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We present an approach to leverage a small subset of a coherent community within a social network
into a much larger, more representative sample. Our problem becomes identifying a small conduc-
tance subgraph containing many (but not necessarily all) members of the given seed set. Starting
with an initial seed set representing a sample of a community, we seek to discover as much of the
full community as possible.

We present a general method for network community expansion, demonstrating that our meth-
ods work well in expanding communities in real world networks starting from small given seed
groups (20 to 400 members). Our approach is marked by incremental expansion from the seeds
with retrospective analysis to determine the ultimate boundaries of our community. We demon-
strate how to increase the robustness of the general approach through bootstrapping multiple
random partitions of the input set into seed and evaluation groups.

We go beyond statistical comparisons against gold standards to careful subjective evaluations
of our expanded communities. This process explains the causes of most disagreement between our
expanded communities and our gold-standards—arguing that our expansion methods provide more
reliable communities than can be extracted from reference sources/gazetteers such as Wikipedia.
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1. INTRODUCTION

Contemporary societies are composed of many interacting communities, and so
social network analysis revolves around the identification and interpretation
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of these communities. Community discovery is a well-studied and fundamental
classification problem in social network analysis [Gibson et al. 1998; Hopcroft
et al. 2003; Tyler et al. 2003; Wu and Huberman 2004]. Many problems can ben-
efit from knowledge of the underlying communities in a network, including such
classic NLP applications as information retrieval and question answering (e.g.,
“Find all baseball players implicated in the steroid scandal”). The evolution and
growth of a community can be predicted, and their interactions studied. Ideol-
ogy of a community can be observed, and the flow of ideas between communities
studied. Identification of communities enables us to observe community-wide
sentiment, and study the degree to which a community’s sentiment influences
each of its members.

Community discovery in networks is typically considered as a clustering
problem, where one seeks to identify dense subgraphs of relationships with rela-
tively weak connections to outlying nodes, reviewed in Section 2.2. However, our
experience with such methods has proved disappointing. Seldom do such small
conductance clusters reflect homogeneous, well-defined, natural communities.
This is particularly true for communities of nontrivial size in large graphs.

This problem emerged in the context of our Lydia news and blog analysis sys-
tem [Bautin and Skiena 2007; Godbole et al. 2007; Kil et al. 2005; Lloyd et al.
2006; Lloyd et al. 2005; Lloyd et al. 2006; Mehler et al. 2006], which interprets
feeds from over one thousand newspapers on a daily basis.1 Particularly rele-
vant here is our construction of a network of literally hundreds of thousands of
people in the news, with edges between pairs of figures with statistically sig-
nificant collocations/interactions. Weights on these edges measure the strength
of interaction between the entity pair. Figure 1 presents a drawing of a small
portion of our network around the news entity George W. Bush.

A theoretical explanation for the difficulties in finding large communities
is provided by Leskovec et al. [2008], who demonstrate that natural networks
observing power-law distributions contain core structures which mask large
natural community structures. Extensive experiments on over one hundred
real-world networks demonstrate that large, statistically significant small con-
ductance clusters simply do not exist in these networks. Our news network is
no different from the rest; its Network Community Profile (NCP) as defined by
Leskovec et al. [2008] show that significant clusters larger than twenty vertices
simply do not occur in our network.

And yet large natural communities do exist in news networks. Table I sum-
marizes the community properties of four natural communities (baseball, bas-
ketball, and American football players, as well as movie actors) in a large net-
work derived from news corpora comprising four years of data from essentially
every daily U.S. newspaper. Observe that each of the communities has edge den-
sities roughly two orders of magnitude greater than the network as a whole.
This is a typical property of natural communities, yet does not prove suffi-
cient support to stand out among the statistical background in an unguided
search.

1Visit http://www.textmap.com for a full picture of Lydia’s entity/relationship extraction, senti-
ment analysis, and trend recognition capabilities.
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Fig. 1. A portion of the news entity network around George W. Bush.

Table I.
Community properties of our “dailies” news network, plus subgraphs corresponding to four

natural communities. All communities have substantially higher in-community edge density
than the full network.

Network Baseball Basketball Football Movie Stars
Vertices 299,486 4,872 1,653 6,514 2,703
Edges 594,884 36,509 10,358 16,745 8,081
In-community Degree 3.97 14.98 12.53 5.14 5.98
In-community Density 1.30 × 10−5 3.08 × 10−3 7.59 × 10−3 7.90 × 10−4 2.21 × 10−3

We assert that there is enough information in real-world social network data
to amplify a small subset of a coherent community into a much larger, more
representative sample. Our problem becomes identifying a small conductance
subgraph containing many (but not necessarily all) members of the given seed
set. This version of the community discovery problem attempts to leverage
partial knowledge of a community. Starting with an initial seed set that is a
sampling of a community, we seek to discover as much of the full community
as possible.

Our approach is marked by incremental expansion of the seed commu-
nity with retrospective analysis to determine the ultimate boundaries of our
community. Our incremental method repeatedly identifies the optimal “next”
unlabeled vertex v to select for the community, based in some manner on the
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Fig. 2. Expanding the ‘baseball player’ community from 100 seeds. The first thousand members
added to our seed group consist almost exclusively of gold-standard baseball players, although this
fraction drops off during the next thousand insertions. After about two thousand insertions, the
precision drops until new members are selected essentially at random.

number or strength of v’s neighbors who had previously been identified as
members.

Figure 2 illustrates this process, expanding a seed set of 100 major league
baseball players into a community of roughly 2,000 members highly enriched
for baseball players. The x-axis represents the order of selection for our ex-
panded community. The composition of the community at each point in time is
represented by three shaded regions representing (1) the initial seed set of 100
members, (2) the selected members who are on a gold-standard roster of known
baseball players, and (3) the false positives selected for the community but not
on the roster.

The real problem is determining when to stop the insertion process. Figure 2
demonstrates that the first thousand or so insertions are almost all members of
the gold-standard community. But with subsequent insertions, we start to see
nonmembers slowly creeping in. Once too many of these impostors pollute the
community, however, the grower loses all discriminatory power, adding correct
members at a rate no better than random. Identifying this transition point is
the critical element for reliably recognizing communities.

