using the counting argument of Lemma 4.7 with

this change, we can determine the first edge pair in 37 probes. •

With the ability to find and identify an edge pair in a constant number ofprobes we can

improve the result of Theorem 4.8:

Theorem 4.10: 3n+33 x-ray probes (including close probes) are sufficient to determine a con

vex polygon P given a point O within P.

Proof: Lemma 4.9 enables us to find an edge pair in 37 probes instead of the 2n+23 of

Lemma 4.7. Substituting the new strategy for the old improves Theorem 4.8 by 2n-14

probes, for a total of 3n -1-33. •

It is certainly possible that these constants can be reduced. Other strategies involving

close probes are no doubt possible.

It would be nice to find an efficient x-ray probe simulation of a finger probe. It is possi

ble by modifying the above strategy making one of the parallel close probes along the desired

probing line and then if it hits on a parallel edge pair, perform boundary probes through the

located point to finish the description of the edge pair and calculate what the finger probe

returned. However, since this constant will be over twenty it is unlikely the simulation can

prove useful in any context.
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4.4. Bounds for Verification

A lower bound on the number of probes required to determine an object can be based on

a comparison to the verification problem. Suppose we are given the representation of a

polygon P, how many probes will be necessary to test whether P correctly describes a partic

ular object. It is obvious that any lower bound to verification represents a lower bound to

the determination problem, since it presupposes knowledge of the polygon. Although this

method leads to reasonable lower bounds for some probing problems, the lower bound in

Theorem 4.2 is too strong to allow an improvement along these lines. We consider the

verification problem in its own right.

For verification, clearly each vertex and edge must be confirmed. Otherwise, P could

have a triangle on any unconfirmed edge or be truncated before any unconfirmed vertex.

Since an x—ray probe passes through members of the set of edges and vertices, and there are

at least 2n points of interest, the trivial lower bound is for n probes. It can be easily shown

that three probes do not suffice to verify a triangle, since no matter how the three probes are

taken the object would be indistinguishable with one of four or more sides. We conjecture

that the actual bound for verification is (3n/2)-\-k for some constant k. This is based on the

observation that although n /2 probes are sufficient to verify the edges given the vertices or

verify the vertices given the edges, it appears at least n probes are necessary to verify either

the vertices or the edges independently. This conjectured lower bound is sufficient:

Theorem 4.11: (3n /2)-l-6 x-ray probes are sufficient to verify a convex n-gon P.

Proof: Given the polygon to verify, three parallel probes are sufficient to verify the existence

of a non—parallel edge pair and three origin probes are enough to define the hyperbola of it.
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One final probe to verify that P is not reflected through O identifies a boundary point.

From this boundary point, n boundary probes can verify the vertices. The remaining

n—2 edges can be verified with (n—2)/2 probes, each bisecting a different pair of edges. Since

P is the convex hull of its vertices, none of these probes can have length other than expected

without violating convexity unless there exists another vertex. •

Note that since 2n finger probes are required to verify polygons, this is a case where x-

ray probes are more powerful than finger probes.

4.5. Higher Dimensions

In two dimensions, our strategy for determination is based on finger probes once the

first edge pair has been discovered. It is natural to hunt for higher dimensional strategies

based on Theorem 2.8.

Theorem 4-^2: At most /o(P)-f-4/2(P)-l-(d+2)/^_i(P)H-46 x-ray probes are required to

determine a convex polytope P in E'^.

Proof: Our strategy will have two phases. The first will determine four points of P defining

a tetrahedra. Then we will adapt the strategy of Theorem 2.8 by boundary probing through

known points.

Probing in a plane through O, we use Lemma 4.7 and at most 2/2(P)+23 probes to

determine the first edge pair. From this edge pair can be selected three non-collinear points

which define a triangle within P. Repeating this in an orthogonal plane determines a fourth

point giving the tetrahedra within 2/ 2(P)+23 additional probes.
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The strategy of Theorem 2.8 aims probes at conjectured vertices, avoiding edges of the

cell complex defined by the verified facets. For boundary probes, we must also aim

through a verified piece of a facet. Since this piece is two-dimensional, we have the degree of

freedom necessary to avoid the one-dimensional edges of while passing through the con

jectured vertex. These probes do not have to pass through O. The problem of avoiding

does not occur until after a facet has been verified, so we initially aim at one of the tetrahe-

dra points.

In total 4/2(^)446 probes suffice to define the tetrahedra and f oiP)+{d-\-2]f 2{P)

more in the second phase, giving the result. •

Another linear strategy can be based on determining cross—sectional arcs in various

planes through P, and then adapting the strategy for line probes in of Theorem 3.9. This

approach does not generalize beyond E^ and has higher multiplicative constants than the

strategy discussed above.

A linear lower bound in E^ and higher dimensions can be obtained from the lower

bound for finger probing and the fact that two finger probes can simulate an x-ray probe.

Tighter upper and lower bounds will follow from more careful analysis.

4.6. Open Problems and Extensions

We have presented strategies for probing convex polygons with x-rays. In particular,

we have shown that complete information about a convex n—gon can be obtained with a

linear number of carefully planned x-ray probes. Still, the power of x-ray probes is not well

understood. For example, no algorithm is known that decides whether or not a given collec-
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tion of x-ray probes (and answers) determines the probed object.

A different type of probe to consider would measure the area or volume of intersection

with a half-plane or half-space instead of a line. Such an "Archemedian" probe in two

dimensions would have as its derivative an x-ray probe. In three dimensions, its derivative is

a cross sectional area probe. We prove linear upper and lower bounds for determination with

half-plane probes in the next chapter.

Open problems associated with x-ray probes include:

(4.1) Tighten the gap between our lower and upper bounds for determination. We conjecture

that 3nH-c probes are necessary and sufficient, since up to 2n probes in our strategy are

"wasted" locating the first edge pair. Perhaps these can be reused in the second phase of our

algorithm, although we do not see how this can be done.

(4.2) Tighten the gap between our upper and lower bounds for verification.

(4.3) Can x-ray determination results be extended to star-shaped polygons? It appears that

it may be necessary to have a lower bound on the size of an edge to do so, since a little crack

in a long edge can be detected by probing along the edge, but a second probe passing through

the crack would be difficult to locate.

(4.4) Can the techniques of this chapter be applied to real tomographic systems? Specifically,

how effective are algebraic reconstruction techniques when probing directions can be interac

tively selected?
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CHAPTER 5.

HALF-SPACE PROBING

\
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One of the most famous stories in the history of science is that of Archimedes figuring

out how to test if the King's crown was made of solid gold as ordered or if the goldsmith

cheated and added silver to the metal. The problem revolved around how to measure the

volume of the irregularly shaped crown. Archimedes had the inspiration, while taking a bath,

of measuring how much water the crown would displace and comparing it to the volume of

water displaced an equal weight of gold. On making this discovery, he was so excited he ran

naked through the streets of Syracuse yelling "Eureka". In addition to creating a cottage

industry of children's books about Archimedes [25,50,55], this tale provided the inspiration

for half-space probes and this chapter of this thesis.

We define a half-plane probe to be the area of intersection between a closed half-plane

h and a polygon P. Let h{l) be defined as the area of intersection between P and the closed

half-plane to the left of the directed line I. This notion can be generalized to half-space

probes in higher dimensions, where each probe returns the volume of P which intersects with

the half-space. There is a close relationship between x-ray and half-plane probes which we

shall exploit to develop a linear half-plane probing strategy. Our strategy for half-planes is

similar to the strategy for x-ray probes discussed in section 4.3, but requires different and

more interesting geometric arguments to prove its correctness.

As mentioned above, the original inspiration for studying half-plane probes was the

famous story of Archimedes measuring the volume of water the crown displaced. Such dunks

in the tub are really half-space probes. More importantly, half-plane probing problems have

application to tomography [43] and remote sensing, such as the lunar occultation observa

tions used to map astrostellar radio sources [90]. The instruments for measuring such radio

sources have a lower resolution than desired, so each measurement represents the total
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amount of energy over an area. By waiting until the moon passes over a portion of the

region and measuring how much the energy is reduced, detailed maps of the source can be

produced. This is very close to our notion of a half-plane probe.

As always, we assume that we are given a point O within the interior of P. A collection

of half-plane probes through an object provides us with a great deal of information about it

but not directly with the coordinates of a point on the surface. Half-plane probes have the

advantage over other types of probes that they in some sense reflect the entire structure of

the polygon in every probe. Thus they provide the possibility of extending probing results to

simple polygons, since unlike with finger and x-ray probes concave edges are potentially

verifiable.

Section 5.1 gives our main result, linear upper and lower bounds for half-plane probing

convex polygons. Section 5.2 presents linear bounds on verification with half-planes. We

consider higher dimensions in section 5.3, finding it difficult to extend our results. The

related problem of extended Gaussian images is discussed in section 5.4. Finally, we conclude

in section 5.5 with some open problems.

