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1 Introduction

Combinatorica is an extension to the computer algebra system Mathematica [9] that provides
over 450 functions for discrete mathematics. It is distributed as a standard package with every
copy of Mathematica. Combinatorica facilitates the counting, enumeration, visualization, and
manipulation of permutations, combinations, integer and set partitions, Young tableaux, partially
ordered sets, trees, and (most importantly) graphs. Combinatorica users include mathematicians,
computer scientists, physicists, economists, biologists, anthropologists, lawyers, and high school
students.

Combinatorica (www.combinatorica.com) has been widely used for teaching and research in
discrete mathematics since its initial release in 1990 [6]. The original Combinatorica contained
230 functions, using only 2500 lines of code. Its value lay in the ease with which one could
conduct a large variety of experiments on discrete mathematical objects and visualize the results.
It was never intended to be a high-performance algorithms library such as LEDA [3], but more as
a mathematical research tool and a prototyping environment for effective “technology transfer”
of discrete mathematics and algorithms to a diverse applications community.  Combinatorica
received a 1991 EDUCOM award for distinguished mathematics software.

We have recently completed the first significant revision of Combinatorica since its initial
release over ten years ago [5]. The new package is essentially a complete rewrite of Combinatorica.
Over 80% of the functions have been rewritten and the package has more than doubled in size
to 450 functions and 6700 lines of code. Feedback from users, advances in graph theory and
combinatorics, faster and more versatile hardware, better versions of Mathematica, and easier
access to color graphics were some of factors that motivated this rewrite.

In this paper, we present an overview of the new Combinatorica along with a summary of lessons
learned along the way. Section 2 presents an overview of Combinatorica, including representative
graphics generated by the package, a description of new features of the revised version, as well
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Figure 1: Representative Combinatorica graphs I: edge-disjoint paths (left), Hamiltonian cycle in
a hypercube (center), animated depth-first search tree traversal (right).

as a review of typical research applications. Section 3 summarizes what we have learned about
the design, redesign, and applicability of graph-theoretic software during the long history of the
Combinatorica project.

2 Combinatorica in Action

We begin our introduction to Combinatorica with a brief discussion of its design philosophy. We
encourage the reader to visit www.combinatorica.com for more information on Combinatorica and
related resources such as algorithm animations, graph database, and Java-based graph editor.
Pemmaraju and Skiena [5] is the definitive guide to Combinatorica.

2.1 Combinatorica Architecture

Combinatorica is best thought of as a library of functions which extend Mathematica for combi-
natorics and graph theory. The arguments to these functions have been carefully designed to that
they can be readily composed with each other, i.e. the output of one function serves as an input
to another in support of a functional programming style.

Combinatorica is used in one of two primary ways: (1) interactively, by responding to a sequence
of typed-in function calls, and (2) programmatically, by serving as a rich library of basic routines
for constructing more sophisticated functions. Each of the illustrations in Figures 1, 2, and 3 were
constructed with between one and five lines of Combinatorica function calls.

Several advantages accrued to us in developing Combinatorica on top of Mathematica, includ-

ing:
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Figure 2: Representative Combinatorica graphs II: bicolored tree (left), maximal bipartite match-
ing (center), partition lattice (right).
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Figure 3: Representative Combinatorica graphs III: table of all circulant graphs on 12 vertices
(left), Hamiltonian cycle on a six-dimensional Boolean algebra, defining a Grey code (center),
Petersen graph to demonstrate visualization options (right).



e Portability — Using Mathematica as a platform implies that Combinatorica is portable to
any machine running Mathematica, without us having to worry about the peculiarities of
different machines. Further, the large and growing installed base of Mathematica provides
hope that most mathematically-oriented people have access to it'. Portability has proven
particularly important with respect to Mathematica graphics.

e Density — Mathematica is a very high-level language. Through careful programming, 6700
lines of code suffice to implement all 450 functions. This means that the average function
is scarcely more than ten lines long. Because they are so short, most functions are easily
readable. Indeed, the complete source code for Combinatorica appeared in print in [6]. We
reverted to publishing only the most important and instructive functions in [5] due to the
increasing size of the system.

e Power— Having the rest of Mathematica available makes Combinatorica much more powerful.
For example, chromatic polynomials can be represented as polynomials, which can then be
manipulated symbolically. Other aspects of Mathematica which are sometimes useful when
working with graphs include linear algebra and arbitrary precision arithmetic.