Our solution is based on the idea of reserving some fraction of our seed set as
validation members. We then monitor the frequency with which these valida-
tion members are incorporated into the community. Assuming the community
is small relative to the size of the network, we anticipate relatively frequent
rediscovery of validation members during the initial “community-rich” phase
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of insertion. After the phase transition, there will be less frequent rediscovery
as the community has expanded beyond its natural boundaries. We can then
define the community to consist of all insertions prior to the detected transition.

We note that only about a third of the full gold-standard community of 4,932
people are ultimately discovered in the example of Figure 2, even at the proper
threshold. This community (like all others we have studied) contains an easily
discoverable core of members as well as a large, impossible-to-distinguish group
of non-connected outliers. It is the presence of these outliers which ruins the
conductance of the full gold-standard community. The problem isn’t as serious
as it may appear, because we recover almost all of the “strong” members (defined
in Section 6) with substantive connections to others in the community. We will
show that many of the purported false positives can be explained by difficulties
in evaluation techniques.

Our contributions in this paper are as follows:

—We present a general method for network community expansion from seed
sets of members. We demonstrate our methods work well in expanding com-
munities in real world networks, even given very small seed groups (20 to
400 members).

—We demonstrate how to increase the robustness of this general approach by
bootstrapping multiple random partitions of the known-member set into seed
and evaluation groups.

—We perform substantive experiments measuring performance sensitivity of
several important parameters, including initial seed set size, neighborhood
expansion criteria, bootstrap iteration count (governing the running time),
and precision/recall trade-offs.

—The boundaries of any real-world community are fluid and imprecise. We go
beyond statistical comparisons against gold standards to careful subjective
evaluations of our expanded communities. We identify and explain the causes
of most disagreements between our expanded communities and our gold-
standards—arguing that our methods can provide more reliable communities
than can be extracted from reference sources/gazetteers such as Wikipedia.

Our article is organized as follows. Section 2 reviews the extensive literature
on community discovery and expansion methods in networks. Sections 3 and 4
focus on criteria for identifying the next community member and terminating
the expansion process, respectively. Section 5 presents our results on perfor-
mance tuning and evaluation. Section 6 gives an in-depth evaluation of the
quality of our expanded memberships on four representative natural commu-
nities. Finally, we summarize our conclusions in Section 7.

2. RELATED WORK

Although social scientists have studied communities in social networks for
generations, the emergence of the Internet provides much of the motivation
for network science questions such as community identification. Before the
Internet, there simply was no large and reliable network data available for
study [Barabasi 2003].
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Thus most previous studies of real-world communities in large scale net-
works arise from web data. Representative is the work of Gibson et al. [1998],
who examined the link topology of the world wide web, demonstrating that com-
munities exist on the web. These communities have “authoritative” pages, and
are linked together by “hub” pages, ideas fundamental to modern search en-
gines [Kleinberg 1999]. Tyler et al. [2003] discovered organizational community
structure by studying a network formed by to/from pairs in a sample of 185,773
emails between 485 HP Lab employees. They used a divisive betweenness-based
technique for discovering communities.

The two major computational problems on communities are discovery and
identification. Discovery is concerned with finding a group of entities that are
members of a community, while identification seeks to identify the nature of
a community given its membership. We only consider the discovery problem
in this paper, since the desired community’s identity should be known to the
supplier of its seed members.

2.1 Definitions of Communities

Our notion of a community is external from the network—a community is a
coherent group existing in the real world. Algorithmic definitions of communi-
ties must depend on network properties, however. Generally, communities are
groups of vertices that are better connected within the community than out-
side of it [Newman 2004], such as Web communities, which are defined as vertex
sets each with more neighbors in the community as out of it [Flake et al. 2000;
Gibson et al. 1998]. It is expected (or hoped) that each such subgraph within
the network will correspond to a real-world community.

Such web communities are a specialization of graph alliances [Fernau and
Raible 2007]. A defensive alliance is a set of vertices where each vertex has a
majority of its neighbors in the alliance. The complexity of finding alliances of
a given size k is NP-complete [Cami et al. 2006; Favaron et al. 2002; Jamieson
et al. 2002; Shafique 2001], but is fixed parameter tractable [Fernau and Raible
2007].

2.2 Community Discovery Methods

Members of natural groups in a network will tend to have a high density of
connections between them, with lower connectivity between different groups.
Discovering communities is typically viewed as a clustering problem, with spe-
cific techniques being more applicable to social networks [Kossinets and Watts
2005]. A large class of methods deal on a global scale, where every single vertex
is assigned to a single community. An overview of these methods follows.

2.2.1 Graph Partition Techniques. Bisection techniques attempt to par-
tition the network into two relatively separate subgraphs. Several methods
are effective to identifying a single bisection, but work less well on graphs
containing many distinct communities. An external decision must be made to
indicate when to stop bisecting, that is, how many communities exist in the
graph [Newman 2004]. Methods include:
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—Max Flow/Min Cut. These methods can produce good bisections, but make
no guarantees about keeping both groups of similar size. Flake et al. [2004]
give a min-cut algorithm based on min-cut trees which is able to produce an
arbitrary number of clusters, and can be expanded to produce a hierarchical
clustering.

—Spectral Bisection. Spectral bisection techniques partition a graph based on
the eigenvectors of its Laplacian. The Laplacian Q of a graph G is defined as
Q = D− A, where D is an n×n diagonal matrix with dv,v = d (v) and A is the
adjacency matrix of G. The spectral bisection method finds the eigenvector
corresponding to the second smallest eigenvalue λ2, and bisects the graph
on whether the eigenvector entry for a vertex is positive or negative. λ2 is
also called the algebraic connectivity of a graph. A smaller value indicates a
better split into two groups [Newman 2004; Pothen et al. 1990].

—Kernighan-Lin Algorithm. This heuristic algorithm [Kernighan and Lin
1970] attempts to greedily minimize the “external cost” of a partition, which
is the sum of the cost of inter-partition edges. It starts with an initial (possi-
bly random) partition, and determines the pair of vertices whose swap would
produce the largest decrease in cost. This gives a sequence of vertex swaps
which is then scanned to find the minimum. The procedure is then repeated
with the new partition as the starting point, until convergence on a local
minimum is achieved.