5.1. Upper and Lower Bounds for Two Dimensions

To obtain absolute information about P from half-plane probes, it is necessary to think

in terms of groups of probes which work together. This section considers different classes of

probes, what powers and limitations they possess and how they interact to lead to probing

strategies. These classes are designed to reflect the complementary goals of recognizing and

determining edge pairs.
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5.1.1. Origin Probes

The first class of probes are origin probes^ a set of half-plane probes bounded by lines all

aimed through a common point O within the object. Any half—plane probe which intersects

a convex polygon and avoids its vertices will go through exactly two edges of the object. As

shown in Theorem 4.3 the largest number of such edge pairs is n.

Each half-plane is defined by a directed line. We can therefore consider the complete

set of origin probes through a point O =(0,0) as defined by t^'.y=tx, where i=tan(^),

2'k<0<Q. These define a function f (t) = This function will contain enough

information to determine the edges probed through, except for special cases. Here, we con

sider / [t) for a wedge defined by two lines and containing the origin.

Lemma 5.1: Let y=miX+bi and I2: y=m2X+b2 be two distinct lines, rui,7722,61,62^? ^

be the unbounded wedge between /i and 12 containing the origin, and let y=f [t) be defined

as above. Then

Ayt^ + Byt + Cy + Dt ^ -1- Et = 0 ,

where A =2r7i 17722, B =—2(7721^772 2+77217722^), C =2m-^m2, D = 62 '̂̂ i~6i^772 2, and

E = m^h^—m-^b^'

Proof: Consider the situation in Figure 5.1, where both edges intersect the x-axis. This

involves no loss of generality, since a rotation of the axes can always be performed. Hence,

we need not consider the case where either slope is 0. For any t, the area swept out between

y=0 and y=tx is the sum of the areas of the two triangles defined by y=0, y=tx, and either

11 or 12- The value of y=f{t) is defined to be the difference in area between the two trian

gles, y=Ai—A 2. More formally.
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y-tx

f(t)

Figure 5.1: Definingf(t), the probes through an edge pair,

tb^^
^ 2m-^{mi—t) 2m2{m2—t)

Multiplying through by the denominators and simplifying gives the result. •

We note that f {t) is infinite and hence ill-defined when t is between and m2. For

example, when t =mj^ or t =m2, f [t) reduces to mj =Tn2. This complication does not

occur when probing polygons since additional edges occur in this range. We will use Lemma

5.1 to determine the equations of the lines that contain edge pairs. If we have some number

of origin probes through a common edge pair, then we can determine the / (i) through the

associated points. From / (<), we then deduce the equations of the lines.

The function f {t) is determined by five constants: A, B, C, D, and E. It follows that,

in general, five probes through a pair of edges are enough to determine the function. Since all

five constants are functions of the four line parameters they cannot all be independent.

Indeed, C = A}j^. Given A, B, D, E, we can solve for the parameters of the equations:

tb^
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-B±Vb'-2A^
m-, = ruo = —

2A

, EAm.D _ E+m^
b,' = — and b^':

m 2(7712—mi) mi(m2—mi)

From these equations several limitations on our ability to reconstruct the edges become

apparent. Since 61 and 62 squared, we obtain no information on the sign of the inter

cepts. Neither mi or 77x2 are distinguished from each other, meaning we cannot associate

which intercept belongs to which line. More serious is that 61 and 62 are undefined when

mi=m2. Thus any probing strategy using origin probes must take special action on parallel

edges.

However, to exploit Lemma 5.1 we must insure our probes intersect the same edge pair.

Unfortunately, extra probes lying on f {t) are not sufficient to verify / {t).

Lemma 5.2: There is no constant k such that k half-plane probes lying on f [t] implies that

the probes pass through the same pair of edges of P.

Proof: Consider a regular 2/:-gon with center at O. All probes through O give /(i)=0,

regardless of whether they intersect the same edge pair. •

It would be nice to generalize the proof of Lemma 5.2 to non-parallel edge pairs. Veri

fying edge pairs is the motivation for parallel probes, discussed below.

5.1.2. Parallel Probes

Parallel probes are a set of half-plane probes defined by lines of identical slope and

direction. A complete collection of parallel probes of a given slope $ results in a cumulative

area histogram C[P,6) of the area of the object. The derivative of C at any point gives the
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value of the x-ray probe defined by the probing line. The complete derivative of C gives the

result of a parallel x-ray aggregate probe (section 6.1) as shown in Figure 5.2. By analogy

with x-ray probes, they provide a mechanism for verifying edge pairs.

Theorem 5.S: Four parallel half-plane probes through an edge pair are sufficient to verify the

edge pair.

Proof: Without loss of generality, let us consider four parallel half-plane probes defined per

pendicular to the line y=0. Label these Xi,X2iX^jX^ in order of increasing x coordinate

where p,- is the x-intercept of the line containing each probe. Let the area to the left of each

probe be defined as h(Jr, ). We can then define three points which we assert are collinear if

and only if Xl,X2,X2,X^ are all incident on the same edge pair:

,Pi+P2 h{X2)-h(X,)^
^1 = (——» ::—: )

M2 = (

2 P2-P1

P2+P3 /l(X3)-/l(X2)
PZ—P2

C(P) C'(P)

Figure 5.2: A polygon with C{P,d) and its derivative.
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„ -P3+P4
' ^ 2 ' P,-P3 '

First, we show that if Xi,X2,X2,X^ all intersect the same edge pair, then M^, M2, and

are collinear. By considering the derivative histogram of P, without loss of generality we

can treat one of the edges of the pair as lying on the a:-axis, and the probes as perpendicular

to this edge, so each probe can be described by its x-coordinate. Let L{x)=mx -\-b contain

the other edge of the pair. By the trapezoidal rule,

h{X,)-h{X,) = ()(p^_pJ.

Using the above and the definition of we get

,Pl+P! 'n(Pi+P2) ,= , +6).

This implies Since a similar proof can be given for M2 and M3, the three

points are collinear if the probes intersect the same edge pair.

Now we show that if the four probes do not intersect the same edge pair, then M2,

and M3 cannot be collinear. Considering the derivative histogram again, we note that the

values of x-ray probes through P represent points on a concave curve. We observe that the

midpoints between two such probes must lie on or below this concave curve c. As Figure

5.3 shows M2 must be below the line through the intersections between c and ^2,^3 in order

maintain concavity. But then, P3—P2 times the y-coordinate of M2 is the area of the tra-

pezoid bounded by y=0, X2, X3 and the line through Mj and M3. This is a contradiction

since this trapezoid is properly contained between the x -axis and curve c. •
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2 3 4

Figure 5.S: Non-edge pairs violating concavity or collinearity.

5.1.3. Determining a Boundary Point

Since we know how to verify and determine edge pairs, we can now proceed to locate a

point on the boundary of P.

First, we must identify a section of F through which we can parallel probe. We assume

knowledge of a point O within P; to parallel probe we must find another such point to insure

all our probes intersect P. We start by sending two horizontal probes through O, one

directed to the left and one directed right. Together, they total the area A of P. By using

this information, we can now consider each additional probe as returning the area on both

sides of the probe.

Three additional probes will be sufficient to identify a section to probe. Assume that

the area Aq above y=0 is concentrated in a square centered on the y-axis and resting on the

x-axis. At least one of the probes x =-izSjAq/2 or y='\/must intersect P and with

either x =0 or y =0 determines a section to parallel probe.
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Four parallel probes on an edge pair is sufficient for verification. By the pigeonhole

principle, after 3(n —2)H-4=3n —2 parallel probes we are guaranteed to have them, since there

are a total of at most n —1 such edge pairs. At least one of the preliminary probes can also

be used as a parallel probe, meaning at most 3n —3 additional probes are needed.

5.1.3.1. Bounding the Extent of the Polygon

To determine the edges, we must origin probe the edge pair. To origin probe we must

insure that our probes intersect within the section we have defined. This implies knowing a

bound on where the edges actually are within the section, so that the angle of the probes can

be selected accordingly.

By sending two probes g and h perpendicular to the parallel probing direction, we can

partition the area of P into three sections, the area between the two probes a, above the

probes 0, and below the probes 7. Up to two of the areas o:, and 7 may be 0, depending on

whether g and h intersect P. By choosing g and h to lie on opposite sides of O, we insure

that q:>0. If ^ and 7 are 0, g and h represent bounds on the edges of P. If not, we are

interested in the convex object which intersects g and h and maximizes its height subject to

the area constraints.

Lemma 5.4: There exists a triangle with base on h with area^ above g and a between g and

h.

Proof: Let the distance between g and h be 1. If 7 is the height of the triangle, then the

part above ^ is a similar triangle with height r;—1. Since the two triangles are similar, the

ratio of their areas is
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T7^ 0!+^

If we choose rj = ^j^g gf ^^j^g triangle equal to 2(q:+/9) —2V(a+fl^
a

then the triangle fulfills the two conditions. •

Lemma 5.5: If there exists a convex figure different from a triangle with areas a and ^ as in

Lemma 5.4, then there is a triangle that is higher and also fulfills the requirements.