Perhaps the biggest advantage is the underlying programming language, allowing Combina-
torica to be used as both an interactive system and as a programming language for working
with graphs.

The major disadvantage of using Mathematica is that the RAM model of computation tradi-
tionally used to analyze the efficiency of algorithms does not hold for Mathematica. In general,
there is no constant-time operation to modify an element in an array or list, so getting efficient
performance means designing algorithms which avoid destructive write operations. Further, Math-
ematica is an interpreted language. Because of this, Combinatorica is not intended as a tool for
performing heavy duty computations. Instead it is a tool for interacting with small examples, and
for rapidly implementing programs to provide some experimental insight into specific problems.

About a third of Combinatorica ’s functionality is devoted to enumerating, counting, and sam-
pling discrete structures. These range from simple functions to count and enumerate permutations
to sophisticated functions that use Polya theory to count distinct discrete structures that exhibit
inherent symmetries.

2.2 Applications of Combinatorica

Combinatorica has been widely used for both teaching and research. The research applications
typically fall into one of three types: (1) mathematical research into discrete structures through
Combinatorica experiments, (2) employing Combinatorica to perform discrete simulation model-
ing, typically by people outside the computer science community, or (3) systematic extensions to
Combinatorica for particular applications.

'Wolfram Research has made considerable progress in recent years in arranging for University-wide site licenses
for Mathematica, including, for example, both author’s home institutions.



Representative research applications of Combinatorica include:

e Unfolding Convex Polytopes — A longstanding open problem in geometry is the question of
whether every convex polytope can be cut along edges and unfolded so that no two faces
overlap. Such an unfolding defines a model to construct the polytope. Every potential un-
folding is described by a spanning tree of the dual graph of the polytope. This observation is
the foundation of Namiki and Fukuda’s unfolding package [4], built on top of Combinatorica,
which has proven to be the best resource available to study this problem.

e Implementation of Graph Grammars — Grammatica [7] is a prototype implementation of
algebraic graph transformation that has been implemented on top of Combinatorica, and is
available at http://www.lsi.upc.es/~valiente/. Grammatica consists of routines for represent-
ing, manipulating, displaying and transforming graphs, with special emphasis on algebraic
operations on graphs. It supports both interactive and automatic application of double-
pushout graph productions, being therefore both a teaching aid and a research tool for
algebraic graph transformation.

o Generalized Lights Out — The popular puzzle Lights Out, manufactured by Hasbro’s Tiger
Electronics division, is constructed from a 5 x 5 grid of lights. Toggling a vertex reverses the
on-off state of the vertex and all its immediate neighbors. The goal of the puzzle is to start
from an initial state where all vertices are lit and turn off all the lights. Initial Combinatorica
experiments lead to the fascinating theoretical result by Cowen, et. al. [1, 2] that odd-parity
colorings over inclusive neighborhoods exist for all graphs. These results imply an algorithm
to solve Lights Out for any graph.

e Topologies of Renal Glomerular Microvascular Networks — In angiogenesis, blood vessels can
grow in two ways, i.e. either (1) an existing vessel splits into two parallel vessels, or (2)
an existing vessel buds, sending off a shoot which runs into another vessel. The mix of
these operations impacts the topology of the resulting network. Wahl, et.al. [8] recently
used Combinatorica to compute graph invariants on eight previously published rat renal
glomerular networks. Invariants calculated include order, size, cycle rank, eccentricity, root
distance, planarity, and vertex degree distribution. These invariants enabled the differen-
tiation of the six normal adult glomerular microvascular networks from that of the uremic
glomerulus and from that of the normal newborn glomerulus. These invariants might then
be used to differentiate between normal and pathological vascular networks.

Analysis of these networks of hundreds of vertices would not have been possible under the
old Combinatorica .

2.3 New Features in Combinatorica

Feedback from users, advances in graph theory and combinatorics, faster and more versatile hard-
ware, better versions of Mathematica, and easier access to color graphics are some of the factors
that have motivated the rewrite of Combinatorica .