2.2.2 Hierarchical Clustering. Hierarchical clustering techniques are
driven by an application-specific similarity measure between the groups of ver-
tices of a network [Scott 2000]. Techniques include:

—Agglomerative. In this top-down approach, each vertex initially belongs to its
own cluster. Clusters are merged incrementally in order of increasing cost.
In single linkage clustering, the cost of merging two clusters depends upon
the closest vertex pair spanning them. In complete linkage cluster, the cost
is a sum of the distances of all vertex pairs spanning the clusters.
Newman [2004] gives an algorithm based on modularity Q . Given a partition
of the vertices, define a matrix e where ei j is the fraction of edges in G between
components i and j . Then Q is defined as

Q = �ieii − �ijkeijeki = Trace(e) − ||e2||.
At each step, we choose to merge the two clusters that cause the greatest
increase in Q .
Agglomerative clustering methods do not find peripheral members reliably
[Newman and Girvan 2004]. An additional level of processing is needed to
determine at which level the hierarchy defines the most meaningful commu-
nities.

—Divisive. In divisive hierarchical clustering, the entire graph G begins as
one cluster. Edges are removed to partition the cluster into smaller ones, as
opposed to agglomerative where clusters are joined to larger clusters.
[Girvan and Newman 2002, 2004] give an algorithm based on edge between-
ness centrality. The edge with highest betweenness centrality is removed
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from the graph until no edges remain. Edge betweenness can be calculated
in O(mn), giving a total computation time of O(m2n).

Clauset et al. [2008] state that hierarchical structure is actually a defining
component of social networks; sufficient to explain power law degree distribu-
tions, high clustering coefficients, and short path lengths (the small world phe-
nomenon). The hierarchical random graph model is a dendogram, with proba-
bilities at internal nodes. The probability of an edge between two leaves is equal
to the value in their lowest common ancestor. This model produces networks
exhibiting the properties of small-world networks. They also give a statistical-
based algorithm for inferring the most likely hierarchical random graph model
from a given network.

2.2.3 Other Methods. Not all community discover methods seek to parti-
tion the network. Hopcroft et al. [2003] give an agglomerative clustering method
to find natural communities. A natural community is a stable community; a
cluster that should still exist if the network is slightly perturbed. By perturb-
ing the network, and seeing which clusters are consistently found, the natural
and stable groups can be found. This work is extended in Hopcroft et al. [2004],
where the goal is to track these natural communities over time. Other methods
include:

—Resistor Networks. Wu and Huberman [2004] consider the graph as a resis-
tor network and cluster vertices based on similar electrical potential. This
method scales to extremely large graphs (linear run time), and can also be
modified to extract a single community from a single node (i.e., a single seed).

—Core Collapse Sequence. A k-core is a component of a graph G where each
vertex has degree k or larger. The core collapse sequence looks at the sequence
of cores for 1 ≤ k ≤ n − 1 [Scott 2000].

2.3 Expanding Networks From Seeds

We are not the first to consider expanding communities from seeds. Perhaps the
most popular example is Google Sets [Cirasella 2007], where users can expand
sets of up to five items into 15 or 30 items using connections derived from
analyzing itemized lists throughout the web. Inspired by this, Ghahramani
and Heller [2005] developed the idea of Bayesian sets using a statistical model
of sets/communities and Bayesian inference. Our problem differs from Google
sets in that we are attempting to grow much larger communities (thousands of
members) where we also rely on larger seed sets (tens or hundreds of members).

Flake et al. [2000] discovered Web communities using max-flow/min-cut
methods, where the source set contains seed members of the community, and
the sink set known noncommunity members. They also give approximation
algorithms that work on a local view of the network.

Anderson and Lang [2006] investigate methods for growing communities
from seeds using random walk techniques coupled with clean-up operations
based on network flow. They produce highly accurate identification of com-
munity boundaries in three different domains, although their initial seed sets
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generally comprise a much larger fraction of the target community than the
experiments we present here.

Sarmento et al. [2007] grow entity classes from very small seed sets. They
seek to estimate the membership function μ(S, e); a measure of whether entity e
belongs to the same classes as the seed set S. This is done by a cosine similarity
score on the co-occurrence vectors, where a cooccurrence means the entities
appear in a list structure (such as “A, B, and C”).

Our problem of growing the communities from seeds resembles minimally su-
pervised learning and bootstrapping. Supervised learning uses large amounts
of training data to construct a classifier. Unsupervised learning attempts the
difficult task to construct a classifier without training data. Minimally super-
vised learning attempts to construct a classifier using a very small amount of
training data. These techniques are useful for quickly constructing classifiers
on lesser known domains, where a large amount of training data is unavailable.

2.4 Temporal Network Analysis

The communities formed by entities are not static in time. A related problem is
to predict temporal changes from a given view. For instance, we would like to
know the probability p of a particular entity joining a particular group. Current
research has shown it is possible to predict these changes in a community based
on its current structure. Because very few new members will ever join any given
group, there is large prior probability of not joining. Thus even though methods
have some predictive power, accurately predicting individual membership re-
mains elusive, but predicting overall size change is somewhat more attainable.

Backstrom et al. [2006] used a decision tree technique to predicting changes
in given network properties. To train, they took snapshots of LiveJournal and
DBLP coauthorship networks at different points in time. They found that the
most important feature determining membership is not just who your neighbors
are, but how well your neighbors are connected.

Sarkar and Moore [2005] tracked group dynamics by first reducing entities
to a latent space model. This reduced dimension allow entities to be considered
as spatially separated, so that Markov chain models could be used to predict
movement.

2.5 The Lydia News Analysis System

The architecture of the Lydia system has been described elsewhere in detail
[Lloyd et al. 2005], but is worth briefly reviewing here as the source of our
network data. The major processing phases behind Lydia are:

—A collection of semi-customized WWW spider programs charged with retriev-
ing articles from news sources on a daily basis. The system can also be ex-
tended to other sources such as journal databases, financial reports, and blogs
[Lloyd et al. 2006].

—An NLP-based named entity recognition pipeline which identifies and classi-
fies all references to proper nouns (i.e., people, places, organizations) appear-
ing in the text.
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—A variety of derivative statistical analysis based on frequencies of name en-
tities and cooccurrence, such as coreference resolution [Lloyd et al. 2006],
spatial analysis [Mehler et al. 2006], and sentiment analysis [Godbole et al.
2007].

—Applications of our database including entity search [Bautin and Skiena
2007] and question answering [Kil et al. 2005].

Artifacts introduced by the named entity recognition problem significantly
increase the challenge of discovering communities, although similar challenges
are likely emerge in any other algorithmically constructed network. It is simply
impossible to sustain human curation on networks of almost 300,000 nodes, the
size of the graph we analyze in this paper.