Proof: Notice that this triangle has height rj defined above, which implies the height of any

other convex figure is less than if the assertion is true.

Let t be the topmost point of the figure. Construct a triangle A such that (a) its base

lies in h and t is its topmost point, (b) it is similar to a triangle of height r} and area

and (c) the part of A above line g is contained in the part of the convex figure above g.

Triangle A exists since we can choose the sides such that they intersect interval {a,b)

(see Figure 5.4) which is the intersection between g and the convex figure. If the two sides go

Figure 5.4: Constructing a similar triangle A to the height bound.
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through a and h then its upper part is contained in the figure's upper part, but then its lower

part contains the figure's lower part. Thus this triangle contains another triangle with the

right proportions, that is, the intersection between this new triangle and g must be within

the interval (a ,6).

The upper part of A is smaller than ^ which shows that A has to be increased in order

to realize total area ot+p. Thus rj is greater than the height of the figure which is the same of

the height of zA. •

By similarly considering the areas a and 7, the other side of P can be bounded and the

origin probes aimed.

5.1.3.2. Parallel Edges

For x-ray probes, parallel edges proved to be a tremendous nuisance, since the inter

cepts were undefined and could not be determined by additional probes through the edge pair,

since the length of intersection is a function only of the separation between the edge pair and

the angle of the probe, see section 4.3.3. We now give a procedure for determining the inter

cepts of parallel edges, using half-plane probes.

In the case of parallel edges, from the degenerate / [t) we can determine the slopes and

with the probes defining the section, the distance between two parallel edges. To complete

our knowledge, we must determine the intercepts. By performing a rotation on P so that the

parallel edges of P are perpendicular to the a;-axis, we can obtain the situation in Figure 5.5.

Let p be a point known to be outside, determined via the techniques of the previous section.

Both edges can be determined from d, the distance from p to IWe define <£' to be distance
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t - m

t - 0

Figure 5.5: Determining parallel edges

between and 12, which is determined by the parallel probes through and 12- Aiming two

probes with slopes 0 and m through p and li, 12 determines the area of the trapezoid r. This

trapezoid represents the difference between two similar triangles so:

— {d-\-d')(m{d-\-d')) djmd)
2 2 '

Solving for d gives

d =
md' 2

Thus two additional probes are suflBcient to determine the parallel edges. Ironically,

this special case requires less probes than determining which constants belong to which lines.

For non-parallel edges, the slopes (m1,7712) and possible intercepts (^i,—6i,62j~^2} define a

total of 8 lines. We can determine which two are correct by probing along each of them. If

Pi and P2 ^re the parallel probes which defined the section, the correct two lines and I2 will

result in probes of zero area and with pj and P2 define a quadrilateral of exactly the observed

area between Pi and P2. Thus at most eight additional probes will actually determine the

edge pair.

Lemma 5.6: 3n+16 probes are suflBcient to determine the first edge pair and a point on the
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boundary of P.

Proof: From the previous discussions, we spend five probes initializing the search, 3n—3

additional parallel probes defining a section, two probes bounding the height of P, four addi

tional origin probes, and up to eight additional verification probes. Any point on or 12

within the section is determined. •

5.1.4. Boundary Probes

Probes through known points on the boundary of P are defined as boundary probes. We

can use boundary probes to develop a more efficient probing strategy through the following

observation:

Lemma 5.7: Three parallel probes through an edge pair are sufficient to determine the

second edge, if one edge is known to be contained in li'.mx+b.

Proof: Rotate P clockwise by arctan[m) so that the known edge lies on the a:-axis. Three

parallel probes through the rotated edge define points Afj and M2 described previously and

subject to the inverse rotation define the other edge. •

5.1.5. Determining a Convex Polygon

After determining an edge pair, we have the situation in Figure 5.6. The edges contain

known points Pi,P2 and qi,q2- We conjecture the edges meet at v. To test this, we need a

probe through q^ and pg- If returns the area of triangle (qi,P2,v), we have verified vertex

V, otherwise, there is at least one additional edge in the unexplored corner. Let v' be the
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Figure 5.6: Determining vertices of P

point on such that the result of this probe equals where we define

ot{a,b,c) to be the area of the triangle defined by the three points.

Thus edge (P1P2) cannot extend past v' without violating convexity. Probing parallel to

qiv' between and ^2 we intersect a new edge pair, one ofwhich is (^1^2)*

We can parallel probe this section, and then consider these probes as boundary probes

once we have determined an edge pair with (^192) ^ known line. Aim the ith parallel

probe between the (t —l)st and the (i —2)nd parallel probe. If it takes more than five parallel

probes to verify an edge pair, we have identified another section to parallel probe.

We shall pivot around edge (gig2)> repeatedly determining the edge in the rightmost

unexplored section. Since the initial probe to verify the vertex corresponds to one of the ori

gin or parallel probes used previously, we only need five additional probes each to determine

the rest of the edges. This brings us to our main result:

Theorem 5.8: 8n-|-6 half-plane probes are suflBcient to determine a convex n-gon.

Proof: By Lemma 5.6, 3n+16 probes are sufficient to determine the first two edges. From

the preceding discussion, 5 probes are sufficient to determine each additional edge. Thus the
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total number of probes required is (3n+16)+5(n—2) = 8n-H6. •

For x-ray and finger probing models, a linear lower bound on the number of probes

required can be based on the need for every vertex to be probed to verify that it exists. Since

a half-plane probe measures the entire area on one side of a directed line, if we have deter

mined the two edges incident on the suspected vertex we can verify a vertex by probing

through the two known edges. If the area returned by the probe is the area A of the triangle

defined by the vertex, edges, and probing line /, the vertex is verified since P is convex. This

technique was used in the proof of Theorem 5.8.

A lower bound of 2n half-plane probes can be based on the same dimensionality argu

ment used in the proof of Theorem 4.2. The next section contains a geometric argument

which also proves a linear, although weaker lower bound for half-plane probing.

5.2. Bounds for Verification

A lower bound on the number of probes required to determine an object can be based on

a comparison to the verification problem. Suppose we are given the representation of a

polygon P, how many probes will be necessary to test whether P correctly describes a partic

ular object. It is obvious that any lower bound to verification represents a lower bound to

the determination problem, since it presupposes knowledge of the polygon.

Theorem 5.9: n-f-1 half-plane probes are sufficient to verify a convex n-gon.

Proof: For one of the edges of P, probe in both directions of the line containing the edge.

For the remaining n —1 edges, probe once along the defining line. With each edge, we know

P entirely lies within each of n half-planes. The intersection of these half-planes is P. Since
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the intersection of these half—planes has exactly the area of P, we have verified P. •

Note that fewer half—plane probes are sufficient for verification than for finger (Theorem

2.1) or for x-ray probes (Theorem 4.11).

Theorem 5.10: At least 2n /3 half-plane probes are necessary to verify a convex n-gon.

Proof: We identify a collection of restrictions which a set of probes must meet for them to

verify a given n -gon.

(1) If the relative interior of an edge is not intersected by the line bounding a half-plane,

both vertices must be intersected.

(2) If a vertex is not intersected by a probe, then both of its incident edges must be inter

sected in their relative interiors.

(3) No two consecutive edges (<2,6) and (6,c) can be verified without at least one probe

within the relative interior of either (a ,6) or (6,c).

(b)

4

I

Figure 5.7: Forbidden cases for verifying probes.
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(4) No two consecutive vertices a and b can be verified with single probes to the relative

interiors of (x,a), (a,6), and {b,y) and no probes through a and b.

To show that (1) is forbidden, see Figure 5.7a. If not, we can move the two endpoints

coUinear to the two adjacent edges without changing the result of any probe. For (2), see

Figure 5.7b. We can shorten the edge intersected by a probe and use an additional vertex to

raise a triangle on the unprobed edge to regain the area. Figure 5.7c demonstrates the neces

sity of (3). We can replace vertex 6 with two other vertices without changing the result of

any probe. Finally, for (4) see Figure 5.7d. We can replace the center edge and two incident

vertices by a triangle without changing the result of any probe.

We now walk around the boimdary of the polygon and count the minimum number of

sites which must be intersected to satisfy the four restrictions. Suppose no vertices are inter

sected. By restriction (2), the relative interior of each edge must be intersected at least once,

and by restriction (4) every third edge must be intersected at least twice. Thus there are at

least 4n /3 intersections, which requires at least 2n /3 probes to verify.

