CSE 519: Data Science
Steven Skiena
Stony Brook University

Lecture 4: Python for Data Science ||

Lecture Goals

Introduce “Learning from data” paradigm
Focus on one learning model in depth
Not a course on Machine Learning.
Machine Learning in Python

On the orbits of planets

7|

What are the laws governing the motions of
planets?

Planetary Observations

e Itis the year 1609, and Newton has not even
been born

e Astronomers through several observations
have measured the distance of planets from

the Sun and the planet’s period.

Observations

Planet Distance (R) (AU)
Mercury 0.39
Venus 0.72
Earth 1.00
Mars 1.52
Jupiter 5.20
Saturn 9.54

Period (T) (Earth years)
0.161

0.537

1.00

2.459

9.727

25.04

Can this be used to derive a law?

Visualizing the data

30
25 - L
20 -

15 -

Time

| | | | | |
-2 0 2 4 6 8 10
Distance

Does not look like a straight line!

F::L

Napiers Logarithms

e Napiers had just invented logarithms (around
1590). A manuscript was published in 1614

e \What if we plot log(Time) versus
log(Distance)?

Visualizing data - Log Log plot

4 r] T) T 1 T 1 =1
3L @
)
2 [—
o I ®
E
= ok %
@
=) B
=8 *
_3 L | | | I | I | |
-15 -1.0 -0.5 0.0 05 10 15 20 25
Distance

Looks much more like a line! Note observations may have experimental
errors !

Challenge

e A straight line is defined by exactly 2 points
e Grand Challenge:

o But we have more points than required! (Big Data!)

o How to draw a line now?

o Choosing any 2 points and drawing a line is not
going to explain other planetary observations

properly.

Using only 2 points

log(Time)
| |
w N o [=] — [S] w F =Y (¥,]

= L.5 —].I.D —OI.S DIO DIS 1|0 115 ZIO 2J5
log(Distance)

Does not explain Jupiter and Saturn’s
observations!

Least Squares Problem- Gauss

e Instead of having to choose 2 points to draw

a line what if

o Minimize total error over all observations

o Let line be defined by slope ‘a’ and intercept ‘b’
o Minimize X (y-(ax+b))*

e Not trivial to solve!
e Can solve using calculus!

Hlustration

e A=0,B =0

Slope = 0.0, Bias = 0.0
Residual sum of squares: 3.34

4 r T T T T 1 T 1

log(Time)

=15 -1.0 -05 DIO DIS llO 35 20
log(Distance)

A=0.5, B=0

Slope = 0.5, Bias = 0.0
Residual sum of squares: 1.50

4 r T T T T 1 T 1

=15 -1.0 -0.5 OIO OlS 1I0 15 20
log(Distance)

Using Least Squares Solution

4
3E
2 - N

E“

£ 1 e A=1.5,B =-0.1
-1 F
-2 L
o

—lI.O —Ol.S OIO OIS 1|0 1|5 2|0 ZJS
log(Distance)
Residual sum of squares: 0.04

ol -
wn

Sample code: Least Squares fit

In [101]:

In [107]:

In [110]:

Linear Model

from sklearn.linear model import LinearRegression

e bias termis called also intercept.
« |f the features vary significantly in range, it pays off to normalize the data as a preprocessing step.

model = LinearRegression()

model = model.fit(Xl.reshape(-1,1), yl)

predictions = model.predict(Xl.reshape(-1,1))

print("Model is trained with the following params: {}".format(model.get_params()))

Model is trained with the following params: {'copy X': True, 'normalize': False, 'n_jobs': 1, 'fit_intercept': True}

print("Slope = {}, Bias = {}".format(model.coef [0], model.intercept_))
The mean square error
print("Residual sum of squares: %.2f"
% np.mean((predictions - yl) ** 2))
Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % model.score(Xl.reshape(-1,1), yl))

Plot outputs

plt.scatter(X1l, yl, color='y')

plt.plot (X1, predictions, color='blue', linewidth=3)

plt.xlabel("log(Distance)", fontsize=20); plt.ylabel("$log(Time)S$", fontsize=20)
#_ = plt.title("S$y\,\,vs\,\,X 28", fontsize=20)

Slope = 1.52334323195, Bias = -0.117734147463
Residual sum of squares: 0.04
Variance score: 0.99

Analyzing the solution

e Our least squares model suggests that
o logToe (1.5)log R
o 2log T o< 3logR

e This implies: T? oc R3

Machine Learning

e Instead of restricting ourselves to linear boundaries, we
generalize to (a) more complex functions, and (b)
different types of target variables
o Polynomial
o Non-linear functions (Exponential)

o Discrete target variables
e Machine learning is just Function Approximation!

Example

degree

cos(1l.5mx)

)

3.00

Degree 3

«*s Samples

— Model
— True function

Approximate a
function using a
cubic polynomial!
Be aware of
overfitting,
underfitting

Example: Underfit model

Degree 1

— Model
— True function
*+ Samples

cos(1. 5mx)

y:

Example: Overfit model

n—

Degree 57

— Model
— True function
*+ Samples

cos(1.5mx)

y:

ML Cheat Sheet using Scikit Learn

scikit-learn
algorithm cheat-sheet

classification

NOT
WORKING

few features
should be
important

number of
categories

clustering

o1 LLE
WORKING

dimensionality
reduction

Machine Learning in Python

e Scikit-learn is the definitive toolkit for
machine learning in Python

e Supports regression, classification,
clustering and dimensionality reduction

e Many models: SVM, Linear Regression,
Logistic Regression

e Catch: Understand how these algorithms
work before you apply them

Notebooks

All the code is available here:

https://qithub.com/viveksck/data_science_cours
e

https://github.com/viveksck/data_science_course
https://github.com/viveksck/data_science_course
https://github.com/viveksck/data_science_course