3. EXPANDING A COMMUNITY

The essential function of a community expansion method is to identify the most
promising next member to add to the community. This is achieved by assigning
a score to all entities in the network, and selecting the highest-scoring outside
vertex to join the community. We now describe several different possible scoring
criteria to rank the selection:

—Neighbor Count. The most obvious candidates for incorporation have many
neighbors in the community. Basketball players tend to be associated with
other basketball players, musicians with other musicians, etc.

—Juxtaposition Count. One drawback of using a simple neighbor count criteria
is that each neighbor is given the same weight, regardless of the strength
of the relation. The edge weights defining our network are co-occurrence
frequencies of the given entity pair. Using such juxtaposition weights assigns
more importance to neighbors that are more frequently associated in the text
with in-community members.

—Neighbor Ratio. A failing of such counting scores is that the status of ubiqui-
tous entities gets artificially elevated. A frequent entity like “George Bush”
has over a thousand neighbors in our graph, and hence will have neigh-
bors from many communities. Say six of these neighbors are chemists. The
raw neighbor count score would identify George Bush as more likely to be a
chemist than John Dalton, an entity that has only 8 neighbors (5 of which are
chemists). But if we factor in vertex degree and use a ratio, Dalton becomes
promoted to the most likely chemist.

—Juxtaposition Ratio. The bias to ubiquitous entities is also present in juxta-
position counts. Edges to “George Bush” tend to have high weight, simply
because of the total frequency of the entity. Using a ratio helps control for
high-frequency vertices.

—Binomial Probability. Using ratios has the problem of artificially elevating
the importance of infrequent entities. An entity with 100 neighbors, 60 of
which are chemists, would have a neighbor ratio of 0.6. But an entity with
a single neighbor who happened to be a chemist would have a ratio of 1. We
normalize for this by computing the probability Pr[n, k] that an entity would

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 2, Article 7, Publication date: April 2009.



P1: VLM
ACMB126A-07 ACM-TRANSACTION March 26, 2009 5:1

Expanding Network Communities from Representative Examples • 7:11

happen to have at least k of its n neighbors from the group by chance. So:

Pr[n, k] =
n∑

i=k

(
n
i

)
pi(1 − p)n−i,

where p is the fraction of known-group members to network nodes. When
Pr[n, k] is extremely low for an observed k in-group neighbors, than it can
be reasoned that the entity must be a member of the community.

Experimental results on the performance of these various criteria on real
networks will be presented in Section 5.2.2.

We note that these selection criteria can all be implemented efficiently. As
each scoring function described above can be computed from the local neigh-
borhood of a vertex, each can be computed for all vertices in time linear in the
size of the graph. Changes in these scores can be more efficiently maintained
incrementally, because when a vertex v is added to the community, the only
vertices whose scores change are neighbors of v. By keeping the vertices in a
priority queue, we can efficiently identify the highest scoring member. Since a
vertex can only be added once, each edge is only reconsidered during the entire
series of insertions. Our algorithm only updates the scores of the neighbors of
last vertex v, added to the community. Maintaining a priority queue of the set
of |V | vertices gives us a total a complexity of O(|E| log(|V |).

4. BOUNDING THE EXTENT OF A COMMUNITY

The techniques for growing a community presented in Section 3 do not provide
a clear answer on when to stop adding members. Initially, most of the vertices
added will indeed be members of the real community, but eventually we see a
shift in composition after which most insertions will be erroneous. The com-
munity will have expanded outside its natural boundaries. We must stop its
growth before it enters into this second phase to optimize the quality of the
discovered community.

4.1 Stopping Rules

Identifying the proper cutoff for terminating incremental growth would be triv-
ial if we knew the partition of our community into true positives and false pos-
itives, as suggested by Figure 2. However, all we are provided is a (small) seed
subset of the community, without any other validation information.

If we did have a validation “gold-standard” subset of the community, we could
monitor how frequently these members are added by the grower. In the first
phase, when we identify community members with great precision, we expect
to add a new validation member with frequency equal to the fraction of the
community comprised by the validation set. For example, if our validation set
represents 5% of the total community, we would expect to insert a validation
member roughly once about every 20 insertions. Once we leave the natural
boundaries of the neighborhood, we expect to rediscover validation members
according to their frequency in the entire network, where they are much rarer.

Let xi denote the size of the ith insertion interval, namely as the difference
between the discovery times of the ith and (i−1)st validation members. We find
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Fig. 3. Validation interval sizes on a representative graph/community. The height of the bar at
position i represents the number of members added between finding the (i −1)st and ith validation
members. The phase transition around the insertion of the ninetieth validation member indicates
we have reached the limits of the recoverable community.

the cutoff point that best splits the validation intervals into two groups to iden-
tify the correct stopping point. The expectation of initial-phase interval is the
community size over the validation set size, while the second-phase frequency
is graph size over validation set size. We expect the deviation of the intervals
on either size of the cutoff to be small. Thus we select the stopping point s that
minimizes the absolute deviation; that is,

stopping point =argmink

(
k∑

i=0

(|xi −μ(x0, . . . , xk)|) +
n∑

i=k+1

(|xi −μ(xk+1, . . . , xn)|)
)

.

where the function μ is the arithmetic mean of its arguments.
For example, suppose validation members are identified on insertions

3, 7, 10, 11, 16, 18, 21, 120, 203, 290, 387, and 506.

This yields an interval sequence of X = {3, 4, 3, 1, 5, 2, 3, 99, 83, 87, 97, 119}.
The optimal stopping point in this example is after the seventh insertion.

Figure 3 shows a representative interval sequence for a real community on
a real network. We see that the intervals do start out small but take a sudden
and dramatic spike after the ninetieth validation member is found, a phase
transition indicating we have left the boundaries of the community.

4.2 Boosting

Our iterative method is particularly sensitive to the initial partition of commu-
nity members into seeds and validation sets. We seek to minimize the number
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Fig. 4. Boosting Performance. Precision increases at the expense of recall as we increase the
number of votes needed for an entity to be declared a member of the community. Distinct but
interesting trade-offs are realized at approximately 10, 30, and 70 votes.

of seed members which must be specified, and so use a boosting technique to
improve performance.