Now suppose there are v vertices probed, no two of which are consecutive. By restric

tion (l) both adjacent edges must be probed in their relative interiors. Any edge that is not

adjacent to a probed vertex is the middle edge of a chain of three edges to which restriction

(4) applies. Thus there are at least

, , n—2t; \ 4n
V -1-n H — > ——

3 — 3

intersections, where the (n—2v)/3 term comes from the fact that at least one third of a con

secutive chain of edges not adjacent to any probed vertex must be probed at least twice.
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Finally, consider the general case and decompose the boundary of P into maximal

chains of edges so that either no edge is adjacent to any probed vertex or it is a chain that

remains after removing all chains of the first kind. Let rij (712) be the number of edges that

belong to r.haina of the first (second) kind and (C2) be the number of chains of the first

Jfc-+2
(second) kind. By restrictions (1) and (3) at least ^ Jof the fc,- edges of the ith chain of

2

the second kind must be intersected in their relative interiors. Thus, the number of intersec

tions is at least the number of probed vertices 7I2—^2} plus the number of edges of the first

kind rij, plus the number of edges of the second kind —-—^J, plus rii/Z to satisfy (4) for
1-1 2

all edges of the first kind. The total

-3

can be simplified by pulling C2 out of the summation and using n = ni+n2to

rii . ki .

The remaining summation is at least 712/3, being smallest when each chain has exactly 3

edges, which gives the result. •

This result can probably be improved by identifying more restricted situations. How

ever, we note that Sti /4 probes are sufficient for each vertex and the relative interior of each

edge to be probed as follows. Use n /2 probes along every other edge to intersect all n ver

tices and 71 /2 of the edges and 71 /4 additional probes, each of which intersects the interior of

two unprobed edges. Thus a tight 71 lower bound for verification will not follow from this

argument.
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5.3. Higher Dimensions

To a limited extent, these results can be extended to higher dimensions. If we assume a

half-plane probe as described, we can consider collections of half-planes within a common

plane to determine a particiilar cross-section of P. By combining these cross-sections as in

the proofs of Theorems 3.9 and 4.12 a polytope in can be reconstructed in a linear number

of probes. However, two more interesting generalizations prove to be much more dificult to

analyze.

Consider a crosa-aectional area probe which, for a given plane in returns the area of

intersection with P. This differs from the half-plane probe described above in that the line

which defines the appropriate half-plane is at oo. The results in this chapter do not appear

to help with cross-sectional area probes, since they rely on isolating a section of P containing

only two facets, which is not possible with a full cross-section of P. Even the problem of

determining a tetrahedron in a constant number of probes is open and appears dificult.

The other interesting generalization would be to half-space probes in E^, which for a

specified half-space returns the volume of intersection. The simpler problem of determining

tetrahedra is also open for half-space probes.

5.4. Extended Gaussian Images

The extended Gaussian image (EGI) of a convex polytope in three dimensions represents

each facet of P as a normal vector proportional in length to its area. In 1897, Minkowski [60]

proved that every convex polytope is uniquely determined (independent of translation) by its

extended Gaussian image. Further, an extended Gaussian image is realizable by a convex
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polytope if and only if the sum ofits vectors is zero. An English version of this analytic proof

appears in Lyusternik [58].

Gaussian images have been used in robotics [47] as models of objects, since the areas and

normals can be calculated from images of objects. Unfortunately, there is no known algo

rithm to invert a Gaussian image. Little [57] provides an iterative algorithm based on

Minkowski's proof which eventually converges on the correct polytope. One dificulty with

inversion in is that the incidence graph of the faces is not uniquely determined by the nor

mals as they are in E^. Dolan and Weiss [16] claim an 0(n logn) algorithm for determining

the incidence graph based on a notion of a weighted Voronoi diagram on the sphere. Unfor

tunately, the problem of inverting an EGI given the incidence graph is still open.

Minkowski's theorem has an interesting implication for the verification of convex

polytopes in E^ with cross-sectional area probes. / 2(P) such probes are sufficient to verify a

convex polytope P with the special property that no plane h intersects P only in vertices and.

edges unless h supports a facet. These probes determine an extended Gaussian image, which

inverted verifies P, the cell in the arrangement of planes containing O. The restriction on P

is necessary, since a pyramid might be raised on one or more of the faces, which would also

result in an extended Gaussian image which vector sums to 0.

A similar argument can be given in E^ for verifying convex polygons with x-rays,

although a triangle raised on any edge would be undetected. This does provide an upper

bound of n x-ray probes for verification when n is known, since the EGI can be inverted but

no additional triangles raised without increasing n.
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5.5. Conclusions and Open Problems

We have given strategies for probing with half-planes. In particular, we have shown

that complete information about a convex n-gon can be obtained with a linear number of

carefully planned half-plane probes. Open problems include:

(5.1) Tighten determination and verification bounds for half-planes.

(5.2) Is there a finite strategy for reconstructing convex polyhedra from half-space or cross-

sectional area probes?

(5.3) Give an algorithm for reconstructing Gaussian images given the incidence graph of the

polytope.

(5.4) Does there exist a finite probing strategy for reconstructing star-shaped polygons from

half-plane probes?
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CHAPTER 6.

AGGREGATE PROBES
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It has been said that there is safety in numbers. This is true with respect to probing,

for entirely new problems arise when more than one probe can be made at a time. This

chapter is particularly interesting because these problems touch upon a wide range of subjects

in mathematics and computer science. X-ray aggregate probes accurately model sensing dev

ices used in medical imaging, and the study of them leads us to an important problem in

integral geometry. This in turn will lead us to an interesting problem in combinatorial

geometry. The problem of probing in rounds introduces the notion of parallelism and demon

strates its limitations.

Section 6.1 presents results for x-ray aggregate probes. These include solving Hammer's

x-ray problem for both parallel and origin probes. Difficulties in generalizing Hammer's

problem to non-convex polygons leads to the combinatorial problem of A;-projections, which

is analyzed in section 6.2. Attempts to aggregatize finger and other probes are documented

in section 6.3. If we permit more than one probe to be made at a time, we can obtain some

speedup on the number of rounds of probes required to determine an object. These problems

are treated in section 6.4. Section 6.5 concludes as usual with some open problems.

6.1. Hammer's X-ray Problem

P. C. Hammer [39] posed the following problems in 1963: How many x-ray pictures

must be taken to permit exact reconstruction of a convex body if the x-rays issue from a

finite point source? How many are needed if the x-rays are assumed to be parallel? These

problems have since generated a substantial literature [23,24,26,27,30,77,92] which is based

on integral geometry. The distinction between the two problems is exactly the distinction

between origin and parallel probing [19] models as discussed in Chapter 4.
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Here we survey the results of this literature, phrased in the language of probing. Gier-

ing [30] proved that three photograph probes are sufficient to verify any convex set, where a

photograph probe consists of the set of all x-ray probes parallel to a given direction.

Gardner [26] shows that three photograph probes are sufficient to determine and necessary to

verify a convex set. Gardner and McMuUen [27] showed that any four photograph probes are

sufficient to determine a convex set, so long as their directions are not a subset of the direc

tions of diagonals of a regular polygon. There also exist a body of results for point sources,

the complete set of x-ray probes originating from a point O. This is a more powerful probe

than the complete set of x-ray probes passing through O (an origin probe), since the second

probe would be unable to distinguish between a convex set K and the same set rotated tt

radians around O. Falconer [24] proved that two point sources and P2> which lie on a line

through the interior of K are sufficient to reconstruct K. VolCiC [92] proves that three non-

collinear point sources are sufficient for determination provided all points are outside K.

Also, four points, no three of which are collinear, are sufficient to determine K. Except for

Falconer's, these results only demonstrate the uniqueness of K and are thus non-

constructive.

These theorems have been derived for convex sets, not the more restricted set of convex

polygons. In this thesis, we are only concerned with polygons. However, since a convex set

can be approximated arbitrarily closely by a convex polygon, it is not clear just how much

weaker our results are. In this section, we present discrete and therefore simpler proofs for

many of the results above. First, we prove a lower bound on the number of photograph

probes for determination.

Theorem 6.1: Two photograph probes are not sufficient to determine a convex polygon.
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Proof: We will use an adversary argument to show that there will be at least two convex

polygons P which satisfy the results of two photograph probes, regardless of how they are

selected. Let the first probe return the image of a trapezoid of height top and base

bi > <1, which is symmetric along an axis / perpendicular to bi. The second probe, aimed at

an angle 9 with respect to I, returns a similar trapezoid rg of height hg, top ^2?

^2 ^ ^2*

Figure 6.1 shows the construction of two quadrilaterab which both give rise to images

and Tg. To prove this, we show that hj = OM = LN. Clearly, triangle AQLM is similar to

triangle AQRS. Thus a = LN{-^—or LN = Also, note ATUV is similar to
X—2a [x —a)

ATON, so a = 0N{

y-2a

X —a

X—2a
or ON = Thus

(x—a)
we

Figure 6.1: Two photograph probes are not sufficient for determination.

have
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hi = y—a[x—2x)/[x—a) = \MO | = |i/iV |. Note that 6^ =xsin^. Repeating this argu

ment for T2 shows /12 = X—a[y—2a)/{y—a) and 62 = t/sin^.