Combinatorica now contains (a) an improved data structure for graphs, especially tuned for
sparse graphs and for storing drawing information, (b) coverage of additional topics in discrete
mathematics, (c) improved graph drawing capabilities, (d) substantially faster code, with some
routines sped up asymptotically, and (e) constructors for new graph classes. Here is a quick tour
of these features:

Improved graph data structure. The original Combinatorica used the adjacency matrix data
structure for graphs, for several reasons which were sound at that time. However, with improve-
ments in technology this eventually became a bottleneck in performance. The new Combinatorica
uses an edge list data structure for graphs, partly motivated by increased efficiency and partly
motivated by the need to store drawing information associated with the graph. Edge lists are lin-
ear in the size of the graph, and this makes a huge difference to most graph related functions. The
improvement is most dramatic in “fast” graph algorithms — those that run in linear or near linear-
time, such as graph traversal, topological sort, and finding connected/biconnected components.
The implications of this change is felt throughout the package; in running time improvements,
memory savings, increased functionality, and better graph drawings. The package can now work
with graphs that are about 50-100 times larger than graphs that the old package can deal with.

In the following example, we construct a random induced subgraph of a graph with grid graph
with 10,000 vertices and about 40,000 edges. The resulting graph with about 5000 vertices and
edges is shown below.

In[1] := ShowGraph[ InduceSubgraph[GridGraph[100,100], RandomSubset [Range[10000]]]
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The connected components of this random subgraph are computed in under three seconds on a
very modest computer.

Improved graph drawing and animation. One of the highlights of the new package is its
new graph drawing capability. Now vertices and edges can be drawn in different shapes, styles, and
colors. Vertex numbers, vertex labels, and edge labels can be displayed in a variety of ways with
easy control of their sizes and positions. Multiple edges and self-loops are shown correctly. There is
now a “zoom” feature, the color of the background can be set, and drawings can be given captions.
Figures 1-3 are testimony to some of the new graph drawing capabilities of Combinatorica.



The new Combinatorica provides several functions to support animations, which can easily
be converted to animated gif files. See www.combinatorica.com for a nice collection of algorithm
animations.

Additional topics. A number of functions relating to Polya theory and set partitions have been
added to Combinatorica. Polya theory combines the theory of permutation groups and the power
of generating functions to provide ways of counting equivalence classes of families of combinatorial
objects, induced by “symmetries.” Applications of Polya theory range from counting isomers
in chemistry to experimental design in statistics. Polya theory is also useful in counting and
enumerating unlabeled graphs. In the following example, we use the Combinatorica function
GraphPolynomial to produce a generating function for the number of unlabeled 6-vertex graphs
with different number of edges. Specifically, the coefficient of ™ is the number of unlabeled graphs
with 6 vertices and m edges.

In[2] := GraphPolynomial[6, x]

2 3 4 5 6 7 8 9
Qut[2]l=1+x+2x +5x +9x +15x +21x +24x +24x + 21 x +

10 11 12 13 14 15
15 x + 9 x + 5 x + 2 x + x + x

Combinatorica now provides functions on set partitions for enumerating, ranking, unranking,
and select uniformly at random.

Improvement in Running Time. Efficiency is a great challenge for Mathematica, due to
its applicative model of computation and due to the overhead of interpretation (as opposed to
compilation). Mathematica code is typically 1000 to 5000 times slower than C code and so the
original Combinatorica could work effectively only on very small graphs (up to 50 vertices or so).
In the new Combinatorica we can perform interesting computations on graphs with hundreds of
thousands of vertices, raising the possibility that Combinatorica can now be used not just as a
prototyping tool, but even in situations in which high performance is important.

The biggest challenge in speeding up Combinatorica functions is due to the overhead of in-
terpretation in Mathematica. Also, constant-time destructive write operations are not allowed in
Mathematica, and this means that operations that we may take for granted as O(1) time operations
often take linear time in the Mathematica model of computation. However, by using better algo-
rithms, better data structures, more appropriate programming constructs, and new Mathematica
features we have sped up most functions, many by several orders of magnitude.