We run our growing algorithm multiple times, each time using a different
partition of the input set into seed and validation members. Each vertex then
accumulates a number of “votes” for how often it is identified as part of the
community. Figure 4 demonstrates the value of boosting by reporting how many
votes were received by vertices. The topmost shaded region represents false-
positives; vertices that we incorrectly added to the community. The precision
of the community members increases with the number of votes. The number
of true positives proves relatively independent of the number of votes, because
most are discovered in nearly every boosting run.

4.2.1 Precision/Recall Trade-offs. It now remains to determine which
boosting cutoff to set. We use validation members to estimate precision and
recall at each cutoff. The given members are divided into seed and validation
sets for each boosting run. We track the number of votes these validation mem-
bers get. Let Cm(k) denote the set of elements appearing in at least k of the m
boosting runs and V the set of validation elements.

If we make the assumption that any vertex classified a community member
in at least b = m − ε boosting runs is indeed a true member of the community,
we can estimate the size of the still undiscovered community. The estimated
fraction of the true community represented in the validation set is given by:

fval = |Cm(b) ∩ V |/|Cm(b)|.
ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 2, Article 7, Publication date: April 2009.
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Fig. 5. Estimating Precision and Recall. The estimated precision and recall curves closely shadow
the actual precision and recall.

Then at any vote cutoff, we can estimate precision and recall by looking at
validation precision and recall. For a given number of votes v, the precision
prev is estimated as

prev ≈ fval|Cm(v) ∩ V |/|Cm(v)|
and the recall estimated as

recv ≈ |Cm(v) ∩ V |/|V |.
Figure 5 shows examples of estimating the precision and recall, compared to
the actual precision and recall. This approximation yields an approximation
of f-score, which can be maximized to set a cutoff. Going even further, we can
maximize the general F-measure for any β.

Fβ = (1 + β2) ∗ (precision ∗ recall)/(β2 ∗ precision + recall).

We now have a parameter (β) to tune to get appropriate precision/recall trade-
offs. Provided the precision and recall estimates are sufficiently accurate, we
can maximize any general F-measure.

5. EXPERIMENTS IN PARAMETER OPTIMIZATION

Several decisions remain to complete the design of our community expansion
algorithm. To maximize the performance of our scheme, we must optimize over
the following space of parameters:

—Neighbor Selection Method. We compare five different scoring methods:
neighbor count, juxtaposition count, neighbor ratio, juxtaposition ratio, and
binomial CDF.
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—Validation Set Size. We evaluate the trade-off on the fraction of seed members
reserved for validation. Too low a fraction will not leave enough members to
validate with. Too high a faction leaves us with few seed members to build
the community from.

—Number of Boosting Runs. We anticipate that both precision and recall will
increase with the number of boosting iterations. We verify this in our exper-
iments. The running time increases linearly with the number of iterations,
however. We seek the smallest number of iterations necessary to achieve
quality communities.

—Precision-Recall Trade-off. We evaluate the effects of the f-statistic parameter
β, to ensure that a useful precision/recall trade-off is achieved.

—Given elements. The number of seed elements presented is a function of the
user’s knowledge of their desired neighborhood. We assume that a certain
critical mass is necessary to accurately expand neighborhoods. We evaluate
our methods with different sizes of given elements to see how robust our
methods are to extremely small seed sets.

Globally optimizing this five parameter space would be extremely computa-
tionally intensive. Instead, we optimize each parameter independently, using
reasonable choices for the other parameters. Our initial setup uses the neigh-
bor count grower, assigns half the seeds to the validation set, runs 100 boosting
runs, uses a precision/recall trade-offs of β = 1.0, and evaluates seed sets of 20,
200, and 400 given members. For each data point, the grower was run on five
different randomly assigned given sets, and the results macro-averaged.

5.1 Identifying Gold Standards

Properly evaluating our community expansion algorithms requires identifying
gold standards of genuine communities existing within our large news-oriented
network. This is a much more subtle, challenging task than may appear initially.

The most obvious approach is to consult reference lists or gazetteers, such as a
table of all baseball players appearing in, say, Wikipedia. However, most curated
lists will be incomplete; or at least lag in completeness relative to recent events
reported in the news. Comprehensive curated lists are not readily obtainable
for interesting natural communities (e.g., Democrats and Republicans), which
is what motivates our expansion problem in the first place. The rosters which
do exist often contain preconceptions or biases, such as occur when members
are self-identified. Finally, the names used from an external list may not be
consistent with the names used in the network, adding an additional layer of
complexity. Still, we have opted for use of available reference lists in the absence
of a better solution.2

2Another approach might be to discover the gold standard from the source text itself. Thelen and
Riloff [2002] give a method for learning semantic lexicons from seed sets. Their natural language
(NLP) based method uses pattern matching rules to identify new members. An article reporting
“Democrat Bill Clinton announced yesterday. . . ” identifies Bill Clinton as a member in the com-
munity “Democra.” This shifts the problem of community discovery to a difficult and open NLP
problem. Even if this technology proved effective, relatively few entities are identified explicitly as
members of a community in news articles, particularly in the case of low-frequency entities.
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Other difficulties relate to the accuracy of our underlying network data.
Recall that our network was derived from an NLP-based analysis of a large
news corpus. This data has several properties which complicate community
identification:

—Natural Language Processing Errors. Our network was computed from imper-
fect named entity recognizers, classifiers, and coreference resolution meth-
ods. Thus we must anticipate both missing and spurious relations in the net-
work. For example, Lydia sometimes segments named entities incorrectly,
say tagging ‘Outfielder Carlos Beltran’ as a named entity. This will fail to
match the gold standard lexicon entry “Carlos Beltran,” and be incorrectly
scored as a false positive if we classify the entity as a baseball player.

—Entity Disambiguation. A related problem arises when two distinct entities
share the same name. Wikipedia has over thirty entries for the name “John
Edwards.” While current news is no doubt dominated by the philandering
former North Carolina congressman, there also is an NBA player named
“John Edwards,” as well as a 1960’s baseball player. In the statistics presented
below, are penalized for not declaring “John Edwards” to be a baseball player,
even though none of the media references to “John Edwards” presumably
refer to him.

—Entity Aliases. There can be a mismatch between the name of an entity in
the gold standard and that by which they are referred to in the news. For
example, a reference list may identify an athlete by their legal name (e.g.,
baseball player “Larry Jones”) as a baseball player, while media references
invariably use his nickname “Chipper Jones.”