Given values for 6^, hj, and asin^ as returned from the first probe, for any value of 6 an

X and y can be selected to complete this construction. Thus two photograph probes do not

suffice to determine P. •

Edelsbrunner and Skiena [19] show that three photograph probes are sufficient to deter

mine a convex polygon. We show here that three photograph probes can reconstruct a con

vex polygon in 0{n) time, an improvement over our previous quadratic result.

Theorem 6.2: A convex n-gon can be determined in 0[n) time using 3 photograph probes.

Proof: Consider two orthogonal probes. From the first, we will obtain the complete set of

x-coordinates of vertices in P. From these we can determine the smallest distance

between distinct x-coordinates. Note that up to two vertices may lie on any line of the form

X =c. From the second probe we will determine the complete set of y-coordinates of vertices

and thus y^^, an upper bound on the length of intersection between any line y =c and P.

Aiming the third probe with angle a, 'K/2—arctan{x^^Jy^^ <0: < 7r/2 will insure

that no two vertices will be incident upon the same histogram line. This is steep enough so

that no line with angle a will contain two of the old intersections. A linear sweep through

the histogram vertices from the first and third probe will permit the intersections to be com

puted in 0(n) time. •

For the probing models discussed earlier in this thesis, the ability to interactively select

probing directions is what made finite probing strategies possible. Aggregate probes are

powerful enough to wave this restriction. However, as Gardner [26] showed, problems arise



when the probing directions are chosen in the directions of a convex n-gon. Let P be a 2n—

gon with equal sized isoscelese—triangular "bites" taken out of every other corner. Two dis

tinct orientations of P exist where each direction is perpendicular to the base of a cut, and as

Figure 6.2 shows for both of these every probe image is identical.

Origin probes present a different set of problems, which to solve we will need some ear

lier results from Chapter 4. Recall Theorem 4.4 in section 4.3.1, where we showed that the

complete set of x-ray probes through O determines a "spider-web" Sq{P), which can be

inverted such that any non-parallel edge pair of P is determined up to rotation by tt. It is

this ability to determine edge pairs which makes origin probes more powerful than photo

graph probes.

Theorem 6.S: Two origin probes are necessary and sufficient to determine a convex polygon.

Proof: Let be the origin of our first origin probe. From the previous discussion, it is

clear that if the resulting spider web indicates no parallel edges (ie. a degenerate linear seg

ment of SqJ^P)), that P is determined up to rotation and that a second origin probe can

Figure 6.2: Directions from regular polygons do not suffice for determination.
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easily be selected to distinguish between the possibilities P and P'.

Further, P is determined up to central reflection, or equivalently rotation through tt, if

there is even one non-parallel edge pair in SqJ^P) since this pair of edges is determined. The

neighboring parallel edge pair has their slope m and the distance between them determined

by the inversion formula. A vertex of this edge is determined from the known edge pair and

with m gives the next edge. Walking around in this way determines P.

The only cases remaining are illustrated in Figure 6.3. Either O is within P or it is out

side P. If O is within P, all edge pairs are parallel which implies that P is centrally sym

metric with center O. However, for such a polygon P = P' and the polygon is determined.

In the second case, O is outside P and P may be located anywhere in the angle sectors

deflned by P. By convexity, there is at most one parallel edge pair of P, and the other edges

are defined by directions through O. With the slopes of all four edges known, a second point

can be selected to yield a non-parallel edge-pair and determine P. •

(a) (b)

Figure 6.S: The two cases with all parallel edge pairs.



Aggregate probes make possible the determination of a larger class of polygons than for

single probes, since aspects of the entire polygon are recorded in each probe. However, one

important property of photograph probes for convex polygons does not hold for star-shaped

polygons, namely that each vertex of P lies on a line determined by each probe. Figure 6.4

shows how vertices in star-shaped polygons can be invisible to photograph probes.

This problem of invisible vertices leads to the combinatorial problem of ifc-projections,

discussed in the next section. The hope is that further study of fc-projections will provide

insight into how many invisible vertices can possibly remain after m probes.

6.2. Counting the Number of ib-Projections in a Point Set

An orthogonal projection of a point set onto a line / maps each point to a point on I

such that the original and projected points define a line perpendicular to /. Since points that

lie on a common line perpendicular to I get mapped to the same point, we can consider the

number of points A; < n in a particular projection. A k-projection is an orthogonal projec

tion that yields at most k point images. In this section, we bound the number of distinct k-

Figtire 6.4: Invisible vertices in star-shaped polygons.
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projections of a point set in the plane. These results first appeared in Skiena [87]. Note that

we are interested in distinct projections. Since all parallel lines define identical projections,

we can assume that / contains the origin.

These results provide insight into the structure of degenerate point sets, where more

than two points define the same direction or line. A potential application is in image process

ing, to count the possible sizes of a set of indistinguishable objects given a number of views of

the set. For example, given a number of simultaneous views of a flock of birds, how many

birds can there be in the flock?

Each direction of a point set determines a A;-projection for some k <n. A related

problem, that of minimizing the total number of directions in a point set, was solved at

2[n /2j by Unger [91].

We can define a function Vj^.(n) which specifies the largest number of A:-projections in

any configuration of n points N. The following observations concern special cases of

ujt (A; —t) = 00, I >0 (a)

.,(4+1) =(«=+!) (b)

= 1, < > 1 (c)

.,(42_,-)=2,0<.- <[4V4j. (d)

The first statement is evident since every line defines a A:-projection on a set of n < A:

points and the second since every direction in a set of A;-f-l points in general position is a A:-

projection. Observation (c) follows from the total of A;^ intersections on a A: XA; grid which

limits the size of any point set generating two distinct A:-projections to k^. For (d), note

that the first two A;-projections define a grid of A;^ points. The third direction defining the
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minimum number of lines, 2A;—1, must be a diagonal of the grid. There are two lines con

taining each of from 1 to A:—1 points and one other contains k points. Selecting the lines

with the highest number of points leaves

. Jfc2-1i =2 z: 3 =
;=i

points from the grid if k is odd and

k (*-2)/2 1,2«• =|- +2 E j =^2 y.i 4

if k is even. Considering any direction other than a diagonal leaves even more of the grid

points uncovered. Therefore, at most [A:^/4j points allow three different A;-projections.

The function (n) observes the following monotonicities

"tCn+l) (e)

<'lfe(n)<»'i+i(n+l) • (f)

The first monotonicity follows from the deletion of any point in a configuration with

Ujt(n-fl) A:-projections. To obtain the second, consider an arrangement of n points with

Vjt(n) A;-projections. Adding another point to the arrangement which is not on one of the at

most k'Vj^[n) projection lines defines a configuration with at least Vj^[n) (A;-|-l)-projections.

Together, they provide the following order on values of this two parameter function:

VjfcCn+l) < "^(n) < .

We now present a variety of upper and lower bound results for v^(n) which are tight

over different values of A:, 1 < A: < n—1. Our upper bound results on Ujt(n) rest on the max

imum size of the collinearity graph representing the lines involved in all the A:-projections of

N. Its nodes are the points of N and it connects two points by an edge if the corresponding

two points lie on a line parallel to a A:-projection.
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Theorem 6.4: For integers a > 1 and A; > 6 > 0, we have

a (ak —k +26)

Proof: When m vertices are collinear on a projection line, they account for (g) edges in the

collinearity graph. Distributing the points uniformly among the projection lines for each k-

projection minimizes the total number of edges added to the graph from any projection. The

most uniform distribution of ak-\-b points, assuming 6<A;, puts a+1 points on each of 6

lines, and a points on the remaining k—b lines. Since the total number of edges in collinear

ity graph cannot exceed (^^2"'"^)' have

v,{ak^) ((fc-6)(°)+6(''+l)) <+2+
which leads to the result. •

Two special cases of Theorem 6.4 are when n=A:+6 or n=ak. The first case is applica

ble when n is only slightly larger than k and is tight when k =n —1. The second is a general

ization of observation (6) and applies when n is considerably larger than k. The resulting

bounds are given below.

Corollaries: For integers k <^n, we have

(2)

All of the above results are combinatorial rather than geometric, and thus the bounds

do not fully reflect the relationships between points in the plane and lines incident upon

them. The next two theorems give a tight bound over a large range of n and k.
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Theorem 6.5: There is a positive constant c such that Vjt(n) < ck^/n if CgA < n < k^/cQ

where Cg is a sufficiently large constant.

Proof: Let AT be a set of n points that realizes Vj^[n) projections. Szemere'di and Trotter

[89] prove that the number of incidences i between n points and t lines is bounded by

i with the restriction that < (p. The number of lines over all k-

projections of iV is t < kvj^{n)^ with the inequality coming from projections of less than k

lines. Each point in N is incident upon exactly (n) lines, so i = n (n). Thus:

ujn) <Cin-V3<2/3 .

Substituting t < A: (n) and rearranging terms gives the result. The range of validity on

this formula follows from the range where Szemeredi and Trotter's result is valid. •

Theorem 6.6: v^(n) =Q(k^/n) if ck < n < A:^/c, where c is a sufficiently large constant.

