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Singular Value Decomposition

The SVD of an n*m matrix M factors it                 
where D is diagonal (weighted identity matrix)
Thus UD weights each column of U by D, as 
does DV^T.
Retaining only the rows/column with large 
weights permits us to compress m features with 
relatively little loss.



Reconstruction from SVD

The outer product of vectors yields a matrix 

Matrix M can be expressed a sum of outer 
products from SVD: (UD)_k and (V^T)_k.

Summing only the largest matrix products 
produces an approximation of  M



Error Declines with Dimensionality



Reconstructing Lincoln

Lincoln’s face from 5 and 50 singular values, a 
substantial compression of the original matrix.



Linear Regression

Given a collection of n points, find the line 
which best approximates or fits the points.



Why Linear Functions?

Linear relationships are easy to understand, 
and grossly appropriate as a default model:
● Income grows linearly with time worked.
● Housing prices grow linearly with area.
● Weight increases linearly with food eaten. 
Statistician’s rule: If you want a function to be 
linear, measure it at only two points.



Linear Regression and Duality
In solving linear systems, given n lines we seek 
the point that lies on all the lines.
In regression, we seek the line that lies on “all” 
n points.
By the duality transformation (s,t) <-> y= (s)x-t
lines are equivalent to
points in another space.



Duality Example  



Error in Linear Regression

The residual error is the difference between the 
predicted and actual values: 

Least squares regression minimizes 
the sum of the squares of the residuals 
of all points.
This metric is chosen because (1) it 
has a nice closed form and (2) it 
ignores the sign of the errors.



Solving Linear Regression

Consider the n*m system Ax=b.  The vector w 
of coefficients for the best fitting line is given 
by:

Product of (m*m)*(m*n)*(n*1) (m*1) is m*1
Thus least squares optimization reduces to 
inversion and multiplying matrices.



Linear Regression in One Variable

We seek the best fitting line
The slope of this line is: 

The intercept follows since l goes through the 
x-mean and y-mean.



Connections with Correlation

● If x is uncorrelated with y, w1 should be 
zero.

● If x,y are perfectly correlated, the slope 
should depend upon the magnitudes of x,y, 
as given by their standard deviations.

● The formula                                   includes 
correlation-related terms (covariance matrix 
of variables, and variables against target)



Where Does This Come From? 

The error vector (b-Aw) must be orthogonal the 
the vector for each variable, or we could 
improve the fit by adjusting w.
These zero dot products mean
Simple algebra then gives



Better Regression Models

Proper treatment of variables yiels better 
models:
● Removing outliers
● Fitting non-linear functions
● Feature/target scaling
● Collapsing highly correlated variables



Outliers and Linear Regression

Because of the quadratic weight of residuals, 
outlying points can greatly affect the fit. 

Identifying outlying points and removing them in 
a principled way can yield a more robust fit.



Fitting Non-Linear Functions

Linear regression fits lines, not high-order curves!
But we can fit quadratics by creating another 
variable with the value x^2 to our data matrix.

We can fit arbitrary polynomials (including 
square roots) and exponentials/logarithms by 
explicitly including the component variables in 
our data matrix: sqrt(x), lg(x), x^3, 1/x.

However explicit inclusion of all possible 
non-linear terms quickly becomes intractable.



Feature Scaling: Z-scores

Features over wide numerical ranges (say 
national population vs. fractions) require 
coefficients over wide scales to bring together.
      V = c1 * 300,000,000 + c2 * 0.02
Fixed learning rates (step size) will over/under 
shoot over such a range, in gradient descent.
Scale the features in your matrix to Z-scores!



Dominance of Power Law Features

Consider a linear model for years of education, 
which ranges from 0 to 12+4+5=19.
      Y = c1 * income + c2
No such model can gives sensible answers for 
both my kids and Bill Gates’ kids.
Z-scores of such power law variables don’t help 
because they are just a linear transformation.



Feature Scaling: Sublinear Functions

An enormous gap between the largest/smallest 
and median values means no coefficient can 
use the feature without blowup on big values.
The key is to replace/augment such features x 
with sublinear functions like log(x) and sqrt(x).
Z-scores of these variables will prove much 
more meaningful.



Small Coefficients Need Small Targets

Trying to predict income from Z-scored 
variables will need large coefficients: how can 
you get to $100,000 from functions of -3 to +3?
If your features are normally distributed, you 
can only do a good job regressing to a similarly 
distributed target.
Taking logs of large targets give better models.



Avoid Highly Correlated Features

Suppose you have two perfectly-correlated 
features (e.g. height in feet, height in meters).
This is confusing (how should weight be 
distributed between them?) but worse…
The rows in the covariance matrix are 
dependent (r1 = c*r2) so
requires inverting a singular matrix!



Punting Highly Correlated Features

Perfectly correlated features provide no 
additional information for modeling.
Identify them by computing the covariance 
matrix: either one can go with little loss.
This motivates the problem of dimension 
reduction: e.g singular value decomposition, 
principal component analysis.