—Community Fringes. The boundary of the baseball player community will
certainly include classes of people related to baseball (e.g., managers, agents,
and owners) who will not appear in a reference list. The concern here is that
an accurately recognized “baseball” community will evaluate poorly against
a “baseball player” gold standard.

5.2 Parameter Evaluation Results

We now present our experimental results on the impact of each parameter on
global performance.

5.2.1 Initial Seed Set Size. Figure 6 shows the results for a single (no
boosting) grower run on different sized, randomly selected seed sets. The true
positives generally increase with the size of the seed set, but with considerable
variance since each given set is randomly generated. Still the effect suggests
that small seed set sizes suffice to reconstruct sizable communities.

5.2.2 Comparing Growers. Figure 7 illustrates the performance of the five
neighbor selection criteria presented in Section 3, in experiments on seed sets
with 20 and 400 entities respectively. The Binomial CDF-based score con-
sistently achieves the highest f-score, on the strength of its producing the
highest recall of any network selection criteria. The neighbors-count criteria
lead to substantially higher higher precision when given a large seed set, but
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Fig. 6. Evaluation of the effect of seed set size on community expansion for baseball and football
players. True positives increase slowly with larger seed set sizes.

Fig. 7. Evaluating community growers on the Basketball player community, for input sets of 20
and 400 vertices.

demonstrated overall lower recall. Thus we choose Binomial CDF as our default
neighbor selection criteria.

5.2.3 Effect of Validation Set Size. Figure 8 shows impact of varying the
validation set percentage, the ratio of our given set of examples used for val-
idation as opposed to seeds for community growth. This validation ratio was
varied from 10% to 90% in increments of 10%, while requiring a minimum size
of three for the validation set. Too low a percentage leaves too few members to
validate with. Too high, and there are not enough seed members to grow from.
As expected, there is high variance by partition for small seed sets (20 entities)
but very little difference in the effect of validation size partition when given
large seed sets (200 entities). A choice of 50% offers the best balance between
seed and validation partition.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 2, Article 7, Publication date: April 2009.



P1: VLM
ACMB126A-07 ACM-TRANSACTION March 26, 2009 5:1

7:18 • A. Mehler and S. Skiena

Fig. 8. Evaluation of Validation Percentage on Basketball Players, for starting sizes of 20 and 400
entities (individual data points and averages).

Fig. 9. Evaluating the impact of the number of boosting runs on expanding the Basketball Player
community, for starting sets of 20 and 200 entities.

5.2.4 Effects of Boosting. Boosting provides us a tradeoff between preci-
sion and running time. We expect better results with more boosting runs, but the
computation time grows linearly with the number of runs. The results shown in
Figure 9 demonstrate relatively little sensitivity to the number of runs, except
to reduce the variance for small initial seed sets (20 elements). We choose 100
runs as offering a reasonable performance trade-off.

5.2.5 Precision-Recall Trade-off. The parameter Fβ presented in Section
4.2.1 governs the precision/recall trade-off for our method. Our algorithm at-
tempts to maximize Fβ , so changing this parameter will change the behav-
ior of the algorithm; should it try to be more precise in making membership
assertions, or aim for higher coverage? Figure 10 shows results of turning this
parameter for two different domains, movie stars and football players. This
parameter β governs how much more recall is weighted over precision. Thus
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Fig. 10. Evaluation of β ′ parameter on the football player and movie actors communities.

β = 1 gives an equal weighting, β = 2 means recall is weighted twice as much,
and β = 0.5 means recall is weighted half as much. With the transformation,
β ′ = β −1 for β > 1, and β ′ = (−1/β)+1 for β < 1, the operating points favoring
precision have the same range as those favoring recall.

The results in Figure 10 are consistent with the notion that positive β ′ weighs
recall higher than precision, and negative β ′ precision higher than recall. We
also observe that there seem to be few optimal operating points as opposed
to a continuum. The optimal points tend to be at the right, bottom ends of
‘cliffs’. That is, looking at the graph we see some points of sharp decline in false
positives. It is clearly better to use the points just after such a decline, as there
is little or no difference in recall immediately before or after.

6. EXPERIMENTS IN COMMUNITY DISCOVERY

We now look more carefully at the compositions of the communities expanded
from small sets of seeds. We consider the same four natural communities (base-
ball players, basketball players, football players, and movie actors) discussed
in the previous section.

Table II presents the composition of communities reconstructed from single,
randomly selected seed sets of 20, 200, and 400 initial members of each com-
munity. The precision and recall of each run are somewhat erratic, as should be
expected from any process heavily dependent on the specific seed set selected.
However, in each case we are able to reconstruct roughly half the community.
We amplify the seed set by between 5 and 125 times on every run.

The graph theoretic properties of natural communities are important to put
these recall rates into perspective. Table III presents the size (in number of
members) of each community as well as measurements of connectedness, in-
cluding in-community edges and average degrees. We classify the vertices as
either being ‘strong’, ‘weak’, or ‘isolated’ based on in-community degree. Strong
vertices have at least half their neighbors in the community, while isolated ver-
tices have no neighbors in its community. Weak vertices are defined as neither
strong nor isolated.
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Table II.
Evaluations of expanded communities from seed sets of 20, 200, and 400 entities.
The number of true and false positives in each community are given, with recall

in parenthesis.

seeds Baseball Basketball Football Actors

20 True Positives 1354 (.625) 100 (.094) 2491 (.532) 480 (.223)
20 False Positives 811 7 7228 698

200 True Positives 1407 (.415) 534 (.496) 1686 (.375) 337 (.171)
200 False Positives 575 1075 1536 652
400 True Positives 1496 (.469) 392 (.477) 1630 (.388) 397 (.224)
400 False Positives 737 829 1511 1548

Table III.
All four natural communities contain large fractions of isolated members

(vertices with no in-community neighbors), and weakly-connected members
which are difficult or impossible to recover through network analysis.

Network Baseball Basketball Football Actors
Vertices 299,486 4,872 1,653 6,514 2,703
Edges 594,884 36,509 10,358 16,745 8,081
Strong Vertices — 2,221 735 2,491 1,161
Weak Vertices — 748 348 1,584 772
Isolated Vertices — 1,903 570 2,439 770

The large number of weak and isolated vertices shown in Table III put our
results into perspective. Over half of the entities in all four communities are
weak or isolated. This means that most vertices have higher-degree outside the
community than inside. Not surprisingly, the recall for our growers tops out
at around the number of strong vertices in each community. Isolated vertices
are impossible to discover using our methods. Thus any high-precision grower
must miss all isolated vertices, which form over one-third of the community in
most cases.

