CSE 519: Data Science Steven Skiena Stony Brook University

Lecture 22: Topics in Machine Learning

The World of Many Weak Features

- Often we have many relatively weak features to apply to a classification problem.
- In text classification problems, we often have the frequency of each word in documents of positive and negative classes: e.g. the frequency of ``sale'' in spam and real email.

Bayesian Classifiers

To classify a vector $X = (x_1, \dots, x_n)$ into one of m classes, we can use Bayes Theorem:

$$p(C_i|X) = \frac{p(C_i)p(X|C_i)}{p(X)}$$

This reduces decisions abou the class given the input to the input given the class.

Identifying the Most Probable Class

Argmax is the class with the highest probability:

$$C(X) = \max_{i=1}^{m} \frac{p(C_i)p(X|C_i)}{p(X)} = \max_{i=1}^{m} p(C_i)p(X|C_i)$$

P(Ci) is the prior probability of class i.

P(X) is the probability of seeing input X over all classes. This is dicey, but can be ignored for classification because it is constant.

Independence and Naive Bayes

- But what is P(X|C), where X is a complex feature vector?
- If (a,b) are independent, then P(ab)=P(a) P(b)This calculation is much simpler than factoring in correlations and interactions of multiple factors, but:
- What's the probability of having two size 9 feet?

Complete Naive Bayes Formulation

We seek the argmax of: $C(X) = \max_{i=1}^{m} p(C_i) p(X|C_i) = \max_{i=1}^{m} p(C_i) \prod p(x_j|C_i)$ i=1Multiplying many probabilities is bad, so: n $C(X) = \max_{i=1}^{m} (\log(p(C_i)) + \sum_{i=1}^{m} \log(p(x_j|C_i)))$

i=1

Dealing with Zero Counts

- You may never have seen it before, but what is the probability my next word is defenestrate?
- Observed counts do not accurately capture the frequency of rare events, for which there is typically a long tail.
- Laplace asked: "What is the probability the sun will rise tomorrow?"

+1 Discounting

Discounting is a statistical technique to adjust counts for yet-as-unseen events.

The simplest technique is add one discounting, where we add one to the frequency all outcomes, including unseen.

Thus after seeing 5 reds and 3 greens, P(new-color)=1/((5+1)+(3+1)+(0+1))

Feature Engineering

Domain-dependent data cleaning is important:

- Z-scores and normalization
- Imputing missing values
- Dimension reduction, like SVD
- Explicit incorporation of non-linear combinations like products and ratios.

Commissions on Art Auctions

When you buy a painting at an auction, you pay the house a specified percentage as a fee.

How is this best represented as a feature?

- The commission percentage (e.g. 10%)
- The actual commission paid (0.1*1M=\$100k)
- Change the target variable from hammer price to total amount paid: (\$33M to \$36.3M)

Deep Learning

The hottest area of machine learning today involves large, deep neural network architectures.

Basic Principles of Deep Learning

- That the weight of each edge is a distinct parameter means large networks exploits large training sets.
- The depth of the networks means they can build up hierarchical representations of features: e.g. pixels, edges, regions, objects
- Toolkits like TensorFlow make it easy to build DL models if you have the data.

Node Computations

Each node in the network typically computes a nonlinear function Phi(v) of a weighted input

sum:
$$v_i = \beta + \sum_i w_i x_i$$

The beta term is the bias, the activation in the absence of input.

Non-Linearity

The logit and RELU functions make good candidates for Phi. Linear function like addition cannot exploit depth, because hidden layers add no power.

 w_{22}

To.

 x_1

Backpropagation

NNs are trained by a stochastic gradient descent-like algorithm, with changes for each training example pushed down to lower levels. The non-linear functions result in a non-convex optimization function, but this generally produces good results.

Word Embeddings

One NN application I have found particularly useful is word2vec, constructing 100 dimensional word representations from text corpora. The goal is to try to predict missing words by context: We would **** to improve Thus large volumes of training data can be construction from text without supervision.

Nearest Neighbors in Embeddings

	Word	Translation		Word	Translation		Word	Word
French	rouge	red	Spanish	dentista peluquero ginecólog camionero	dentist	-	Mumbai	Bombay
	rose	pink			gynecologist truck driver ophthalmologist	glish	Bangalore	Shanghai
	blane	white					Kolkata	Calultta
	orange	orange		oftalmólogo		En	Cairo	Bangkok
	bleu	blue		telegrafista	telegraphist	,	Hyderabad	Hyderabad
Arabic	اركش	thanks	Arabic	نادلو	two boys	German	Eisenbahnbetrieb	rail operations
	اركشو	and thanks		نانبا	two sons		Fahrbetrieb	driving
	ي تايحة	greetings		ن يد لو	two boys		Reisezugverkehr	passenger trains
	ار کش	thanks + diacritic		نلاغط	two children		Fährverkehr	ferries
	ار کشو	and thanks + diacritic		نينبا	two sons		Handelsverkehr	Trade
	ابحر م	hello		ناتنبا	two daughters		Schülerverkehr	students Transport
Russian	0.44	2 N	Chinese	Transliteration	12200001 6210000	Italian		1271
	Путин	Putin		dongzhi	Winter Solstice		papa	Pope
	Янукович	Yanukovych		chunfen	Vernal Equinox		Papa	Pope
	Троцкий	Trotsky		xiazhi	Summer solstice		pontefice	pontiff
	Гитлер	Hitler		qiufen	Autumnal Equinox		basileus	basileus
	Сталин	Stalin		ziye	Midnight		canridnale	cardinal
	Медведев	Medvedev		chuxi	New Year's Eve		frate	friar