For example, the old Combinatorica MinimumSpanningTree function on a 20 x 20 grid graph
takes more than 120 times longer than the new Combinatorica equivalent on a 30 x 30 grid! The
algorithm in the two versions is essentially the same; the huge difference in the running time is
entirely due to the change in data structure from adjacency matrix to edge list.



approximate year 1990 1991 1998 2000 2004
command /machine Sun-3  Sun-4 Sun-5 Ultra 5 SunBlade
PlanarQ[GridGraph|[4,4]] 234.10 69.65 27.50  3.60 0.40
Length[Partitions[30]] 289.85 73.20 24.40 @ 3.44 1.58
VertexConnectivity[GridGraph[3,3]] | 239.67 47.76 14.70  2.00 0.91
RandomPartition[1000] 831.68 267.5 2205  3.12 0.87

Table 1: Combinatorica Benchmarks on Low-end Sun Workstations, 1990 to date, in seconds.

New instances and classes of graphs. Combinatorica now contains constructors for many
new classes of graphs and posets: shuffle-exchange graphs, butterfly graphs, boolean algebras, and
inversion posets, to name a few. It also contains many instances of interesting specific graphs,
encapsulated within the function FiniteGraphs. A database of Combinatorica graphs containing
a complete census (for small n) of non-isomorphic graphs in several interesting classes in available
on www.combinatorica.com. These are particularly useful to test graph-theoretic conjectures.

3 Lessons from the Combinatorica Project

The main lessons we take away from our experience developing and using Combinatorica are
listed in the subsections below.

3.1 Lessons in Performance Optimization

Lesson 1. To make a program run faster, just wait.

Table 1 presents the results of a series of Combinatorica benchmarks over the past 15 years.
The differences in running time are partly due to better Mathematica implementations, but
primarily due to faster machines. All benchmarks are for the original version of Combinator-
ica. In each of these cases we observe a speedup of more than 200-fold. In this context, the
further speedups we obtained from upgrading the package become particularly dramatic.

Lesson 2. Asymptotics eventually do matter.

Asymptotic improvements in running time have been obtained for a wide variety of functions.
Some of these are due to better algorithms, some to more careful implementations, and others
to the new graph data structure. Often these improvements show up as substantial savings
in time, even for small inputs.

Lesson 3. Compilation is a win over interpretation.

Mathematica provides a function called Compile that can be wrapped around Mathematica
code to construct compiled functions. Specifically, Compile creates a CompiledFunction
object which contains a sequence of simple instructions for evaluating the compiled function.
The instructions are chosen to be close to those found in the machine code of a typical



computer, and can thus be executed quickly. Unfortunately, Compile expects the inputs to
the function and the objects returned by the function to be machine-sized numbers. This
means that we cannot pass in graphs, polynomials, huge integers, and all of the other objects
we are so accustomed to passing around via Mathematica functions. This is a big loss in
flexibility, and there is a clear trade-off here between speed and ease of use.

For many Combinatorica functions, compilation is not an option since we expect these func-
tions to deal with arbitrary objects. However, it was possible to modify some functions in
Combinatorica so as to get them to a point where they could be compiled. This has led to
significant speedups, as the following example shows.

The function LexicographicPermutations generates all permutations of a given list in
lexicographic order. In the original Combinatorica, it used the standard recursive algorithm
in which each element is taken out of the list and then prepended to each permutation of the
remaining elements. The new version of the function consists of starting with the list and
repeatedly computing lexicographic successors. So the recursion is replaced by iteration and
the iterative version is compiled. The differences in timing are a factor of ten in constructing
all permutations on nine elements.

Being a compiled function, it can only deal with lists of numbers. If we are asked to permute
a list L of n items that are not numbers, we simply compute the lexicographic permutations
of the list {1,2,...,n} and then apply each permutation to L. It turns out that even for
items that are not numbers, the new version is faster than the old version.

Lesson 4. Not all functions can be made efficient in the Mathematica model of computation.

Many efficient algorithms depend on data structures that provide fast implementation of
certain operations. For example, on an n-vertex graph with m edges Dijkstra’s algorithm
runs in O(n?) time if a linear array is used, O(mlogn) time if a binary heap is used, and
O(m +nlogn) time if a Fibonacci heap is used. The run time improvements due to using a
heap come mainly because it is possible to update a heap in logarithmic time. In Mathematica
such updates usually take linear time and so using a linear array ends up being the best
option.