An interesting result is that sizes of our expanded communities tend to
shrink slightly in response to larger seed sets, although precision tends to go
up. We believe that this is due to the increased probability of overloaded entity
names (e.g., “John Edwards” in the discussion below) entering as members of
the seed sets. These entities should never have been regarded as part of the
community in the first place, so they reduce the homogeneity of it. Thus growth
is terminated more quickly than would have emerged in a more homogeneous
community.

The false positive rates are such that true positives dominate the recon-
structed communities for baseball and basketball, and form over a quarter of
the basketball and actor communities. More to the point, we believe our evalua-
tion methodology substantially over-estimates the number of false positives, as
any entity not appearing in our specific, limited gold standard with an identical
name is marked a false positive.

To better evaluate this, we carefully explore these false positive entities in
the subsections below. They convincingly demonstrate that real precision of our
communities is much higher than reflected by Table II.
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Table IV.
Incorrectly classified basketball players. Names labeled with

a ‘+’ are associated with basketball, but not necessarily as
players. Names labeled with a ‘*’ are people that share a

name with lesser-known basketball players. The frequency of
these labels indicates that we generate more reasonable

communities than simple performance scores may indicate.

False Positives False Negatives
Laci Peterson * John Edwards

+ Roy Williams * Michael Jackson
+ Madison Square Garden Shaquille O’Neal
+ Mike Krzyzewski * Bob Riley
+ Mark Cuban * Michael Phelps
+ Van Gundy * Steve Smith
+ Greg Oden * Mel Gibson
+ Rick Pitino Billy Donovan
+ Gregg Popovich Pat Riley
+ David Stern * Jim Davis
+ Mike Montgomery * Greg Anderson
+ Jim Calhoun * Michael Young
+ Bernie Bickerstaff * Bernie Williams
+ Flip Saunders * Mike Davis
+ Jerry Buss Larry Johnson
+ Rick Barnes * Aaron Brooks
+ Van Horn J.J. Redick
+ Paul Hewitt * Mike Williams
+ John Calipari * John Chaney
+ Lawrence Frank Jayson Williams

Basketball. Truth data for basketball players is taken from http://www.
basketballreference.com. To get a sense of the accuracy of the community, we
look at the most popular entities (measured by total news references) that are
mis-classified. Table IV shows the top 20 false positives (left) and false negatives
(right). Looking carefully at the false negatives,3 we see that the grower is often
the victim of an obscure basketball player having the name of someone more
famous. Examining these lists leads us to believe that we generate much more
reasonable communities than the performance scores may indicate.

3Basketball players whose names coincide with more prominent news figures include John Ed-
wards, Bob Riley, Mike Davis, and John Chaney, most famously politicians; Michael Jackson, most
famously a musician; Mel Gibson, most famously a film actor; Michael Phelps, most famously a
swimmer; Jim Davis, most famously a cartoonist; Greg Anderson, most famously a personal trainer;
Michael Young and Bernie Williams most famously baseball players; Aaron Brooks, most famously
a football player; Mike Williams, two different football players—are all also the names of basketball
players.

On the false positive side we see many basketball-related figures, such as NBA commissioner
David Stern, Owners Mark Cuban and Jerry Buss, coaches Mike Krzyzewski, Van Gundy, Rick
Pitino, Gregg Popovich, Mike Montgomery, Jim Calhoun, Bernie Bickerstaff, Flip Saunders, Rick
Barnes, Paul Hewitt, John Calipari, and Lawrence Frank. An basketball arena, Madison Square
Garden, appears as a result of poor entity categorization (most likely caused by “Madison” being
considered a first name). Identifying Greg Oden as a false positive reflects an interesting omission
from the gold standard. Oden is a member of the NBA, but missed his entire first season due to
injuries and hence did not appear on the official list of players.
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Baseball. Our truth data for baseball players is taken from the roster of
all players from http://www.baseball-databank.org. We again ran our grower,
and examined the most popular false positives and false negatives. The re-
sults are shown in Table V. We see much the same phenomenon that we saw
for basketball players, namely that many false positives are people strongly
associated with baseball.4 Once again, inspection demonstrates that the com-
munities identified are more reasonable than suggested by the gold standard.

American Football. The roster of American football players was taken from
http://www.pro-football-reference.com/. Table VI shows misclassified football
players. As usual, there is a disambiguation problem in evaluating false nega-
tives. The false positives have accumulated many basketball players. While still
in the ‘athlete’ category, basketball players should not otherwise related to foot-
ball players. If we look closer at the actual vote count, we see that many of the
basketball related entities received lower votes than football related entities.

Movie Actors. Truth data for movie stars was taken from the Internet Movie
Database http://www.imdb.com. However, nearly all famous people regardless
of profession appear listed as actors in IMBD, because they may have been
subjects of documentaries or appear as themselves in other films. For example,
Bill Clinton is listed as an actor in 15 films in IMDB.

To compile a roster of more conventional movie stars, we filtered IMDB’s
data to remove all actors whose movie list comprised over 25% documentaries,
or who appeared in less than three other movies. Movie stars also appear to have
a higher number of name clashes relative to the other communities we studied,
a phenomena perhaps due to the widespread use of stage names. Since the
performance of our community expansion method is sensitive to having genuine
community members in the seed sets, we constructed seed set of 50 popular
movie stars instead of using random selection as in the previous examples.

4Bud Selig is the commissioner of baseball. George Steinbrenner is the owner of the Yankees. Brian
Cashman, Theo Epstein, and Jim Hendry are general managers. Tony La Russa (also appearing
as “La Russa,” an error in co-reference) is a manger. Scott Boras is a notorious agent.

There also appear to be several nonbaseball people linked to through recent steroid scandals.
George Mitchell, a U.S. senator, and never previously involved with baseball, is now most in the
news for his ‘Mitchell Report, an investigation on steroids sanctioned by Major League Baseball.
Similarly included in the community are Congressman Henry Waxman (part of the congressional
hearings on steroids), defamed trainer Greg Anderson (who supplied many athletes with steroids),
and several other athletes involved with performance enhancing drug scandals: cyclist Floyd Landis
and sprinters Marion Jones and Tim Montgomery.