Proof: We use the example of a VjTxVrT grid of lattice points G. We shall consider only

the directions with slope 0 ^ x/y ^1, where aJ ^ y ^ and x and y are relatively

prime. The complete set of such rational numbers are known as the Farey sequence of order

[63]. The Farey sequence of order V^, negated and inverted, accounts for all the direc

tions in G.

The fractions in a Farey sequence with denominator d are exactly those x < d where x

is relatively prime to d. Thus the number of fractions in a Farey sequence of order m is

m

^^(«), where ^(t) is the Euler totient function, the number of positive integers less than or
1=1

equal to i which are relatively prime to i. Hardy and Wright [41] prove that

m

= Zm^/t^-\-0(m logm).
i=l
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To determine the size k of the A:-projection of G onto a line perpendicular to direction

x/y, we note that each point image in the projection is represented by a point in the y'X.x

lower corner of the grid, as shown in Figure 6.5. Counting the points in this L-shaped region

gives k = \/^(a;-l-y)—xy.

Consider the directions within a n®Xn® portion of G, 0 < a < 1/2. By the previous

analysis, this square defines the slopes of a Farey sequence of order a. For any of

these directions, x < y < n®, so the size of such a projection is which gives the

result. •

Our lower bound results over other ranges are by construction. The following is tight

when n = A; +1 and applicable when n is only slightly bigger than k.

Theorem 6.7: i'^(n) > .

• • • • • •

^ri

Figure 6.5: The size of the projection with slope x/y of G.
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Proof: Arrange [n/{n—k)\ points so that no three are collinear or two pairs of points lie on

parallel lines. Replicate this arrangement n —k times, so that the orientation of the point set

is \mchanged and no points from diflFerent copies of the arrangement are collinear along a pro

jection line. If then we choose the appropriate number of points of

an additional copy so that n is the total number of points. Each direction in the original

arrangement represents a projection of at most k since there are at least n —k disjoint pairs

of points that lie on lines parallel to the projection. •

The following lower bound applies to Vj^(n) for smaller k, but also represents an

interesting special case.

Theorem 6.8: 2k—I > Vf^{2k) > k.

Proof: The upper bound follows from Theorem 6.4. For the lower bound, consider a regular

2A;-gon. Any projection parallel to an edge is a fc-projection, and each edge is parallel to

exactly one other in the polygon. In passing we mention that if the vertices are labeled in

order, the direction defined by vertices v,- and represents a (A:+l)-projection, so

Vk^l{2k) > 2k.

An alternate construction nests two regular A;-gons as shown in Figure 6.6. The inside

A;-gon vertices are at the intersections of the lines defined by the two neighbors of each vertex

of the outside A;-gon. Each of these k directions defines a A;-projection with one line incident

upon four points and two upon singleton points. •

We can also consider the number of A:-projections for point sets subject to a restriction

on the number of points which can be collinear. Let v^[n) be the maximum number of A:-

projections on n points with at most a points collinear, that is, on a common line.



Figure 6.6: Point sets of size 2k maximizing the number of k-projections.

Theorem 6.9: v^[ak) < k.

Proof: Note that a fc-projection on ak points with at most a points collinear implies that

every projection line contains exactly a points. For any point p in N, the possible ifc-

projections are defined by the directions in N through p. Each direction through p parti

tions N into two subsets, both of which must contain a multiple of a points if the direction

defines a A;-projection. At most k of the up to afc—1 directions can, giving the result. •

We note that Theorems 6.8 and 6.9 together imply that v^(2k) = k.

We have given several upper and lower bounds on the function Figure 6.7 shows

how varies with increasing k. Further study can be expected to further improve and
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Theorem 6.4

Theorem 6.5

Theorem 6.6

obseruation (c)

1/2

Figure 6.7: Upper and lower bounds onVf^{n) .

1 log k
n

hopefully unify these results.

We note that several of our results also hold for point sets in E^. Specifically, the upper

bounds of Theorems 6.4 and 6.5 and the lower bound of Theorem 6.7 immediately generalize

to three dimensions. An alternate problem in considers the number of planes parallel to a

direction sufiBcient to contain all the points and generalizes Vj^ (n) accordingly.

Another generalization of v, V}^{n), maximizes the number of projections of exactly k

point images. Clearly, Vj^{n) < Vjt(n), but we conjecture equality. Finally, we can consider

the sizes of central projections as we have considered the size of parallel projections.
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6.3. Other Aggregate Probes

We can also consider aggregate probes based on probing models other than x-rays, such

as finger, line, and half-plane probes. These problems are interesting, because in many cases

we have seen them before in other guises.

For example, consider a parallel half-plane probe, which returns the cumulative area of

P as a function of a half-plane sweeping from left to right over it. Due to the

integral/differential relationship between x-rays and half-planes, each such probe is

equivalent to a photograph probe and thus Theorems 6.1 and 6.2 hold for half-planes. On

the other hand, no such relationship exists between x-ray and half-plane origin probes. As

shown in Figure 6.8, all regular 2/;-gons of area A yield identical results when probed

through their center, which does not happen with x-ray probes. This perhaps provides moral

Figure 6.8: Regular 2k-gons of area A yield identical half-plane origin probes.
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justification to those cranks who have spent thousands of years trying to square the circle,

since success would give two figures with identical half-plane origin probes!

It proves more profitable to consider aggregate finger probes. Let a parallel finger probe

be the complete set of finger probes with slope m and direction (dboo) d. Clearly, two oppos

ing parallel finger probes are sufficient to determine a convex polygon, since each probe deter

mines the convex chain spanning exactly half of P. The problem gets more difficult when we

consider star-shaped polygons.

Theorem 6.10: [n /3j parallel finger probes are necessary and [n /2] are sufficient to verify a

star-shaped n -gon.

Proof: Figure 6.9 gives a star-shaped polygon that requires [n /3j parallel finger-probes to

verify, since each of the cracks is small enough that no two finger probes with the same slope

will verify vertices at the bottom of two different cracks.

The upper boimd argument follows from probing perpendicular to the line defined by

every other vertex of P and O, a point in the kernal of P. Since every point in P is visible

from O, no probe destined for either of the two edges incident to the vertex can be

obstructed. •

The set of polygons verifiable with a linear number of parallel finger probes cannot be

extended too far past star-shaped polygons. A necessary condition is that every such polygon

must be externally visible, for if not there exist points which cannot be reached by finger

probes. However, consider the eight-sided polygon in Figure 6.10. The gap to the inner

chamber is not wide enough to permit the verification of more than a small piece of an inter

nal edge with one probe.
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Figure 6.9: n/S parallel finger probes are necessary to verify an n-gon.

Figure 6.10: A polygon which cannot be verified by parallel finger probes.

[n /2] parallel finger probes appears sufficient to determine a star-shaped polygon, but

the argument is complicated and will not be discussed.

Let an origin finger probe be the complete set of finger probes emanating from point p.

A different class of problems result when p is inside the polygon. The contact point for each

probe is a point visible from p, thus such problems have a close connection to "art gallery"

problems, which seek the minimum number of point guards which can see every point in a
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polygonal art gallery. The monograph by O'Rourke [66] provides an excellent summary of

what is known about art gallery problems, including open problems.

Aggregate finger probes dualize to aggregate line probes. Specifically, a parallel finger

probe dualizes to a line probe which "rolls" around P after contacting it. Depending upon

how you generalize the notion of aggregate finger probes to higher dimensions, this can

represent a cross-section of P, which is itself the dual of silhouette probe, as discussed in sec

tion 3.3.

6.4. Probing in Rounds

The aggregate probing models in this chapter have introduced a form of parallelism, by

considering all probes defined by a certain characteristic as a more powerful model. The

main problem associated with parallelism is the degree of achievable time speedup for a prob

lem of size n given k processors. Clearly, in the best case, the job can be completed k times

faster. However, the structure of most problems makes it impossible to realize this. This is

true in real life as well as theory, as anyone who has ever been on a committee can attest.

In this section we consider a problem, proposed by Raghavan [74]. To what extent can

we speed up the number of "rounds" it takes to determine an object with the ability to make

up to k probes per round. This is similar in flavor to the "sorting in rounds" problem [69]

which has been extensively studied. We will limit ourselves to finger probes and convex

polygons. We show that significant speedup can be obtained with k=2 probes per round,

which is surprising since Theorem 3.5 showed that permitting two opposing finger probes per

round reduces the number of rounds only by a small additive constant.
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Theorem 6.11: 8n/3 rounds of two finger probes per round are sufficient to determine a con

vex n-gon.

Proof: The goal of our strategy will be to ensure that the relative interior of each edge is

probed at most three times. We will modify the strategy of Theorem 2.2 to account for our

ability to make up to two probes per round.

For the first phase, send two probes per round directed to O until three outcomes are

collinear. The m previous outcomes define m angle ranges around P. So long as we send the

two probes to difierent angle ranges we are certain that no four contact points will be col

linear.

Once we have determined our first edge, we can walk around P in clockwise order, con

jecturing vertices from the intersection of two lines defined by four successive contact points.

