CSE 519: Data Science
Steven Skiena
Stony Brook University
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Singular Value Decomposition

The SVD of an n*m matrix M factors it m = UDV*
where D is diagonal (weighted identity matrix)

Thus UD weights each column of U by D, as
does DVAT.

Retaining only the rows/column with large
weights permits us to compress m features with
relatively little loss.



Reconstruction from SVD

The outer product of vectors yields a matrix
P=XX)Y PlJ, k1 =X[jIY'[K]

Matrix M can be expressed a sum of outer
products from SVD: (UD) k and (VAT) k

C=A-B=) AcQ)B] B
K
Summing only the largest matrix products
produces an approximation of M



Error Declines with Dimensionality
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Reconstructing Lincoln

Lincoln’s face from 5 and 50 singular values, a
substantial compression of the original matrix.
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Linear Regression

Given a collection of n points, find the line
which best approximates or fits the points.




Why Linear Functions?

Linear relationships are easy to understand,
and grossly appropriate as a default model:

e Income grows linearly with time worked.
e Housing prices grow linearly with area.
e \Weight increases linearly with food eaten.

Statistician’s rule: If you want a function to be
linear, measure it at only two points.



Linear Regression and Duality

In solving linear systems, given n lines we seek
the point that lies on all the lines.

In regression, we seek the line that lies on “all”
n points.

By the duality transformation (s,t) <-> y= (s)x-t
lines are equivalent to wl A
poin ts in another space. RV

Dwal plane



Duality Example
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Error in Linear Regression

The residual error is the difference between the
predicted and actual values: r =y — f(2:,8)

Least squares regression minimizes
the sum of the squares of the residuals
of all points.

This metric is chosen because (1) it
has a nice closed form and (2) it
ignores the sign of the errors. rrrTTTe
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Solving Linear Regression

Consider the n*m system Ax=b. The vector w
of coefficients for the best fitting line is given

Y w= (AT A)~1ATD

Product of (m*m)*(m*n)*(n*1) (m*1) is m*1
Thus least squares optimization reduces to
inversion and multiplying matrices.



Linear Regression in One Variable

We seek the best fitting line  y = wo + waix
The slope of this line is:

. i Xi—xX)(i—Y) : Ox
1 = = —, Xy

The intercept follows since | goes through the
X-mean and y-mean.



Connections with Correlation

e If x is uncorrelated with y, w1 should be
Zero.

e If X,y are perfectly correlated, the slope
should depend upon the magnitudes of x,y,
as given by tw = (AT A)~! AT bions.

e The formula includes
correlation-related terms (covariance matrix
of variables, and variables against target)



Where Does This Come From?

The error vector (b-Aw) must be orthogonal the
the vector for each variable, or we could
improve the fit by adjusting w.

These zero dot products mean A" (b — Aw) =0
Simple algebra then gives

w = [ATA) =LAy



Better Regression Models

Proper treatment of variables yiels better
models:

e Removing outliers

e Fitting non-linear functions

e Feature/target scaling

e Collapsing highly correlated variables




Outliers and Linear Regression

Because of the quadratic weight of residuals,
outlying points can greatly affect the fit.

|dentifying outlying poirnts and rémoving them in
a principled way can yield a more robust fit.



Fitting Non-Linear Functions

Linear regression fits lines, not high-order curves!

But we can fit quadratics by creating another
variable with the value x"2 to our data matrix.

We can fit arbitrary polynomials (including
square roots) and exponentials/logarithms by
explicitly including the component variables in
our data matrix: sqrt(x), Ig(x), x"3, 1/x.

However explicit inclusion of all possible
non-linear terms quickly becomes intractable.
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Feature Scaling: Z-scores

Features over wide numerical ranges (say
national population vs. fractions) require
coefficients over wide scales to bring together.

V =c1 * 300,000,000 + c2 * 0.02

Fixed learning rates (step size) will over/under
shoot over such a range, in gradient descent.

Scale the features in your matrix to Z-scores!



Dominance of Power Law Features

Consider a linear model for years of education,
which ranges from 0 to 12+4+5=19.

Y=c1 *income + c2

No such model can gives sensible answers for
both my kids and Bill Gates’ kids.

Z-scores of such power law variables don’t help
because they are just a linear transformation.



Feature Scaling: Sublinear Functions

An enormous gap between the largest/smallest
and median values means no coefficient can
use the feature without blowup on big values.

The key is to replace/augment such features x
with sublinear functions like log(x) and sqrt(x).

Z-scores of these variables will prove much
more meaningful.



Small Coefficients Need Small Targets

Trying to predict income from Z-scored
variables will need large coefficients: how can
you get to $100,000 from functions of -3 to +37

If your features are normally distributed, you
can only do a good job regressing to a similarly
distributed target.

Taking logs of large targets give better models.



Avoid Highly Correlated Features

Suppose you have two perfectly-correlated
features (e.g. height in feet, height in meters).

This is confusing (how should weight be
distributed between them?) but worse...

The rows in the covariance matrix are
dependent (r1 = c*r2) so w = (A"A)" 1A
requires inverting a singular matrix!



Punting Highly Correlated Features

Perfectly correlated features provide no
additional information for modeling.

ldentify them by computing the covariance
matrix: either one can go with little loss.

This motivates the problem of dimension
reduction: e.g singular value decomposition,
principal component analysis.