The false negative side again shows disambiguation problems. Our evaluator sees the name
“Larry Brown” as belonging to a middle infielder that played in the late 1960’s, not the current
basketball coach. We see similar false negatives for Mike Tyson (heavyweight boxer), George
Washington (U.S. President), Bill Richardson (governor of New Mexico), Bill Nelson (Senator from
Florida), Paul Martin (Prime Minister of Canada), Michael Brown (former director of FEMA), Jim
Davis (creator of Garfield), John Warner (Senator from Virginia), Tommy Thompson (Governor of
Wisconsin), Paul O’Neil (former Secretary of the Treasury), Larry Johnson (basketball player) and
John Fox (comedian).

“Winter Haven” is a classification error, being the name of the city where the Indians and Red
Sox have spring training. “League Baseball” is also an NLP error, our pipeline mistakenly thinking
the “Major” in ‘Major League Baseball’ is a military title.
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Table V.
Incorrectly classified baseball players. Names with a + are most
associated with baseball, but not as players. Names with a ‘#’ are
people associated with performance enhancing drug scandals, of

which baseball played a large part. Names marked with a * share
the same name as a lesser-known baseball player.

False Positives False Negatives
# Lance Armstrong * Larry Brown

Scott Peterson * Mike Tyson
+ Winter Haven * George Washington
+ Bud Selig * Bill Richardson
+ League Baseball David Wells
# Floyd Landis Felipe Alou

Eli Manning Miguel Tejada
+ George Steinbrenner * Bill Nelson
# Marion Jones * Paul Martin
# Greg Anderson Mike Brown
+ Brian Cashman Chris Carpenter
# George Mitchell * Jim Davis
+ Tony La Russa * John Warner
# Tim Montgomery Mark Mulder
+ La Russa Mike Lowell

Bode Miller * Tommy Thompson
Scott Boras * Mike Davis

# Henry Waxman * Paul O’Neill
+ Theo Epstein * Larry Johnson
+ Jim Hendry * John Fox

Table VI.
Incorrectly classified football players. Names labeled with a +

are associated with football, but not necessarily players.
Names labeled with a * are people that share a name with

lesser-known football players.

False Positives False Negatives
Kobe Bryant * Michael Jackson
Scott Peterson * Tony Stewart
Shaquille O’Neal Jimmie Johnson
Michael Jordan * Randy Johnson
Laci Peterson * Bob Riley
Allen Iverson Reggie Bush
Richard Nixon * Michael Moore
LeBron James * Michael Brown
Barry Bonds * Bill Nelson

+ Bill Belichick Matt Hasselbeck
+ Bill Parcells * George Allen

Dwyane Wade * Tommy Thompson
Dirk Nowitzki * Frank Robinson
Phil Jackson * Michael Young
Mike Tyson * Kevin Brown
Arthur Andersen * Ted Williams
George Washington * Gordon Brown

+ Nick Saban * Dan Brown
Jason Kidd * Luis Castillo
Steve Nash * Tim Johnson
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Table VII.
Incorrectly classified film actors, grown from manually
set seeds. People marked with a ‘+’ are movie related, if

not primarily actors (Dylan and Charles being the
subjects of recent films). The other false positives are
entertainment related, but not movie actors. People
marked with a ‘*’ have a name clash with non-movie
stars. People marked with a ‘⊕’ have been in enough
films for IMDB to call them an actor, but in everyday

news are primarily associated with some other
community (O’Neal with sports, Presley with music, and

O’Donnell with daytime television).

False Positives False Negatives
Michael Jackson ⊕ Shaquille O’Neal
Lance Armstrong * Robert Blake
Martha Stewart * David Wells
“ Friends ” ⊕ Elvis Presley
Britney Spears * John Howard
Donald Trump * Richard Hamilton

+ Bob Dylan * Adam Scott
Beverly Hills Bill Cosby
David Beckham * John Lynch
Warner Bros ⊕ Rosie O’Donnell

+ Paris Hilton Willie Nelson
David Letterman * Chris Young

+ Steven Spielberg * Eddie Jones
Paul McCartney Woody Allen
Katie Couric * Vernon Wells

+ Ray Charles Tim McGraw
Oprah Winfrey * Mike Smith

+ Martin Scorsese John Wayne
Elton John Jane Fonda
Simon Cowell * John Abraham

The results of using these seeds are shown in Table VII. Nearly all of the
false positives are entertainment-related people: movie directors, television
people, or misclassified entertainment-related entities (Warner Bros., Beverly
Hills).5 On the false negative side are the disambiguation problems seen in
other communities, plus people from other communities appearing in film. NBA
player Shaquille O’Neal has appeared in several films. Similarly, Elvis Presley
is more associated with music than acting.

7. CONCLUSIONS

We have proposed a new method for expanding seed sets into more encompass-
ing communities, and validated its performance on four real communities in a
large news network.

5Robert Blake is most famously a hockey player; David Wells a baseball pitcher; John Howard
the Prime Minister of Australia; Richard Hamilton a basketball player; Adam Scott a professional
golfer; John Lynch a football player; Chris Jones a baseball player; Eddie Jones a basketball player;
Vernon Wells a baseball player; Mike Smith a hockey player; John Abraham a football player. David
Beckham can be explained as the inspiration for the movie “Bend it like Beckham”.
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Several aspects of the domain make the problem challenging, including (1)
weakly-connected or isolated community members, (2) the fluid boundaries
which define natural communities, and (3) data irregularities inherent in the
automatic construction of large networks. Proper evaluation of the accuracy
of community expansion is complicated by (1) the inherent deficiencies of nat-
ural reference standards, (2) difficulties in matching named entities between
the network and reference standards, and (3) the overloading of names which
represent several people in several different communities.

Putting all this perspective, we consider our results quite satisfying, and are
now working to use our expanded communities in all applications of Lydia’s
news analysis. In particular, we will be using our expanded communities as
part of a project to analyze temporal and relationship dynamics among hun-
dreds of natural communities [Ward et al. 2009]. How well our method performs
compared to the other community expansion methods of Section 2.3: [Anderson
and Lang 2006; Flake et al. 2000; Ghahramani and Heller 2005] is an interest-
ing and important topic for further research.

The most interesting open problem in this line of research involves doing a
theoretical analysis of random graph models to determine the properties neces-
sary for accurate community expansion. Through such an analysis, we should
be able to determine the seed size necessary for accurate community recon-
struction as a functions of measures of the strength of the community (e.g.,
ratio of in-community to out-community degree).
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