If we probe the first two conjectured vertices we encounter, we can be assured that these

probes will not be incident on the relative interior of an edge with two other points. If there

is only one possible conjectured vertex, we make only one probe that round, since an adver

sarial argument shows that making an arbitrary probe can be incident on a previously deter

mined edge and does not move us closer to our goal.

At most 4n probes are made before the polygon is determined, 3n to edges of P and n

for the vertices. We note that when only one probe is made, either this probe verifies a ver

tex or else defines two conjectured vertices for the next round. Thus any round of one probe

is followed by at least one of two probes. When a vertex is verified in a one probe round, P is

determined. Thus at least 3r /2 probes are made per r rounds, which given at most 4n

probes yields the result. •



130

It appears that this analysis is not tight and in fact fewer rounds are necessary for

determination. Tighter bounds hinge upon a combinatorial analysis of how often we can be

left with only one probing opportunity. That there exists a probing one-cycle of four rounds

for this algorithm is illustrated in Figure 6.11. If this is the shortest one-cycle, 16n /7 rounds

I

round (1)

round(2)

round(3)

round(4)

Figure 6.11: A probing one-cycle of length four.
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are sufficient by the previous argument. However, this does not necessarily mean 16n /7 is a

lower bound, since alternate probing strategies might increase the length of the shortest cycle

or ensure that less than three probes are incident on the interior of each edge.

This and the problem of generalizing to ^ ^ 2 are left as an open problems. We conjec

ture that 2n rounds might be achievable for some k. We note that a trivial lower bound for

probing with rounds of 3n /k follows from Theorem 2.3.

6.5. Conclusions and Open Problems

In this chapter we have considered a variety of problems for aggregate probes. For

almost none of these do the lower and upper bounds match, so they suggest topics for further

work. The most interesting of these problems are stated below:

(6.1) How many x—ray photograph probes are necessary to determine a star—shaped n—gon?

This generalizes Hammer's problems beyond convex polygons.

(6.2) Tighten the bounds on Vj^{2k). We have shown that 2k—\^vj^{2k)^k and

Vf^^i[2k) > 2k.

(6.3) How many rounds of k finger probes per round are necessary to determine a convex n-

gon? We have no interesting results beyond k=2.

We can also generalize probing strategies beyond homogeneous probes. Interesting

problems result when we have access to more than one type of probing device. The following

problem dates back to Greschak's [34] thesis.

(6.4) A combination of how many finger and hyperplane probes are necessary to determine P?
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We conjecture (based on no evidence) that the lower bound remains the same and that the 3n

probes may be achieved by whatever combination of finger and hyperplane probes is desired.

(6.5) How many probes are required for determination given access to both finger and x-ray

probes. Clearly 3n is a lower bound but does access to the x-ray probe help?
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CHAPTER 7.

CUT-SET PROBES
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The problems we have discussed thus far in this thesis have all involved probing purely

geometric objects, usually convex polytopes. But the notion of probing leads to interesting

problems even if we stretch the definition of geometric object. Whitehead claimed that graph

theory represented "the slums of topology". This chapter is devoted to an interesting prob

lem which might be considered to be "the slums of graph theory"!

Consider a graph G ={V,E) whose n vertices are points in general position in the plane

(that is, no three points are collinear) and whose edges are all straight line segments between

pairs of vertices. We assume that the positions of the vertices are known, but nothing about

the edges is specified. A cutset probe returns the number of edges cut by a specified line.

We show that all such graphs are completely reconstructible with C(n,2)=(2) cut-set

probes, prove that C(n ,2) probes are necessary, generalize the problem to arbitrary cut-sets,

and propose several open problems concerning cut-set probes.

We note that it is not obvious that cut-set sizes should permit reconstruction. Com

plete knowledge of other graph parameters, such as degree sequences [9] do not have this pro

perty. A problem similar to ours involves the complexity of determining properties of graphs

given queries of the form "is edge {i,j} in the graph?". Karp has conjectured that monotone

graph properties such as connectivity are evasive, meaning that in the worst case all edges

must be queried to determine whether the graph has this property. Lower bound results

[51,78] show such properties are within a multiplicative constant of being evasive. Our

results show that reconstructing graphs from cut-set probes is evasive in a similar sense. The

problem of reconstructing graphs from cut-set sizes was posed by Dean [13].

Section 7.1 provides tight upper and lower bounds for determination of graphs with

cut-set probes. Section 7.2 considers more specialized graph problems, the open ones of
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which are emphasised in section 7.3.

7.1. Reconstructing Graphs from Cut—set Sizes

If G is a straight line graph as specified, we note that only C (n ,2) probes provide poten

tially useful information, since there are only C(n ,2) partitions into two subsets which can be

defined by lines. The set of all such probes are sufficient for reconstruction:

Theorem 7.1: (g) cut-set probes are sufficient for edge reconstruction.

Proof: We show that the membership of edge {i,j} in G can be tested from the four probes

which uniquely partition the remaining n—2 vertices into those to the left and the right of

the line defined by t and j. Let -^2) -^3 and be the probes defined in Figure 7.1.

Pi

' /
Figure 7.1: The probes necessary to determine whether {i,j} G E.
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Let L be the set of vertices to the left of the line through t and j and R be the vertices

to the right of this line. It follows that each vertex in L is to the left of each of the four

probes, and each vertex in R is to their right. Let d^i be the number ofedges {i,v}^E,v ,

and similarly define the quantities d,-,,, dji, and d^. Finally, let m be the number of edges

{I,r}E.E,l^L,r£R and e be the number of edges Thus e is a 0/1 variable unless

G is a multigraph.

The cut-set sizes returned by the four probes are fxmctions of these quantities:

Pi = m +dii +dji

Pg = m +d,y +d^

P^ = m +d,7 H-d^ +e

P^ = m +dy^ +d,y +e

Thus P3+P4—Pi—P2 = 2e, and the membership of any edge in G is determined. •

Note that there is no requirement that the straight line graph be a planar embedding.

To show that C(n,2) probes are necessary for the determination of a graph, we consider a

special class of graphs. We define a balanced graph on n vertices B[V,E) to be one with ver

tices V= {vi..i;„} and edges P | j ={imod n, 0 < A: <n/2}. Figure 7.2

shows balanced graphs on six and eight vertices. Specificly, we are interested in balanced

graphs where the vertices represent a convex n-gon, n even, with the vertices labeled in

angular order. The cut-set sizes of such graphs share an interesting property:

Lemma 7.2: The cut-set size of any partition A \JB =V' of a convex embedding of a bal

anced graph, \V I=n for even n, equals (|A |* |P |-l-c)/2, 0<c <1.
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Figure 7.2:Balanced graphs on six and eight vertices.

Proof: There are two cases, depending upon the parity of the sets. If both sets contain an

odd number of vertices, [ |A l/2][lJ5 |/2l+ LI-^ I/2JLI-S l/2j edges are cut, so c=l. If not,

then J? is a set of even size. Each vertex in A is connected to |5 1/2 of B, so c=0. •

Thus each cut-set consists of approximately one half of all the possible edges between

elements of A and B. Since clearly we can simulate probing the complement of G instead of

G if it is advantageous, this means that each cut provides the minimum possible amount of

information concerning which edges are in the graph.

Theorem 7.5; For an even number of vertices, C(n,2) cut-set probes are necessary to deter

mine a graph.

Proof: Consider a convex embedding of a balanced graph on n vertices, where n is even.

Any cut-set probe I intersects exactly two edges on the convex n—gon, which together are

incident upon either three or four vertices. In the case of four vertices, let {a,6 } and (c,d} be

the edges of the n-gon. By the definition of a balanced graph, {a,c} and {6,d} must also be

edges of B for the appropriate choice of labelings of the vertices. However, a graph
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G'=(V',E'), V'=V and E' = E —{{a ,c},{b ,d}}\j{{a,d},{b ,c}}j as shown in Figure 7.3a, has

identical cut-set sizes as G along every probing line except /.

In the case of three vertices, let {a,&} and {6,c} be the edges of the n-gon. Such is the

case when / partitions V into {6} and V—{6}. Replacing both of them with the edge {a,c},

as in Figure 7.3b, yields a graph which has identical cut-set sizes for all probes but /. Thus

any collection of C(n,2)—1 probes is insufiScient to verify, let alone determine G. •

Corollary: Graphs whose vertices are not in general position cannot be reconstructed.

The corollary follows since there do not exist C(n,2) distinct probes if the vertices are

not in general position. We note that the theorem does not resolve the problem for graphs

with an odd number of vertices, since it is easy to show that all graphs on three vertices can

be verified in only two probes. However, three probes are still necessary for determination.