Name Embeddings

Running word2vec on names from email contact lists encode gender and ethnicity:

IYER		NAYAK	SHUKLA	микн
		SONI	KAPOOR	BHATIA
PAREKH	SHETH		AROF	AA
PARIKH		KHA	NNA	СНОР
	A	GRAWAL	L	
		SAXEN	A AGO	ARWAL
	MALHOTF	AGA	RWAL	
GU	РТА	JA	AIN BANS	AL
SETHI	01141/01		MISHRA	SULTA
•	JHA			ANSARI
TIWARI	SRIVASTAVA	SYED	SIDDIQUI	ABBAS
KHAN			CIDDIQUI	
	RAJA BA	IG SH	EIKH	
RA	NA MALIK	BASHIR	AKHTAR	
JSMAN	КНА	LID	МАНМОО	
	SALEE	M		
F				BUTT

,		SONG				1	
ENG	HAN				JIANG		
ĸ	ANG		YI	YAN	G GUO		
MIN			FU		ZHU		
G	TSAI	s	HEN	FENG	ZHANG		
YU	HSU WU	CHEN	н	U			
N		LIU		WANG		1	
ти	TU		NG		u		
.UU	CHIANG	LIAN	G			Y	
RUONG		снои			LU		
HUYNH				DAO	PA	N	
PHAN	NGUYEN	PHAM	TRINH PHAM		DINH DOAN		
J		vo	HOANG	1			
СНО	w	MAI	LE				
	FUNG	LAM		BUI	ТА		
	LEUNG		LUI	KWO	ок сні		
YIP	CHEUNG	YEUN		M TSA	NG		

Graph Embeddings (DeepWalk)

Networks based on similarity or links form very sparse feature vectors.

Random walks on networks (sequences of vertices) look like sentences (sequences of words).

Thus we can use word2vec to train network representations!

Nearest Neighbors in Wikipedia

The links between pages defines the network.

Ludwig van Beethoven

- Franz Schubert (0.489)
- Johannes Brahms (0.532)
- Wolfgang Mozart (0.567)
- Robert Schumann (0.576)
- Gustav Mahler (0.635)

Mick Jagger

- John Lennon (0.687)
- Keith Richards (0.687)
- Paul McCartney (0.796)
- Ronnie Wood (0.822)
- Eric Clapton (0.833)

Barack Obama

- George W. Bush (0.474)
- Hillary Clinton (0.657)
- Bill Clinton (0.658)
- Joe Biden (0.750)
- Al Gore (0.791)

Albert Einstein

- Richard Feynman (1.049)
- Max Planck (1.073)
- Freeman Dyson (1.107)
- Stephen Hawking (1.153)
- Robert Oppenheimer (1.156)

Scarlett Johansson

- Kirsten Dunst (0.784)
- Natalie Portman (0.786)
- Gwyneth Paltrow (0.796)
- Brad Pitt (0.858)
- Cameron Diaz (0.891)

Steven Skiena

- Larry Page (1.597)
- Sergey Brin (1.598)
- Danny Hillis (1.644)
- Andrei Broder (1.652)
- Mark Weiser (1.653)

Support Vector Machines

SVMs are an important way to build non-linear classifiers.

They work by seeking maximum margin linear separators between the two classes.

Optimization Problem

Optimize the coefficient size $\|\mathbf{w}\|$ subject to the constraints $y_i(\mathbf{w} \cdot \mathbf{x_i} - b) \ge 1$ for all i = 1, ..., n

Note that only a few points (the support vectors) touch the boundary of the separating channel.

Efficient solvers like LibSVM are available for this.

Projecting to Higher Dimensions

Projecting to Higher Dimensions

The non-linearity depends upon how the space is projected to higher dimensions.

We can use features the distance from each of the n input points to the target to create an n-dimensional feature vector.

Norwalk 3936 km

Distance from New York to ...

New York Coordinates

Latitude: 40° 43' North Longitude: 74° 01' West Distance to

South Pole: 14510 km North Pole: 5494 km Equator: 4508 km

Locations around this latitude

- Beijing, China
- Madrid, Spain
- Ankara, Turkey
- Tashkent, Uzbekistan
- Barcelona, Barcelona, Spain

Locations around this longitude

- Montreal, Quebec, Canada
- Bogota, Colombia
- Chibougamau, Quebec, Canada
- Newark, New Jersey, U.S.A.
- Albany, New York, U.S.A.

Locations farthest away

- Bunbury, Western Australia, Australia, 18831 km
- Albany, Western Australia, Australia, 18799 km
- Mandurah, Western Australia, Australia, 18757 km
- Perth, Western Australia, Australia, 18701 km
- Geraldton, Western Australia, Australia, 18470 km

Kernals

- The magic of SVMs is that this distance matrix need not be computed explicitly.
- Further, certain functions (or kernals) can be computed efficiently on these points, thus changing the feature set to yield more relevant separators.