Recent versions of Mathematica offer the option of storing data in a packed array provided
the data consists of a sequence or a matrix of machinesized numbers. Using a packed array
can reduce memory usage and provide constant-time write operations. However, we face the
same trade-off as in trying to compile rather than interpret Mathematica code. Sophisticated
data structures are often irregularly structured, contain pointers, and are not amenable to
being packed. Restricting items in a data structure to be machine-sized numbers requires
giving up one of Mathematica’s most important features — the ability to handle data of
arbitrary size.

3.2 Lessons in System Design

Our Combinatorica experience offers several lessons in system design beyond software engineering:



Lesson 1. Sophisticated hardware eventually slithers down to everybody.

Combinatorica currently runs on machines with unimaginably faster speeds and memory sizes
than back in 1990, but they could have been predicted as a consequence of Moore’s law. This
argument suggests designing systems to run on the most powerful hardware available today,
instead of aiming to support low-end users.

To make the same point, we designed the original Combinatorica to support black and
white graphics, because that reflected the typical screens and printers of 1990. Once the
then-sophisticated graphics hardware became widely available, color graphics (rather than
computational performance) quickly became the biggest demand of Combinatorica users.

Lesson 2. Interface consistency and flexibility is more important than performance.

Much of the success of Combinatorica is due to its completeness and consistency. The
function naming convention, which is inherited from Mathematica, capitalizes and completely
spelling out each word. Although verbose, it makes it possible for users to routinely use a
library as complex as Combinatorica and derive the name of functions they have never used
before. The completeness of the package encourages exploration of the system instead of the
manual.

When conducting experiments in combinatorics, the combinatorial explosion guarantees that
you will not be able to search all structures past some small constant. Being able to quickly
code up a test of all widgets up to size 10 is usually more useful than a more complicated
test up to size 15 or even 20.

One of the simple but important changes of the new Combinatorica has been hiding the
internals of the graph structure from the view of the naive user. This cue more clearly reveals
that the ‘right” way to proceed is exclusively by using our access/generation/conversion
functions than by cobbling together a graph structure from scratch.

Lesson 3. Hitching a ride to a commercial platform can help with portability and maintenance.

One of the primary reasons why Combinatorica has remained in wide use for over ten years
is that it rests on a commercial platform. Wolfram Research Inc., the distributors of Math-
ematica, have had the incentive, resources, and responsibility to keep the system running
over the years.

Few if any of the “competitor” discrete mathematics programs and graph editors cited
in [6] are still running today, because of operating system shifts in the intervening years
(DOS to Microsoft Windows, differing flavors of X-windows, Macintosh OS upgrades). Even
programming languages are very unstable. During the last ten years, Pascal died, and even
old C programs are hard to compile. Combinatorica is still alive primarily because somebody
else is making it run on other machines for us.

Lesson 4. Commercial platforms do mean a loss of control and visibility.

Hitching our star to a commercial operation has also brought certain problems. Certain
function names we used (such as K for complete graph) have been taken from us over the
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years by the powers that be. We have also been somewhat of a victim of WRI’s pricing
strategies. Because Mathematica site licenses have until recently been too expensive for
most educational institutions, it has not proven as accessible for teaching purposes as we
had hoped. Although we have distributed upgrades to Combinatorica on the WWW since
its inception, it was difficult for many people to justify buying Mathematica just to use our
package.

In retrospect, did we make the right decision to base Combinatorica on Mathematica? We
believe the answer is yes. Combinatorica would have been a substantially different system
on any other platform. It is not clear that any other computer algebra system (including
Maple) provides a larger user-base. Starting fresh today we might consider using Java, but
would you want to bet you will be able to run today’s Java programs in ten years?

Lesson 5. Books can greatly increase the visibility of any software product.

One of the key reasons for the success of Combinatorica is the associated book [5, 6]. Al-
though complete user documentation is distributed with Mathematica and is available at
www. combinatorica.com, the book has been very important to promoting the package.

Books do many good things. An interesting book cannot just be a user’s manual. In [5], we
present a substantial volume of theoretical and algorithmic results in a distinctive way, so
as to be suitable as a textbook in combinatorics and graph theory courses. Publishing your
primary documentation as a book requires thinking more about your target audience than
just listing commands and providing examples. They require you to invest as much time
in the documentation as the code, and help you anticipate missing features and options.
Finally, books considerably expand the awareness of your software; it is your publisher’s job
to help spread the word about it. They don’t do as good a job as we might like, but they
do help.
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