Figure 7.8: Graphs which differ in only one cut-set size.
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Sparse or near complete graphs can be verified more efficiently than balanced graphs. It

is easily seen that a graph with n vertices and m edges can be verified in

4min{m,C7(n,2)—m }+ n —1 cut-set probes. As shown in Theorem 7.1, the presence (or

absence) of an edge in G can be tested with four probes. Thus all the edges in G (or the

complement of G) can be verified in 4m probes. Sweeping the vertices of G by a line which

is not parallel to a direction of the point set defines n —1 probes such that every edge of G is

intersected by at least one probe. Thus we can prove that there are only m edges in the

graph, the m verified in the first step. Therefore, it is clear that planar graphs can be

verified in O(n) probes.

Every cut-set probe returns a number between 0 and n^/4, which is the largest size of a

cut-set in a graph. This maximum occurs for partitions A \JB = V of complete graphs

where \A\= |J5 | = n /2. We note that there are possible sequences of probe

results, C(n,2) values between 0 and n^/4. There are only combinatorially distinct

point sets in the plane [32], each of which can support exactly 2^^"'̂ ^ distinct labeled graphs.

Thus there are at most 2^^"^ realizable sequences, so most sequences cannot represent prob

ing outcomes for a graph.

An example of an unrealizable cut-set sequence is {k,k,k, ' ,k), except for A: =0 or

k =2, for n >2. The empty graph realizes the case of A; =0 and a ring around a convex set

of vertices realizes k =2. To show that no other k is realizable, we note that in any

configuration of n points in general position, there are at least three edges of the convex hull.

These may or may not be edges of the graph. Consider one of these edges, connecting ver

tices a and 6, and let / be a line that separates {a,6} from V—{a,b}. For a configuration to

realize the specifed cut-set sequence, both of a and b must be of degree k and k edges must
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cross I. There are two cases, depending upon whether there is an edge between a and 6. If

so, A;—1 edges incident upon each vertex must cross I, so k —2(A;—1) and k =2. If not, k

edges incident upon both a and 6 cross I, so k =2k and A: = 0.

A graph on n vertices has 1 distinct cut-sets, vastly more than the C(n,2)

straight line partitions of points in a plane. Generalizing our notion of a cut-set probe to

determine the size of arbitrary cut-sets of a graph permits the possibility of a better strategy

than in Theorem 7.1. Using the notion of cut-set sequences, we prove our strategy is optimal

within at least a logarithmic factor.

Theorem 7.4: At least —- generalized cut-set probes are necessary to determine a
4(log2(n)-l)

graph.

Proof: For k cut-set probes to determine a graph on n vertices, there must be at least as

many distinct probing outcomes as there are graphs. Since there are labeled graphs on

n vertices and at most (n^/4 + l)^ outcomes of k cut-set probes:

4

Taking the binary logarithm of both sides and simplifying gives a lower bound on k.

Replacing (n^+l)/4 by n^/4 gives the slightly weaker but cleaner result. •

7.2. Determining Graph Properties

Any problem that can be asked for general graphs can be asked for more restricted sub

graphs. Specifically, is it easier to determine a planar graph? How about a dense or sparse

graph? These questions are wide open, but we present an improved determination result for
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trees:

Theorem 7.5: O(n log n) generalized cut-set probes are sufficient to determine a tree T.

Proof: First, the degree sequence of T is determined in n probes by considering the partition

where each vertex is a singleton.

Note that a tree must always contain at least two vertices of degree one. Let i be such

a vertex. By using the relationships of Theorem 7.1 and values of d,- and dj, we can solve for

d^i and d,-,.. Using these we can perform a binary search to locate the edge, simulate the dele

tion of this edge, and repeat for the rest of the tree. •

This strategy will work for regular cut-set probes if a fast strategy for determining the

degree sequence of G can be found.

An interesting, although unrelated, graph probing problem comes directly from the

notion of electrical tomography [31]. In electrical tomography, a number of pairs of probe

points are made and the electrical resistance between the two points is measured. The meas

ured resistance of each will be a function of the entire organ, not just the line between the

two points. This can be modeled by assuming a graph between the points, such that each arc

of the graph contains a fixed resistor. Further, the network obeys the classical laws for paral

lel and series resistance. The problem, given such a network, is how many probes are neces

sary to determine the resistors associated with each edge.

It is not obvious that network can be determined for all graphs. Gilbert and Shepp [31]

claim that the resistances can be determined if the graph is complete. As a counter-example

to the general result, they present three networks of five vertices and eight edges which yield

identical measurements. However, two of these networks contain open (infinite resistance)
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edges. Whether networks of finite resistance are uniquely reconstructible is an interesting

open question.

7.3. Conclusions and Open Problems

We have shown that C(n,2) cut-set probes are sufficient to determine a straight line

graph whose vertices are in general position. Further, this bound is tight for verification and

determination when n is even. These results bring up several open questions:

(7.1) Are fewer probes necessary for special types of graphs, such as planar graph embed-

dings? Lower bounds for restricted graphs such as trees and planar graphs can be based on

enumeration results [40] for the class of graph. However, Cayley's formula leads to only an

n{n) lower bound for labeled trees.

(7.2) Are fewer probes needed to determine the number of edges in a graph? How about the

degree sequence of C? For the special case of convex vertex sets, n probes suffice, since the

degree of any vertex can be determined in one probe.

(7.3) Is there a general condition for testing whether a set of cut-set sizes can correspond to

the C(n,2) probes of a graph? This may be a very difficult problem since it relates to point

configurations which are combinatorially different.

(7.4) Can C(n,2) be shown to be necessary for arbitrary cut-sets? If not, consider the three

dimensional problem, with the vertices in general position in and a probe measuring the

number of edges cut by a plane. -Clearly, C(n,2) is sufficient since all probes can be directed

normal to a common plane, reducing the problem to two dimensions. However, there are
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cut-sets defined by the point set in possibly allowing a better strategy.

We observe that the cut-set sequence of a graph is an alternate representation for the

graph. It would be interesting to see if there are any algorithmic implications for such a

representation.

The results of this chapter were largely non-geometric, and suggest interesting problems

follow from probing purely mathematical objects. For example, consider the problem of

polynomial interpolation. It assumes an oracle which evaluates a polynomial P at a given

point and asks how many calls to the oracle will be necessary to determine P of n

coeflBcients, at most t of which are non-zero. Clearly n are necessary when n = t, but the

situation changes when P is degenerate. Ben-Or and Tiwari [5] prove that 2t evaluations are

necessary and suflBcient in the non—adaptive case, where the i th evaluation point are is not a

function of the previous i —1 evaluations, but the points must be given in batch. Cop

persmith has observed that t+1 evaluations are sufiBcient in the adaptive case [48], and

clearly t are necessary.
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CHAPTER 8.

CONCLUSIONS

This thesis has explored a variety of different models in geometric probing. For each of

these, we have demonstrated that convex polygons can be reconstructed in a linear number of

probes. Table 8.1 summerizes our results for determining and verifying convex polygons

under various probing models. Along the way, we solved a host of related problems and

uncovered even more.

To assess the significance and potential of this work, it is worth noting the wide range of

research areas which probing touches upon. We hope that this thesis inspires fruitful work in

one or more of the following directions:

Tomography and Remote Sensing

Perhaps the most surprising result in this thesis is that a linear number of x-ray probes

are sufficient to reconstruct a convex polygon. This is made possible by the interactive

nature of our strategy, the fact that we used the results of previous probes in planning the

Determination Verification

Probe Lower Bound Upper Bound Lower Bound Upper Bound

finger probe 3n 3n 2n 2n

hyperplane probe 3nH-l 3n +1 2n 2n
—

x-ray probe 2n 5n+19 n 3n/2
half-plane probe 2n 8n +6 n /2 n +1

Figure 8.1: Summary of main results.
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next. The potential exists for real tomographic systems to work in this way, given improve

ments in the speed ofsignal processors, which would greatly decrease the amount ofradiation

patients are exposed to. Also, our success with using new sensing models such as half—plane

probes could stimulate work on physical devices which behave according to this model.

Algorithmic Implications

A probing strategy defines a representation for the object being probed. For some of

our models, particularly cut—set probes, it would be interesting to see whether this represen

tation has any useful properties for geometric or graph algorithms. The paradigm of probing

is natural for optimization problems and deserves more attention.

Combinatorial Geometry

Rota has said that "combinatorics needs more theory and less theorems". While this is

no doubt true, it is the fiood of interesting problems which makes combinatorics attractive.

The notion of A;-projections shows that interesting combinatorial problems arise from analyz

ing probing strategies.

Geometric Probing

The most important aspect of this thesis is the codification of all major results to date

in geometric probing, and identifying the most interesting open problems which remain. I

have enjoyed working in this area, and hope that this thesis inspires someone to continue the

work. Specifically, the best remaining problems concern developing a model-based strategy

for line probes, reconstructing polytopes in from cross-sectional area and half-space

probes, and generalizing the probing in rounds results to more than two probes per round.
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Finally, we hope that the ideas of this thesis can be applied outside the realm of com

puter science and mathematics, to problems of the real world. For example, what discovery

could have a bigger impact on the world than determining whether congressional probes ever

determine anything.
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